Health Care Management Science publishes papers dealing with health care delivery, health care management, and health care policy. Papers should have a decision focus and make use of quantitative methods including management science, operations research, analytics, machine learning, and other emerging areas. Articles must clearly articulate the relevance and the realized or potential impact of the work. Applied research will be considered and is of particular interest if there is evidence that it was implemented or informed a decision-making process. Papers describing routine applications of known methods are discouraged.
Authors are encouraged to disclose all data and analyses thereof, and to provide computational code when appropriate.
Editorial statements for the individual departments are provided below.
Health Care Analytics
Departmental Editors:
Margrét Bjarnadóttir, University of Maryland
Nan Kong, Purdue University
With the explosion in computing power and available data, we have seen fast changes in the analytics applied in the healthcare space. The Health Care Analytics department welcomes papers applying a broad range of analytical approaches, including those rooted in machine learning, survival analysis, and complex event analysis, that allow healthcare professionals to find opportunities for improvement in health system management, patient engagement, spending, and diagnosis. We especially encourage papers that combine predictive and prescriptive analytics to improve decision making and health care outcomes.
The contribution of papers can be across multiple dimensions including new methodology, novel modeling techniques and health care through real-world cohort studies. Papers that are methodologically focused need in addition to show practical relevance. Similarly papers that are application focused should clearly demonstrate improvements over the status quo and available approaches by applying rigorous analytics.
Health Care Operations Management
Departmental Editors:
Nilay Tanik Argon, University of North Carolina at Chapel Hill
Bob Batt, University of Wisconsin
The department invites high-quality papers on the design, control, and analysis of operations at healthcare systems. We seek papers on classical operations management issues (such as scheduling, routing, queuing, transportation, patient flow, and quality) as well as non-traditional problems driven by everchanging healthcare practice. Empirical, experimental, and analytical (model based) methodologies are all welcome. Papers may draw theory from across disciplines, and should provide insight into improving operations from the perspective of patients, service providers, organizations (municipal/government/industry), and/or society.
Health Care Management Science Practice
Departmental Editor:
Vikram Tiwari, Vanderbilt University Medical Center
The department seeks research from academicians and practitioners that highlights Management Science based solutions directly relevant to the practice of healthcare. Relevance is judged by the impact on practice, as well as the degree to which researchers engaged with practitioners in understanding the problem context and in developing the solution. Validity, that is, the extent to which the results presented do or would apply in practice is a key evaluation criterion. In addition to meeting the journal’s standards of originality and substantial contribution to knowledge creation, research that can be replicated in other organizations is encouraged. Papers describing unsuccessful applied research projects may be considered if there are generalizable learning points addressing why the project was unsuccessful.
Health Care Productivity Analysis
Departmental Editor:
Jonas Schreyögg, University of Hamburg
The department invites papers with rigorous methods and significant impact for policy and practice. Papers typically apply theory and techniques to measuring productivity in health care organizations and systems. The journal welcomes state-of-the-art parametric as well as non-parametric techniques such as data envelopment analysis, stochastic frontier analysis or partial frontier analysis. The contribution of papers can be manifold including new methodology, novel combination of existing methods or application of existing methods to new contexts. Empirical papers should produce results generalizable beyond a selected set of health care organizations. All papers should include a section on implications for management or policy to enhance productivity.
Public Health Policy and Medical Decision Making
Departmental Editors:
Ebru Bish, University of Alabama
Julie L. Higle, University of Southern California
The department invites high quality papers that use data-driven methods to address important problems that arise in public health policy and medical decision-making domains. We welcome submissions that develop and apply mathematical and computational models in support of data-driven and model-based analyses for these problems.
The Public Health Policy and Medical Decision-Making Department is particularly interested in papers that:
Study high-impact problems involving health policy, treatment planning and design, and clinical applications;
Develop original data-driven models, including those that integrate disease modeling with screening and/or treatment guidelines;
Use model-based analyses as decision making-tools to identify optimal solutions, insights, recommendations.
Articles must clearly articulate the relevance of the work to decision and/or policy makers and the potential impact on patients and/or society. Papers will include articulated contributions within the methodological domain, which may include modeling, analytical, or computational methodologies.
