时间:2022-03-03 07:08:55
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇海洋测绘论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
关键词:计算机;编程;学习兴趣
中图分类号:G424 文献标识码:A 文章编号:1009-3044(2014)34-8262-02
1 概述
当前,电脑在大学生中普及率非常高,但学生对电脑的利用情况并不乐观。互联统计大学平均每天利用电脑的时间分配显示:男生中打游戏比例最高、其次是聊天,利用电脑进行知识学习的约有25%,女生聊天的时间最多,其次是听音乐、看电视电影等,利用电脑进行知识学习的时间约有35%。大学生的首要任务是学习,大学生对电脑的利用时间应该超过50%在学习方面,才是较好的情况。从统计情况来看,当前大学生电脑的利用情况不容乐观。
从另外一个角度来讲,这种情况说明当前大学生对电脑的使用有一定的基础,大学生也比较喜欢电脑、比较认可电脑。如果指导大学生利用电脑进行专业学习应该是存在可行性的,如果指导内容事关就业,那么大学生的兴趣可以进一步提高。
海洋测绘专业学生毕业就业的招聘信息内容与计算机相关的较多,说明海洋测绘专业毕业生应该多利用电脑学习点知识,在学习过程中充分利用电脑,面向就业的学习更多知识。
大学课堂教学改革在不断摸索中,其中面向就业的教学探索也比较多。结合海洋测绘专业课堂教学实践,探索面向就业的教学内容穿插,推动教学,提高学习的兴趣,促进就业。教学的最终目的是让学生掌握更多的知识。
2 教学中举措
课堂中讲到了很多知识,用到的软件都是学生曾经学过的,也都是学生计算机上能够实现的。但是在《工程测量》中知识将会新用,即新的应用,又可达到“温故而知新”,学而时习之,不亦说乎”的目标。工程测量不只需要放样,同时还需要数据助理,求解放样数据,这也是最关键的部分。基于这些原因采取了以下举措。
Excel 是微软办公套装软件广泛地应用于管理、统计财经、金融、行业数据处理图标制作等众多领域。在工程测量的数据处理中,excel软件是经常被用到制作图表的,非常实用方便。学生将来工作中也会用到,或者将来读研撰写科研论文时,也可以利用Excel进行画图。
Matlab和Mathematica、Maple并称为三大数学软件。Matlab可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。
在《工程测量》中,经常会遇到拟合各种曲线、曲面的问题。例如,天文台并址过程中,需要拟合圆心坐标;在隧道建设中,需要通过拟合圆柱面,来控制盾构机的施工导向。这些都可以采用Matlab进行模拟计算。
在解决拟合圆并求解圆心的问题时,首先讲解模型,然后根据模型,一行一行的代码书写,限于文章篇幅,代码省去。中间穿插Matlab的基础知识,比如矩阵的各种技巧,讲解循环控制语句等。最终达到学生掌握Matlab,可以应用到以后的毕业设计中,工作中,读研中。
例如讲到工程测量第5章断面图绘制、第7章变形观测数据整理、成果表达时都要面对一系列的数据,通过使用Excel可以绘制断面图,直观表达地形的起伏状况。另外,可以将变形观测数据整理成报表,很容易找到建筑物变形量累积的关键时间节点;如果使用Excel表格的绘图功能,则可以很容易生成变形图表,直观表达建筑变形随时间的变化情况。下一组渔船的轨迹坐标,通过Excel绘制轨迹图,如图1所示,方便快捷,容易掌握。
其他应用还有利用Excel、Matlab绘制断面图;利用C#语言进行坐标转换,实现高斯投影的正反算。
3 课程设计
教学中认真做好教学设计也很重要。首先会在第一次授课中,讲一些课程的相关的考勤、考核方式、答疑等,同时为了后面做准备,请同学在课下安装matlab、visual studio开发工具等软件,方面以后的课程讲授使用。
做好案例的准备工作,讲解案例的应用意义,应用的地方。以文字图片、录像等方式来解释;然后准备相关数据,通过模拟数据,或者通过其它途径获得数据,模拟数据学生可以参与测量采集。最后是讲解过程,讲解原理、讲解模型、讲解代码的书写,最后是执行。布置作业,达到强化训练的目的。
4 实施效果
课程教学中,这些方法都得到了学生的认可。丰富了教学手段,丰富了课堂内容,学生的积极性被调动起来,课堂的教学质量提高很多。目前已经实施两届学生,效果较明显,每一届都有多个学生对编程产生浓厚的兴趣。一个同学在实习阶段运用编程解决了工作中的一些问题,从而得到了公司认可,最后成功入职,还有一个同学目前正在一家IT公司从事专业领域的研发任务,并表现出很大的热情。他们都是课堂中,产生的浓厚兴趣。编程和自己专业背景相结合,可以对就业产生积极的影响。大家在找工作的时候,简历中编程的能力也可以成为亮点。
5 总结
通过这些教学手段,很多同学都掌握一些实用工具;并通过这些工具学习,增加学习兴趣,同时也达到温故而知新的效果。同时掌握编程,有利于就业。今后的将围绕着教学内容不断丰富知识点,实用工具则紧紧围绕Matlab和C#编程语言,为学生打造生动课堂内容,面向就业的课堂内容。需要注意的是课程的核心内容是不能改变,教学结束时,达到教学大纲的要求。
参考文献:
[1] 陆国栋.于大学教学中若干要素的思考[J].中国大学教学,2009(11):11-13.
[2] 谢远成,李友瑾.利用Microsoft Excel 解决工程测量数据处理的分析与探讨[J].中国市政工程,2003(4) : 62-64,73.
关键词:导航 海底地形 数据标准
1 三维地形数据发展现状
1.1 美国SRTM 90米分辨率原始高程数据
由美国太空总署(NASA)和国防部国家测绘局(NIMA)联合测量。2000年2月,美国发射的“奋进”号航天飞机上搭载SRTM系统,共计进行了222小时23分钟的数据采集,获取北纬60。至南纬60。之间总面积超过1.19亿平方公里的雷达影像数据,覆盖地球80%以上的陆地表面。SRTM系统获取的雷达影像的数据量约9.8万亿字节,经过两年多的数据处理,制成了数字地形高程模型(DEM),即现在的SRTM地形产品数据。此数据产品2003年开始公开,经历多次修订,目前的数据修订版本为V4.1版本。SRTM地形数据按精度可以分为SRTM1和SRTM3,对应的分辨率精度为30米和90米数据(目前公开数据为90米分辨率的数据)。SRTM的数据组织方式为:每5度经纬度方格划分一个文件,共分为24行(-60至60度)和72列(-180至180度)。
1.2 日本GDEM高程数据
2009年6月,日本经济产业省(METI)美国航天局(NASA)与共同推出了最新的地球电子地形数据ASTER GDEM(先进星载热发射和反射辐射仪全球数字高程模型),该数据是根据NASA的新一代对地观测卫星TERRA的详尽观测结果制作完成的。这一全新地球数字高程模型包含了先进星载热发射和反辐射计(ASTER)搜集的130万个立体图像。ASTER测绘数据覆盖范围为北纬83°到南纬83°之间的所有陆地区域,比以往任何地形图都要广得多,达到了地球陆地表面的99%。ASTER GDEM数据是世界上迄今为止可为用户提供的最完整的全球数字高程数据,它填补了航天飞机测绘数据中的许多空白。NASA目前正在对ASTER GDEM、SRTM两种数据和其他数据进行综合,以产生更为准确和完备的全球地形图。
1.3国家测绘局
“中国空间信息网”()网站上提供了下列空间数据产品:地形数据库、地名数据库、数字栅格地图数据库、数字正射影像数据库、数字高程模型(DEM)、重力数据库、大地数据库。数字高程模型(DEM)产品按比例尺分为:1:100万、1:25万、1:5万、1:1万。1:100万数字高程模型利用1万多幅1:5万和1:10万地形图,按照28".125X18".750(经差X纬差)的格网间隔,采集格网交叉点的高程值,经过编辑处理,以1:50万图幅为单位入库。原始数据的高程允许最大误差为10-20米。全国1:100万数字高程模型的总点数为2500万点。1:25万数字高程模型的格网间隔为100mX100m和3″×3″两种。陆地和岛屿上格网值代表地面高程,海洋区域格网值代表水深。另外,国家测绘局于1999年安排生产了七大江河区域范围的1:1万数字高程模型,其格网尺寸为12.5m X 12.5m。已完成13781幅,数据量达24GB。
1.4 中国科学院
中科院“国际科学数据服务平台”提供以下DEM数据产品:中国30米分辨率数字高程数据产品、中国30米分辨率坡度数据产品、中国90米分辨率数字高程数据产品、中国90米分辨率坡度数据产品、中国90米分辨率坡位数据产品、中国90米分辨率坡向数据产品。其中,中国30米分辨率数字高程数据产品利用ASTER GDEM第一版本的数据进行加工得来,是覆盖整个中国区域的空间分辨率为30米的数字高程数据产品。
2 现有二维电子海图标准不足
