时间:2023-01-08 11:39:51
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇无线环境监测,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
0 引言
在很多情况下,监控中心都需要对周边及关键位置的环境信息(如温度、照度、湿度等)进行监测和处理。各探测点信息采用有线传输是一种可靠的方法,但受建筑物装修要求和环境障碍等因素限制,不宜采用有线方式传输时,使用无线方式传输无疑是一种经济适用的选择。本装置要求能在5秒钟内完成对255个探测节点环境温度和光照信息的无线探测,并自动巡回或手动选择显示相关环境信息。
1 系统方案设计
根据设计要求,为便于对周边多点环信息进行探测,实现监测终端与各探测节点之间信息的无线传输,本装置由探测节点分机和监测终端两大部分组成。探测节点分机由单片机、温度检测电路、照度检测电路、无线发射电路和接收电路等组成;监测终端由单片机、无线发射电路、无线接收电路和显示电路等组成。系统结构如图1所示。各探测节点分机完成对环境温度和照度信息的采集与处理,并适时向监测终端和邻近检测节点发送信息;监测终端完成探测命令的、探测信息的处理、存储与显示。
1.1 信息传送与转发方案 为防止某个探测节点在上传信息时发生碰撞,系统采用“时分复用”信道的通信方式。约定每个节点必须在规定的时隙ΔT内完成信息发送。某个节点接收到监测终端发来的“探测命令”时,或接收到邻近节点转来的第一个“探测命令”时。启动定时,定时时间到便开始发送信息。定时时长根据每个节点地址不同或是否能直接接收终端“探测命令”为依据决定。
当监测终端需要探测环境温度和照度信息时,便以广播通信方式向各个探测节点“探测命令”。能直接接收终端“探测命令”的节点同时启动定时,某个探测节点定时时间到,便开始向终端和邻近节点发送信息(含地址、温度和照度信息)。终端将信息接收下来送单片机存储、处理;不能直接接收“探测命令”的节点(如地址序号为j的节点),在接到第一个邻近节点(如地址序号为i的节点)发出的信息时,便认为收到了“间接探测命令”,于是开始启动定时。由于每转发一个节点信息需要两个ΔT,因此转发节点j的定时时长
T=(256-i+2j)ΔT。
定时时间到,便发送含有i节点地址、j节点地址与环境数据的信息。此时,若i节点收到j节点发出的含有本节点(i节点)地址的信息,表明j节点需要本节点转发信息;若i节点收到的j节点信息中不含有本节点(i节点)地址的信息,表明j节点不需要本节点转发信息。
1.2 信息处理与显示方案 由于要求在5秒内完成对255个探测节点环境信息的探测,考虑到最多可能有254个节点的信息需要转发。这样,监测终端对每个节点的探测时间只有几十毫秒,这么短的时间无法实现“即时检测即时显示”,只能将地址信息和环境信息全部接收下来处理后,再根据需要送显示器显示。显示方式有三种选择:一是自动巡回显示,二是手动设定/选择显示,三是报警节点优先显示。
1.3 通信协议
1.3.1 数据包格式 本系统的信令和数据包由同步码WS、功能码FC、数据包长度码SIG、数据包内容DIGI和校验码CHECK五部分组成。数据包格式如下:
■
1.3.2 SPL编解码与数据包传输 ①SPL编码与数据包的发送。数据包WS、FC、SIG、DIGI、DHECK的发送是由单片机的通用输出端口从高位到低位串行逐位发送的,发送完WS以后,发真正的信令码FC、SIG、DIGI、DHECK时,将进行SPL编码,按照1变为01,0变为10的原则,FC由原15位变成30位。②SPL解码与数据包的接收。数据包的接收是发送的逆过程,是由单片机的通用接收端串行接收的,当单片机串行接收到WS后,即着手接收已经过SPL编码的FC、SIG、DIGI、DHECK。如果按照011,100的原则进行SPL解码,若出现00或11的情况,认为接收端出错,若出错两次,则信令无效,若只有一次,则暂时按000,111处理,留待下一步校验码纠错。③差错控制编码检错与纠错。差错控制的基本思路是,在发送端根据要传输的数据系列加入多余码元,使原来不相干的变为相干的数据,即编码。传输时将多余码元和信息码元一并传送。接收端根据信息码元和多余码元间的规则进行检验,即译码。根据译码结果进行差错检测。当发现差错时,由译码器自动将错误纠正。这种多余码元就是校验码。
2 电路与程序设计
2.1 发射电路 各探测节点和检测终端的发射电路可采用相同的电路结构。电路一般由脉冲产生电路、脉冲整形电路、调制与发射电路构成。
载波频率的稳定与否是发射电路能否稳定、可靠地工作的关键,本设计采用振晶与高速与非门构成的振荡器来产生稳定的载波信号。
信号的发射是通过线圈耦合的方式实现的,因而射频功放应选择谐振功放。谐振功放有A、B、C、D类,综合考虑电路的复杂程度及效率问题,本设计选用三极管构成的C类放大器对高频信号进行射频功率放大和发射。
常用的数字调制方式主要有ASK、FSK和PSK。相比而言,FSK、PSK电路比较复杂,本设计选择100%ASK调制。100%ASK以100%的能量进行数据传输,保证了信号的较高抗干扰性,解调容易,在一定程度上提高了通信的可靠性。
2.2 接收电路 各探测节点和检测终端的接收电路可采用相同的电路结构。电路主要由混频器、本机振荡器、中频放大器、检波器、低频放大器和脉冲整形电路构成。
混频器的作用是提高接收电路的灵敏度、选择性。如果没有混频电路,接收电路将直接放大接收到的高频信号,将会出现灵敏度低、选择性差的问题。采用混频器后,将高频信号变为固定的中频,故在混频器后设置中频放大器,中频放大器在固定中频上放大信号,放大电路可以设计得最佳,使放大器的增益做得更高且不易自激。本设计中频放大器中设置了一个藕合谐振电路和一个选频网络,以进一步提高接收电路的选择性和抗干扰能力。由于检波出来的信号较弱,须经低频放大以后才能进行比较判决。因此解调电路部分应包括由检波器、低频放大器和脉冲整形电路。解调出来的数据信号送单片机进行处理。
2.3 系统软件设计
2.3.1 监测软件设计 终端单片机节点完成探测命令、探测到的节点信息的处理和显示。当需要探测节点信息时,终端以广播方式发出探测命令,并启动定时,定时时长为512ΔT(ΔT为一个节点上传信息所需时间),确保255节点在转况下都能可靠探测。当探测到节点信息时,将该节点信息进行存储、处理。全部节点的信息都接收下来处理完后,将地址信息、温度信息和光照信息依序送显示器显示。然后再进行下一循环的探测。主要程序流程如图2所示。
2.3.2 节点软件设计 探测节点单片机完成对环境温度、照度信息和电池电压的采集与处理,适时向终端和邻近节点发送信息,并根据临近节点的需要及时向终端转发信息。主要程序流程如图3所示。
3 结束语
本装置为一模拟实验系统,由于各探测节点能够接收和转发邻近节点传来的信息,不仅数据传送可靠,而且通信距离远比点对点大。测试结果表明:该装置能够准确完整地监测和处理各探测节点的环境信息。只要适当增加发射电路的载波频率和发射功率就能增加探测距离和范围,以适应实际应用要求。
参考文献:
[1]谢自美.电子线路综合设计[M].华中科技大学出版社.