Emerging Topics
Departmental Editor:
Alec Morton, University of Strathclyde
Emerging Topics will handle papers which use innovative quantitative methods to shed light on frontier issues in healthcare management and policy. Such papers may deal with analytic challenges arising from novel health technologies or new organizational forms. Papers falling under this department may also deal with the analysis of new forms of data which are increasingly captured as health systems become more and more digitized.
《Health Care Management Science》是一本由Springer Nature出版商出版的专业医学期刊,该刊创刊于1998年,刊期4 issues per year,该刊已被国际权威数据库SCIE、SSCI收录。在中科院最新升级版分区表中,该刊分区信息为大类学科:医学3区,小类学科:卫生政策与服务 3区;在JCR(Journal Citation Reports)分区等级为Q2。该刊发文范围涵盖HEALTH POLICY & SERVICES等领域,旨在及时、准确、全面地报道国内外HEALTH POLICY & SERVICES工作者在该领域取得的最新研究成果、工作进展及学术动态、技术革新等,促进学术交流,鼓励学术创新。2023年影响因子为2.3,平均审稿速度 。
中科院分区(当前数据版本:2023年12月升级版)
大类学科 | 分区 | 小类学科 | 分区 | Top期刊 | 综述期刊 |
医学 | 3区 | HEALTH POLICY & SERVICES 卫生政策与服务 | 3区 | 否 | 否 |
中科院分区(当前数据版本:2022年12月升级版)
大类学科 | 分区 | 小类学科 | 分区 | Top期刊 | 综述期刊 |
医学 | 2区 | HEALTH POLICY & SERVICES 卫生政策与服务 | 1区 | 否 | 否 |
中科院分区(当前数据版本:2021年12月旧的升级版)
大类学科 | 分区 | 小类学科 | 分区 | Top期刊 | 综述期刊 |
医学 | 2区 | HEALTH POLICY & SERVICES 卫生政策与服务 | 2区 | 否 | 否 |
中科院分区(当前数据版本:2021年12月升级版)
大类学科 | 分区 | 小类学科 | 分区 | Top期刊 | 综述期刊 |
医学 | 2区 | HEALTH POLICY & SERVICES 卫生政策与服务 | 2区 | 否 | 否 |
中科院分区(当前数据版本:2020年12月旧的升级版)
大类学科 | 分区 | 小类学科 | 分区 | Top期刊 | 综述期刊 |
医学 | 3区 | HEALTH POLICY & SERVICES 卫生政策与服务 | 2区 | 否 | 否 |
名词释义:中科院分区是中国科学院国家科学图书馆制定,中科院分区目前分为基础版和升级版(试行),基础版先将JCR中所有期刊分为13大类学科,每个学科分类按照期刊的3年平均影响因子高低,分为4四个区;升级版将期刊分为18个大类学科,涵盖数学、物理与天体物理、化学、材料科学、地球科学等大类学科;升级版设计了“期刊超越指数”取代影响因子指标。期刊超越指数即本刊论文的被引频次高于相同主题、相同文献类型的其它期刊的概率。
JCR分区(当前数据版本:2023-2024年最新版)
按JIF指标学科分区 | 收录子集 | 分区 | 排名 | 百分位 |
学科:HEALTH POLICY & SERVICES | SSCI | Q2 | 52 / 118 |
56.4% |
按JCI指标学科分区 | 收录子集 | 分区 | 排名 | 百分位 |
学科:HEALTH POLICY & SERVICES | SSCI | Q1 | 25 / 119 |
79.41% |
名词释义:JCR(Journal Citation Reports)由科睿唯安公司(前身为汤森路透)开发,JCR分区将期刊分为176个学科。该排名根据当年不同学科的影响因子,分为Q1、Q2、Q3、Q4四个区域。 Q1代表不同学科进行分类可以影响细胞因子前25%的期刊,以此作为类推,Q2是前25%-50%的期刊,Q3是前50%-75%的期刊,Q4是后期75%的期刊。
