时间:2023-02-07 22:42:12
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇人工智能课程,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
>> 研究生人工智能原理教学改革 研究生人工智能课程教学探索 研究生“人工智能”课程教学改革探索 人工智能系列课程研究 人工智能课程全英文教学改革 人工智能实验课教学改革研究 《人工智能》硕士课程教学改革的研究与实践 落实科学发展观,深化“人工智能”课程的教学改革 创新型人工智能教学改革与实践 人工智能课程教学方法研究 “人工智能导论”课程的教学与实践改革探索 新形势下本科教育阶段人工智能课程教学研究 人工智能课程研究型实验教学的探索与实践 航天类专业“人工智能”课程的教学探索 林业院校人工智能课程教学的思考 应用DBR的人工智能课程教学 人工智能导论课程的兴趣教学法 人工智能概论课程的教学思考 “人工智能”课程教学的实践与探索 面向人工智能的信息管理与信息系统专业教学改革 常见问题解答 当前所在位置:l.
[5] 王海,许德章.“机器人学导论”专业课双语教学改革的实践[J]. 科技咨询,2009(3):182-183.
[6] 徐新黎,王万良,杨旭华.“人工智能导论”课程的教学与实践改革探索[J]. 计算机教育,2009(11):129-132.
[7] 李竹林,郝继升,马乐荣. 人工智能双语教学体系结构的探索与实践[J]. 计算机教育,2010(12):81-83.
[8] 冀俊忠. 落实科学发展观,深化“人工智能”课程的教学改革[J]. 计算机教育,2009(24):105-107.
[9] 朱映辉. 基于导向驱动的《人工智能》课程教学改革研究[J]. 现代计算机:专业版,2009(5):94-96.
Research on Artificial Intelligent Series Courses of Graduate Students
REN Xiao-ping1,2, REN Qing-xiong3, GUO Fan2
(1. Institute of Intelligent System and Software, Central South University, Changsha 410083, China ; 2. Institute of Information Science and Engineering, Central South University, Changsha 410083, China ; 3. Shanxi Institute of Metrology Supervision & Verification, Taiyuan 030002, China)
关键词:航天类专业 人工智能 教学探索
中图分类号:G64 文献标识码:A 文章编号:1674-098X(2014)10(b)-0155-02
面对航天科技迅猛发展,现代军备技术快速提升,培养具有专业性的高素质航天类人才,是我国航天科技发展的战略选择,也是航天重点高校面向并有效服务航天事业的历史责任。航天类本科生的教育形式也需要突破传统的方式,着重多样性、前沿性、工程性,因此,该专业的各门课程教育都应该结合专业特点,探索新的教学模式。
人工智能自1956年诞生50多年以来,引起众多科研机构、政府和企业的空前关注,已成为一门具有日臻完善的理论基础、日益广泛的应用领域和广泛交叉的前沿学科。由于航天领域的特殊要求,人工智能在其发展中发挥着不可替代的重要作用,各发达国家都相继开展了人工智能与航天技术相结合的研究,致力于实现可重构的、具有容错能力的、智能的飞行系统和管理系统。因此,“人工智能”作为航天类专业的一门特色选修课,应结合专业特点展开更具有实用性和创新性的教学。
