欢迎访问爱发表,线上期刊服务咨询

无人机遥感技术论文8篇

时间:2022-06-23 19:50:25

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇无人机遥感技术论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

无人机遥感技术论文

篇1

(青海省地矿测绘院,西宁 810012)

(Qinghai Geology Mineral Surveying Institute,Xining 810012,China)

摘要: 无人机航空摄影以无人驾驶飞机作为空中作业平台,集合高空拍摄、遥感以及航空摄影于一体,对农村范围内的集体土地,包括属于农民集体所有的建设用地、农用地和未利用地进行航空摄影,获取准确的地形图数据,以保证农村集体土地登记确权发证工作有效进行。本文对无人机航空摄影技术在农村土地承包经营权确权登记发证工作进行简单介绍。

Abstract: Unmanned aerial vehicle (UAV) aerophotography takes the pilotless aircraft as the aerial platform, integrating high altitude photography, RS and aerophotography. It takes airphoto of the rural collective land including construction land, farmland and unused land to get accurate topographic map data in order to ensure the rural collective land registration verification and certification work. This article briefly introduces the application of UAV aerophotography in rural land contract for the managerial right verification registration and certification.

关键词 : 无人机航空摄影测量技术;土地测绘;农村土地承包经营权确权登记发证工作

Key words: UAV aerophotography;topographic mapping;verification;registration and certification of rural land contract for the managerial right

中图分类号:TP79 文献标识码:A

文章编号:1006-4311(2015)06-0233-02

农村土地承包经营权确权登记发证工作的主要任务是“查清承包地块的面积和空间位置,建立健全土地承包经营权登记簿,妥善解决承包地块面积不准、四至不清、空间位置不明确、登记簿不健全等问题,把承包地块、面积、合同、权属证书全面落实到户,依法赋予农民更加充分而有保障的土地承包经营权”,其中的关键步骤是以户为基本单位,对现有人口、土地面积、地块、承包现状进行清理核实。传统土地调查使用皮尺测绘法,使用皮尺丈量,画张草图就可以进行确权办证。基本能满足面积和四至的相对准确,但是操作过程不够规范,由于没有坐标系等测绘最基本的要素,所以这种方法采集的成果根本就没有空间位置。

然而,新型无人机遥感技术是利用先进的科学技术、通过遥感传感器技术、遥测遥控技术等应用技术来实现的,这具有快速性、时效性及清晰度优点。无人机能够充分提高调查和监测的水平和效率。遥感监测信息不仅客观性好、现势性强、时效性高、无人为干扰因素,而且信息的定性、定位和定量精度高,避免了虚报瞒报的情况,并且由于地块的方位、面积等在图上得到了清晰的标示,政府部门可以做到“图账对应”,从而准确的掌握了地籍信息。

无人机航空摄影测量技术在农村土地承包经营权确权登记发证工作中起到了很大的作用,无人机航空摄影测量系统作为一项空间数据获取的重要手段,具有快速高效、机动灵活、精细准确、作业成本低、适用范围广、影像实时传输、高危地区探测等重要特点,在小区域和常规飞行困难地区快速获取高分辨率影像方面具有明显优势。可以利用无人机航空摄影测量系统获取高分辨率航空影像,制作出高精度的正射影像图。

确权登记工作的重点环节在于农户土地的外业测量。如果利用手持gps以传统方式进行外业实测。对于工期和质量都达不到要求,而青海又是世界上唯一一个高海拔地区,经济发展比较落后,有着世界上独一无二的地形地貌特征,也有着世界上独一无二的天气及气候变化。青藏高原号称“世界屋脊”,是一个大面积强烈的年轻隆起区,平均海拔在4500m以上,是我国现代冰川和多年冻土最发育的地区,在海拔4500m以上,为大片连续的多年冻土地区,大都是微受切剖的开阔平坦地形,地表呈现单调。青藏高原海拔高、地形复杂,被誉为无人机的禁区。然而,我省新近完成的一项科研成果打破了禁区传说,让无人机自由翱翔在高原的天空。我省无人机科研项目开始于2012年5月,经过短短一年的时间,青海省地矿测绘院科研人员成功探索出了一套适合在高海拔复杂地形、高寒缺氧等特殊环境下低空航空摄影测量的技术流程和操作方法。填补了我省在高原矿区无人机自主飞行获取影像数据和应用无人机航测技术测绘1:2000大比例尺地形图的空白,研究成果达到国际先进水平。

由于青海地区有一些地方会有户均耕地面积小的情况,加之手持GPS由于精度有限,实测工作中发现测量结果误差较大,造成群众对测量结果不认可等的问题,使青海地区部分试点县试点乡镇的土地确权工作一度被动。为顺利完成试点任务,各试点县农牧局及项目承担单位县经管站积极与上级业务主管部门和兄弟州县交流探讨,立即转变旧思路、精心研究新方法,确定将无人机航测遥感技术应用于土地确权试点项目外业测量,经与多个专业测绘单位联系商谈,最终与省地矿测绘院达成合作协议,并在试点乡镇建立了航测地面临时指挥部。经过各试点的航测,使无人机航测遥感正摄影技术在我省农村土地承包工作中得到了广泛的应用,相关技术应用水平也走在了全省前列。该技术不仅用更高精度的GPS对测量地区进行了测绘,还对地理地貌进行了全面航拍,精确稳妥地完成了农村土地实际面积、空间位置等重要外业测绘数据的采集,为高质量完成土地确权登记工作打下了良好基础,还能为今后该地区规划提供科学精确的图文数据。

能够优质按时的做好这一工作,完成农村集体土地登记确权发证任务。是青海省面临的一个重要任务,如今,青海省地矿测绘院无人机航空摄影测量技术在农村土地承包经营权确权登记发证工作中起到了非常重要的作用,为青海省全面开展农村土地承包经营权确权登记发证工作打下了一个坚实的基础。

在此以青海省湟中县农村土地承包经营权确权登记发证试点航空摄影测量工作来说,农村土地承包经营权确权登记发证工作主要利用1:2000正射影像底图,套合第二次土地调查后形成的最新土地利用现状图数据(县、乡镇行政界线以及村权属界线,图斑线、地类),按1:2000比例尺出图制作成权属调查工作底图,在此基础上由外野进行实地地块界线手工绘制、权利人,地块号,地块名称等的调查,然后经内业采用CASS数字测图系统进行上图、编辑、编制成农村集体土地所有权基础数据,利用KQ系统软件进行权属资料建库、分类面积统计和汇总等后续工作。比起传统的GPS实地测量来看,工作效率有了一个质的飞跃,传统测量工期长效率低,而无人机航测运用在土地承包经营权确权登记发证中,大大提高了工作效率,也节约了一定的成本。无人飞机体积小巧,机动灵活,不需专用跑道起降,受天气和空域管制的影响很小,能够在极短的时间内快速获取影像。这对于我们青海这个欠发达地区来说,是一个很好的方案。

参考文献:

[1]陈江龙,曲福田.土地登记与土地可持续利用-以农村土地为例[期刊论文]-中国人口资源与环境,2003(05).