关键词:无线传输;环境监测;Zigbee
1 研究背景及意义
近年来新兴了一种性能稳定、传输效果较好的无线数传网络,主要用于传感器间近距离无线通信连接。基于这种无线的传输技术而开发的硬件模块,具有低成本,低功耗,协议简单,安全可靠,自动组网等特点。目前,此项技术已经日趋成熟,并被应用于多种行业。
传统的环境监测的过程一般为接受任务,现场调查和收集资料,监测计划设计,优化布点,样品采集,样品运输和保存,样品的预处理,分析测试,数据处理,综合评价等。同时监测地域的分散性,环境变化过程的缓慢性,监测的时间跨度也很大,所以目前常采取的是周期性的间断监测。传统的监测方法,对突发状态现象调查无法完成,而应用这种无线传输技术的监测平台可以随时不间断的进行监测。
2 基于无线传输的环境监测系统
本文将无线传输技术用于环境监测,搭建环境监测平台,该平台将具备连续性、追踪性的特点,对突发环境事件的研究提供帮助。将来随着该平台研究更加成熟,还将具备综合性特点,非常符合环境监测的要求。首先将开发的微传感器节点模块按照一定要求布置在监测环境中,实时采集各类环境数据,然后通过中心节点(具有协调器和路由的功能)将数据传递给网关,最后网关将收集到的整个子网络的信息通过系统内网传给基站。基站与一个数据库和 Internet 网联接,将收集到的数据进行相应的处理。最后,终端用户可以通过 Internet 网访问数据库得到自己感兴趣的信息,并且能够根据需要作出下达指令,控制节点运行。实现对环境的实时监测以及下达控制操作的目的。
1)无线技术综述:Zigbee 技术是专门为了低功耗的无线传感器网络研发的通信协议,通过对比 Zigbee技术和其它无线通信技术的特点,总结出 Zigbee 技术是无线传感器网络的最优选择。本文重点从整个构架上阐述了基于 Zigbee 环境监测平台的系统研究。为了适合无线网络中传感和控制设备通信的特定的需求,传感和控制设备的通信并不需要高的带宽,但是他们要求快速的反应时间,非常低的能量消耗,以及大范围的设备分布。Zigbee 协议应运而生,它继承了以往协议的优势,为无线网络中传感和控制设备之间的通信提供了一个极好的解决标准。
2)系统建设:通过 Zigbee 协议采用自组网和多跳的通信方式将环境的变化量传送给了它的上一级网关,网关将收集到的所有子网络的信息,通过事先编译好的系统内网传给更上一级的中心服务器。中心服务器有一个数据库专门存放这些环境的变化量,将它和 Internet 网连接。这样,用户终端就可以通过手机或 PC 机通过相应的服务程序直接访问到 Internet 网数据库得到用户所需要的外界环境的信息。当然,随着这一技术的不断深入发展,用户终端只需按下键盘在千里之外的办公室就可以实现对智能节点的控制。
3 智能节点硬件设计
智能节点的硬件设计包括主控制器模块选择,通信模块选择,各种环境监测传感器选择等。通过比较选择了环境监测中用到的几种传感器,分析它们的型号、特点、输出模式以及外部接口电路。
1)智能节点的设计:智能节点的设计是整个系统硬件设计最核心的部分,它直接放置在监测环境内部,负责数据的采集、处理和传输等功能。节点的设计必须满足具体应用的特殊要求,例如小型化、低成本、低功耗,并为节点配备合适的传感器、必要的计算功能、内存资源以及适当的通信设备。传统的无线传感器网络节点由四个模块组成:传感器模块(A/D 转换、传感器)、处理器模块(微处理器、存储器)、无线通信模块(无线网络、MAC、收发器)、电源供应模块(电池、AD-DC)。本设计在原有基础上添加标准化的接口平台和控制平台,实现更多应用的传感器的添加,以及用户可以下达命令对开关量,模拟量和数字量执行控制。
2)微控制器选择:微控制器模块是环境监测平台节点的核心部分,在微控制器的选择上,需要综合考虑其存储、处理、接口和功耗等多方面因素对硬件平台实现功能的支持。我们选用了 Texas Insterument MSP 430 微控制器芯片,它是专门为嵌入式应用而设计的超低功耗控制器。采用 16 位 RISC 核,时钟频率较低(4MHz),可以适用于不同类型设备的指令集。它以可变的片上 RAM(存储范围为 2~10KB)、几个 12 位模/数转换器和一个实时时钟为特征。它的功能很强大,可以执行一个标准无线传感器节点的基本计算任务
3)通信模块选择:通信模块是传感器组网的必备条件,使得独立的传感器节点之间可以互相连接,并能借助多跳将数据回传到节点,即数据汇聚节点。在环境监测中,大量的节点被放置在被监测领域内,能量消耗以及外部对信号的干扰,选择芯片时要充分考虑通信模块抗干扰能力以及能量消耗问题,即在满足信号处理要求的同时尽可能地抵抗干扰和降低系统能耗,延长平台工作时间。
4)传感器模块:传感器是环境监测平台中负责采集监测对象相关信息的组件,与应用紧密相关,不同的应用对涉及的检测量也不相同,有可能是一个模拟量(温度、湿度、光强、气体含量等),也有可能是一个数字量(信号链路质量)或者是一个布尔值(阈门开关、电闸的开合和继电器的位置等)。在环境监测中,传感器模块主要添加的常用传感器有全光谱光强度传感器、可见光谱光强度传感器、有毒气体监测传感器、温湿度传感器等。
5)控制平台:大多数的环境监测,数据采集和传输是系统的主要工作,尽量避免对环境监测对象造成影响,以保证数据采集精度。但是,对于诸如农业环境监控之类,用户希望不仅可以了解农田的各种环境参数变化,而且可以根据采集信息的变化情况对农田环境进行相应调整。例如,在蔬菜大棚内,温湿度是影响蔬菜生长的一些重要因素,当监测平台监测到温湿度高于或低于适合蔬菜生长的范围时需要采取一定的措施来改变大棚内环境温湿度,比如控制喷淋开或关,这就需要引入执行器进行控制。在不同应用中,执行器的功能与作用各不相同,可能是一个继电器开关,也可能是一组运动装置或数控设备,具体需要由系统应用所针对的对象决定。
6)电源模块:电源模块是环境监测平台的能量来源,电源技术的好坏决定了网络工作时间的长短和系统运行成本。目前还没有找到更高效使用时间更长的高能量电池,我们使用的是两节AA 电池,实验效果显示可以维持一个节点工作半个月时间。
7)其他硬件设计:节点模块采用 USB 口作为其程序调试下载端口。使用FTDI USB控制器芯片控制器和主机通讯,为了和节点通讯,必须在FTDI设备上安装FTDI驱动。节点模块将会在windows设备管理器中以串行口出现。并行的无线传感器可以同时连接到一台电脑的USB口,每个点,将会接收到不同的串行通信口标识符。天线节点模块的内置天线是一个倒F型的微波传输带,它从电路板底部伸出,远离电池组。倒F型天线是有线单极子,它顶部的截面被折叠下来与地线平行。在读出或写入闪存中数据的时候必须要谨慎,因为它是和无线电通信交叉存取的。这是总线在微控制器上的典型软件应用。
4 平台软件设计
该环境监测平台的软件设计主要通过操作系统 TinyOS 和编程语言 NesC 来完成。本章通过典型应用分析了模块化、基于组件的编程案例。将模块化的程序设计移植于环境监测领域,列出了该平台的软件流程图。最后通过网络数据库的应用开发了一套可视化数据监测平台,实现了远程监测。该平台的软件开发通过开源式 TinyOS 操作系统和基于组件的 NesC 编程语言来实现环境监测数据的发送和接收功能,程序开发周期短,便于修改,对于各种环境监测传感器的添加也很方便。网络数据库的应用开发使人们在办公室就可以直观的看到各种传感器采集的环境监测数据,足不出户就可以对数据进行提炼分析,观测环境变化的一举一动,实现了 24 小时不间断监测,对突发环境情况变化的研究提供了可能。
5 总结与展望
本文设计并实现了一种基于无线传输技术的环境监测系统,它通过使用由大量微型传感器节点组成的环境监测网络,可以对所监测的环境进行不间断的高精度信息采集。本文在以下一些方面做了基础性研究和探讨。搭建了基于无线传输技术的环境监测平台,这个平台具有数据采集和上传、网络可视化、远程控制等功能。在过去智能节点的硬件设计上存在接口不容易扩展问题,主要是由于环境监测中需要添加的传感器类型不同导致输出信号格式不同,另外还有主控芯片输入接口不够用等问题。针对这些展开研究,设计了标准化接口电路,实现了接口扩展。最后需要利用该平台进行了一系列的试验和调试,对采集的数据进行了分析,将该平台应用于环境监测是具有一定科研意义的。
参考文献
[1] 于宏毅, 李鸥等,无线传感器网络理论、技术与实现,国防工业出版社,2008.09
[2] 谢庆剑,杨再雍,李明玉.生态监测及其在我国的发展[J]广西轻工业.2008(8):77―79.
[3] 蒋挺,赵成。紫蜂技术及其应用[M]。北京:北京邮电大学出版社,2006.
[4] 王殊等著,无线传感器网络的理论及应用,北京航空航天大学出版社,2007.07
[5] 陈玲,环境监测,化学工业出版社,2011.1.17
[6] 姜必亮.生态监测 IJJ.福建环境,2003,20(1):4-6.
[7] 李文峻.浅谈生态环境监测[J].农业环境与发展,2011 年第 1 期
[8] 宫国栋.关于“生态监测”之思考[J].干旱环境监测,2002,16(1):47_49.
[9] 李文仲,段朝玉。Zigbee 无线网络入门与实战[M]。北京:北京航空航天大学出版社,2007.
[10] 李文仲,段朝玉.ZigBee 2006 无线网络与无线定位实战[M].北京:北京航空航天大学出版社,2008.