IHO特别出版物S-57是IHO数字海道测量数据传输标准。它主要目的是为不同海道测量组织之间交换数据、向航海设备生产厂商、航海者和其他用户数据用。S-57在1992年5月被第十四届国际海道测量大会正式批准为IHO的官方标准。它的确保了各类海道测量数据的转换具有统一和规范的格式。但是,在近几年的推广使用过程中,人们发现S-57标准存在很大限制,如标准维护缺乏弹性、不支持栅格、图像数据和时变数据格式等。现在的S-57 3.1版本已经“冻结”,换句话说,即标准内容已不再改变。这更难满足随时变化、日益增长的海洋测绘和航海保障的需求。
以S-57标准为基础的二维电子海图在航海领域已得到了广泛的应用,然而它与其他的二维海图一样,本质上都是基于抽象符号的系统,不能直观还原自然界的真实面貌且易形成抽象多义化,给使用者的辨识和符号意义还原带来困难。另外随着应用的逐步深入,三维高程、水下海岸等信息越来越重要,迫切需要真三维这种表现方式的出现。目前二维电子海图导航技术也一直在采取各种措施来弥补二维固有的缺陷,例如对于航标、重要建筑物、关键地形,通过提供图片链接,使驾驶员得到相应物标的直观图像信息,利用各种动画图片来表征灯标的灯质等,但这些手段是远远不够的,我们需要建立真三维的航行环境,为二维平台引入三维这一直观、形象辅助手段,进一步提高船舶航行的安全性。ECDIS系统作为地理信息系统在航海领域的特殊应用,结合陆上地理信息系统的发展趋势,我们可以预测三维电子海图导航技术将成为电子海图技术的重要发展方向之一。
另外,ENC数据单元的数据大小不超过5兆,因此,海事测绘的图幅ENC数据在原始测量数据的基础上进行了大规模的抽稀和压缩,这样原始测量获取的高密度多波束水深点数据未得到有效的应用,造成了这些数据资源的浪费。未来若不同密度的海底数字地面高程模型数据,则可以充分发挥测量数据的效益,满足不同用户的不同需求。
当前,S-100系列标准是IHO正致力于重点发展的海道测量最新标准,它将支持多种数据格式,如图像和栅格数据、3D、随时间变化的数据 (X, Y, Z和时间),以及超出传统海道测量范围的新应用,例如,高密度水深、海底分类和海洋地理信息系统。它也将能够使用获取、处理、分析,访问和提交数据这些基于Web的服务。重要的是要认识到S-100不是一个S-57标准的修订版本。S-100是一个新的标准,其中包括更多的内容并支持新的数据传输格式。它将成为新的可界定的最广泛的各种应用和利用的水文数据基础标准。S-100将按照IHO网站上的ISO合格注册进行汇编和管理,并将成为地理信息ISO 19100系列标准的一部分—目前,有超过40个标准列入ISO 19100系列。这些已经包括国际标准(包括已实施的和草案)的时空架构、数据、图像和栅格数据、资料、描述和编码。
在S-100的第8 部分“影像和栅格数据”中定义“影像”为一种特殊类型的栅格数据结构。并指出:海道水深就其性质而言是一组测量数据点。这些数据点可以采用不同方式的格网结构进行表示,包括使用一个规则格网间距的高程模型,以及用单元大小可变的不规则格网。它们也可以用不规则三角网或者点集表示。
3 数字三维海底地形模型产品标准研究
虽然,目前S-100对三维数据交换标准的规定还不是十分细化,但是S-100的基本原则就是要与S9001等通用测绘标准相一致,网格时变数据在S-100的标准中明确表示将支持NetCDF格式,可以预期的是在未来S-100标准框架下,NetCDF一定是其中重要的标准格式。基于以上提出问题,本文研究在现行S-57电子海图数据标准的基础上参考新版海道测量数据地理空间标准S-100中的数据模型,定义了海事测绘三维航道数据的交换标准,同时参考目前成熟的三维GIS建模技术及三维场景重建和可视化技术提出了三维航道模型的建立与实现的关键技术。
3.1 NetCDF标准的介绍
NetCDF(network Common Data Form)网络通用数据格式是由美国大学大气研究协会的Unidata项目科学家针对科学数据的特点开发的,是一种面向数组型并适于网络共享的数据的描述和编码标准。利用NetCDF可以对网格数据进行高效地存储、管理、获取和分发等操作。NetCDF文件开始的目的是用于存储气象科学中的数据,现在已经成为许多数据采集软件的生成文件的格式。NetCDF提供一组针对阵列数据访问的接口,一个可自由分发的数据访问库(包),支持C、Fortran、C++、Java、R以及其他的一些语言。NetCDF数据具有下列特性:自我描述、可携带和可移动性、可伸缩性、可追加性、可共享性、可存档行。由于NetCDF是一种灵活的、自描述的,并能表达大量数组数据的格式,因此NetCDF在地球、海洋、大气科学中得到了广泛的应用,许多国家的组织和科学机构都采用NetCDF作为一个表示科学数据的标准方式。例如,NCEP(美国国家环境预报中心)的再分析资料,NOAA的CDC(气候数据中心)的海洋与大气综合数据集(COADS)均采用NetCDF作为标准。
支持NetCDF的软件和系统有许多,除了ArcGIS,还有Matlab、Ferret、GrADS、PanoplyWin等。
3.2 数字三维海底地形模型产品标准
不同于现有的陆地数字地形模型采用纯二进制或文本文件的表示方法,本文提出的数字三维海底地形模型采用NetCDF作为数据存取的手段,这样保证格式具有足够的开放性,能够被现有大量的软件支持,同时适应S-100未来的发展。数字三维海底地形模型产品的数据来源主要有两大方面:一是原始测量产生的多波束、单波束水深数据,二是制作完成的电子海图ENC数据。与数字海图类似,海底地形数字模型产品也是海道测绘测绘数字化保障的一个产品形式,可用于海底电缆、管道等海上工程、海洋石油、海上交通运输、海洋环境保护、海上航行安全等海洋综合开发、利用和管理。它按照固定大小的格网间隔,表示了海底地形的深度。
3.3 元数据设计
元数据是描述数据的数据。数字三维海底地形模型产品的元数据需要包含以下信息:数据标准名称、数据标准版本、数据制作方、数据测量日期和时间、数据制作日期和时间、数据集名称、平面精度、深度精度、接边精度、等效比例尺分母、数据范围、采样间隔、平面坐标参照系、垂向坐标参照系、插值方法、维度、坐标轴名称、起始点位置、网格行数、网格列数、坐标单位。
网格值矩阵
一定海区内规则格网点的平面坐标与深度的数据集合。格网的遍历顺序按照ISO 19123附录C中定义的方式进行。可采用的遍历方式有:线性扫描(Linear Scan);莫顿顺序(Morton Order)。下图表示了格网的线性扫描遍历以及一个莫顿顺序的遍历。莫顿排序容易适应不规则形状的格网以及格网大小可变的格网。莫顿顺序对应于一个二维的四叉树,并且可以扩展为更高维的。莫顿遍历顺序可以处理大小可变的单元。曼顿顺序是从左到右,从底到上,逐个单元、不考虑单元大小地遍历。它先增加X坐标,然后是Y坐标。这也可以扩展到多维的情况,先增加X坐标,然后Y坐标,再然后Z坐标,以此类推到更多的维度。
4 数据转换和试验系统
建立DEM的方法有多种。从数据源及采集方式讲有:直接从地面测量,例如用GPS、全站仪、野外测量等,从现有海图上采集、内插生成DEM等方法。DEM内插方法很多,主要有分块内插、部分内插和单点移面内插等几种。目前常用的算法是通过等深线和水深点建立不规则的三角网(TIN)。然后在TIN基础上通过线性和双线性内插建DEM。主要的离散点网格生成算法应该有:移动平均插值法、距离平方倒数加权法、趋势面拟合技术、样条函数插值法、克立金法插值法。
本原型系统采用西戈公司的cgGlobe三维地理信息&虚拟现实软件平台作为底层三维开发支撑平台,用Microsoft Visual C++开发工具实现航道数据NetCDF 格式数据的访问接口,选用微软的WPF技术作为整个软件呈现界面功能。三维航道数据主要来源于多波束水下测量形成的水深文件和ENC电子海图中提取的水深数据等,本原形系统将这些不同种类的水深数据统一以三维航道数据交换标准(草案)中的网格覆盖数据标准的NetCDF数据格式。各类原始水深数据经提取后可以比较容易的生成XYZ格式的水深数据文件,再将其转换为符合三维航道数据交换标准中的网格覆盖数据标准的NetCDF数据格式,由NetCDF数据读取模块接入cgGlobe三维GIS平台,完成数据交换流程。
本系统采用经企业应用程序经典的三层结构,从下至上分别为:数据层、逻辑业务层和呈现层。分层设计通过把不同的逻辑封装在不同的软件开发层次上,来实现逻辑意义上的层次结构。逻辑上实现软件功能的封装性和相对独立性。数据层主要包括三维航道数据和其他GIS相关基础数据,为业务逻辑层提供数据支持,业务逻辑层则实现三维航道的数据的组织、三维建模、渲染和各查询功能接口,呈现层则将接受用户的输入并在三维渲染画面上叠加显示各查询结果信息。
5 结束语
下一步,将对标准继续完善,优化数据转换软件,开发数据质量检测软件,争取尽早纳入海事测绘产品体系。另外,将研究内容扩展到航标、地面建筑等其他目标的三维建模标准、数据生成算法、场景显示调度等方面,形成整个海洋的真实化三维场景,并开展相关的应用研究,争取尽早实现全要素的船舶三维导航的海洋环境数据生产、质检、、应用的全套体系。
参考文献
[1]袁洪满.论导航发展规律与发展趋势.天津航海.1982,第一期.