[2]陈俊艳,邝山,王振起.我国农村土地承包经营权流转存在的问题及对策,2010(1).

[3]缪宁,罗时贵.农村土地承包经营权权属性质之探讨[期刊论文]-农业考古,2006(6).

[4]原国家土地管理局.确定土地所有权和使用权若干规定[S].1995.

[5]张乐,等.浅谈无人机的发展[J].科技信息,2008,18.

篇2

关键词:无人机航摄技术;土地综合整治;动态监测

1 引言

土地综合整治是国土资源工作的重要组成部分,是确保我国粮食安全、提高粮食综合生产能力的有力支撑,是一项涉及面广、实施时间长、管理程序复杂的系统工程,对保证国民经济和社会可持续发展,实现耕地总量动态平衡,加速农业、农村现代化有着不可替代的作用。现阶段,我国土地综合整治事业正处于管理模式调整和管理水平提高的关键时期。如何建立一套科学的监管体系,确保土地综合整治专项资金发挥预期绩效,全面完成国家补充耕地计划和项目建设任务,让项目长期发挥效益,促进社会经济可持续发展,已成为我国当前土地开发整理工作的一项首要任务。

2 无人机航摄系统简介

2.1 无人机航摄系统组成

无人机航摄系统主要由飞行控制系统、地面站系统、航拍摄像系统和影像处理软件四部分组成。

2.2 无人机航摄系统的特点

(1)低空飞行,空域申请便利。飞行系统升空准备时间短,操作简单,运输便利。

(2)系统可快速获取超高分辨率数字影像和定位数据,可针对特殊监测目标搭载全色波段、单波段、多波段等传感器,并可进行多角度摄影。

(3)系统为多种小型遥感传感器提供了良好的搭载平台,如探地雷达、热成像仪、气象传感器、合成孔径雷达等,易于拓展监测功能,以满足多种快速监测所需。

(4)系统的置建费用较低,运营成本、维护成本和操作手的成本远远低于载人机系统。

3 试验方案

3.1 试验区概况

本文选择宁乡县大成桥乡土地整理项目作为试验。该项目位于宁乡县大成桥乡东北角区域,属丘陵地区。土地综合整治面积4km?,分割成四小块,如图1所示。

3.2 试验目的

采取航空摄影方式获取不同时间阶段的地面影像资料和数字线划图,通过数据变化分析对比对土地整治项目全过程实施动态监控。

3.3 试验方案流程

本次实验方案主要分为“事前、事中和事后”三个阶段,使其达到“事前预控、事中监控和事后验控”的效果。试验方案流程如图3所示。

由于实验区域范围不发生变化,因此在进行航线设计时只做一套方案,采取对项目区进行3次航飞,分别为规划设计前航飞一次、施工过程中航飞一次、竣工后航飞一次。如图2所示:

4 动态监测

4.1 事前预控

主要是获取项目区内DOM、DLG产品,向设计部分提供设计依据。DLG数据叠加DOM数据可为设计人员提供更为直观的设计效果,更能合理地进行道路、水渠及其附属工程的设计,而DEM成果可作为土方量计算的依据。

在方便设计部分的同时也为土地监管部门留下了历史依据,为项目实施过程中是否存在夸大土方量,田间道路重复建设,桥梁维修虚报为桥梁新建,虚列拆迁补偿费、青苗补偿费及其他变更工程,整理田块面积错报,整理田块数量漏报,整理结果、质量瞒报等现象起到了防微杜渐、提前预防的效果。

4.2 事中监控

在项目施工过程中,工程量大,土地监管人员无法直观地了解到项目区的施工情况。而事中阶段能根据土地监管部门的需要,采用无人机定期对项目区进行航飞,可飞一次或者多次,主要是获取生产项目区的DOM数据,能直观地反映出项目区施工进度及施工质量,并能及时发现施工单位是否按照设计图纸进行施工,是否存在工程质量问题。对存在质量问题的工程起到了实时监控的作用。如图4所示:左边影像为项目施工前,右边影像为项目施工中。

4.3 事后验控

项目验收是项目完成的最后一个关键环节。事后阶段无人机航飞主要是为生产项目区的竣工验收图纸、竣工后DOM和DEM 数据。通过竣工后影像与施工前影像获取对比,可直观地检查出其工程是否按照设计图纸进行施工,是否存在偷工减料、瞒报工程量等现象。如图5所示。

5 结语与展望

在大力发展RS技术运用于土地整理动态监测的时代,无人机航摄技术的产生无疑又是一个新的转折点。相对于传统的RS技术,其高效、快捷、成本低的特性,促使土地监管部门加强了土地监管力度。无人机航摄技术能够全面提高规划设计和预算编制的科学性,为土地监管打下了坚实的基础,在今后的土地整理动态监测项目中对提高土地整理项目竣工验收质量和进一步规范土地整理权属管理工作等方面具有广阔的应用前景。

参考文献:

[1] 金伟,葛宏立,杜华强,徐小军. 无人机遥感发展与应用概况[J]. 遥感信息,2009(01)

[2] 陈亚岭,付治河,张景湘. 3S技术在土地动态监测中的应用[J]. 光盘技术,2007(05)

[3] 滕晓波,陈春花. 3S技术在土地利用动态监测中的应用[J]. 全球定位系统,2010(03)

[4] 于洪苹,程朋根,夏友青. 土地动态监测中3S技术的应用[J]. 安徽农业科学,2011(03)

[5] 廖克,成夕芳,吴健生,陈文惠. 高分辨率卫星遥感影像在土地利用变化动态监测中的应用[J]. 测绘科学,2006(06)

[6] 楼立明,刘卫东,冯秀丽. 基于高分辨率遥感影像的土地利用变化监测[J]. 遥感技术与应用,2004(01)

[7] 申海建,郭荣中,黄小波,滕晓波. 微型无人机(MUAV)航空摄影测量技术在土地整理项目规划设计中的应用[A]. 2007年中国土地学会年会论文集[C]. 2007