[11] 郝吉明,程真,王书肖. 我国大气环境污染现状及防治措施研究[J]. 环境保护. 2012(09)
[12] 陈健鹏,李佐军. 中国大气污染治理形势与存在问题及若干政策建议[J]. 发展研究. 2013(10)
[13] 李佳,谢琦,王庆华. 基于网关的ZigBee网络与Internet互联框架[J]. 计算机工程与设计. 2012(09)
【摘要】伴随着社会的不断发展,科学技术水平不断提升,无线电技术的应用也越来越广泛,并且随着科技的发展,无线电技术也取得了长足的发展,涉及到无线电的业务也变得越来越广泛,台站的数量也在不断增加,但是出现的问题就是无线电频谱资源变得越来越紧张,所以无线电电磁环境变得也越来越复杂,为了更好的掌握无线电电磁环境的变化,促进无线电更好的为人们的发展服务,因此需要做好无线电电磁环境的监测工作。本研究针对无线电电磁环境的监测系统问题展开了一系列的阐述,首先分析了无线电电磁环境监测系统的主要组成,然后分析了在开展无线电电磁环境的监测过程中需要注意的问题有哪些,对于掌握无线电电磁环境的变化有一定的指导意义。
【关键词】无线电 电磁环境 监测系统
一、前言
正如平时所熟知的地形条件,水文条件及气象环境一样,无线电电磁环境本身也存在于空间中,无线电电磁环境指的是在某一时间段,某一空间范围内人为的电磁现象和自然界本身存在的电磁现象的总和。鉴于电磁环境与无线电设备的工作状态有直接关系,因此需要做好无线电电磁环境监测,一旦无线电电磁不正常也就是平时所讲的电磁干扰。由于电磁环境的稳定性受到众多影响因素的影响,因此需要就无线电电磁环境监测系统展开细致的研究,才能控制好电磁环境更好的为社会发展服务。
二、无线电电磁环境监测系统的主要组成分析
(一)监测控制中心
监测控制中心是无线电电磁环境监测系统的主要组成,整个监测网络需要对来自于不同地区,频域监测数据进行采集,然后分析数据,促进自动监测工作的完成。监测控制中心主要利用无线电管理内部的网络实现对下级控制中心的控制,监测控制中心是整体监测数据的聚集点,正是由于其具有非常强大的数据处理功能,因此是整个监测系统的中心组成。
(二)大型固定监测站系统
大型固定监测站系统也是无线电电磁环境监测系统的组成之一,想要促进无线电信号良好,一般需要将监测系统安装在较高的建筑物上,大型固定的监测站系统能够实现对无线电发射基本参数的测量、带宽测定、调至测定、频段及频道的测定,能够实现较强的数据监测与存储处理功能。
(三)移动监测站系统
移动监测站主要是将整体监测设备设置在一些传输性能较好的交通工具上,然后移动监测站系统能够实现固定站监测系统覆盖不全面的缺点进行弥补,所以在这个层面上将移动监测站系统同样也具有大型固定站监测功能的。
(四)可移动站
可移动站与移动监测站系统有所不同,它与交通工具实现了完全分离,所以使用起来相对比较灵活,一旦有需要能够利用任何交通工具将监测设备送达到指定的监测点。当然如果监测有需要可以将监测设备临时固定的某处从而实现了固定监测站的监测功能。
(五)小型固定监测站
采用小型固定监测站系统开展监测功能主要是为了减少不必要的投资,最大限度的将覆盖区域的监测加强,结合实际的监测需要建立起有针对性的监测系统,该种监测站主要是对无线电电磁环境的监测数据加以收集。
(六)便携式监测设备
该种监测设备,小巧便捷,便于在较近距离查找排除无线电干扰信号。上述所讲的无线电监测站系统的具体使用情况需要结合国家对地区无线电电磁环境监测的具体要求来选择。
三、在无线电电磁系统监测过程中需要重点注意的问题
由于无线电电磁系统监测对无线电设备的使用有着至关重要的影响,但是无线电电磁系统监测系统的监测过程是一项非常复杂的过程,其监测结果的准确性和全面性将直接影响无线电设备的具体使用情况,因此在监测过程中需要有一些问题要注意。首先,在无线电电磁环境的监测过程中,出现不同宽带信号的现象是非常正常的,因此在进行监测结果接受的使用需要有较为严格的要求,为了最大限度的使用不同调制形式信号的测定需要,可以接受脉冲干扰信号。在监测过程中需要注意峰值和准峰值的检波功能,结合不同的测量对象,选择合适的检波方式。在监测过程中会有很多外界因素影响监测结构,随机干扰的来源不仅有热噪声还有雷达目标反射以及自然界所存的噪声,因此在进行平稳随机过程的干扰信号的测定时需要使用监测有效值以及检测平均值等实现测定。在使用波检器的时候,可以充分利用波检器的性质,然后分析不通信号在不同的波检方式下的不同反应,来判断带测定信号的类型,然后确定信号的性质,但是在监测的时候需要注意的问题是防止输入端过载,检波方式的选择需要慎重,在监测之前需要进行设备的校准,预选器的选择需要结合具体的测定过程。只有在测定过程中注意到一些小的细节才能促进检测结果的有效性。
四、结语
综上所述,无线电电磁环境的整体监测系统的组成非常复杂,只有就每一个组成的功能及工作原理分析到位,然后注意到在无线电电磁系统监测过程中所需要重点注意的问题才能做好无线电电磁环境的监测工作,最大限度的促进无线电业务的健康稳定发展。
参考文献:
[1]司广莉. 浅谈无线电电磁环境监测系统及监测数据[J]. 科技资讯, 2009,(24).
【关键词】无线传感器网络 ZigBee IEEE 802.15.4 能源管理 数据融合
近年来,随着无线传感器网络技术的迅猛发展,以及人们对于环境保护和环境监督提出的更高要求,越来越多的企业和机构都致力于在环境监测系统中应用无线传感器网络技术的研究。通过在监测区域内布署大量的廉价微型传感器节点,经由无线通信方式形成一个多跳的网络系统,从而实现网络覆盖区域内感知对象的信息的采集量化、处理融合和传输应用。无线传感器网络技术是应用性非常强的技术,它在当前我国环境监测系统中的应用潜力是巨大的。
一、无线传感器网络和ZigBee
无线传感器网络(Wireless Sensor Network,WSN)是由部署在监测区域内大量的廉价微型传感器结点通过无线通信技术自组织构成的网络系统。人们可以通过传感器网络直接感知客观世界,在工业自动化领域,利用无线传感器网络技术实现远程检测、控制,从而极大地扩展现有网络的功能。传感器网络、塑料电子学和仿生人体器官又被称为全球未来的三大高科技产业。ZigBee是一种新兴的短距离、低功耗、低数据速率、低成本、低复杂度的无线网络技术。
二、IEEE 802.15.4/ZigBee协议
1、IEEE 802.15.4标准
IEEE标准化协会针对无线传感器网络需要低功耗短距离的无线通信技术为低速无线个人区域网络(LR—WPAN)制定了IEEE 802.15.4标准。该标准把低能量消耗、低速率传输、低成本作为重点目标,旨在为个人或者家庭范围内不同设备之间低速互连提供统一标准。同时ZigBee联盟也开始推出与之相配套的网络层及应用层的协议,目的是为了给传感器网络和控制系统推出一个标准的解决方案。该标准一出现短短一年多的时间内便有上百家集成电路、运营商等宣布支持IEEE 802.15.4/ZigBee,并且很快在全球自发成立了若干联盟。IEEE 802.15.4/ZigBee协议栈结构如图1所示。协议栈中物理层与MAC层由IEEE定义,网络层与应用程序框架由ZigBee联盟定义,上层应用程序由用户自行定义。
2、ZigBee标准
ZigBee这个字源自于蜜蜂群藉由跳ZigZag形状的舞蹈,来通知其他蜜蜂有关花粉位置等资讯,以达到彼此沟通讯息之目的,故以此作为新一代无线通讯技术之电磁干扰。因此,经过人们长期努力,zigbee协议在2003年中通过后,于2004正式问世了。
ZigBee网络是自组织的,并能实现自我功能恢复,动态路由,自动组网,直序扩频的方式故非常具有吸引力。节点搜索其它节点,并利用软件“选中”某个节点后进行自动链接。它指定地址,提供路由表以识别已经证实的通信伙伴。
三、无线传感器网络技术特点
无线传感器网络由大量低功耗、低速率、低成本、高密度的微型节点组成,节点通过自我组织、自我愈合的方式组成网络。区域中分散的无线传感器节点通过自组织方式形成传感器网络。节点负责采集周围的相关信息,并采用多跳方式将这些信息通过Internet或其他网络传递到远端的监控设备。
四、系统概述
环境监测应用中无线传感器网络属于层次型的异构网络结构,最底层为部署在实际监测环境中的传感器节点。向上层依次为传输网络,基站,最终连接到Internet。传感器节点由传感器模块、处理器模块、无线通信模块和能量供应模块组成,传感器节点的体系结构如图2所示。为获得准确的数据,传感器节点的部署密度往往很大,并且可能部署在若干个不相邻的监控区域内,从而形成多个传感器网络。传感器节点将感应到的数据传送到一个网关节点,网关节点负责将传感器节点传来的数据经由一个传输网络发送到基站上。传输网络是负责协同各个传感器网络网关节点、综合网关节点信息的局部网络。基站是能够和Internet
相连的一台计算机(或卫星通信站),它将传感数据通过Internet发送到数据处理中心,同时它还具有一个本地数据库副本以缓存最新的传感数据。监护人员(或用户)可以通过任意一台连入Internet的终端访问数据中心,或者向基站发出命令。基于无线传感器网络的环境监测系统适合于在煤矿、油田安全监测,温室环境监测、环保部门的大气监测、突发性环境事故的预测及分析、特殊污染企业的监测,生物群种的生态环境监测以及家庭、办公室及商场空气质量监测等领域应用。
五、系统应用特点及架构
1、系统特点
利用无线传感器网络实现环境监测的应用领域一般具有以下特点:
(1)无人环境、环境恶劣或超远距离情况下信息的采集和传送,保证系统工业级品质安全可靠。(2)生物群种对于外来因素非常敏感,人类直接进行的生态环境监控可能反而会破坏环境的完整性,包括影响生态环境中种群的习性和分布等。(3)需要较大范围的通信覆盖,网络中的设备相对比较多,但仅仅用于监测或控制。(4)系统实施、运行费用要低,无需铺设大量电缆,支持临时性安装,系统易于扩展和更新。(5)具有数据存储和归档能力,能够使大量的传感数据存储到后台或远程数据库,并能够进行离线的数据挖掘,数据分析也是系统实现中非常重要的一个方面。
2、系统架构
(1)矿井安全监控