[2]梅雄,钟成雄,电子海图显示与信息系统简介.中国航海学会内河海事委员会2006会议论文集,2006
[3]李军,滕惠忠.海底三维可视化技术及应用[J].海洋测绘,2004,24(4)
[4]胡清华等.利用MB-System软件进行多波束测深数据处理的研究[J].海洋测绘,2006(5)
老实、稳重、逻辑清晰、做事认真……
这是王华强给人的第一印象,经常漂泊在海上,他的皮肤晒得黝黑,但掩盖不住脸上的自豪,这是一种海测人独有的自豪。在南海航海保障中心广州海事测绘中心(简称“测绘中心”)这个中国海测行业发源地的技术岗位上,他一待就是八年,由一个技术员做到高级设备工程师,王华强有足够的理由骄傲,但他却没有,反而选择了一条让自己时刻绷紧神经的路。
大音希声,大象无形。海测工作需要严谨再严谨,完成任务必须次次都精益求精,王华强满怀一颗“匠心”开创了属于自己的一番海测事业,在工作中一步一个脚印,在专业技术上不断突破,在理论基础上不断总结创新。2008年进入海测大队以来,他先后出色完成了马航MH370失联客机搜救、珠江口沉船应急扫测等任务,并参与港珠澳大桥建设测绘保障任务,主持或参与南海海区多个重点工程项目测绘保障,斩获中国航海学会优秀测绘工程铜奖一个,中国航海学会优秀论文二等奖两次,三等奖一次,还为测绘中心引入GDCORS系统,大大提高了一线测量人员的工作效率。
初探测绘,“门外汉”式的新兵
1983年出生的王华强已过而立之年,稚嫩褪去,处事老练。2000年至2008年期间,他本科和研究生在南京大学地理与海洋学院就读,分别学习地理科学和海洋地质专业。海事测绘作为航运的保障服务部门,公众对其认知度并不高,当初王华强也并没想过自己会进入这个行业。据了解,海事测绘是通过开展海道测量,编绘出版各类航海图书,提供与船舶航行密切相关的海岸地形、海底地貌、水文气象、助航设施、航行障碍物等各种地理信息和航海信息,为海上运输安全和航运经济发展提供安全保障。没入职前,王华强对海事测绘有一定了解,但是并不熟悉,命运仿佛早已安排好,他工作的第一个八年,将由一个测绘“门外汉”,摇身一变成为这个领域的高级设备工程师。
据了解,目前我国有广东、天津、上海三个海事测绘中心,其中位于广州海珠区仑头村的广东海事局仑头基地于1955年成立,承担着华南沿海广东、广西、海南三省(区)航行图的周期性测量及相应160多幅海图数据处理工作,同时开展疏浚测量、扫海测量、海上定位、专题图制作等航海保障服务。2008年7月毕业后,王华强加入南海航海保障中心广州海事测绘中心,先后在测量四分队、三分队担任技术员,随后担任技术装备科高级设备工程师。在这支华南地区规模最大、实力最强的海洋测绘队伍中锻炼,为王华强的海事测绘生涯打下了坚实的基础,并提供了广阔的发展空间。
入职初期,王华强由基础测绘学起,恰逢2009年1月份,港珠澳大桥筹备建设,需要做一些前期勘探性质作业,王华强被派遣到这个项目协助工作。“我对海洋地质方面比较了解,做完这个项目后,为我今后的工作打下了坚实的基础。”据了解,港珠澳大桥桥区水域水下结构物扫测是一个大型专项服务项目。当时由15人组成的团队前后耗时40多天,测量面积达35.58平方公里。
大桥如何才能在海上搭建起来屹立不倒?这是一门技术活!说起这个问题,王华强滔滔不绝,他介绍,大桥桥墩只有打到海底的岩石层才会稳,所以当时他和团队主要的工作就是探测整个港珠澳大桥桥桩的最佳位置,由香港到珠海沿线35.58平方公里的水域全部都是做地质勘探,期间还要摸清楚海底有无淤埋的沉船、光缆、管道、锚、炸弹等,以免因施工时情况不清造成损失。“探测完成后,我们要告诉施工方,什么地方有危险物,什么地方有过海电缆,什么地方地层比较危险,这份资料的提出,也提高了我们单位在地球物理勘探行业内的影响力,算是一种业务的突破。”
匠心独运,技术创新的尖兵
海测是一门大事业,耐心、严谨、精益求精,工匠精神仿佛是海测人与生俱来的,这种精神在王华强身上也体现得淋漓尽致。王华强主要负责测绘中心海事测绘技术方面的工作,包括多波束、单波束、测流、水下机器人、水下声学摄像、海底底质分类、海底物理勘探等。除了要熟悉日常的设备仪器使用方法、并用通俗易懂的方法教会单位基层技术员外,为进一步掌握设备的核心技术,他还经常要下大工夫、花大精力去研究设备,并与制作设备的国外厂家的技术人员进行交流学习。
关键词:GPS测量;误差;精度控制
中图分类号:P228.4文献标识码: A
一、关于GPS定位系统
1、空间卫星群
24颗卫星群(2.02万km)组成的就是GPS空间卫星群,其分布在六个特定轨道上,各面间的交角是60°,而地球赤道和轨道的倾斜角是55°,卫星轨道运行的周期是11h58min,也只有这样才能确保在任何地点、时间、地平线能够最少收取到4颗卫星发出的信号。
2、地面控制系统
其主要是由3个注入站、1个主控站、5个监测站所组成的,其中注入站作用就是把主控站计算出的信息全部注进到卫星里;主控站作用就是通过GPS观测出的数据,对卫星钟改正参数以及将卫星星历计算出来,然后再将计算结果利用注入站传送到卫星当中;监控站作用是接收卫星所发出的信号,对卫星工作情况进行监测。
3、用户部分
GPS用户部分是由气象仪、计算机、数据处理软件以及接收器所组成的,用户部分的作用就是收取卫星所发出的信号,然后通过这些接收到的信号来定位导航。随着科技的不断发展,也产生出了很多重量轻、易携带、体积小的GPS。
二、GPS误差的来源
1、卫星星历误差