Cite Score 排名
CiteScore | SJR | SNIP | 学科类别 | 分区 | 排名 | 百分位 |
7.2 | 0.958 | 1.293 | 大类:Health Professions 小类:General Health Professions | Q1 | 3 / 21 |
88% |
大类:Health Professions 小类:Medicine (miscellaneous) | Q1 | 61 / 398 |
84% |
名词释义:CiteScore 是在 Scopus 中衡量期刊影响力的另一个指标,其作用是测量期刊的篇均影响力。当年CiteScore 的计算依据是期刊最近4年 (含计算年度) 的被引次数除以该期刊近四年发表的文献数,文献类型包括:文章、评论、会议论文、书籍章节和数据论文,社论勘误表、信件、说明和简短调查等非同行评议的文献类型均不包含在内。
1、Health Care Management Science期刊该细分领域中属于中等级别的SCI期刊,在国际上比较受认可,过审相对不是特别难, 值得关注的一本刊物。研究方向为HEALTH POLICY & SERVICES,建议您投递与此行业相关的稿件,以兔被拒稿耽误您的时间。建议稿件控制10页以上,4600单词字数以上(未翻译中文字数8600字数以上);文章撰写语言为英语;(单栏格式,单倍行距,内容10号字体,文章内容包含:题目,所有作者姓名、最高学位,作者单位(精确到部门),通信作者邮箱,摘要,关键词,内容,总结,项目基金,参考文献,所有作者相片+简介)。
2、该期刊近年没有被列入国际期刊预警名单(2021年12月发布的2021版),广大学者可以放心选择。鼓励提交以前未发表的文章,禁止一稿多投;拒绝抄袭、机械性的稿件;平均审稿速度 。
3、稿件重复率控制10%以内,论文务必保证原创性、图标、公式、引文等要素齐备,已发表或引用过度的文章将不会被出版和检索。
4、稿件必须有较好的英语表达水平,有图,有表,有公式,有数据或设计,有算法(方案,模型),实验,仿真等。
5、参考文献控制25条以上,参考文献引用一半以上控制在近5年以内;图表分辨率必须达到300dpi;参考文献与文献综述能反映国际研究前沿。
6、若您想联系Health Care Management Science出版商,请根据该地址联系:Health Care Manag. Sci.。
7、如果你想快速在SCI期刊发表,可以咨询本站的客服老师,我们将为你提供SCI期刊全过程管理服务,不成功不收取任何费用。
影响因子 | h-index | Gold OA文章占比 | 研究类文章占比 | OA开放访问 | 平均审稿速度 |
2.3 | -- | 31.75% | 100.00% | 未开放 |
IF值(影响因子)趋势图
中科院JCR分区趋势图
引文指标和发文量趋势图
自引数据趋势图
名词释义:影响因子 简称IF,是汤森路透(Thomson Reuters)出品的期刊引证报告(Journal Citation Reports,JCR)中的一项数据。 即某期刊前两年发表的论文在该报告年份(JCR year)中被引用总次数除以该期刊在这两年内发表的论文总数。这是一个国际上通行的期刊评价指标,是衡量学术期刊影响力的一个重要指标。
中科院同小类学科热门期刊 | 影响因子 | 中科院分区 | 浏览次数 |
Hepatobiliary Surgery And Nutrition | 6.1 | 2区 | 8423 |
International Journal Of Health Policy And Management | 3.1 | 3区 | 7721 |
Journal Of Pharmaceutical Innovation | 2.7 | 4区 | 7057 |
Laryngoscope Investigative Otolaryngology | 1.6 | 4区 | 5704 |
Journal Of Evidence-based Dental Practice | 4.1 | 4区 | 4460 |
International Journal Of Transgender Health | 10.5 | 2区 | 3906 |
Circulation-genomic And Precision Medicine | 6 | 2区 | 3534 |
World Journal Of Emergency Medicine | 2.6 | 3区 | 3007 |
Journal Of Asthma And Allergy | 3.7 | 3区 | 2904 |
Bmc Gastroenterology | 2.5 | 3区 | 2727 |
若用户需要出版服务,请联系出版商:Health Care Manag. Sci.。