矿井利用无线传感器网络实现井下安全监控的系统结构框图如图3所示。传感器节点负责井下多点数据采集,主要包括CO、CO2、O2、瓦斯、风速和气压等参数,通过井场监控终端(基站)和地面基站传送给后台监控中心。后台监护人员通过该监测系统可及时、有效、全面的掌握矿井情况,有利于矿井实施指挥调度、安全监测,从而可以有效的防止矿井事故的发生。
(2)生态环境监测
传感器网络在生态环境监测方面的应用非常典型。美国加州大学伯克利分校计算机系3Intel实验室和大西洋学院(The College of the Atlantic,COA)联合开展了一个名为“in—situ”的利用传感器网络监控海岛生态环境的项目。该研究组在大鸭岛(Great Ducklsland)上部署了由43个传感器节点组成的传感器网络,节点上安装有多种传感器以监测海岛上不同类型的数据。如使用光敏传感器、数字温湿度传感器和压力传感器监测海燕地下巢穴的微观环境;使用低能耗的被动红外传感器监测巢穴的使用情况,系统的结构框图如图4所不。
(3)智能家居
无线传感器网络还可以应用于家居中,其家用远程环境监控系统的结构框图如图5所示。通过在家电和家具中嵌入传感器节点,通过无线网络与Internet连接在一起,用户可以通过远程监控系统完成对家电的远程遥控,例如用户可以在回家之前半小时打开空调,这样回家的时候就可以直接享受适合的室温,从而给用户提供更加舒适、方便和更具人性化的智能家居环境。
六、关键技术研究
1、数据融合技术
环境监测应用的最终目标是对监测环境的数据采样和数据收集。采样频率和精度由具体应用确定,并由控制中心向传感器网络发出指令。对于传感器节点来说,需要考虑采样数据量和能量消耗之间的折中。处于监控区域边缘的节点由于只需要将收集的数据发送给基站,能量消耗相对较少,而靠近基站的节点由于同时还需要为边缘节点路由数据,消耗的能量要多2个数量级左右。因此,边缘节点必须对采集到的数据进行一定的压缩和融合处理后再发送给基站。Intel实验室的实验中使用了标准的Huffman算法和Lempel—Ziv算法对原始数据进行压缩,使得数据通信量减少了2~4个数量级。如果使用类似于GSM语音压缩机制的有损算法进一步处理,还可以获得更好的压缩效果。表1表明了几种经典压缩算法的压缩效果。
2、安全管理
传统网络中的许多安全策略和机制不再适合于无线传感器网络,主要表现在以下四个方面:(1)无线传感器网络缺乏基础设施支持,没有中心授权和认证机构,节点的计算能力很低,这些都使得传统的加密和认证机制在无线传感器网络中难以实现,并且节点之间难以建立起信任关系;(2)有限的计算和能源资源往往需要系统对各种技术综合考虑,以减少系统代码的数量,如安全路由技术等;(3)无线传感器网络任务的协作特性和路由的局部特性使节点之间存在安全耦合,单个节点的安全泄露必然威胁网络的安全,所以在考虑安全算法的时候要尽量减小这种耦合性;(4)在无线传感器网络中,由于节点的移动性和无线信道的时变特性,使得网络拓扑结构、网络成员及其各成员之间的信任关系处于动态变化之中。目前无线传感器网络SPINS安全框架在机密性、点到点的消息认证、完整性鉴别、新鲜性、认证广播方面已经定义了完整有效的机制和算法,安全管理方面目前以密钥预分布模型作为安全初始化和维护的主要机制,其中随机密钥对模型、基于多项式的密钥对模型等是目前最有代表性的算法。
七、展望
环境监测是一类典型的传感器网络应用,在实际的应用中还有很多关键技术,包括节点部署、远程控制、数据采样和通信机制等。由于传感器网络具有很强的应用相关性,在环境监测应用中的关键技术需要根据实际情况进行具体的研究。并且随着无线传感器网络技术的日益成熟和完善,我们还可以在各个方面开展许多新的应用,比如军用传感网络可以监测战场的态势;交通传感网络可以配置在交通要道用于监测交通的流量,包括车辆的数量、种类、速度和方向等相关参数;监视传感网络可以用于商场、银行等场合来提高安全性。可以预见,随着无线传感设备性价比的提高以及相关研究的不断深入和传感网络应用的不断普及,无线传感器网络将给人们的工作和生活带来更多的方便。
参考文献
[1]马祖长,孙怡宁,梅涛,无线传感器网络综述.通信学报
[2]丰原.无线传感器网络
[3]郦亮.802.15.4标准及其应用.电子设计应用
关键词:无线传感器网络;设施农业;监测;低功耗
中图分类号:TP319 文献标识码:A 文章编号:16727800(2013)003008202
0 引言
近年来我国以大棚和温室为主体的设施农业正在迅速发展,但与国外相比,我国的设施农业普遍存在科技含量低、生产水平和效益低下等缺点,因此,迫切需要提高我国设施农业的整体水平。信息技术在农业领域中的应用是提高设施农业科技水平的重要环节。我国作为一个农业大国,农业分布呈“小而散”的特点,存在很多小型化的温室生产模式。因此,研制成本低廉、操作简单、可靠性高的设施农业环境监测控制系统是我国现代化设施农业的一个关键。
目前,传统的农业领域自动监测方法通常是通过有线方式将传感器采集的信号传到监测中心。由于农业生产环境分布范围广、地形复杂、环境温度变化大、空气潮湿等因素的影响,极易导致信号传输电缆的老化,从而降低监测系统的可靠性。随着无线通信技术的日趋多元化结合,ZigBee 作为一种近距离、低功耗、低传输速率、低成本、高可靠性的无线通信技术,特别适用于现代设施农业的无线环境数据采集与监测。
1 系统结构
结合设施农业环境监测应用需求,本文构建的基于Zigbee传感器网络的农业环境监测系统的结构如图1所示。
该系统整个监测网络由传感器节点、路由节点、协调器节点和监测平台四部分组成。监测平台是系统的管理中心和数据汇聚中心,协调器节点负责协调和管理网络通信,初始化和启动整个网络后控制路由节点的数据传输。传感器节点位于最前端,用于采集农业环境物理量信息,并通过网络把数据传输至路由节点;路由节点再将收到的各种数据传送给协调器节点。
2 监测传感器节点设计
2.1 节点硬件设计
传感器节点的主要功能是负责采集设施农业生产环境监测区温湿度、光照强度、土壤pH值等物理量信息,并将采集的数据传输给路由节点。整个传感器节点系由传感器模块、处理器模块、无线射频模块、电源管理模块等四部分组成。监测传感器节点结构框图如图2所示。
传感器节点各硬件模块功能简介如下:
(1)传感器模块。该模块主要集成了各种传感器,对温度、湿度、光照强度、土壤PH值等物理量进行采集,由 AD 转换器将模拟电信号转换成数字信号。其中温湿度传感器采用的是数字温湿度传感器DHT21,它是一款含有已校准数字信号输出的温湿度复合传感器;本方案中选择TSL2561作为光强度传感器,它具备高速、低功耗、宽量程、可编程且可以根据用户灵活配置等优势;CO2浓度传感器采用超低功耗红外二氧化碳传感器COZIR-A,其他传感器接口已经留出,方便以后进行扩展。
(2)处理器模块。该模块负责控制整个传感器节点的操作、数据的存储和处理,是传感器节点的核心。在农业环境监测系统中根据低功耗和处理能力的需要,本系统采用TI公司生产的16位超低功耗单片机MSP430F149。它具有RISC CPU内核,内部集成了12Bit模数转换器、内部温度传感器、16位定时器A和定时器B、串行异步通信端口UART0和UART1(软件可选择UART/SPI模式)、硬件乘法器,多达48位的通用IO端口、60kB的FLASH程序空间和2kB的数据空间等诸多外设,可直接用JTAG仿真调试。MSP430F149具有多种模式可选,在设施农业环境监测系统中,可根据不同的需要,切换模式以降低系统功耗。
(3)无线射频模块。无线射频模块主要是控制信息的无线收发。无线通信模块消耗了整个传感器节点的绝大部分能量,故选择低功耗、高性能的射频模块是整个系统的关键之一。基于现代设施农业环境监测的实际情况,本系统无线射频模块采用CC2430无线射频芯片。无线射频模块采用TICHIPCON公司的CC2430芯片。CC2430内部集成了RF收发模块,利用2.4GHz公共频率,应用于监视、控制网络时具有低成本、低耗电、网络节点多、传输距离远等优势;该芯片性能稳定,具有良好的无线接收灵敏度和强大的抗干扰能力;在休眠模式时仅0.9μA的流耗,外部的中断或RTC能唤醒系统;CC2430的休眠模式和转换到主动模式的超短时间的特性,正常工作时需要的外部元器件极少,与主控制器接口简单,特别适合低功耗的无线传感器网络的应用。
(4)电源管理模块。电源管理模块为系统其它各模块提供持续、稳定的能量供应,由于此监测终端为户外不间断工作,为降低功耗,电源管理模块加入低功耗的管理和控制,通过软件机制实现多种工作模式(包含正常模式和休眠模式),当节点不工作时系统即进入休眠模式。考虑到系统将长期使用,可以通过外接电源或外接蓄电池和太阳能电池板以保证系统的持续供电。
2.2 节点软件设计
基于环境监测系统长时间工作的需要,传感器节点软件系统设计的关键是在保证能有效实现必要功能的前提下最大限度地减小节点的能耗。无线传感器网络中监测节点的能耗主要集中在通信能耗和传感器模块的能耗,而通信能耗要远大于传感器模块能耗。因此,节点电源打开后,完成ZigBee模块和传感器模块的初始化,建立通信链路后,设置唤醒时钟并进入休眠模式。节点软件设计程序流程如图3 所示。
3 网络拓扑结构
一般设施农业监测的规模和范围不大,因此本系统的网络拓扑选择简单的星型网络结构,通过对多个监测节点发送的数据进行分析可以判断环境监测区域的状态。系统启动后,根据网络协议组建网络,为节点分配地址。当监控平台查询数据时,系统根据地址分配执行数据采集。
4 结语
将无线传感器网络应用于现代设施农业环境信息检测具有传统农业监测方式无法比拟的优势。本文提出了基于ZigBee传感器网络的设施农业环境信息实时监测系统的设计方案。介绍了系统的总体结构和传感器节点的硬件及软件系统设计。本文提出的这一无线传感器监测系统,具有低成本、低功耗、可靠性强等特点,为现代设施农业生产环境信息监测提供了一种有效的解决方案。
参考文献:
\[1\] 蔡镔,毕庆生.基于ZigBee无线传感器网络的农业环境监测系统研究与设计\[J\].江西农业大学学报,2010(11).