卫星星历主要是根据监测站所跟踪的GPS卫星来设定的,因为卫星会在空中受到不同程度的摄动力以及监测站所测定出的误差,那么这也就使卫星轨道会产生误差,而卫星星历是由监测站推算处理的,那么其提供出的卫星位置与卫星实际位置也就会产生一定偏差。GPS测量误差的重要来源就是星历误差,那么要是定位精度的要求在1ppm以下时,那么轨道误差就可以忽略不计。而一些精度要求比较高的,就可以利用同步观测值的求差来消弱轨道误差的影响,特别是在基线比较短的时候,这种影响会更不明显。
2、天线中心位置所导致的偏差
GPS所测量的观测值都是通过卫星再去接受机天线的相位中心距离,那么天线对中也就是将天线几何中心来作为标准的,所以天线几何中心与相位中心就一定要一致,但是实际上相位中心的位置会随着信号输入方向、强度的变化不断发生变化的,那么这个时候相位中心理论位置就和与瞬时位置产生差异,最终这个差异也就形成定位误差。
3、对流层的信号传播延迟
出现对流层延迟的原因,主要是电磁波信号在通过对流层的时候,其传播速度和真空中光的传播速度不同所引起的。其中又分为干大气分量和湿大气分量,在低仰角的时候其能够达到20米。其中干大气分量大概占有80%至90%,这点能够利用模型将其大部分进行改正。大气分量所占用的数值虽然不大,但是它随着纬度和高度出现的变化,而随之变化。也就是说纬度和高度越高,其变化值也随之相应的变高,并且除此之外还随着时间变化的非常快。在实践中对于空气中的水汽与干气非常的难以预测,因此在实践当中进行大气测试,通常都是干气和湿气两者融合在一起的数值,所以对于准确性就显得难以做出有效的判断。然而在电流层延迟和电离层延迟之间没有多大的变化,所出现的主要影响是天顶方向。由于他们之间具有相关性,在短基线测量中,对此能够很好的进行消除,在长基线测量中采取双频接收机也能很好的减少其影响。
4、电离层的信号传播延迟
信号在传播的过程中引起延迟的原因是电离层,其主要是和沿用卫星与用户使用的接收机视线方向所呈现出来的电子密度有关,接收视线方向如果处于垂直视线,那么所体现出来的延迟值在夜间平均可以达到三米,在白天的时候延迟值可以达到十五米,然而在低仰视角度情况中,所出现的延迟值分别是九米和四十五米,并且在反常时期所出现的延迟值还会进一步增加。
5、观测误差
根据经验,一般认为观测的分辨误差约为信号波长的1%。故知道载波相位的分辨误差比码相位不小,由于此项误差属于偶然误差,可适当地增加观测量,将会明显地减弱其影响。接收机天线相对于观测站中心的安置误差,主要是天线的置不与对中误差以及量取天线高的误差,在精密定位工作中,必须认真,仔细操作,以尽量减小这种误差的影响。
二、GPS测量精度控制
1、控制卫星星历误差
GPS卫星轨道可以通过GPS跟踪网来确定,而跟踪站地心的坐标误差会对卫星造成10倍之多的影响,所以跟踪站地心的坐标精度就要优于0.1m,而卫星轨道精度则是要优于2m。在使用约束基准法来约束基站松弛轨道加权的时候,我们可以得出优过5m的坐标值,那么这也就基本能满足目前我国对区域性定轨的需求。如果使用我国现在所拥有的跟踪基站,那么通过记录所观测到的卫星数值,我们就可以将直接产生的轨道根数误差改成正值,这样也就可以直接对用户播发出精密星历,从而代替有误差的技术。
2、控制天线位置偏差
天线几何中心和相位中心需要重合,所以在进行设计时需要尽量减少天线中心位置偏差。可采用的方法是:设计天线时让其天线盘上指定的指针均指向北方,通过这种方法,在进行相对位置定位时,可采用求差的方法来削弱几何中心和相位中心不重合的偏差。并且在野外测量时,要严格要求天线对中,整平,并且将天线盘上的方向指北。
接收机天线附近的斜面、垂直面、水平面都可以反射GPS信号,像是天线周围的沙滩、水塘、山坡、山谷、道路、树木、水沟、建筑这些都能进行反射,因此我们在GPS定位的时候,一定要尽量的避开这些实物。通常控制接收机时钟精度都是使用下面这些方法:在单点定位的时候,把时钟差当成未知数然后在方程式里求解;在载波相对定位的时候,可以求出观测值差,然后再去除掉时钟差;在定位高精度的时候,可以外接频标,从而提供出高精度时间标准。
3、信号传播精度控制
电离层延迟导致的信号误差可通过一下几个措施进行防治:
(1)球差时利用同步测量。
(2)膜拟电离层模型,实验改进方案。
(3)便换接收机,采用双频接受。
为了减少对流层的折射对信号传输的影响,可采用的控制措施有:
(1)利用同步观测求差值,使结果更加精确。
(2)同减少电离层影响的措施一样,将对流程建模,进行模型改正。首先测量对流层各项参数,在实验室根据数据参数进行实际建模,通过接近实际的模型来研究如何减少对流层对信号的影响。
4、卫星轨道误差控制
在GPS定位测量中,处理卫星轨道误差有以下几种方法:(1)忽略轨道误差。这种方法以从导航电文中所获得的卫星轨道信息为准,不再考虑卫星轨道实际存在的误差,所以广泛的用于精度较低的实时单点定位工作中;(2)同步观测值求差。这一方法是利用在两个或多个观测站一同,对同一卫星的同步观测值求差。以减弱卫星轨道误差的影响。
5、观测误差精度控制
首先对于地面工作站工作人员的专业素质进行培训,使每个数据观测人员均能准确对检测数据进行收集与整理,具备发现问题,分析问题,解决问题的能力。其次对于观测精度的控制可采用太阳光压改正模型,这些模型包括:标准光压模型、ROCK4光压摄动模型以及多项式光压模型,这几种光压模型精度相当,均可以满足lm定规要求。
结束语
综上所述,在实践中利用GPS进行作业测量,我们需要对其所体现出来的所有误差进行全面有效的分析,综合考虑各方面因素对GPS所造成的负面影响,采取有效的措施尽量的给予避免问题发生,减少项目作业中的误差出现,只有这样才能够更好的使用GPS进行测量,保证其测量数据的精确性。
参考文献
[1]颜海岸.浅析影响GPS测量误差因素和精度控制[期刊论文].城市建设与商业网点,2009.