1 人工智能课程特点
一方面,“人工智能”是一门多学科交叉的综合学科,它涉及计算机科学、数学、心理学、认知科学等众多领域,具有知识点多、涉及面广、内容抽象、不易理解、理论性强等特点,使得该课程的教学具有较大的灵活度和较高的难度。另一方面,“人工智能”是一门正在发展中的学科,具有较强的前沿性,计算机科学、信息科学、生物科学等相关学科的发展不断的提出了许多新的研究目标和研究课题,使得人工智能的技术和算法也需要不断更新,这在很大程度上增加了“人工智能”课程的教学难度。
2 航天类专业特点
首先,航天类专业具有较强的工程性。在专业的教学改革中有统一的特点,即强调要体现航天工程技术的综合性、系统性, 注重培养复合型人才。其次,航天类专业具有一定的前沿性。因为航天飞行器作为现代高科技和多种学科技术综合应用的结晶,应及时把现代先进科技融入到了专业基础和专业类的课程教学中, 专业知识更新快成为又一特点;另外,航天类专业应注重实践性教育。尊重个性和兴趣,强调动手能力,实验室对学生开放,要求学生自主地设计完成实验,强调对学生设计理念和创造能力的培养。最后,航天类专业应重视产学合作。产学合作的目的在于推动学校与航天产业的持续全面合作,造就一支科学技术研究和工程实践兼备的教师队伍。
3 教学模式的探索
3.1 教材的选择
人工智能作为一门新兴的学科,其理论与方法都还在不断的发展与完善中。就目前来看,关于人工智能的定义和范围都没有一个统一的标准,不同的教材所介绍的内容也不尽相同。在教材选用方面,需要综合考虑专业特点和学生的知识背景。本课程主要针对航天类专业高年级本科生,该类学生具有一定的数学、计算机、信息论、通信理论等基础知识,对航天应用的基本需求有初步的了解,因此,“人工智能”课程难度应该控制在中级,可以较深入的介绍人工智能的基础算法和应用案例。
中南大学蔡自兴教授积累了多年的教学与科研经验,借鉴了国内外其他专家和作者的最新研究成果,吸取了国内和国外人工智能领域学术书籍的长处,于1987年编写了“人工智能及其应用”一书,该书根据人工智能学科的新发展不断修订,推出四个版本。本课程采用“人工智能及其应用(第4版)”,其中大部分内容适合本科生学习。另外,本课程还给学生提供其他一些参考书目,如N.J.Nilsson 的“Artificial Intelligence:A New Synthesis.Morgan Kanfmann”等经典教材。
3.2 课堂教学形式的探索
“人工智能”课程内容较抽象,概念较为繁多,若采用单一的课堂讲授的方式,学生容易概念混淆、理解不透,逐渐产生厌倦情绪,导致教学效果差。本文探索不同的课堂教学手段,根据不同内容采用不同的教学手段,有利于学生对课程内容的理解与吸收。另外,考虑到航天类的专业特点,突出课程内容的工程应用,增加研究性质的教学内容与形式,有利于培养学生的创新能力和实践能力。
(1)课件采用图文并茂的PPT。综合利用文字、图像、声音、视频等多种媒体表示方法,在介绍原理和概念时采用精辟的文字,介绍算法流程时采用图像,介绍算法应用时采用视频。在PPT中适当利用不同的字体、颜色或动画来突出重点,细化流程,引导学生的思路,便于集中注意力接受重点内容。
(2)适当增加课堂讨论与练习。对于人工智能的一些基本问题,可以引导学生进行调研和讨论,来深化课程内容的了解,并提高学生的学习兴趣;对于重要的算法和理论,可以增加课堂练习,让学生实际动手进行公式的推导或演算,并在练习中分析学生对问题的理解程度,有针对性的增加讲解或指导。
(3)适当采用类比的讲解方式。对人工智能的不同学派,不同方方法,以及方法的不同应用,广泛的采用类比的形式进行讲解,不仅可以复习已学习的内容,也利于对新内容的理解。并且,通过对不同内容的比较总结相似点、区分不同点,可以避免概念的混淆,清晰的掌握课程内容。