\[2\] 郭文强,张玉杰,侯勇严.无线传感器网络在环境监测系统中的设计与应用\[J\].陕西科技大学学报:自然科学版,2012(6).
\[3\] 周秀辉.无线传感器网络技术及在环境检测中的应用研究\[D\].成都: 电子科技大学,2006.
\[4\] 魏小龙.MSP430系列单片机接口技术及系统设计实例\[M\].北京:北京航空航天大学出版社,2002.
\[5\] 徐志国.基于无线传感器网络的噪声监测系统的设计\[J\].皖西学院学报,2009(6).
\[6\] 常超,鲜晓东,胡颖.基于WSN 的精准农业远程环境监测系统设计\[J\].传感技术学报,2011(6).
(杭州职业技术学院机电系,浙江 杭州 310018)
【摘 要】基于无线传感器网络的大气环境监测系统由传感器网络节点、嵌入式网关和监测中心三部分组成。其中,传感器网络节点以ATmega16单片机为控制核心构成,配置了符合环境监测标准的各种传感器,可对10种大气环境变量和气象参数连续自动监测,并采用ZigBee无线通信模块将环境数据传送到嵌入式网关。该网关以S3C2440A处理器和嵌入式Linux操作系统为平台,还配置了触摸式人机界面,不仅能采集大气环境数据,还可接入Internet,实现大气环境变量和气象参数值远传。监测中心接收嵌入式网关上传的环境监测数据,存入基于Access 2007的大气环境信息关系型数据库,并提供查询等数据管理功能。
关键词 环境监测;无线传感器网络;ZigBee;无线通信;嵌入式系统
0 引言
环境监测是为保护环境和保障人群健康,运用化学、生物学、物理学和公共卫生学等方法间断或连续地测定环境中污染物的浓度,观察、分析其变化和对环境影响的过程[1]。随着社会进步与经济快速发展,环境保护问题越来越受到人们的关注。世界各国都致力于控制和减少环境污染,研究环境可持续发展的绿色方案,我国也提出了发展低碳经济的战略目标,并对环境自动监控提出了更高的要求。
大气环境监测系统所获得的环境数据应能够准确、及时、全面地反映特定区域环境的质量现状及其变化趋势,要求覆盖面广,监测点布设灵活,从而为环境管理、污染源控制和环境规划等提供科学依据。基于无线传感器网络的大气环境监测系统可以实现特定区域环境信息的实时采集、无线传输和集中处理,是实现大气环境网络化监测的一种先进解决方案。
1 系统总体方案
基于无线传感器网络的大气环境监测网络结构如图1所示。嵌入式网关和若干传感器网络节点组成星形拓扑结构的无线传感器网络。由随机部署在感兴趣区域内的传感器网络节点实时采集大气环境信息和气象参数,经过预处理之后,以ZigBee无线通信方式发送到嵌入式网关;嵌入式网关也具有环境数据采集能力,还配置了LCD触摸屏人机界面,其主要功能是将各监测点的环境数据汇总之后,通过Internet传送给大气环境监测中心(PC),即实现无线传感器网络的Internet接入。环境监测中心对特定区域的大量环境数据和气象参数进行检查分析之后,存储到Access数据库中,以便统计处理和数据查询。
2 环境监测变量及传感器
大气环境质量监测(air quality monitoring)是指对一个地区大气中的主要污染物进行布点观测,并由此评价大气环境质量的过程[2]。国务院环境保护领导小组的《环境空气质量标准》规定了环境空气质量功能区划分、标准分级、污染物项目、取值时间及浓度限值。选择《环境空气质量标准》中规定的二氧化硫(SO2)、二氧化氮(NO2)、一氧化碳(CO)、臭氧(O3)等可用传感器测量的几种大气污染物作为系统监测对象。由于大气污染与气象条件密切相关,因而在大气污染监测中应包括风向、风速、温度、相对湿度、气压等气象参数的测定[3]。此外,CO2是反映碳排放的重要指标,所以将其列为监测项目之一,故基于无线传感器网络的大气环境监测系统的监测变量共有10种。遵循低成本、高可靠性、适当精度、使用方便等原则,为大气环境监测系统配置了以下8种传感器模块:
(1)SO2传感器:选择模拟输出型二氧化硫传感器模块SMC-CDX,它采用双光束非分光红外线(NDIR)检测技术,具有抗其它气体干扰、稳定性好、自带温度补偿等特点,输出符合Modbus协议的模拟信号4~20mA,经过信号变送器产生0~5VDC的模拟信号。
(2)NO2传感器:选用深圳市富安达智能科技有限公司研发的NO2/S-500-S传感器(量程:0~500ppm,分辨率:0.5ppm,工作温度范围:-20°C-45°C,工作湿度范围:15-90%),无需偏执电压,具有良好的重复再现性和长期稳定性,经信号放大电路及信号变送器输出0~5VDC的模拟信号。
(3)CO传感器:选用英国Alphasense公司的一氧化碳传感器CO-BF(量程:0-1000ppm,分辨率:0.5ppm,工作温度:-30~50℃,工作湿度:15~90%RH),经信号放大及变送后产生0~5VDC模拟信号。
(4)O3传感器:选用MQ131臭氧气体检测模块(工作电压:5VDC),它具有模拟量输出及TTL电平输出的双路信号输出,TTL低电平输出有效,可直接与单片机I/O口相连。
(5)风速风向传感器:配置的M288865包括了风速传感器和风向传感器。风速传感器(量程:0~40m/s,精度:±0.3m/s)可以产生TTL电平频率信号,风向传感器(量程:0~360o,精度:0.1%)在精密导电塑料电位器的活动端产生变化的电阻信号输出,可经过变换电路产生0~5VDC模拟输出信号。
(6)温湿度传感器:选用含有校准数字信号输出的数字温湿度传感器SHT11(温度量程:-40~123.8℃,湿度量程:0~100%RH,温度测量精度:±0.3℃,湿度测量精度:1.8%),它采用准IIC方式传输数据。
(7)气压传感器:选择德国BOSCH气压传感器系列的BMP085(量程:300~1100mbar,精度:0.03mbar,工作温度范围:-40℃~85℃),用8-Pin陶瓷无引线芯片承载(LCC)超薄封装,可以通过IIC总线直接与各种微处理器相连。
(8)CO2传感器:选择采用固体电解质电池原理的MG811型CO2气体传感器。该传感器受温湿度变化的影响较小,具有良好的稳定性、再现性,经信号放大及调理后产生0~5VDC的模拟输出信号。
3 大气环境监测网络设计
3.1 传感器网络节点设计