篇3

关键词:无人机航摄系统;煤田普查;1:2000地形图测绘

中途分类号:P217参考文献:A

一、引言

煤田普查即发现煤田和概略评价煤炭资源的地质工作,一般是在区域地质调查或煤田预测的基础上进行的煤田地质工作。近年来,随着国家能源战略的加速推进,煤田地质工程越来越呈现出范围广、地形复杂、工期紧的特点,对测绘也提出了更高的要求。

传统的人工测量模式存在作业周期长、人力投入大、成本高等问题,甚至会出现困难地区无法施测,无法满足高难度、快节奏测量生产的需要。因此,借助新技术、新工艺来满足煤田普查项目任务重、时间短、质量高的需要显得极为迫切。

现有的卫星遥感技术虽然能够获取大区域的空间地理信息,但受回归周期、轨道高度、气象等因素的影响,遥感数据分辨率和时相难以保证。常规航空摄影技术因受空域协调、起降场地选取、天气等因素的影响较大,缺乏机动快速能力,同时成本较高,灵活及精细度不足,无法及时有效地满足小范围高分辨率数据快速获取。而作为传统航空摄影测量补充手段的低空无人机摄影技术,凭借其自身机动灵活、快速高效、困难地区探测的航片获取技术,以及精准的后处理技术,大大降低了作业成本和生产周期[2-3],在“短、平、快”的测绘项目中具有明显优势。

论文依托甘肃煤田地质局委托项目,甘肃煤田地质局综合普查队于2012年对甘肃省景泰县某煤矿测绘1:2000数字化地形图,测区面积约30km2。

二、无人机系统简介

低空无人(unmanned aerial vehicle,UAV)机航摄系统[4]是一种集无人驾驶飞行器、遥感及GPS导航定位等技术于一体建立起来的高机动性、低成本和小型化、专用化的遥感系统。

无人机航摄系统主要包括无人机飞行平台、飞行控制系统和非量测型面阵CCD数码相机,以及地面站、远程无线装置、地面数据处理系统等辅助设施。

无人机飞行平台

无人机飞行平台主要包含固定翼无人机、旋翼轻型无人机和无人飞艇。由于固定翼无人机具有低成本,可实现低速平稳飞行等优点,本研究采用固定翼无人机平台,该平台主要参数见表1。

表1 无人机飞行平台主要参数

飞行控制系统

飞行控制系统用行控制及任务设备管理,自由驾驶仪、姿态陀螺、GPS定位装置、无线遥控系统组成,可实现飞行姿态、航高、速度、航向的控制及各个参数的传输,以便地面人员实时掌控飞行情况。本研究中使用LT-150型无人机飞控导航系统。

摄影传感器

本研究搭载传感器为Cannon 5D MarkⅡ,检校结果(像幅5616*3744像素,像素大小:6.41 um),主点X0 ,相机检校参数见表2。

表2 相机检校参数

地面控制系统

地面控制系统的功能包括:航摄前期主要有测区查询、航线设计及参数设置;飞行阶段实时显示飞行参数,辅助飞控人员进行飞行;后期统计输出导航文件、影像飞行质量快速检查等。

三、低空无人机航摄系统在煤田普查1:2000地形图测绘中的应用

该煤田普查区地势由西南向东北逐渐降低,海拔高程1620~1850m,相对高差230m;测区西北部地面坡度在6°~25°,地形类别为山地,其他大部分地面坡度在2°以下,地形类别为平地,根据测区自然地理、气候和交通等情况,测区作业困难级别划为Ⅱ级。因按设计要求,需40个工作日内提供勘查区30km2的1:2000地形图,为保证工期与质量,决定采用无人机航摄技术,技术流程如图2所示。

1.无人机航摄数据获取

(1)测区相关资料收集

在飞行设计之前对测区概况进行了解收集相关资料,如测区GPS控制点坐标、交通路线图等。

(2)飞行设计

根据工程项目的成图要求及测区边界情况,本次飞行共设计2架次,航高750米,第一架次11条航带,共911张航片;第二架次9条航带,共1037张航片;测区航线总长178km,航片总数1948张,余片为287张。航线敷设情况如下图3所示。

图2.无人机航测技术流程

图3 航线敷设情况

(3)数据采集

将规划好的航线载入飞行控制系统,地面控制子系统按照规划航线控制无人机飞行,飞控系统则按预设的航线和拍摄方式控制相机进行拍摄。

本次飞行共获取影像1948张,采用人工选取同名点的方法计算相邻像片的重叠度和旋偏角,利用飞控数据和导航数据来检查航线弯曲度、同一航线的航高差等参数,像片有效范围在航向上超出成图范围的基线均在两条以上,摄区旁向覆盖超出摄区范围边界30%;航向重叠:一般在65%左右,最小为56%,最大为72%;旁向重叠:一般在30%左右,最小为25%,最大为43%;旋偏角:旋偏一般小于8°;航线弯曲度:所有的弯曲度均小于3%;航高保持:同一条航线上相邻像片的航高差均小于20米。同一航线上最大最小航高之差一般小于30米,符合规范要求。

2.像控布设及实施

根据该煤田勘查区特点,全区采用平高区域网布点方案。全测区按飞行架次与地形条件划分为四个网区。像片控制点采用了航线网布设,航向相邻像控点基线跨度为5条基线,最长为7条基线,旁向跨度为两条基线。全测区各区域网内像控点布设如下图4所示。

图4区域网布设图

3.影像处理

影像处理主要包括畸变差纠正、空中三角测量、3D产品制作及精度检查等内容。

(1)影像畸变差纠正

由于低空无人机的载重及体积原因,搭载传感器为非量测型相机,感光单元的非正方形因子和非正交性,以及物镜组的径向和切向畸变差的存在使得获取的数码影像存在各种畸变差,不能直接用于测绘生产[5]。本次航飞前在专业检校场对相机进行精检校,获取相机畸变差系数,借助PixelGrid畸变纠正模块完成数据预处理。

(2)空中三角测量

本次空中三角测量加密使用适普自动空中三角测量软件VirtuoZo AAT,该软件除半自动量测控制点之外,其他所有作业(包括内定向、选取加密点、加密点转点、相对定向、模型连接和生成整个测区像点网)都可以自动完成。由于PATB光束法区域网平差程序具有高性能的粗差检测功能和高精度的平差计算功能,因为本次航飞应用无人机进行低空摄影飞行,根据无人机的飞行质量情况,测区内所有加密点需要人工选取,内业工作量较大。