(4)增加研究性教学。研究性教学强调通过问题来进行学习,有必要将实际应用案例或者授课教师的科研项目融入日常的教学工作中去,用“启发式”、“案例式”教学激发学生“自主学习”能力。
3.3 课程内容的探索
一方面,鉴于本科生知识结构还不够完善,“人工智能”课程的内容要控制在适应本科生学科基础的中等难度;另一方面,鉴于航天类专业的特点,课程内容应更注重与航天应用相结合的内容,并且在课程中增加具体应用的介绍。具体的课程内容如表1所示。
3.4 考核形式的改革
“人工智能”课程注重学生创新能力和实践能力的培养,传统的试卷形式不能全面的反应学生的学习效果,因此,应采用课堂表现和课程报告相结合的方式进行综合考核。
一方面,重视学生提出问题、分析问题和解决问题的能力,对学生课堂讨论与练习的表现进行考核评分,作为总成绩的参考;另一方面,注重学生课题调研和实践的能力,采取提交课程论文的形式进行考核。正确引导学生根据个人兴趣、课程内容、可行性、实践难度进行合理选题,并根据所选题目进行文献查阅和总结,完成调研报告或算法实现报告。结合者两个方面进行最终成绩的评定,综合衡量学生问题分析能力、论文写作能力和创新实践能力。
4 结语
航天类专业的本科生教学需针对专业特点有的放矢,该专业的课程教育都应该趋向于前沿性、专业性和实用性。本文的“人工智能”课程教学改革方案不仅考虑到该课程属于前沿叉学科的特点,也综合考虑了航天类专业的特点。为了使课程教学更好地服务于学生,本文提出的改革方案打破传统的教学模式,将课堂理论讲解、课堂讨论、课后调研、项目实践等相结合,充分调动学生的学习兴趣和积极性,提高学生的创新能力,有利于培养真正符合航天领域所需要的综合型高级人才。
参考文献
[1] 王甲海,印鉴,凌应标.创新型人工智能教学改革与实践[J].计算机教育,2010(15):136-138,148.
[2] 刘兴林.大学本科人工智能教学改革与实践[J].福建电脑,2010(8):198-199.
[3] 怀丽波.32课时《人工智能基础》课程教学的几点思考[J].华章,2013(34):193-194.
[4] 纪霞,李龙澍.本科人工智能教学研究[J].科教文汇(上旬刊),2013(6):91-92.
[5] 肖春景,李建伏,杨慧.《人工智能》课程教学方法改革的探索与实践[J].现代计算机(专业版),2013(26):32-34.
[6] 熊德兰,李梅莲,鄢靖丰.人工智能中实践教学的探讨[J].宿州学院学报,2008(1):146-148.
[7] 张伟峰.本科高年级人工智能教学的几点思考[J].计算机教育,2009(11):139-141.
关键词:林业院校;人工智能;课程教学
1背景
近年来,随着“互联网+”的快速普及,互联网跨界融合创新模式进入林业领域,利用移动互联网、物联网、大数据、云计算等技术推动信息化与林业深度融合,开启了智慧林业的大门。我国林业信息化、智能化建设逐步走上了有序、快步发展的轨道,取得了重要的进展。
2011―2013年,国家林业局先后开展了中国林业信息化体制机制研究和中国智慧林业发展规划研究,在此基础上出台了《国家林业局关于进一步加快林业信息化发展的指导意见》和《中国智慧林业发展指导意见》。2012―2013年,在深入研究的基础上,林业局编制了《中国林业物联网发展框架设计》,2016年3月正式了《“互联网+”林业行动计划》。
国家林业局制定的《中国智慧林业发展指导意见》指出,信息化、智能化在林业中的应用已经从零散的点的应用发展到融合的、全面的创新应用。随着现代信息技术的逐步应用,能实现林业资源的实时、动态监测和管理,更透彻地感知生态环境状况、遏制生态危机,更深入地监测预警事件、支撑生态行动、预防生态灾害。