传感器网络节点是一个由传感单元、处理单元、无线收发单元和电源单元4个功能模块组成的微型嵌入式系统[4],其硬件组成如图2所示。它的控制能力、数据存储能力、分析计算能力和通信能力相对嵌入式网关较弱。传感单元分为模拟和数据两部分,SO2传感器(SMC-CDX)、NO2传感器(NO2/S-500-S)、CO传感器(CO-BF)、CO2传感器(MG811)和风向传感器(M288865/DIR)的输出信号经过放大和调理之后,输出0~5V模拟信号,可接入MCU的ADC通道;O3传感器(MQ131)、风速传感器(M288865/SPEED)输出TTL电平脉冲信号,可接入MCU的计数通道。温湿度传感器(SHT11)采用准IIC方式向MCU发送数据,DATA和SCK信号可直接与MCU的I/O引脚连接;气压传感器(BMP085) 使用标准IIC总线向MCU发送数据。处理单元主要协调、控制整个传感器节点的操作,存储和处理采集数据,并与其它节点合作完成被指派的感知、监测任务,是传感器网络节点的核心,从节约成本、提高可靠性等方面考虑,选用ATmega16单片机。无线收发单元将传感器网络节点接入传感器网络,采用TI公司的系统芯片(SoC)CC2530F256,运行ZigBee2007/PRO 协议,通过USART与MCU传输数据,满足以Zigbee为基础的2.4GHz的ISM频段应用。电源单元则为传感器节点提供维持正常运行所必须的能量。
3.2 嵌入式网关设计
嵌入式网关以ARM微处理器为核心,包括传感单元、基本外围电路、存储单元、ZigBee通信、Internet通信和触屏显示6部分,其硬件组成如图3所示。选择SamSung公司的基于ARM920T架构的16/32位RISC处理器S3C2440A作为控制核心,协调其它所有工作单元有序运行,实现大气环境信息和气象参数的数据采集、数据预处理、数据存储、数据转发等全部功能。嵌入式网关的传感单元组成及功能与传感器节点的传感单元相同。基本外围电路包括电源电路、时钟电路和复位电路,为S3C2440A正常运行以及嵌入式网关中所有外围电路正常工作提供基本保障。存储单元扩展了SDRAM和flash两种存储器,分别为程序代码和各种数据提供存储空间。ZigBee通信模块负责与WSN内的各传感器节点通信,搜集监测区域的环境信息。触屏显示单元采用Toppoly 3.5寸LCD模块,移植了Qt界面,便于用户在现场进行传感器网络运行参数配置,查询任意时刻采集的环境数据等。Internet通信模块将汇总的环境数据传输至监测中心,并与ZigBee模块联合实现ZigBee和TCP/IP两种网络协议的转换。
4 大气环境监测系统软件
4.1 传感器网络节点软件
传感器网络节点实行被动式数据采集行为,即仅当接收到嵌入式网关下发的数据采集命令时才执行采集数据的任务,其它时间则进入休眠模式以降低电能消耗。
传感器节点应用软件的设计过程相对简单,其程序流程如图4所示。上电复位后首先初始化硬件,向嵌入式网关报告自己的ID信息,加入WSN之后就进入空闲模式。在此模式下,CPU停止运行,而SPI、USART、ADC、定时器/ 计数器、看门狗和中断系统继续工作。诸如定时器溢出与USART传输完成等内外部中断都可以唤醒MCU[5]。因此,当接收到嵌入式网关的数据采集命令后,USART接收中断会将MCU唤醒,即刻采集大气污染物数据,再通过ZigBee通信模块将其传输至嵌入式网关。
4.2 嵌入式网关软件
基于S3C2440A微处理运行Linux操作系统的嵌入式系统,其软件部分包括启动引导程序、操作系统内核、根文件系统、设备驱动程序和应用程序,前3部分是系统运行的基础部分,目前已有相对较为成熟的版本出现,只需要针对具体硬件平台进行修改、裁减即可完成移植工作,不必重新开发。
4.2.1 驱动程序
驱动程序是应用程序和实际设备之间的一个软件层[6]。分为字符设备驱动程序、块设备驱动程序和网络驱动程序。大气环境监测系统中的传感器都是简单的硬件设备,因此,全部被抽象为字符设备。字符设备驱动程序完成的主要工作是初始化硬件设备、添加和删除设备结构体,申请和释放设备号以及填充file_operations结构体。file_operations结构体用来建立设备编号与驱动程序操作的连接,实现该结构体中的read()、write()、ioctl()等函数是驱动程序设计的主题工作。
传感器设备驱动程序所实现的只是最重要的设备方法,比如SHT11和CO2的file_operations结构被初始化为如下形式:
struct file_operations shtxx_fops = {
.owner = THIS_MODULE,
.open = sht11_open,
.ioctl = sht11_ioctl,
.release = sht11_release,
};
static struct file_operations adc_fops = {
owner: THIS_MODULE,
open: adc_co2_open,
read: adc_co2_read,
ioctl: adc_co2_ioctl,
release: adc_co2_release,
};
4.2.2 应用程序
嵌入式网关应用程序主要包括两个线程和一个中断服务程序,其执行流程如图5所示。上电后,首先进入main函数(主线程)初始化并设置系统参数,调用signal函数设置SIGALRM信号的信号处理程序用以完成嵌入式网关与监测中心的TCP/IP通信任务,然后设置定时器,再调用pthread_create函数创建Data_Collection线程负责数据采集任务,之后运行基于事件驱动的Qt程序,在这段代码中将程序控制权交给用户,用户通过操作界面可以设置嵌入式网关系统参数或查看实时采集的环境数据。
4.3 大气环境监测中心软件
使用Access2007创建大气环境信息数据库,利用visual c++提供的ADO(ActiveX Data Object)访问数据库,实现环境数据分析处理、越限报警和数据显示查询等功能。当键入主键值(ID)时,程序访问access数据库进行查询,并显示出该ID对应的各字段数据值;还可以时间为横轴,参数值为纵轴显示某一时间段的变化曲线。如图6所示。5 结论
系统综合测试表明,环境监测网络中的传感器网络节点可按照设计要求采集数据,并能正确接收、执行嵌入式网关下发的各种命令;嵌入式网关可实现WSN自组网功能,并支持传感器节点动态加入或离开网络,且人机界面简单易用;大气环境监测中心可显示环境信息历史数据和变化曲线,支持各种查询。传感器网络节点、嵌入式网关和监测中心的数据通信良好,可协同完成特定区域的大气环境监测网络化任务。
参考文献
[1]陈玲,赵建夫.环境监测[M].北京:化学工业出版社,2008:10-11.
[2]孙春宝.环境监测原理与技术[M].北京:机械工业出版社,2007:7.
[3]国家环保部. HJ/T 193-2005,环境空气质量自动监测技术规范[S].北京:中国环境科学出版社,2006-1-1.
[4]I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci. A Survey on Sensor Networks[J]. IEEE Communications Magazine. 2002:102-114.