关键词:灰度共生矩阵 纹理特征
The analysis of texture feature based on gray level co-occurrence matrix
Abstract:For remote sensing image texture feature extraction, the paper uses gray level co-occurrence matrix in order to get the different figures of the feature extraction
Key word:gray level co-occurrence matrix texture feature
引言
纹理信息就是包括地形、地貌、植被、水文等自然要素的内部特征在遥感影像中的反映。在影像上纹理表现为根据色调或颜色变化而呈现出的细纹或细小的图案,这种细纹或细小的图案在某一确定的图像区域中以一定的规律重复出现。影像上的纹理可以揭示出目标地物的细部结构或内部细小物体。目标地物的纹理特征与影像的比例尺有关。在大比例尺影像上,可显示出一个个树冠的纹理,据此可以区分不同的树。而在比例尺较小的影像上,则表现为由一系列树冠的顶部构成的整个森林的纹理。同一目标地物在不同太阳高度角下,也会具有不同的纹理特征。如黄土高原丘陵沟壑区,在太阳高度角很大时,地表纹理比较平滑,在太阳高度角很小时,地表纹理比较粗糙。纹理是普遍存在的,是图像的基本特征,它可以描述诸如树木、建筑物等物体表面的几何特征。纹理特征是对影像内部灰度级变化的量化,可以从图像中计算出来,即纹理特征的提取。
灰度共生矩阵
灰度共生矩阵(Gray Level Co-occurrence Matrix)是一种用来分析图像纹理特征的方法,他能较精确地反映纹理粗糙程度和重复方向。灰度共生矩阵通过计算图像定方向和特定距离的两像元间从某一灰度过渡到另一灰度的概率,反映图像变化的综合信息。
如果图像水平和垂直方向上各有Nc×Nr像元,每个像元出现的灰度量化为Nq层,设Lx={1,2,...Nc}为水平空间域,Ly={1,2,...Nr}为垂直空间域,G={1,2,...Nq}为量化灰度层集。集Lx×Ly为行列编序的图像像元集,则图像函数f可表示为一个函数:指定每一个像元具有Nq个灰度层中的一个值G,即f:Lx×LyG。灰度共生矩阵定义为在图像域Lx×Ly范围内,两个相距为d,方向为θ的像元在图像中出现的概率,即:
例如距离为d,水平方向p(i,j|d,00)和p(i,j|d,900)的计算公式为:
同理,距离为d,对角方向的灰度共生矩阵:p(i,j|d,45°)和p(i,j|d,135°)
用通过(d,θ)值对组合得到许多共生矩阵来分析图像灰度级别的空间分布格局。
对于矩阵p中的任何一个节点,可用下图表示其具体意义:
其中x,y为像素位置,f(*)为观测值。
这样,两个像素灰度级同时发生的概率,就将(x,y)的空间坐标转换为对“灰度对”(i,j)的描述,它们形成了灰度共生矩阵。通常,灰度共生矩阵需要做如下的归一化:
p(i,j)=p(i,j)/R
其中 R=2G(G-1) θ=00或θ=900
R=2 (G-1)2 θ=450或θ=1350
R为归一化常数。由于灰度共生矩阵易于理解和计算,因此,由共生矩阵获取特征已经被用在许多纹理分析方法中。但是,灰度共生矩阵也有它的缺点。由定义可以看出,灰度共生矩阵的大小只与最大灰度级有关系,而与图像大小无关,即灰度共生矩阵的大小为G G。对于灰度级G=256的图像而言,它的灰度共生矩阵为256×256,如果图像比较小。则它可能比较稀疏,而所占的空间还是256×256。因此,通常情况下,需要对原图像的灰度级进行缩减,以减少计算的时间复杂度。
例如,如果将灰度级缩减为64,则灰度共生矩阵为64×64.大大减少了数据量。为此,本文中采用把灰度级降为16。
灰度共生矩阵纹理特征提取步骤
如图(1-3),灰度共生矩阵提取纹理具体步骤描述如下:
第一步:数据预处理,压缩遥感影像的灰度级,通常压缩为16级;
第二步:计算窗口内四个不同方向的灰度共生矩阵,包括:00,450,900,1350;
第三步:对灰度共生矩阵进行正规化处理;
第四步:获取窗口中的纹理特征作为中心像元的特征值。
灰度共生矩阵及特征值的计算
用于这次论文实验的样本图像分为四类,分别为居民地、林区、水域和田地(如下图):
对这四类图像根据附录中求灰度共生矩阵及其特征的程序可以得出这四类的灰度共生矩阵的特征值(摘取部分图像的特征值):
由上述四个表中计算的各类的灰度共生矩阵的特征值可以得知:
1.从能量和相关性上看,在四个类别中居民地易于识别,田地容易与林区、水域混淆,除去田地,依据能量可以分别识别出居民地、林区和水域。
2.从对比度、逆差矩、熵、差方差、差熵这五个特征来看,居民地和水域易于从四个类别中识别,而田地和林区相关特征的特征值差别不大,识别过程中容易混淆。
3.从方差和和熵这两个特征来看,依然是居民地和水域易于从四个类别中识别,但林区和田地在这两个特征的特征值差别相对其他的特征差别比较大,可用来识别林区和田地。
4.从和方差这个特征来看,林区和水域可以从四个类别中识别,而居民地与田地易于混淆。
参考文献:
[1] 贾永红. 数字图像处理(M). 武汉:武汉大学出版社,2003.
[2] 陈杨.陈荣娟.郭颖辉等.MATLAB 6.X 图形编程与图像处理(M). 西安:西安电子科技大学出版社,2002 [3] 冯建辉.杨玉静.基于灰度共生矩阵提取纹理特征图像的研究[J].北京测绘,2007(2):19-22.
[4] 刘丽.匡纲要. 图像纹理特征提取方法综述[J].中国图象图形学报,2009(4):622-633.
[5] 田琼花.遥感影像纹理特征提取及其在影像分类中的应用[D].华中科技大学,2007.
[6] 杨玉静.冯建辉.纹理特征提取及辅助遥感影像分类技术研究[J].海洋测绘,2008(4):37-40.
以我国工程教育认证的通用标准和补充标准为切入点,分析了目前我国测绘工程专业课程设置体系普遍存在的问题,提出以学生能力产出为核心目标并将课程体系模块化为若干能力目标服务的测绘工程专业课程体系调整策略,为提高我国高校工程教育专业认证水平做出积极探索。
关键词:
高等工程教育;专业认证;认证标准;课程体系;测绘工程
一、相关背景
1989年,由来自美国、英国、加拿大、爱尔兰、澳大利亚、新西兰6个国家的民间工程专业团体发起并签署了《华盛顿协议》,其宗旨是通过双边或多边认可工程教育资格及工程师执业资格,促进工程师跨国执业和国际交流。至今,该协议已成为世界上最具影响力的国际本科工程学位互认协议。我国也于2013年6月19日以全票通过,成为华盛顿协议预备成员国。这标志着我国工程教育及其质量保障迈出了重大步伐,为我国工程类专业学生走向世界提供具有国际互认质量标准的通行证,推动教育界与企业界的紧密联系,提升我国工程教育水平和工程师职业能力水平,实现国家新型工业化战略目标,提升工程行业国际竞争力都具有重大意义[1]。我国工程教育专业认证工作最早开始于1992年,经过多年准备,自2006年开始,在土建专业以外的工程领域开始试点工作,通过探索专业评估制度改革,逐步建立起了适应我国职业制度需要的专业认证体系,成立了中国工程教育专业认证协会、全国工程教育专业认证监督与仲裁委员会。认证委员会按认证领域共分为14个分委员会,分委员会对各专业领域组织开展认证工作。目前,由教育部牵头,我国已对373个专业点开展了认证工作。2012年3月14日,经教育部批准,测绘地理信息类专业被纳入工程教育专业认证。同年6月,作为试点单位,武汉大学测绘工程专业第一个通过了测绘地理信息类专业认证。截至2014年8月,同济大学、中国矿业大学、中国地质大学(武汉)、中南大学和西安科技大学等5所高校测绘工程专业也相继通过测绘与地理信息类国际工程专业教育认证,标志着我国测绘与地理信息类专业工程认证工作已拉开了序幕。
二、国际工程教育专业认证标准
某个工程专业通过国际高等工程教育专业认证,不仅意味着该专业学生从此具有了在各《华盛顿协议》成员国的宽泛的就业渠道,更意味着通过认证的办学单位工程教育质量得到了国际认可,其国际声誉也会得到相应提高。然而,工程教育专业认证是一套严格认证标准体系,其基础是系列能力标准体系。一个专业,只有其办学水平能达到所有能力考量标准才能通过最终认证。就《华盛顿协议》规定来看,各国认证标准虽略有不同[2-4],但基本上都是采用合格评估的方式,标准一般只是最低标准,且为保证工程教育质量,各国制定的标准都应当具有“实质等效性”。所谓“实质等效”是指包括认证组织、认证程序、认证标准等所涉及的核心要求应具有等效性和可考性。美国做为世界上最早倡导和实施工程教育专业认证的国家之一,1936年就开始对包括哥伦比亚大学、康奈尔等大学进行了首次工程专业认证,至今已有近80年历史,其认证程序和标准体系已经相当成熟。以美国目前的认证标准EC2000为例,就包括三个层次[5]:第一层次适用于基本水平专业的一般标准,该层次是适合于全美高校各本科层次工程专业应该达到的基本要求;第二层次适应于较高水平专业的一般标准,是在满足基本水平专业一般标准之上的更高层次要求,是适用于全美高校硕士层次各工程专业应该达到的基本要求。第三层次是专业标准,适用于基本水平专业一般标准基础之上,依据各工程专业的特殊性而提出的具体要求。并且这些标准并非一成不变,而是由EAC执行委员会在每年1月的年度会议上就其中的某些条款向工程与技术认证委员会(简称ABET)董事会提出修改建议,A-BET最高董事会在每年3月的董事会成员会议上表决通过修订草案,并在下一个认证年度开始执行修订过的认证标准。