人工智能是计算机科学中涉及研究、设计和应用智能机器的一个重要分支。国际上,人工智能的研究已取得长足的进展;在国内,也呈现出极好的发展势头,人工智能已得到迅速的传播与发展,并促进了其他学科的发展。我国已有数以万计的科技人员和大学师生从事不同层次的人工智能的研究与学习,人工智能已成为一个受到广泛重视并有着广阔应用潜能的庞大的、交叉的前沿学科。特别是经过近几十年的发展,智能技术及其应用已经成为各行业创新的重要生长点,其广泛的应用前景日趋明显,如智能机器人、智能化机器、智能化电器、智能化楼宇、智能化社区、智能化物流等,对人类生活的方方面面产生了重要的影响。
近年来,人工智能已经在智慧林业相关领域中得到了广泛应用,例如,在智能机器人的应用方面,已经有大量的嫁接机器人、水果采摘机器人、农药喷洒机器人、果实分检机器人等投入使用;在专家系统的应用方面,森林病虫害诊断专家系统、病虫预测预报专家系统、林产品生产管理专家系统、专家咨询和人员培训专家系统等也得到了广泛应用。
随着人工智能在智慧林业中的广泛应用,涉林企业和事业单位对智能型林业高技术人才的需求也在不断加大。为了适应市场对智能型人才的需求,自2003年起,国内诸多林业高等院校在计算机科学与技术专业本科阶段、林业相关专业的研究生阶段陆续开设人工智能课程,同时不断加大人工智能课程的比重,因此,人工智能课程教学对于林业院校显得越来越重要。
2林业院校人工智能课程教学现状
林业院校开设人工智能课程的专业不多,但有不断增加的趋势。以中南林业科技大学为例,该校计算机科学与技术本科专业自2003年起就开设了人工智能课程,所用教材一直是蔡自兴教授主编的《人工智能及其应用》;另外,面向部分专业的硕士和博士研究生开设了人工智能相关课程,如农业硕士的农业信息化领域研究生开设了人工智能技术,森林经理和森林培育两个专业的博士研究生开设了人工智能与专家系统。
针对计算机科学与技术本科专业,人工智能课程主要使用蔡自兴教授主编的《人工智能及其应用》教材施教,但由于课时数仅有32学时,关于人工智能的一些高级应用,如神经网络、专家系统、机器学习等,采用专题的形式组织教学。该专业没有设置实验学时,仅在理论课堂上演示了一些仿真软件,如BP神经网络仿真环境。
针对农业硕士的农业信息化领域研究生和森林经理及森林培育两个专业的博士研究生,教学计划安排的学时数为40学时,没有指定教材,仅给学生列了蔡自兴教授的《人工智能及其应用――研究生用书》等几本参考教材。课堂主要以专题的形式组织教学,每一讲除了相关的理论以外,还介绍一些工程实践应用的例子,让研究生能够了解这些人工智能算法如何在实际中得到具体应用。
3林业院校人工智能课程教学存在的问题
全国各高等院校的人工智能课程教学都或多或少地存在一些问题,林业院校更有区别于其他类型院校的显著特征,而且林业院校开设该课程教学相对较晚,因此林业院校的人工智能课程教学存在更多的问题。
(1)师资短缺。在林业院校,林学相关专业开设该课程往往由林学相关专业的教师主讲。这些非计算机相关专业的教师虽然曾从事过人工智能个别算法或领域研究,但不具备全面的人工智能相关专业知识,在讲授不熟悉的人工智能知识点时显得力不从心。
(2)教学内容专业性不强。人工智能是计算机科学的一个分支学科,一般的人工智能教材都比较适合计算机相关专业的学生使用,但是农业信息化、森林经理、森林培育等专业的学生不管是专业基础还是行业应用背景均与计算机类专业学生不同,如果我们仍然按普通的教材施教,教学内容就缺乏林科特色,显得专业性不强,无法吸引学生的听课兴趣。
(3)教学难度过大。林业院校涉林专业的学生一般只有计算机文化基础、C语言等简单的计算机课程基础,缺乏算法思想。而人工智能课程涉及很多高级、复杂的算法,不论从算法思想,还是从算法实现和算法应用,对非计算机类专业学生来说难度过大。因此,在教学内容和教学要求上要做一些取舍。
除此之外,还存在诸如缺少实验环节、教学手段单一、教学案例缺乏等其他普遍性问题。