测区西北部地面坡度在6°~25°,地形类别为山地,其他大部分地面坡度在2°以下,地形类别为平地。因此确定1:2000数字线划图等高距为1米。

区域网划分:平高像控点采用区域网布点,全测区按飞行架次与地形条件划分为四个网区。高程像控点采用了航线网布设,相邻网区间使用多个公共像控点,减少了测区接边误差。

采用VirtuoZo AAT自动空中三角测量加密软件与PATB平差软件进行反复加密与平差,直至成果满足精度要求。详细空中三角测量作业方法如下:

建立测区:设置测区基本参数、建立相机文件、建立测区影像列表;

自动内定向:建立框标模板,检查自动内定向结果;

确定航线间的偏移量,选取连接点、人工加密点;

调用PATB平差,挑出粗差点进行修测;

导入控制点文件,量测控制点;

调用PATB平差,编辑粗差较大的控制点、连接点,直至成果合格;

导出空中三角测量成果。

加密过程按软件的功能遵循图5流程进行。

图5空中三角测量加密作业流程

空中三角测量是数据处理的核心,主要作业方法为根据POS数据自动建立航带内和航带间的拓扑关系网进行全自动连接点提取,通过大量平差点和快速平差算法剔除粗差点,利用控制点做空中三角测量计算,获取精确的外方位元素,生成加密点坐标。本项目空中三角测量加密成果精度见表3.

表3光束法整体平差精度报告

(3)DLG、DOM、DEM制作

在VZ站下导入空三成果恢复立体模型,生成核线影像文件,进行影像匹配、编辑,线划图采集。根据外业调绘片在CASS环境下进行属性编辑、图廓整饰。利用采集的三维DLG数据内插生成DEM数据,从而进行DOM制作。将正射影像图与线画图叠加分幅整饰最终完成1:2000地形图制作。如图6、图7所示。

图6测区局部DEM效果图图7 测区局部DLG和DOM叠加效果图

(4)DLG成图精度分析

精度评定包含地理精度和数学精度评定两方面。地理精度评定采取外业巡视的方法对图面地理要素的正确性及数据完整性、综合取舍的合理性、接边质量等进行检查;数学精度评定包括平面位置评定和高程评定,主要采用RTK实测地物点,并对比图上坐标,计算较差,利用点位中误差公式计算出各个检查点的平面位置中误差和高程中误差。

在保证精度评定基础上,全区选取19幅1:2000地形图进行检查。本次项目采取地理精度、数学精度同步检查方式,在对地物特征点进行坐标数据采集的同时,根据现场地物实际情况检查图面信息,并保证19幅均匀抽取10检测点以上。本次野外对19幅1:2000地形图进行外业检查。经检查,精度均优于规范要求。检查情况如下表4:

表 4 地形图精度检查情况

分析表4数据可知,无人机航摄技术测绘1:2000地形图的高程、平面中误差均满足《1:500 1:1000 1:2000地形图航空摄影测量外业规范》(GBT 7931-2008)要求,平面精度和高程精度指标大部分小于限差的1/3,符合设计与甲方要求;通过与实地地物特征现场对比、量测可知,图面内容表达清晰,地物地貌取舍合理,均符合《国家基本比例尺地图图式第1部分:1:5001:10001:2000地形图图式》(GB/T 20257.1-2007 )规范要求。依据《测绘成果质量检查与验收》核定该成果质量为“优”。

四、结束语

低空无人机具有轻便灵活、反应迅速、成本低廉等诸多优点,本文将该技术应用于煤田普查1:2000地形图测绘中,该技术在“短、平、快”的小范围地形测量中优势明显,可以高效、快速、保质地完成测绘工作任务,极大的节省了人力,缩短了测量周期。

然而,必须明白低空无人机航摄系统自身仍存在诸多缺陷,如采用小幅面的非量测型相机,单幅影像覆盖面积小,正射影像图接缝工作量大;像对模型多,增加了模型切换和模型接边工作量;飞行姿态不稳定,受天气影响大(特别是风力);空中三角测量工作量大,区域网接边误差较大,影响地形图精度。

总而言之,低空无人机虽然存在诸多缺陷,但是在作业工程中选择正确的方式方法,认真扎实的做好每一步工作,可以有效的降低误差,提高作业精度。在“短、平、快”小范围的煤田普查项目中,低空无人机明显具有其突出的优势。

参考文献:

[1] 吕立蕾 低空无人机航摄系统在长距离输油(气)管道1:2000带状地形图测绘中的应用研究[J],测绘通报:中国地图出版社,3012(4):42-45.

[2] 张永军 无人驾驶飞艇低空遥感影像的几何处理[J],武汉大学学报:信息科学版,2009,34(3):284-288.

[3] 鲁恒,李永树,李何超,等 无人机影像数字处理及在地震灾区重建中的应用[J]。西南交通大学学报,2010,45(45):12-15.

篇4

甚至造成人员伤亡;水上危险品运输事故检测,是危险品事故应急处理和应急预案制定的重要的环节,

采用先进的检测技术可以迅速获取运输危险物质种类和理化属性,为应急救援提供决策信息,减少救援

人员的伤害,防止灾害进一步扩大。 本论文研究并设计由无人遥控设备搭载无线摄像系统和针筒式气

体采集器,进入危化品事故现场,该装置能通过遥控系统,配合视频图像进行选择性的采样,从而避免

了采样人员直接暴露在危化品事故环境的情况,减少了人员伤亡的风险。

关键词: 无人控制机 气体采样 采集器 设计

引言

目前,在处理危化品船舶事故中对事故现场各气体成分进行分析处理的主要方法是,消防人员携带气体采样仪进入现场采集气体样本,再送到检测中心进行检测。地面控制中心接到报警后,派消防人员前往失事船,消防人员要穿上厚重的防化服,携带笨重的气体采集仪,行动十分缓慢。人员派出至到达失事船要花费大量的时间,导致错过最佳救援时机。同时,登船的消防人员是极其危险的,生命安全没有保障。现在的气体采集器以手持式为主,还没有将气体采集器搭载在无人机上的应用,来应对危险的事故现场,而控制飞机的无线遥感技术,和控制采集器的单片机技术都已十分成熟,利用吊舱将各装置搭载在飞机上,通过对无人飞机的控制进入发生事故的现场能够提高救援效率和降低损失。具有很好的可行性和应用前景。

气体采样装置的设计

本文针对目前危化品现场的气体采集过程中存在的问题,拟设计遥控式无人控制飞机进行气体采样,其设计思路为:遥控装置进入危化品事故现场,工作人员根据传来的视频信息进行遥控操作,待遥控装置到达指定区域时,工作人员发出指令给采集吊舱释放装置释放采集吊舱,然后启动卷扬机放下吊线使得针筒式气体采集器到达采样点,再控制针筒式气体采集器采集气体后卷扬机收起吊线,遥控装置返回即可。