三、我国对测绘工程专业的课程体系认证标准
我国工程专业认证工作开展较晚,直到2007年才初步建立工程教育认证的组织体系,正式出台了《全国工程教育专业认证标准(试行)》等系列文件,并且完成了在26所高校近80个专业领域的认证试点工作[6]。我国工程专业认证标准分为两部分,第一部是通用标准,通用标准规定了所有工程专业的一般标准,不分专业和领域。第二部分是专业补充标准,补充标准是在通用标准的基础上,针对各工程专业领域规定的特殊标准,不管是通用标准还是补充标准,都是工程专业认证的最低标准,申请认证的专业只有同时满足通用标准和相应补充标准才能通过认证。我国《工程教育专业认证标准》(试行)通用标准对课程设置的总体要求是:“课程设置要服务于专业培养目标、满足预期的毕业生能力要求。课程体系设计有企业或行业专家参与”。对各类课程所占比例的具体要求是:数学与自然科学类课程至少占本专业课程设置总学分的15%,工程基础类课程、专业基础类课程和专业课程至少占30%,工程基础类课程和专业基础类课程应能体现数学和自然科学在本专业的应用能力培养,专业类课程应能体现系统设计和实现能力培养;工程实践和毕业设计(论文)至少占20%,此类课程应能培养学生的动手能力和创新能力,毕业设计指导和考核应有企业或行业专家参与;人文社会科学类通识教育课程至少占15%,以使学生在从事工程设计时能够考虑经济、环境、法律、伦理等各种制约要素。测绘工程专业补充标准是在课程体系通用标准基础上,针对测绘工程专业给出了课程设置的具体要求,这些要求对应于通用标准,依次是:数学与自然科学类课程至少须包括高等数学、线性代数、概率论和数理统计、大学物理、地球科学概论;工程基础类课程须包括:程序设计、数据结构、计算机图形学、工程力学或土木工程概论、工程制图等;专业基础类课程须包括测绘学、地形测量、误差理论与数据处理、大地测量学、地图制图学、摄影测量;专业类课程须按大地测量学与导航定位、工程与工业测量、摄影测量与遥感、地图制图学与地信信息工程、海洋测绘、矿山测量六个方向自主选择一个或多个办出特色,不规定具体课程;人文社会科学类课程应包括我国注册测绘师职业资格相关的职业道德、岗位职责、测绘法律法规与相关标准及规范等方面内容。
四、工程教育专业认证背景下测绘工程专业课程体系调整策略
工程教育专业认证条件下对现有测绘工程专业课程体系进行合理、科学的调整,必须做好两方面工作:一是正确把握和分析我国工程教育认证标准对测绘专业课程设置的核心要求,二是分析我国测绘工程专业目前课程设置体系与这些核心要求之间的差距和存在的主要问题。
(一)我国工程教育专业认证标准核心要求及分析
如果将专业认证制度看成是一种对学生工程从业能力培养系统的话,那么专业认证的核心即是响应这种能力系统的高校课程设置和组织保障。笔者认为,学生的每一种能力培养目标必定对应着一门或几门课程的集合。基于工程专业教育的最终“产出”是学生将来以工程师身份服务于社会来考虑,课程体系要求有企业界或行业人员参与是十分合理的。然而,虽然我国工程教育专业认证通用标准对毕业生提出了10种能力要求,并且在专业补充标准中也相应给出了具体标准,但是在能力描述上过多的参考了国际惯例,并未按照我国教育实情和学生薄弱环节提出明确要求,这导致了某些认证标准难以掌控。就课程设置而言,举例来说,在通用标准中,关于人文社会科学类通识教育课程规定的标准是:“应使学生在从事工程设计时能够考虑经济、环境、法律、伦理等各种制约要素。”在测绘工程专业补充标准中对课程设置要求相应描述为:“应包括我国注册测绘师职业资格相关的职业道德、岗位职责、测绘法律法规与相关标准、规范等方面内容。”然而,我国目前还尚未建立起完备的工程职业资格认证体系,且高等工程教育和行业职业资格教育也远未融合为一体,导致我国工程教育认证标准制定在某些方面比较笼统,针对性不强。因此,笔者以为,从长远来看,我国目前工程教育专业认证标准体系必定会经历一个自我完善过程,各申请认证的专业还应参考国际上其它国家的工程教育认证标准,认真研究提炼出共同的核心要求,按“实质等效性”对本专业进行建设和准备相关认证工作,以提高我国的工程认证水平和增强我国学生的国际竞争力。那么工程教育认证的核心要求到底是怎样的呢?认真研究我国及国外有关工程教育专业认证标准,发现它们在提法上虽略有差异,但不难发现,其核心要求却是一致的。具体地说,就是强调以学生为本,以学生学到什么为评估重点,兼顾教学条件和师资。这就是说,无论是国外还是国内在专业认证过程中都是以工程教育的“产出质量”为导向的,而教学过程被淡化,学生能力评估是重点。
(二)目前测绘工程专业课程体系普遍存在的问题
高等工程教育认证对师生的双向要求强调了工程教育认证对工科专业的评估认证不同于以前的高校办学评估。而缺乏工程教育实践正是我国高校难以通过工程教育认证的主要问题之一,这个问题也表现在课程体系的设置上,总结起来,由此导致的课程体系设置问题如下。
1.课程设置科目缺乏系统的服务目标
鉴于国际形式和科技发展对人才要求的提高,目前,我国高等教育提倡“宽口径,厚基础”,各高校培养目标一般也相应为培养具有一专多能的复合型高级专门人才。“一专多能”一般是通过设置大量课程来体现的,为保证总学时不超限,几乎所有传统课程学时都被一定程度压缩。结果由于执行上的缺陷,“宽口径”人才成了“四不像”人才现象屡见不鲜,着实可悲。笔者以为“宽口径”本身没错,根本原因是高校在课程设置时,仅仅开出了足量课程,但对所开设的课程服务目标不明确所导致课程简单“堆砌”成为了这一结果。
2.实践课程设置不当
当前,建设“高水平研究型大学”是我国高校的共同追求,正是在这种背景下,工程教育与企业脱节,缺乏行业引导和支持,培养模式单一,导致工程实践环节不足成为了高校普遍问题。有些高校教师,尤其是青年教师,在职称和学位压力下,更多潜心于科学研究,长期忽略工程实践,结果是很多教师由于缺乏工程经历无法在教学中深刻地向学生教授工程设计技能和其他的复杂因素。此种情况下,为避免开设教师驾驭能力之外的实践课程,学校只好勉强设置了一些与既定的培养目标联系不甚紧密甚至无关的实践课程来保证培养方案的完整性。
3.工程实践创新能力培养的课程严重不足
高等工程教育的任务之一就是要培养学生创新能力。目前,各高校都提倡“产、学、研”相结合的办学模式,这确实是培养师生创新能力的有效手段,具体落实形式,可以通过建立校外实习基地、设立各类各级大学生创新训练计划项目和SRT项目等形式来实现。然而,这些形式的实践环节难以覆盖全部学生,受益面过窄,有时难以持续进行。在笔者看来,要培养学生创新能力,首先要培养他们的创新意识和创新思维,其次要培养创新欲望。在所设置的课程里,通过案例分析,使学生了解行业现状、规范和生产作业过程、劳动安全等知识,教师可提出一些生产中的难点问题供学生思考解决,激发学生解决问题的欲望,培养他们的创新意识和思维,使他们一旦走向就业岗位,通过一段时间的磨合,很快就能发现和解决生产中的实际问题,真正为他们在工作中具有创新能力做最好的准备。
(三)专业认证背景下测绘工程专业课程体系调整策略
鉴于以上分析,要建立旨在通过测绘工程教育专业认证的课程体系,就必须在我国工程教育专业认证标准体系对测绘工程专业课程设置的核心要求基础上,对目前我国高校测绘工程专业课程体系进行调整,课程设置需要优先考虑的是培养学生能力,应尽可能提供数量充足的选修课程,从而保证学生对自己能力达成有宽泛选择余地,充分贯彻以人为本思想,给学生以最大的能力达成选择自由。具体做法是将目前测绘工程专业课程体系中的所有课程,工程教育认证标准中四类课程按性质进行分类并选择培养特色方向,根据培养特色方向对课程进行模块化,使得每一模块皆服务于学生受教育的某项具体“能力产出”,最后各项“能力产出”具体要求,对现有课程体系进行课程的增减,从而使目前大量课程的“堆砌”成为某一系统目标服务的有机组成部分。在以上调整工作中,重点是研究如何结合当地实际,制定合理的人才培养目标,确定办学特色方向并设置相应课程模块,最终建立满足工程教育认证标准的测绘工程专业课程体系。
作者:张俊 董敏 张鹏飞 张显云 单位:贵州大学矿业学院
参考文献:
[1]白洁.五所高校测绘工程专业通过工程教育认证[N].中国测绘报,2014-08-08.
[2]樊一阳,易静怡.《华盛顿协议》对我国高等工程教育的启示[J].中国高教研究,2014(8):45-49.