4林业院校人工智能课程教学改革建议
通过分析林业院校人工智能课程教学存在的问题,结合自己近十余年来从事人工智能教学的经验,我们提出了一些改革建议。
(1)推行专题式教学,解决师资缺乏的问题。在师资缺乏的情况下,由一名教师完成整个人工智能课程教学比较困难,同时,可能有多名教师分别在人工智能的不同方面进行过深入研究。因此,可以将该课程按章节分成各个不同的模块,每一个模块设一个专题,如神经网络专题、专家系统专题、机器学习专题等,再由多名教师分别承担自己熟悉的专题进行讲授。这样既可以解决一位教师的知识不足,又可以让各位教师结合自己的科研将每一个熟悉的专题讲授得更加详细、更加有趣。
(2)教学内容与涉林专业紧密结合,解决专业性不强的问题。事实上,人工智能的各领域应用在林业行业都能找到对应的应用实例。例如,林果采摘机器人就是机器人在林业中的应用;林火识别和林木病虫害监测就是模式识别在林业中的应用;林火蔓延预测可以用到隐马尔科夫模型;PAID50专家系统平台就是专家系统在农林业中的应用典范等。因此,在教学过程中,我们可以考虑将人工智能知识与林业应用结合进行讲解,这样学生更容易接受也更乐意接受。更进一步,如果能够结合这些林业应用编写一本《人工智能及其林业应用》教材,将会更加适合涉林专业的学生学习这门课程。
(3)应用计算机仿真软件解决教学内容难度大的问题。非计算机类专业的学生计算机基础较差,编程能力不强,算法训练不足,对各种人工智能高级算法难以理解,更难以编程实现。针对这个实际问题,我们可以主动提供一些相关算法的计算机仿真软件,在课堂上通过演示这些仿真软件,让学生直观地理解算法,甚至能够通过仿真软件应用这些算法解决本专业相关的问题。例如可以开发如图1和图2所示的BP神经网络算法仿真软件,通过该仿真可以把神经网络的结构、训练时的权值偏差变化、训练过程中总误差的变化等信息完全呈现在学生面前,学生通过这个仿真过程就不难理解BP神经网络算法,甚至可以使用这个仿真软件来解决本专业相关的一些问题。
1.1集先进性、实用性和前沿性为一体的教学内容改革对国内外优秀的人工智能教材[2-6]的内容进行整合,建立人工智能的知识体系,并提取人工智能课程的知识要点,确定集先进性、实用性和前沿性为一体的教学内容。人工智能的核心思想是研究人类智能活动规律和模拟人类智能行为的理论、方法和技术,因此人工智能应围绕“智能”这个中心。由于智能本身的复杂性,难以用单一的理论与方法来描述,因此可以通过建立人工智能的不同层次来刻画智能这个主题。人工智能的主要内容可按图1所示划分为最底层、抽象层、逻辑层和应用层这4个不同层次。在最底层,神经网络与演化计算辅助感知以及与物理世界的交互。抽象层反映知识在智能中的角色和创建,围绕问题求解对知识进行抽象、表示与理解。逻辑层提出学习、规划、推理、挖掘的模型与方式。应用层构造智能化智能体以及具有一定智能的人工系统。将人工智能划分为这4个层次可确定人工智能课程的教学内容,并保证教学内容的循序渐进。
1.2基于人工智能知识体系的教学案例库建设根据所确定的教学内容、知识重点和知识难点,从国内外经典教材、科研项目、研发设计、生产建设以及国内外人工智能网站等多种途径,收集案例素材,加以整理,撰写各知识要点的教学案例及其内容。表1给出基于人工智能知识体系的教学案例示例。
2人工智能课程教学案例的详细设计
在教学案例具体设计时应包括章节、知识重点、知识难点、案例名称、案例内容、案例分析过程、案例教学手段、思考/讨论内容等案例规范,分别从以下单一案例、一题多解案例和综合应用案例3种情况进行讨论。