1、技术方案

遥控式无人控制飞机气体采样装置包括遥控装置和遥控手柄,遥控装置上还安装有摄像头及其舵机、单片机和机械结构;摄像头及其舵机与单片机连接;单片机与遥控装置的通讯模块连接用于接收遥控手柄的指令以及发送摄像头采集的视频信息;单片机通过继电器控制机械结构。

图1为气体采样示意图。摄像头固定安装在飞机前部,采集吊舱安装在飞机后部的固定舱内,通过通讯模块和控制模块对摄像头和采集器进行控制。

所述的机械结构包括采集吊舱、针筒式气体采集器、卷扬机和采集吊舱释放装置;针筒式气体采集器设置在采集吊舱内,针筒式气体采集器和采集吊舱的上端与卷扬机的吊线连接;针筒式气体采集器、卷扬机和采集吊舱释放装置由所述的单片机分别通过继电器控制。

2、气体采样控制流程

发现情况后手动控制无线信号发射机,手动控制系统包括手柄控制和钮柄控制,无线接收机通过gprs、cdma,zigbig等接收信号后,传给嵌入式计算机,再由计算机分别控制电磁开关,卷扬机的收线与放线,采集装置的气体采集,摄像头的图像采集。图2为无人控制飞机的气体采样控制流程图。

3、采集器的设计

采集器由电磁线圈,卡口,活塞,弹簧,有推杆的密封套筒组成。推杆的一端和活塞连接,另一端固定在套筒内测。在使用之前,弹簧处于压缩状态,活塞由卡口卡住,通过控制电磁线圈控制卡口。当卡口被电磁线圈吸引,弹簧释放,推动活塞在套筒内滑动,筒内压力迅速降低,空气就会进入套筒内。收集完之后,推动推杆,即可取出样品。图3为针筒式采集器工作原理图。

危险品检测直升机工作过程

为实时了解被救援船上的情况,在遥控直升飞机搭载无线摄像系统。无线摄像系统包括摄像头、信号发射器、地面接收机。在执行任务中,失事船上的具体情况能立即通过摄像头传回救援船只的电脑上看到。由于直升飞机可以具有360靶娜轿皇咏牵馐钟欣诹私獯系氖导首纯觥?

为了解被救援船只上各项化学指标,包括温度,氧气含量,爆炸浓度等数据。在飞机上搭载采集器,遥控飞机进入事故现场,利用摄像头提供的图像信息进行定位,释放采集吊舱,进行气体采集,然后返回救援海事船上,进行分析处理后,就能制定具体的救援方案。

本方案的优点是能高空立体监测事故现场,减小救援人员的危险性,设备更加简便,有助于救援的高效迅速,水上路上均可进行操作,将物联网、无线传感技术、通讯技术等技术结合起来。

气体采样的工作流程:完整的气体采样工作流程如图4所示。在遥控系统控制嵌入式单片机控制指令下,完成以下指令:打开吊舱触发电磁开关、卷扬机放线、放线、停止放线、打开采样开关、采样、收线、固定吊舱、降落,最后带回检测中心取出吊舱,推动活塞,打出样品气体,进行化验,分析气体成分,制定应急计划。

结束语

篇5

关键词:物联网;环境监测;环保产业

中图分类号:TP301 文献标识码:A 文章编号:1009-3044(2013)28-6473-02

物联网被认为是继互联网之后的又一次技术革命,物联网通过智能感知、识别技术与普适计算、泛在网络的融合应用,被称为继计算机、互联网之后世界信息产业发展的第三次浪潮,是新一代信息技术的重要组成部分。

信息产业和环保产业属于国家未来重点扶持的新兴产业之一。而“环保物联网”这一将物联网技术和环境保护工作的结合可以助力环保产业的发展,而环保产业对信息技术的需求又可促进物联网技术的进步。[1]因此,物联网在环保领域的应用是有助于我国环境问题的解决和信息技术的发展的新兴课题。

1 我国环境保护的信息化发展历程

我国的大规模信息化建设始于上世纪80年代中期,而环保产业的信息化始于“九五”时期。至今的十余年间,环境信息化建设经过了三个阶段:准备期(90年代初至90年代中后期),基础期(1996-2001)和成长期(2002至今)。准备期的工作内容主要是管理信息(MIS)系统的建设和基础数据库的开发。基础期的核心则是在准备期的基础上,进行环境信息网络建设。该过程伴随着环保部门的办公信息化,以及环保理念的信息化宣传。之后,随着国家环保局“金环工程”的启动,以及一些类支持性法规政策(如《环境信息化“九五”规划和2010年远景目标》、《环境信息管理办法》、《环境信息标准化手册等》)的出台,我国的环保信息化正式迈入了快速成长的阶段。

2009年,总理提出要加快推进物联网发展、建立中国感知中心,物联网技术的重要性进一步凸显,并成为国家重点发展的战略性新兴产业的重要组成部分。在这一背景下,“环保物联网”的概念于2010年提出并开始流行起来。目前在环保领域,物联网应用的建设已成为培育和发展战略性新型环保行业、推动环境管理升级的重要手段。

2 环境数据收集网络基础上的环境监测

作为环保物联网最核心的工作之一,针对环境监测的数据收集主要包含环境质量监测和污染源监测两个方面。

2.1环境质量监测数据的采集

传统的环境监测是利用若干点源的监测来反映监测区域的总体环境情况,这种方法往往较为局限和片面。因而随着环境监测特别是宏观的需求的提高,一系列全局性的信息技术逐渐进入监测领域,并发挥重要作用。最典型的是“3S”技术(又称空间地球技术)。“3S”是由遥感(RS),全球定位系统(GPS),地理信息系统(GIS),整合成的一个综合性信息收集平台。[2]监测过程中,首先由RS技术(通过卫星或机载热红外设备)获得监控区域的光谱图像资料。由于大气、水体等污染常常伴随着图像化的信息,经过同往期的图像比较可以发现环境变化明显的区域,针对这些区域再进行GPS定位,进行重点监测,独立进行数据的收集。GIS技术则是一个针对数据进行综合管理和分析的平台。三种技术的联合运用,可实现大范围的环境监测。

“3S”技术在环境监测中具有监测范围广、速度快、成本低、可实现长期动态监控等优点,因而是目前大范围环境质量监控,尤其是大气环境监控、内陆水体环境监控、海洋环境监控以及城市生态环境监控等领域的主流技术。目前“3S”技术已有航空、航天以及无人机等遥感平台构成立体化,全方位的环境信息收集网络。[3]