[5]Atmel Corporation. ATmega16 Datasheet[EB/OL]./atmel.com/avr
(1.苏州大学文正学院,江苏苏州215104;2.苏州大学物理与光电·能源学部,江苏苏州215006)
摘要:设计了一种基于无线透传传感网络的分布式环境监测系统。设计采用1100E射频芯片作为无线收发芯片,通过在ATmega128L微处理器中编写透传算法程序,实现对各环境参数的数据透传,使用RS 232C串口与PC机进行通信,实现了对目标监测区域各环境参数的实时采集。给出实验测试采集到的多组数据,通过对实验数据的分析,说明该设计可以在400 m内同时实现对254个无线节点的实时监测,测量误差约为±0.1%~±3%。
关键词 :无线透传;透传算法;环境监测;ATmega128L
中图分类号:TN911?34;TP274.2 文献标识码:A 文章编号:1004?373X(2015)18?0128?05
收稿日期:2015?03?10
基金项目:江苏省高等学校大学生实践创新训练计划资助项目(201413983005Y);苏州大学学生科研基金资助项目(2014)
0 引言
环境信息影响着人们对环境质量的判定,对人们的生活产生了不小的影响[1]。随着射频无线通信技术的广泛应用,现已实现对环境参数的多点远距离智能化实时采集[2]。在农业生产中,通过ZigBee技术能够实时监测温室中的温湿度信息,有效地提高了农业生产的经济价值[3]。在工业生产中,通过GPRS 技术实现了对矿井内瓦斯等易燃易爆危险气体的实时监测,极大地保证了工业生产制造过程中的安全[4]。这些无线环境监测技术克服了传统的环境监测方式网络部署难,维护成本高,节点智能化程度低等缺点,极大地提高了数据的传输效率。但是,在实际应用时,ZigBee技术的穿透性较差,数据传输距离较近,其他主流无线传感网络(WiFi,蓝牙,nRF等)对其同频干扰较大,数据传输时误码率较高[5]。GPRS在进行数据传输时需要消耗大量流量,终端芯片资源配置较大[6]。
本文设计了一种无线透传传感网络应用于分布式环境监测系统,在进行组网时无需考虑射频无线芯片的收发协议和配置方法,可以透过无线芯片直接将其当作普通的有线模块使用,降低了终端芯片的资源利用率,通过钳位电路和电平转换实现了RS 232通信的兼容转换。本文设计的无线、透传传感网络大大降低了射频无线通信网络的硬件和设计研发成本,保证了通信的距离和准确性。设计可以实现对400 m 范围内有建筑物遮挡的环境状况下进行实时监测。
1 系统总体设计
该无线透传环境监测传感网络主要包括终端监测部分,无线透传网络,PC监测端。
(1)终端监测部分。微处理器ATmega128L将各传感器采集来的环境参数的模拟信号经过A/D转换,转化为数字信号,并在LCD液晶屏上实时显示各环境参数,并与报警阈值比较。
(2) 无线透传网络。设计透传算法,使用AT?mega128L将暂存在存储器中的传感器数据转化为符合RS 232 有线通信协议的数据,进一步转换为无线协议的数据发送到远端,并与PC监测端的无线透传网络相连接,使无线通信等效为有线通信。该透传等效图如图1所示。
(3)PC监测端部分。PC机将各个透传无线节点实时采集来的环境参数进行存储和处理,并将各时刻的参数以图像的形式显示出来,并且用户可以根据实际监测的需要,通过PC机对系统报警阈值进行修改。
2 系统硬件设计
2.1 终端监测端硬件设计
该系统的微处理器均采用AT?mega128L单片机[7]。它采用独特的RISC结构,丰富的内部资源可以更好地运行相对复杂的透传算法。在指令执行方面,微控制单元采用Harvard结构,指令大多为单周期,透传算法在工作时,可以严格的控制时序,保证通信的准确性。在能源管理方面,ATmega128L提供多种电源管理方式,以尽量节省节点能量,保证了各节点长时间持续工作。在可扩展方面,提供了多个I/O口,有助于终端机各传感器模块的选择和扩展,防止了各传感器信号及数据相互干扰。ATmega128L 提供的USART(通用同步异步收发器)控制器、SPI(串行外设接口)控制器等与无线收发模块相结合,能够实现大吞吐量,高速率的数据收发。
如图2 所示,环境监测终端机工作时,电化学甲醛传感器、温度传感器、湿度传感器、光照传感器发出的微弱信号经过放大电路后被放大,然后对其进行A/D转换等一系列的加工后再由ATmega128L对其进行处理,如果甲醛等环境参数浓度值高于环境参数浓度的国标,那么蜂鸣器就会发出警报,同时各环境参数浓度值会被输送到LCD 上显示出来。如果在国标的允许范围内,那么只显示浓度值而不发出警报。此外,ATmega128L将各环境参数经射频芯片CC1100E传送到透传网络。
2.2 透传自组模块硬件设计
CC1100E芯片在进行数据传输时采用UART0通信协议,ATmega128L可以严格按照时序读写用以控制芯片内部的32个寄存器,灵活配置各参数,如图3所示。
CC1100E 接口RF_CLK,RF_CS,RF_SOMI,RF_SI?MO 分别和ATmega128L 的串行外设接口端PB2,PB1,PD2,PD3 相连接。RF_CLK 端口为PB2 端口传输数据的时钟信号;RF_CS作为片选信号,仅当片选信号为低电平时,ATmega128L对CC1100E的操作才有效。
RF_SOMI 用于从ATmega128L 到CC1100E 的串行数据传输。为了降低整数据透传的功耗,CC1100E在数据接收或收发状态声明时,系统设计采用中断方式。
RF_GDO0,RF_GDO2 必须与微处理器的外部中断相连,以便使用CC1100E 唤醒微处理器,设计时将RF_GDO0,RF_GDO2分别与具有中断能力的PD6,PD7相连接。CC1100E在高频工作状态下,发射前段和天线馈点需要巴伦电路和匹配网络。
3 系统软件设计
3.1 透传网络控制算法设计
微处理器ATmega128L 通过射频无线收发芯片CC1100E,把暂存的各参数数据发送到远程接收端,如图4所示。首先微处理器ATmega128L通过透传算法控制射频发射芯片CC1100E发送信号校检标志码。这个过程的目的是给远程端射频无线收发芯片发送符合该透传自组传感网络的通信匹配标志,以判断是否为本通信所需的无线数据包。
ATmega128L 通过CC1100E 连续发送校检标志码0X55 和0XAA 共2 个字节,供远端芯片查询确认。其次,ATmega128L 通过CC1100E 发送校检结束标志码0X88 和0XFE,表示校检标志发送结束。然后,发送数据包长度信息Length,告诉接收端芯片本次数据包发送的长度。最后,ATmega128L从发送端的缓存中发送长度为Length的数据包。
微处理器ATmega128L 通过射频无线收发芯片CC1100E,把远程端发送来的数据接收到本地芯片缓存。如图5所示。当ATmega128L通过CC1100E收到上升沿校验标准码时,说明有数据传来,立即唤醒转入接收模式。
接收模式时,如果接收到的0X55 和0XAA 字节数小于6,则说明此时通信与该自组传感网络不匹配,本次通信结束,进入待机睡眠状态;如果连续接收到0X55和0XAA,并且接收到的字节数大于等于6,则说明通信与该自组传感网络匹配,随后的信号将是本地芯片所需要的无线信号。如果接收到0X88和0XFE,则表明校检标志接收完毕,等待下面的信号,如果一直没有接收到校验标志码0X88和0XFE,则表明本次通信失败,通信结束。当接收到0X88和0XFE之后紧接着接收到的为数据包长度信息Length,由此判定数据包的长度。最后一步,接收紧接着的长度为Length的数据包,并且存入接收端缓存。完成本次数据的接收。
3.2 监测终端软件设计
如图6所示,首先对液晶屏和单片机中的寄存器初始化,寄存器包括A/D 转换寄存器,定时器0 中断寄存器和定时器2寄存器。
将A/D 转化寄存器中的输入信号经过A/D 转换函数后再经过定时器中断函数,系统根据这个信号来判断所测区域各环境参数的浓度和是否发出警报,如果发出警报,那么ATmega128L的PWM端口决定了蜂鸣器的频率,如果不发出警报,那么各参数浓度数据就直接显示在LCD 屏上。整个系统是一直运行的,当输入的信号发生改变,那么LCD 上的环境参数浓度值也会发生相应的改变。取值频率设置为30 ms取一次值,由定时器中断函数来实现控制。
3.3 上位机软件设计
为了清晰地观察室内各环境参数的变化情况,使用LabView设计了上位机。上位机部分程序如图7所示。
4 实验数据及分析
4.1 实验结果及分析
在对终端机进行测试时,在400 m 距离范围内,对5 间不同房间的温度和甲醛含量进行了测试,其中0xf1为封闭的实验室,0xf2为封闭的教室,0xf3为封闭宿舍,0xf4为通风教室,0xf5为通风宿舍。测试结果如表1所示。如表1 所示,在密闭状态下,所监测房屋0xf1 一天的甲醛浓度都维持在0.06~0.08 ppm,远超过国家室内甲醛浓度标准。教室、实验室、宿舍等场所由于长时间不通风,室内甲醛的浓度会比较高,人们长期生活在这种环境下,会对身体造成严重的伤害。系统采集到的温度数据,与标准温度误差范围均在3%以下。
4.2 透传传感网络性能分析
通过对透传模块的测试,系统稳定工作时,每5 s需通信转发心跳帧一次,空中每帧数据都会转发一次,最多支持240 字节长度数据包。当空中波特率固定为9 600 b/s通信距离为400 m平原条件时,通信误码率为10-3~10-4。透传数据在传输过程中会存在一定延时,适用于传输距离远且对实时性要求不高的场合。
系统模块在正常工作模式下,通过控制SLP管脚电平,可以使系统进入休眠状态,当SLP管脚接收到下降沿信号时,模块进入休眠模式。处于休眠模式时,模块的工作电流小于5 μA。模块进入休眠模式后,RST脚输入一个低电平信号(>1 ms)可以使模块退出休眠模式,进入正常工作状态。
5 结语
本文提出的无线通信透传算法,透过无线通信把传统的无线传感网络当作有线通信使用,工作时无需任何用户协议,即可实现数据的透明传输,自动路由。可以自动跳频抗干扰,自动路由数据,网络结构中不需单独的路由器或中继器,穿透障碍物能力强,极大地降低了终端芯片的资源利用率和无线传感网络硬件成本。环境采集终端机,续航能力强,各传感器灵敏度高,采集到的各参数与实际误差相差极小。样品机实物图如图8所示。
当数据速率提高时,系统通信的误码率会增加,如需进一步提高透传模块的性能。可采用以下技术来提高通信可靠性[8?10]。在物理层,模块采用差分曼彻斯特编码技术发送数据,从而保证通信中的同步问题。
在数据链路层,使用循环冗余编码进行数据帧校验,用以保证数据到达用户应用层以后的可靠性。
注:本文通讯作者为吴迪。
参考文献
[1] 夏新.浅谈强化环境监测质量管理体系建设[J].环境监测管理与技术,2012(1):1?4.
[2] 何晓峰,王建中,王再富.基于MAX6675的多路温度采集与无线传送系统[C]//浙江省信号处理学会2012学术年会论文集.杭州:浙江省信号处理学会,2012:4?6.
[3] 尹航,张奇松,程志林.基于ZigBee无线网络的温湿度监测系统[J].机电工程,2008(11):20?23.