[3]ABET.AccreditationCriteriaforEngineeringEducationPro-gramme[EB/OL].(2007-03)[2014-05-27].EngineersIreland/media/SiteMedia/SiteMedia/services/accreditat-ion/Accreditation-Criteria-for-Engineering-Education-Programmes-FINAL-amended-Mar-09.pdf
[4]ABET.Criteriaforaccreditingengineeringprograms[EB/OL].(2012-10-27)[2014-05-27].a-bet.org/uploadedFiles/Accreditation/Accreditation_Step_by_Step/Accreditation-Documents/Current/2013-2014/eaccriteria-2013-2014.pdf.
【关键词】 建筑工程 深基坑支护 土钉墙 监测 概况 主动支护
伴随国民经济的快速增长,我国建筑工程的规模也在不断扩大,深基坑支护工程作为建筑工程施工的重要组成部分,其施工技术水平的高低将直接影响到工程建设的整体质量。目前最常见的基坑支护技术主要包括两种:主动支护与被动支护,本文根据具体工程实例进行分析,主要选用土钉墙支护技术进行施工,在施工过程中必须做好基坑支护监测工作,了解其施工要求,规范施工工艺流程,只有这样才能有效提升整个建筑工程的质量。
1 深基坑支护的概况
1.1 深基坑支护
对于深、浅基坑,目前工程界并没有统一的标准。1967年Terzaghi与Peck建议将6米以上深度的基坑定为深基坑,但实际施工中这种说法并没有得到广泛地认可。现阶段,我国深基坑施工中普遍将超过6米或7米的开挖深度看作是深基坑。基坑支护是指为确保地下室施工及附近环境的安全,选用支挡、加固等方式对基坑侧壁与附近环境加以保护。支护结构主要对侧向压力进行承受,主要包含水土压力、地面荷载、邻近建筑物基底压力及相邻场地施工荷载等引起的附加压力,其中水土压力为支护结构承受的主要压力。传统支护设计理论主要将基坑附近土体作为荷载,作为支护结构的“对立面”,随后按照围护墙位移的状况,进行支护设计。
1.2 土钉墙支护
作为一种新型支护方式,主动支护就是将基坑附近土体自支撑能力进行充分发挥及提升。目前主动支护主要分为水泥土墙支护、土钉墙支护、喷锚支护、冻结支护、拱形支护等方式,本文主要对基坑主动支护中的土钉墙支护进行分析与探究。
土钉墙是在新奥法的基础上基于物理加固土体的机制,在上个世纪70年代从德国、法国及美国发展出来的支护方式。上个世纪80年代早期在矿山边坡支护中我国采用了这种方式,随后土钉墙支护法在基坑支护得到了大量应用。土钉墙的组成成分为被加固土、放置于原位土体内的细长金属杆件与在坡面附着着的混凝土面板,最终实现重力式支护结构。将一定长度及密度的土钉设置在土体内,通过土钉和土一起完成作业,进而将原位土的强度、刚度进行有效提升。这种支护技术主要应用于12米以下的基坑开挖深度,如地下水位在坑底以上时,必须根据实际施工要求,进行有效排水与截水施工。
2 建筑工程深基坑支护技术的应用
2.1 工程概况
本工程由15层住宅楼含局部3层商铺(裙楼)组成,裙楼外侧边线范围内设1层连通式地下室。基坑长55.19m,宽36.10m,开挖深度约为4.9m。
2.2 土钉墙基坑支护施工
结合本工程的实际施工情况,选用土钉墙基坑支护的方式进行有效施工,应遵循一定顺序进行,如基坑西侧支护―南侧―东侧。其施工流程如下图1所示。
2.3 基本工艺
(1)钻设钉孔。选用土钉成孔的方式进行基坑支护作业,其成孔工具为洛阳钻机,将其孔径设置为80毫米,深度应确保其超过土钉长度100毫米,成孔倾角为15度。每钻进1米,并进行倾角地测量,避免偏向等情况的出现。
(2)土钉安装。与本工程基坑土钉墙支护设计需求相结合,进行土钉的制作,确保其长度在设计长度以上。每隔1.5米进行一组土钉的设置,选用搭焊连接的方式进行土钉连接,焊缝高度控制在6毫米,把土钉在成孔作业后设置在孔内。
(3)注浆。选用孔底注浆法进行土钉墙基坑支护注浆作业,其作业流程为在孔底插入注浆管,确保管口与孔底之间距离200毫米,注浆管应同时进行注浆与拔出作业,确保注浆管底能够在浆面以下,确保注浆过程中可以顺利从孔口流出,并将止浆阀设置在孔口,选用压力注浆的方式进行施工,确保水泥浆强度为M20,注浆压力控制在1到2Mpa之间。
(4)挂钢筋网并与土钉尾部焊牢。选用钢筋网进行土钉墙面施工,将其间距定为200毫米,在坡面上通过人工的方式进行绑扎钢筋的作业;搭接坡面钢筋的长度需在300毫米左右,随后顺着土钉长度方向在土钉端部两侧进行短段钢筋的焊接作业,同时在面层内将相近土钉端部通长加强筋进行连接及焊牢。
(5)安装泄水管。土钉墙基坑支护的泄水管制作应选用PVC管作为主要材料,泄水管长度必须在450毫米以上,并在管附近进行钻孔作业,孔数应控制在5到8个,随后在管外侧进行尼龙网布的包裹作业。泄水孔纵横距离定为2米,布置形状为梅花型并确保安装的牢固性。
(6)复喷表层混凝土至设计厚度。选用喷射混凝土方式进行土钉墙施工,其设计强度必须在C20左右,其厚度应控制在80毫米。第一,选用干拌方式,混合料搅拌时必须遵循相应的配合比进行施工,混凝土喷射施工过程中根据实际情况,可以将水泥重量为5%喷射砼速凝剂掺加到里面。在开挖土方、修坡施工后,及时完成土钉锚固作业,结束焊接钢筋网施工后,必须及时进行喷射混凝土作业。选用分层喷射的方式,由下到上的方式进行喷射混凝土作业。第一层喷射厚度应控制在4厘米到5厘米之间,确保其不出现掉浆现象后,进行第二层混凝土再喷射作业,直至其厚度符合设计规定。
3 建筑工程深基坑支护监测
基坑支护体系随着开挖深度的不断增加会出现侧向变位的情况,这种情况在施工中无法避免,基于此,基坑支护监测的关键就在于侧向变位的发展及控制。通常情况下,体系的破坏都具有相应的预兆性,在基坑支护监测中,施工单位必须做好现场指导工作,利用检测等方式及时分析、了解支护体系的受力情况。在监测中不仅要做好整个基坑支护检测工作,还要充分考虑其附近环境。这种监测方式可以掌握好基坑附近支护的稳定情况,在目前深基坑支护工程理论与相关技术支持下,施工实际情况往往存在或多或少的问题,根据本工程现场施工的具体情况,其地质环境较为复杂,可选用变形监测的方式进行基坑支护作业,这样可以保证施工的安全性。
选用的监测点布置范围为本工程基坑支护的边坡开挖影响范围,遵循其基坑深度2倍以上的深度进行分析,并对监测对象的特定范围进行充分考虑。本工程沉降位移监测点应在基坑边坡附近每个20米到25米的范围进行设置,这样可以为施工的顺利进行提供强有力的保障。并能对施工后路面损坏形成的原因进行分析。在施工前,施工单位必须认真调查路面的实际情况,主要选用拍照等形式对其现状进行分析,随后对形成相应文字进行归档。完成以上监测作业后,对于较大危害部位,可以选用石膏膜设点的方式进行施工,尽可能降低对工程施工的影响,并定期进行跟踪查看。分期分阶段将监测情况记录汇报有关各方。此类监测点的设置将在详细调查现状的基础综合确定,同时对在施工间出现的开裂,特别重视监测,将实际情况向相关单位及时上报。
4 结语
综上所述,在建筑工程深基坑支护施工中,土钉墙支护技术施工中具有较高的技术含量及较快的施工速度,这种施工技术在建筑工程基坑支护施工中得到了广泛地应用,可以对公路施工、交通基坑支护中的问题进行有效解决。在基坑支护技术应用中,必须详细检查施工现场的实际情况,提高技术水平,规范施工流程,做好监测工作,确保基坑支护技术符合施工要求,避免造成严重的经济损失。
参考文献
[1]胡浩,王路,胡小猛.高层建筑深基坑支护土钉墙技术应用研究[J].科技信息,2011年13期.