2.2 污染源在线监测

全局性的环境监控以外,还需对排污企业为代表的重点污染源进行监控以实现对排污企业实现实时的监管。在这方面,物联网的应用主要体现在在线监测系统上。在线监测是近年来污染源监测的发展趋势,其含义是通过装在处理企业和排污设备上的各类监测仪表收集污染物数据,再经由信息网络将监控数据传至环境监测部门,实现监控和管理的过程。在线监控的意义在于监控数据更加真实可靠,同时可避免数据的滞后性。

典型的污染源在线监控系统包括数据收集系统和信息综合系统。前者安置于污染治理设施和排污设备上。主体是各种常规指标和污染物指标的检测仪器。收集的数据通常由运行记录仪和设备采集传输仪进行加密、储存、发送等。信息综合系统主要由计算机终端设备、监控中心系统等构成,对收集到的数据进行分类、分析、并入库储存以完成环境数据管理的过程。监控中心系统通常是由信息管理软件和数据库构成。[4]目前我国已在113个重点城市建立监控中心,实现对三千多个排污点实行在线监控,随着在物联网技术的促进下,监测网络已有相当规模。

3 物联网技术助力环保产业发展

国务院日前印发的《关于加快发展节能环保产业的意见》提出未来三大目标:产业技术水平显著提升、国产设备和产品基本满足市场需求、辐射带动作用得到充分发挥。在环保产业快速发展的这一时期下,物联网也在该领域起到了重要的作用。下文将在环保行业数据库和环保企业运营方面阐释物联网技术的应用。

3.1环保行业数据库的建设与管理

在全球信息化特别是大数据时代即将到来的背景下,数据库的建设和完善对一个产业的发展至关重要。作为基础数据平台,数据库是环保物联网中重要的一环,环保产业数据库主要包括环境保护资讯数据库、法律法规数据库、统计数据库、产品数据库、技术数据库、项目数据库、企业数据库和专家数据库、M&A数据库等。环保企业和研究机构等可以通过这些数据库进行查询、运算、分析,以得到环境状况、政策法规、行业发展现状、市场潜力、竞争主体情况、主流与前沿技术等信息,为产业链上的环境制造业和环境服务业的行业咨询与研究,企业相关决策制定等提供依据。[5]

3.2 环保企业运营过程的控制和管理

在近年来迅猛发展的领域,如物流、电子商务等,已在相当程度上通过基于物联网的信息管理技术实现了智能运营。以企业资源计划(ERP)系统为代表的综合管理系统在企业运营中可将物资资源管理(物流)、人力资源管理(人流)、财务资源管理(财流)、信息资源管理(信息流)集成一体,实现对运营流程的科学管理和优化,以达到资源的最高效配置。而现阶段,我国环保产业对这类系统的应用还不够充分和彻底,尚处于起步阶段,尤其是中小型环保企业。

目前在环保产业中,通过“智能管理平台”的研究主要集中在生活垃圾的收转运系统的优化管理、地沟油及餐厨垃圾收运体系监控和管理、进口废料的监管、资源的回收循环的管理等方面。

4 结束语

同为国家“十二五”期间重点发展产业,信息产业和环保产业将在国民经济中占据更大的比重,而信息技术在环保产业中的实践,则对环境保护工作的现代化有重大意义。通过对物联网在环保领域应用的梳理,可以发现物联网技术在环境保护管理以及环保产业的发展中都具有广泛的应用。以“3S”系统和污染源在线监测系统为核心的数据收集网络可为环境保护工作提供第一手数据,可实现污染源的监管,污染物总量的控制,以及对环境突发状况的及时应对。另一方面,物联网作为一个综合信息平台,也为环保产业,尤其是企业和研究机构提供了信息管理和运营管理的有效工具,为环保产业的发展起到了助力作用。

目前,我国环境保护工作的信息化在一些领域(如遥感技术、信息传输设备)等方面已取得一定成果。但总体来看,目前还处在建设和发展的阶段,尚存在不够完善的地方,还有较大的提高空间,如环保企业的智能化管理运营等。

未来,我国的环保信息化将顺应国际前沿趋势向智能环保的方向发展。这意味着环保物联网将在在智能层、网络层和应用层达到更透彻的感知、更全面的互连互通和更深入的智能化。总之,将以物联网为代表的信息技术将更深更广地融入环保领域的方方面面,将是信息技术工作者和环境工作者共同努力的目标。

参考文献:

[1] 陈艺虹,于立强.信息化与环境保护[C].优秀学术论文选,2003.

[2] 刘桂芳,卢鹤立.从数字地球系统看3S技术[J].安阳师范学院学报,2005(2).

[3] 朱京海,徐光.无人机遥感系统在环境保护领域中的应用研究[J].环境保护与循环经济,2011(9).

篇6

摘要……………………………………………………………………………………Ⅰ

英文摘要………………………………………………………………………………Ⅱ

1“数字农业”的内涵…………………………………………………………1

2国外“数字农业”关键技术发展与应用……………………………………………1

2.1美国………………………………………………………………………………………1

2.2英国………………………………………………………………………………………2

2.3德国………………………………………………………………………………………2

3我国发展“数字农业”的紧迫性…………………………………………………2

4“数字农业”的发展趋势………………………………………………………………3

4.1农业生产全流程智能化将逐步成为现…………………………………………………3

4.2农产品流通电商化发展将更加迅猛……………………………………………………3

4.3农业多元化公共服务将更加完善………………………………………………………4

5 “数字农业”的实践策略……………………………………………………………4

5.1实现农业农村业务数字化和可视化……………………………………………………4

5.2推动数字农业技术创新…………………………………………………………………5

5.3提高农业农村经营管理数字化水平…………………………………………………5

结语…………………………………………………………………………………………6

致谢………………………………………………………………………………………7

参考文献……………………………………………………………………………………8

摘 要

数字农业是将信息作为农业生产要素,用现代信息技术对农业对象、环境和全过程进行可视化表达、数字化设计、信息化管理的现代农业。数字农业使信息技术与农业各个环节实现有效融合,对改造传统农业、转变农业生产方式具有重要意义。本文总结了国外“数字农业”关键技术发展与应用,结合我国发展数字农业的紧迫性与当前数字农业的发展趋势,对我国“数字农业”的发展提出了几条实践策略。

关键词:数字农业;农业信息化;发展策略

Abstract

Content:Digital agriculture is a kind of modern agriculture that takes information as agricultural production elements, uses modern information technology to express agricultural objects, environment and the whole process visually, digital design and information management. Digital agriculture makes the information technology and all aspects of agriculture achieve effective integration, which is of great significance to the transformation of traditional agriculture and the transformation of agricultural production mode. This paper summarizes the development and application of the key technologies of "digital agriculture" in foreign countries. Combined with the urgency of developing digital agriculture in China and the current development trend of digital agriculture, several practical strategies are put forward for the development of "digital agriculture" in China.