[4] 刘萍.基于多传感器融合的矿井环境监测系统研究[J].矿山机械,2013(6):110?113.
[5] 蒲泓全,贾军营,张小娇,等.ZigBee网络技术研究综述[J].计算机系统应用,2013(9):6?11.
[6] 祥,牛江平.远程无线抄表系统的研究[J].自动化仪表,2011(3):4?7.
[7] 邹丽新,翁桂荣.单片微型计算机原理[M].苏州:苏州大学出版社,2001.
[8] SUZUKI N,MITANI T,SHINOHARA N. Study and develop?ment of a microwave power receiving system for ZigBee device [C]// Proceedings of the 2010 IEEE Asia ? Pacific Microwave Conference. Kansas:IEEE,2010:45?48.
[9] ZHANG G,LIU S G. Study on electrical switching device junc?tion temperature monitoring system based on ZigBee technology [C]// Proceedings of the 2010 IEEE International Conference on Computer Application and System Modeling. Taiyuan,Chi?na:IEEE,2010:692?695.
[10] Dissanayake S D,Karunasekara P P C R, Lakmanaarachchi D D,et al. ZigBee wireless vehicular identification and au?thentication system [C]// Proceedings of the IEEE the 4th In?ternational Conference on Information and Automation for Sus?tainability. Colombo:IEEE,2008:257?260.
[11] 曹金山,张泽滨.无线传感网络安全改进方案研究[J].现代电子技术,2014,37(20):38?40.
[12] 彭燕.基于ZigBee的无线传感器网络研究[J].现代电子技术,2011,34(5):49?51.
作者简介:于洪涛(1993—),男,江苏徐州人。主要研究方向为光电应用技术。
吴迪(1980—),男,江苏徐州人,博士,讲师。主要研究方向为仪器仪表与自动化检测技术。
关键词:ZigBee CC2530 无线传感器网络 环境监测 GPRS
中图分类号:TP302 文献标识码:A 文章编号:1007-9416(2012)10-0146-02
仓库作为物资供应体系的一个重要组成部分,承担着物资的存储、管理和调配的任务,仓库中的物资要保证数量,品质和安全,要做到防潮,防火,防盗等等,对仓库环境参数的监测显得尤为重要,目前,很多仓库的环境监测现状是使用人工监测,方法落后,或者使用有线监测方式,布置方式不灵活,还有不能实现无线远程监测等等,仓库的智能化监测是网络通信技术在现代工业生产中的应用,通过使用ZigBee无线传感器网络对仓库环境进行实时的监测,提供准确的实时数据,及时准确的掌握仓库的环境条件,为物资的存储提供有力的数据支持。
本文设计了一个基于ZigBee无线传感器网络的仓库环境监测系统,通过ZigBee无线传感器网络对仓库的温度、湿度、虫害、火灾等参数进行采集,通过GPRS无线网络远程传输到机房服务器,然后对采集的数据集中分析和处理,及时掌握仓库的环境参数,对异常情况作出及时的应对措施,以便减少损失、节约开支和提高生产效益。
1、无线传感器网络
1.1 无线传感器网络概述
无线传感器网络是由部署在监测区域内大量的具有计算和通信能力的微型传感器节点组成,通过无线通信的方式形成一个多跳的自组织的网络系统[1],其作用是利用传感器节点来监测节点周围的环境,收集监测数据通过无线收发装置将数据以多跳的方式发送给汇聚节点(Sink节点),然后由汇聚节点通过有线或无线方式接入网络,将监测数据传送给客户端,综上所述,无线传感器网络通过大量传感器节点分工协作的方式实时感知、采集数据,并由无线网络处理感知对象的数据,并且传输给使用者[2]。
1.2 ZigBee无线通信技术
ZigBee是一种近距离、低功耗、低速率的无线通信技术,基于IEEE802.15.4协议标准。通过ZigBee通信模块可进行无线通信,ZigBee的特点是近距离、低复杂度、自组织、低功耗、低速率、低成本[3]。ZigBee无线传输距离室内为30~50m,室外可达到100m,ZigBee的工作频率有三种:全球2.4GHz、美国915MHz和欧洲868MHz,通信速率在2.4GHz的时候为250kbps,在915MHz时为40kbps,在868MHz时为20kbps。完整的ZigBee协议栈自上而下分为应用层、应用汇聚层、网络层、数据链路层、物理层。ZigBee网络的拓扑结构有星形、网状和混合状,这三种拓扑结构可以组成多种网络。
2、系统的总体设计
本系统结构图如图1所示,系统通过监测节点监测仓库各种环境参数,温度,湿度,紫外线,火焰,烟雾等,通过汇聚节点传输到GPRS无线通信网络,然后GPRS模块将数据由RS232串口传输到机房服务器,通过服务器软件分析处理,便于及早发现仓库中异常情况并作出及时的处理。
3、系统的硬件设计
3.1 传感器节点硬件设计
传感器节点是传感器网络的基本单元,传感器节点除了具有一般传感器的感知能力之外,还具有数据处理和数据无线传输能力,可以感知环境参数、处理并进行无线通信。传感器节点的硬件一般包含感知模块、处理器模块、无线通信模块和电源管理模块[4],本系统设计的传感器节点结构如图2所示。
传感器节点的感知模块采用的传感器如下:(1)温度、湿度传感器:采用瑞士Sensirion公司研制的SHT11型智能化温湿度传感器,它采用专利技术(COMS和传感器技术的融合),外形尺寸仅为7.5mm×5mm×2.5mm。SHT11具有二线串行接口的单片全校准数字式新型相对湿度和温度传感器,可用来测量相对湿度、温度和露点等参数;(2)火焰传感器:采用火焰传感器R2868来发现仓库中的火焰,在火星产生的瞬间可以准确地发现,并发出警报;(3)烟雾传感器:采用烟雾传感器HIS07来及时发现烟雾,杜绝火灾隐患。
传感器节点的处理器模块采用CC2530芯片,CC2530支持IEEE 802.15.4标准/ZigBee/ZigBee RF4CE[5],拥有快闪记忆体256个字节,CC2530结合了一个完全集成的,高性能的RF收发器与一个8051微处理器,8kB的RAM,32/64/128/256 KB闪存,以及其他强大的支持功能和外设。较CC2430相比,CC2530在发射功率、链路预算、射频噪声抑制能力、低功耗以及ESD防护能力等方便都有较大的提升。
为节省电能,监测点每2分钟采集一次数据,并将数据通过无线传感器网络传送给族头节点,然后传送给汇聚节点。
3.2 汇聚节点硬件设计
汇聚节点(Sink节点)相当于网关,处于传感器节点的上层,汇聚节点具有数据的存储、处理和传输等功能,汇聚节点接收传感器节点的数据,并且连接无线传感器网络与互联网、移动通信网等外部网络,完成协议转换、网络节点配置等功能[6][7],本系统中汇聚节点接收传感器节点的数据,并通过接口将数据传输给GPRS模块-西门子MC75i,西门子MC75i将数据通过GPRS无线网络传输给机房服务器。汇聚节点结构图如图3所示。
3.3 GPRS无线传输模块
系统中选择GPRS作为长距离传输方式,即系统中汇聚节点与机房服务器之间采用GPRS无线传输方式,汇聚节点的GPRS模块通过GPRS无线网络,将仓库监测数据传输到监控中心机房的GPRS模块,监控中心机房的GPRS模块将数据通过串口将数据传输给机房服务器。GPRS具有覆盖范围广、可靠性高、实时性强、成本低、功耗小等特点。本系统GPRS无线传输模块采用西门子MC75i模块,MC75i的特点为:1.支持850、900、1800和1900MHZ四种频率;2.GPRS multi-slot class 12;3.E-GPRS下行速率可达460Kbit/sec;4.AT指令Hayes GSM 07.05及GSM 07.07。
4、系统的软件设计
本系统用VB6.0开发,管理员可以通过管理软件实时监测到仓库的各种数据,将数据填入数据库,譬如温湿度、烟雾值等等,当系统读取到的传感器数据超过设定的安全值时,系统发出报警信号,以温湿度监测为例,系统的流程如图4所示。
5、结语
通过采用无线传感器网络的仓库环境监测,并使用GPRS实现无线远传,达到了仓库的实时的数据采集,方便的部署以及远程监控的智能化监测,具有良好的应用推广价值。
参考文献
[1] 孙旭光,高方平,陈丹琪等.基于无线传感器网络的防盗监测系统设计[J].传感器与微系统,2009,28(10):67-69.
[2] 饶云华,代莉,赵存成等.基于无线传感器网络的环境监测系统[J].武汉大学学报,2006,52(03):52-54.
[3] 梁光胜,刘丹娟,郝福珍.基于CC2430的ZigBee无线网络节点设计[J].电子设计工程,2010,18(02):16-18.
[4] 王军,陈磊,张莉莉.基于无线传感器网络的环境监测系统设计与实现[J].洛阳师范学院学报,2010,29(05):52-54.
[5] 章伟聪, 俞新武, 李忠成.基于CC2530及ZigBee协议栈设计无线网络传感器节点[J].计算机系统应用,2011,20(07):184-187.