[2]闫君,王继勤,崔剑.土钉墙支护技术在青岛中惠商住楼深基坑中的应用[A].探矿工程(岩土钻掘工程)技术与可持续发展研讨会论文集[C],2003年.
[3]兰云才,虞利军,欧阳涛坚.软土地区深基坑支护工程实例[A].第十三届全国探矿工程(岩土钻掘工程)学术研讨会论文专辑[C],2005年.
[4]周玉印,从容.深基坑地下水控制技术创新与应用[A].新世纪 新机遇 新挑战――知识创新和高新技术产业发展(下册)[C],2001年.
[5]楼楠,胡玉祥.基于非固定站模式的大型深基坑变形监测[A].第二十一届海洋测绘综合性学术研讨会论文集[C],2009年.
关键词:建筑工程;深基坑支护;土钉墙
一、深基坑支护的概况
1、深基坑支护
对于深、浅基坑,目前工程界并没有统一的标准。1967年Terzaghi与Peck建议将6米以上深度的基坑定为深基坑,但实际施工中这种说法并没有得到广泛地认可。现阶段,我国深基坑施工中普遍将超过6米或7米的开挖深度看作是深基坑。基坑支护是指为确保地下室施工及附近环境的安全,选用支挡、加固等方式对基坑侧壁与附近环境加以保护。支护结构主要对侧向压力进行承受,主要包含水土压力、地面荷载、邻近建筑物基底压力及相邻场地施工荷载等引起的附加压力,其中水土压力为支护结构承受的主要压力。传统支护设计理论主要将基坑附近土体作为荷载,作为支护结构的“对立面”,随后按照围护墙位移的状况,进行支护设计。
2、土钉墙支护
作为一种新型支护方式,主动支护就是将基坑附近土体自支撑能力进行充分发挥及提升。目前主动支护主要分为水泥土墙支护、土钉墙支护、喷锚支护、冻结支护、拱形支护等方式,本文主要对基坑主动支护中的土钉墙支护进行分析与探究。
土钉墙是在新奥法的基础上基于物理加固土体的机制,在上个世纪70年代从德国、法国及美国发展出来的支护方式。上个世纪80年代早期在矿山边坡支护中我国采用了这种方式,随后土钉墙支护法在基坑支护得到了大量应用。土钉墙的组成成分为被加固土、放置于原位土体内的细长金属杆件与在坡面附着着的混凝土面板,最终实现重力式支护结构。将一定长度及密度的土钉设置在土体内,通过土钉和土一起完成作业,进而将原位土的强度、刚度进行有效提升。这种支护技术主要应用于12米以下的基坑开挖深度,如地下水位在坑底以上时,必须根据实际施工要求,进行有效排水与截水施工。
二、建筑工程深基坑支护技术的应用
1、工程概况
本工程由15层住宅楼含局部3层商铺(裙楼)组成,裙楼外侧边线范围内设1层连通式地下室。基坑长55.19m,宽36.10m,开挖深度约为4.9m。结合本工程的实际施工情况,选用土钉墙基坑支护的方式进行有效施工,应遵循一定顺序进行,如基坑西侧支护―南侧―东侧。
2、基本工艺
(1)钻设钉孔。选用土钉成孔的方式进行基坑支护作业,其成孔工具为洛阳钻机,将其孔径设置为80毫米,深度应确保其超过土钉长度100毫米,成孔倾角为15度。每钻进1米,并进行倾角地测量,避免偏向等情况的出现。
(2)土钉安装。与本工程基坑土钉墙支护设计需求相结合,进行土钉的制作,确保其长度在设计长度以上。每隔1.5米进行一组土钉的设置,选用搭焊连接的方式进行土钉连接,焊缝高度控制在6毫米,把土钉在成孔作业后设置在孔内。
(3)注浆。选用孔底注浆法进行土钉墙基坑支护注浆作业,其作业流程为在孔底插入注浆管,确保管口与孔底之间距离200毫米,注浆管应同时进行注浆与拔出作业,确保注浆管底能够在浆面以下,确保注浆过程中可以顺利从孔口流出,并将止浆阀设置在孔口,选用压力注浆的方式进行施工,确保水泥浆强度为M20,注浆压力控制在1到2Mpa之间。
(4)挂钢筋网并与土钉尾部焊牢。选用钢筋网进行土钉墙面施工,将其间距定为200毫米,在坡面上通过人工的方式进行绑扎钢筋的作业;搭接坡面钢筋的长度需在300毫米左右,随后顺着土钉长度方向在土钉端部两侧进行短段钢筋的焊接作业,同时在面层内将相近土钉端部通长加强筋进行连接及焊牢。
(5)安装泄水管。土钉墙基坑支护的泄水管制作应选用用PVC管作为主要材料,泄水管长度必须在450毫米以上,并在管附近进行钻孔作业,孔数应控制在5到8个,随后在管外侧进行尼龙网布的包裹作业。泄水孔纵横距离定为2米,布置形状为梅花型并确保安装的牢固性。
(6)复喷表层混凝土至设计厚度。选用喷射混凝土方式进行土钉墙施工,其设计强度必须在C20左右,其厚度应控制在80毫米。第一,选用干拌方式,混合料搅拌时必须遵循相应的配合比进行施工,混凝土喷射施工过程中根据实际情况,可以将水泥重量为5%喷射砼速凝剂掺加到里面。在开挖土方、修坡施工后,及时完成土钉锚固作业,结束焊接钢筋网施工后,必须及时进行喷射混凝土作业。选用分层喷射的方式,由下到上的方式进行喷射混凝土作业。第一层喷射厚度应控制在4厘米到5厘米之间,确保其不出现掉浆现象后,进行第二层混凝土再喷射作业,直至其厚度符合设计规定。
三、建筑工程深基坑支护监测
基坑支护体系随着开挖深度的不断增加会出现侧向变位的情况,这种情况在施工中无法避免,基于此,基坑支护监测的关键就在于侧向变位的发展及控制。通常情况下,体系的破坏都具有相应的预兆性,在基坑支护监测中,施工单位必须做好现场指导工作,利用检测等方式及时分析、了解支护体系的受力情况。在监测中不仅要做好整个基坑支护检测工作,还要充分考虑其附近环境。这种监测方式可以掌握好基坑附近支护的稳定情况,在目前深基坑支护工程理论与相关技术支持下,施工实际情况往往存在或多或少的问题,根据本工程现场施工的具体情况,其地质环境较为复杂,可选用变形监测的方式进行基坑支护作业,这样可以保证施工的安全性。
选用的监测点布置范围为本工程基坑支护的边坡开挖影响范围,遵循其基坑深度2倍以上的深度进行分析,并对监测对象的特定范围进行充分考虑。本工程沉降位移监测点应在基坑边坡附近每个20米到25米的范围进行设置,这样可以为施工的顺利进行提供强有力的保障。并能对施工后路面损坏形成的原因进行分析。在施工前,施工单位必须认真调查路面的实际情况,主要选用拍照等形式对其现状进行分析,随后形成相应文字进行归档。完成以上监测作业后,对于较大危害部位,可以选用石膏膜设点的方式进行施工,尽可能降低对工程施工的影响,并定期进行跟踪查看。分期分阶段将监测情况记录汇报有关各方。此类监测点的设置将在详细调查现状的基础综合确定,同时对在施工间出现的开裂,特别重视监测,将实际情况向相关单位及时上报。
四、结束语
综上所述,伴随国民经济的快速增长,我国建筑工程的规模也在不断扩大,深基坑支护工程作为建筑工程施工的重要组成部分,其施工技术水平的高低将直接影响到工程建设的整体质量。目前最常见的基坑支护技术主要包括两种:主动支护与被动支护,本文根据具体工程实例进行分析,主要选用土钉墙支护技术进行施工,在施工过程中必须做好基坑支护监测工作,了解其施工要求,规范施工工艺流程,只有这样才能有效提升整个建筑工程的质量。
参考文献
[1]胡浩;王路;胡小猛;高层建筑深基坑支护土钉墙技术应用研究[J];科技信息;2011年13期.
[2]闫君;王继勤;崔剑;土钉墙支护技术在青岛中惠商住楼深基坑中的应用[A];探矿工程(岩土钻掘工程)技术与可持续发展研讨会论文集[C];2013年.
[3]兰云才;虞利军;欧阳涛坚;软土地区深基坑支护工程实例[A];第十三届全国探矿工程(岩土钻掘工程)学术研讨会论文专辑[C];2015年.