Key words:Digital agriculture; agricultural informatization; development strategy

浅析“数字农业”发展趋势与策略

1“数字农业”的内涵

“数字农业”是农业数字经济的重要实践。当前,学术界和工业界尚未能够对数字农业形成统一的定义。通用名称包括信息农业,精确农业,“ Internet + 农业”等等。本文中提到的数字农业基于农业信息化,在农业链的所有环节中都强调了下一代信息技术的重要作用,代表了农业产业的新视野。现代农业与信息化的紧密结合使可以充分利用数字技术。数字技术在促进农业发展方面发挥着重要作用,并且不断的提高现代农业产业的数字化水平,支持农村战略的实施。

2国外“数字农业”关键技术发展与应用

2.1美国

美国完善的农业产业基础和数字技术体系促进农业发展。美国数字农业发展建立在农业生产高度专业化、规模化、企业化的基础上,已经建成了完善的现代农业技术应用与管理系统。自20世纪90年代起,美国已开始应用数字农业技术,包括应用遥感技术对作物生长过程进行检测和预报、在大型农机上安装GPS设备、应用GIS处理和分析农业数据等,对大田作物进行生产前、中、后期的全面监测与管理。在21世纪初已经实现“3S”技术、智能机械系统和计算机网络系统在大农场中的综合应用,智能机械已经进入商品化阶段。如JohnDeere公司的“绿色之星”精准农业系统,基于物联网技术与“3S”技术搭建的新型精准农业管理系统,用以进行精细农作、农机管理、农艺管理和计划管理,可绘制农场产量的“数字地图”,在机械化生产大农场中的市场占有率达到了65%以上。在大数据、物联网等数字技术飞速发展的助推下,美国数字农业技术已与农业生产的产前、产中、产后形成紧密衔接,应用范畴覆盖从作物生长的微观监测到宏观农业经济分析。此外,美国也已形成完善的技术服务组织网络,美国服务类企业与公益机构可为经营主体提供较为完善的技术服务,例如美国农业技术服务组织(FSA)为农民提供丰富的信息。

2.2英国

英国信息化技术应用助推精准农业。信息化技术推动英国农业向数字化、智能化、精准化的方向发展。英国农村地区信息化基础设施完备,互联网、4G信号已实现基本覆盖。在此基础上,精准农业技术得以实现在农业的全方位应用,如借助遥感技术进行作物生产监测与产量预报、农业资源调查、农业生态环境评价和灾害监测等;英国Massey Ferguson公司研发的“农田之星”信息管理系统,借助传感识别技术和GPS技术能够更为精准地进行种植和养殖作业、数据记录分析和制定解决方案;智能机械已基本装备卫星定位系统、电脑控制和软件应用系统,能够根据不同位置、不同质量的地块情形实现自动化、精准化、变量化作业,同时可以采集作物信息用以制作电子地图和调整生产策略。2013年英国启动《农业技术战略》,提出了应用大数据、物联网技术和智能技术进一步发展精准农业,从而提升农业生产效率,如借助GateKeeper专家系统提供辅助决策和农场管理、LELY挤奶机器人等智能化设备在养殖场中的应用、自动感知技术在施肥施药机械上的应用、二维码技术在农产品产销环节的广泛应用等。

2.3德国

德国关键技术与设备的积极研发与推广。在欧盟农业共同政策对数字农业的支持下,德国积极发展高水平数字农业,在农业生产高度机械化的基础上,建立完善的计算机支持和辅助决策系统,提供数字农业综合解决方案。德国投入大量资金与人力支持数字农业核心技术与智能设备研发,并由大型企业牵头,如德国拜耳公司投资2 亿欧元支持数字农业布局,已在60多个国家提供数字化解决方案,并旗下Xarvio品牌推广数字农业,通过XarvioScouring识别系统高效识别和分析作物生长和病虫害信息,帮助农民优化田块单独管理和农田统筹优化。拥有百年历史的德国农业机械制造商CLAAS集团结合第四代移动通信技术和传感器技术,实现收割过程的全面自动化。

3我国发展“数字农业”的紧迫性

今年虽然受到疫情影响,但我国大部分农产品仍然是一个“大年”,怎样解决需求下降、部分市场关闭、物流受阻等难题,把农货顺利卖出去,让农民实现丰产又丰收?加速数字农业发展是不二法门。

农业长期保持着传统形态,技术进步一直较慢,特别是进入信息化时代后,农业技术滞后带来的产业发展差距愈发显著。随着数字经济的兴起,越来越多的领域引入互联网、大数据、人工智能等技术,实现了智能化、数字化重塑,生产率大幅度提高。2019 年,我国服务业、工业数字经济渗透率分别为 37.8%、19.5%,但农业只有 8.2%,数字化改造的空间很大,需尽快赶上信息社会的发展步伐。

农业数字化转型是农业现代化的必然选择,也是破解目前农业难题的一剂良方,瞄准这个主攻方向,无疑将为农业高质量发展提供新动能,给予农民更多获得感。对广大农民来讲,农产品销售难的问题最头疼,常常遭遇“多收了三五斗”的尴尬。可以说,农业数字化水平滞后,农产品质量不稳定、难以标准化、产销信息不对称等是导致农产品销售难的主因。显然,加快技术与传统农业的融合,打造数字农业,对产业链进行全方位的数字化改造,使得传统农业脱胎换骨,插上科技的翅膀腾飞,已成为农业发展新趋势。

4“数字农业”的发展趋势

4.1农业生产全流程智能化将逐步成为现实

物联网技术在现代农业生产设施和设备领域中的应用极大地提高了现代农业生产设施和设备的数字和智能水平,实现了整个农业生产过程的数字化控制,实现了农业智能化生产和管理。它可以解决由托管服务流程引起的一系列问题。在种植业中,重点是如何精确控制生产环节,例如育苗,播种,施肥,灌溉和病虫害防治。当前,荷兰,日本,以色列和其他国家正在使用大数据,人工智能和信息技术来促进数字化,精确化和智能化作物种植的发展。

4.2农产品流通电商化发展将更加迅猛

电子商务的飞速发展为农产品流通提供了新的平台和基础。例如,美国著名的新鲜食品电子商务公司LocalHarvest是一个平台,该平台整合了有机农业的上下游,并连接了中小型农场和消费者。LocalHarvest平台基于从相关农场收集的基本信息来支持地图搜索系统,使消费者能够搜索本地社区周围的农场并购买难以保存的新鲜农产品,例如蔬菜和禽蛋。农产品在快速物流系统下,可以快速送到消费者家中,从而大大提高农产品物流的效率和质量。

值得欣喜的是,近年来,全国各地与各大电商平台纷纷投入大量资源,重构产业链,培植人才,发力促进农产品上行。以河北省为例,近年来积极引入农业电商龙头企业,与阿里巴巴、京东、拼多多等电商平台开展合作,持续在直播助农、农产品品牌孵化、新农商人才培养等领域,合力打造河北数字农业“新基建”。可以看到,利用大数据和分布式人工智能技术匹配优化资源,将需求传导给供给端,有效缓解了供需信息不对称造成的产销脱节。在互联网科技力量的加持下,传统农业的“痛点”也得到有效解决,进一步打开了农产品从田间到餐桌的通路。

随着电商农产品销量的快速增长,广大农民亦受益匪浅,农业生产模式发生重大变化,以需求引导生产、订单式农业逐渐成为主流,精准种植、数字营销提升了农民收入水平,促进更多农民融入数字农业的场景里。以往很多滞销农产品位于贫困地区,数字农业重塑产业链,帮助贫困户掌握技术、融入市场,实现了造血扶贫。实践证明,此种创新扶贫模式具有很强的活力。比如,拼多多的“农地云拼”模式得到国务院扶贫办的肯定,荣获了今年的“全国脱贫攻坚组织创新奖”。截至 2019 年底,拼多多平台直连的农业生产者超过 1200 万人,累计带贫人数超百万。

4.3农业多元化公共服务将更加完善

通过将移动互联网和大数据等顶尖技术运用在农业公共服务,农业服务也更加便利和灵活。这也是数字农业发展的重要趋势。一些国家为了促进数字农业的发展,在农业信息化和农业公共服务方面做出了很多努力。

5 “数字农业”的实践策略

5.1实现农业农村业务数字化和可视化

加快建立涵盖农业资源,农村产业,生产管理,产品质量,农业机械设备和农村治理的数据库。利用地理空间信息技术和遥感技术整合空间数据,获取耕地资源,渔业水资源,粮食生产功能区,现代化农业园区,特色农产品优势区,特色鲜明的农业村庄,生产经营实体,村庄分布等数据。地图存储在数据库中,使农业和农村资源数据立体化。通过集成的农业调度系统,现场定点监控系统,集成的遥感信息,无人机观测和地面传感器网络,可以建立农作物的空间分布。通过农作物的空间分布,重大自然灾害和其他动态空间图,形成了一个一体化的全域地理信息图,为农业生产和管理的科学指导奠定了坚实的数据基础。

5.2推动数字农业技术创新

创新,始终是乡村振兴的内生动力。要实现乡村振兴,离不开“数字农业”助力。手机变成新农具、直播成了新农活、数据成为新农资,随着农业新业态新模式竞相涌现,数字经济发展红利惠及三农必将更加给力,而农业信息技术已然成为数字农业发展的关键支持。未来依靠农业科学院和大学等农业科学研究和技术开发机构来充分发挥农业科技企业作为创新主题的作用,促进数字农业领域的“产学研”合作,并着重于先进技术和核心技术。为了提高对关键技术的了解和研发,精确操作和智能决策的数字化管理,智能设备的变量修改和应用,农产品的灵活处理,区块链等技术,3S 加速,智能识别,模型仿真,智能控制和其他软件和硬件产品数字农业的综合应用,了解数字农业技术标准和规范体系的建立,数字农业技术创新以及应用服务系统的持续改进。

5.3 提高农业农村经营管理数字化水平

当前,就中国电子政务项目的发展而言,农业部门中的电子政务服务水平不能完全满足领导决策应用程序和公共商务应用程序的功能要求。农业信息服务的总体水平有待进一步提高。同时,这意味着中国农业信息服务具有巨大的发展和利用空间。因此,有必要进一步扩大移动互联网技术,云计算,大数据等先进技术在农业信息服务领域的应用,并通过建立灵活,便捷,高效,透明的农业生产经营管理体系,为农民提供更多便捷和信息服务。在信息公开,政府公共关系,信息服务,办公室工作等方面,充分利用农民信箱和便携式农业和农村地区的服务功能,提高了园艺,畜牧,水产品,田间管理和智能化管理水平。着眼于整个农业产业链的要求,以提高劳动生产率,研究和推广适用于不同地形和环境的农业机械,并进一步促进农业“机器换人”。

结 语

数字农业的发展实现了对农业生产的自动,精确控制,智能和科学管理,提高了农业的可控性,降低了生产成本,并减少了环境污染,使农业向精准,环保和可持续的方向发展。此外,农村电子商务的发展可以有效克服农业产业化经营的不利因素,可以简化交易联系,提高交易效率,降低成本,消除农民对库存余额的担忧,并缩短生产周期。努力为农民提供更多的商机。由于时间和空间的限制,内容的选择空间也越来越广,这对于提高农业生产经营管理人员的科学文化素养具有重要意义。

致 谢

在这篇论文的撰写过程中,我遇到了很多的困难和障碍,但都在老师、领导、同事、同学和朋友的帮助下顺利解决了。尤其要强烈感谢周波老师在千里之外给我们线上授课进行指导和帮助,不厌其烦地为我们解答疑问、传授知识,让我非常感动,在此向帮助和指导过我的各位老师表示最衷心的感谢!

同时也要感谢这篇论文所涉及到的各位学者,本文引用了数位学者的研究文献,如果没有各位学者的研究成果的帮助和启发,我将很难完成本篇论文的写作。

同时也要感谢我的领导、同事、同学和朋友,在我写论文的过程中给予我很多素材,还在论文的撰写和排版过程中提供给我很大的帮助。由于我的学术水平有限,所写论文难免有不足之处,恳请各位老师和学友不吝批评与指教。

参考文献

[1] 周清波 , 吴文斌 , 宋茜 . 数字农业研究现状和发展趋势分析 [J].中国农业信息 ,2019,30(01), 第 5-13 页 .

[2] 施威 , 曹成铭 .“互联网 + 农业产业链”创新机制与路径研究 [J].理论探讨 ,2019(06), 第 110-114 页 .

推荐期刊