2.1单一案例设计以人工智能课程中神经网络课堂教学内容为例,介绍基于知识点的单一案例的设计。神经网络在模式识别、图像处理、组合优化、自动控制、信息处理和机器人学等领域具有广泛的应用,是人工智能课程的主要内容之一。教学内容主要包括介绍人工神经网络的由来、特性、结构、模型和算法,以及神经网络的表示和推理。这些内容是神经网络的基础知识。其重点在于人工神经网络的结构、模型和算法。难点是人工神经网络的结构和算法。从教学要求上,通过对该章节内容的学习,使学生掌握人工神经网络的结构、模型和算法,了解人工神经网络的由来和特性,一般性地了解神经网络的表示和推理方法。采用课件PPT和演示手段,由简单到复杂,在学生掌握人工神经网络的基本原理和方法之后,再讲解反向传播BP算法,然后运用“手写体如何识别”案例,引导学生学习理解人工神经网络的核心思想及其应用方法。从国外教材中整理和设计该案例,同时应包括以下规范内容。章节:神经网络。知识重点:神经网络。知识难点:人工神经网络的结构、表示、学习算法和推理。案例名称:手写体如何识别。案例内容:用训练样本集训练一个神经网络使其推广到先前训练所得结果,正确分类先前未见过的数据。案例分析过程:①训练数字识别神经网络的样本位图;②反向传播BP算法;③神经网络的表示;④使用误差反向传播算法训练的神经网络的泛化能力;⑤一个神经网络训练完毕后,将网络中的权值保存起来供实际应用。案例教学手段:手写体识别的神经网络演示。思考/讨论内容:①训练改进与权值调整改进;②过学习/过拟合现象,即在一个数据集上训练时间过长,导致网络过拟合于训练数据,对未出现过的新数据没有推广性。
2.2一题多解案例设计一题多解案例有助于学生把相关知识点联系起来,形成相互关联的知识网络。以人工智能课程中知识及其表示教学内容为例,介绍一题多解案例的设计。知识及其表示是人工智能课程三大内容(知识表示、知识推理、知识应用)之一。教学内容主要包括知识表示的各种方法。其重点在于状态空间、问题归约、谓词逻辑、语义网络等知识表示方法。难点是知识表示方法的区别及其应用。从教学要求上,通过对该章节内容的学习,使学生掌握利用状态空间法、问题归约法、谓词演算法、语义网络法来描述和解决应用问题,重点掌握几种主要知识表示方法之间的差别,并对如何选择知识表示方法有一般性的了解。通过讲解和讨论“猴子和香蕉问题”案例,来表示抽象概念。该案例从国内外教材中进行整理和设计,同时包括以下规范内容。章节:知识及其表示。知识重点:状态空间法、问题归约法、谓词逻辑法、语义网络法等。知识难点:知识表示方法的区别及其应用。案例名称:分别用状态空间表示法与谓词逻辑法表示猴子和香蕉问题。案例内容:房间内有一只机器猴、一个箱子和一束香蕉。香蕉挂在天花板下方,但猴子的高度不足以碰到它。猴子如何摘到香蕉?如何采用多种知识表示方法表示和求解该问题?案例分析过程:①状态空间法的解题过程。用n元表列表示该问题的状态;定义问题的操作算符;定义初始状态变换为目标状态的操作序列;画出该问题的状态空间图。②谓词逻辑法的解题过程。定义问题的常量;定义问题的谓词;根据问题描述用谓词公式表示问题的初始状态、中间状态和目标状态。案例教学手段:猴子和香蕉问题的演示。思考/讨论内容:①选择知识表示方法时,应考虑哪些主要因素?②如何综合运用多种知识表示方法获得最有效的问题解决方案?
2.3综合应用案例设计与单一案例、一题多解案例相比,综合应用案例能更加有效地启发学生全方位地思考和探索问题的解决方法。以机器人行动规划模拟为例,介绍人工智能综合应用案例的设计,该案例包括以下规范内容。章节:人工智能综合应用。知识重点:人工智能的研究方向和应用领域。知识难点:人工智能的技术集成。案例名称:机器人行动规划模拟。案例内容:综合应用行为规划、知识表示方法、机器人学、神经网络、人工智能语言等多种人工智能技术与方法,对机器人行动规划问题进行描述和可视化。案例分析过程:①机器人行为规划问题求解。采用状态归约法与分层规划技术,将机器人须完成的总任务分解为若干依序排列的子任务;依据任务进程,确定若干关键性的中间状态,将状态对应为进程子规划的目标;确定规划的执行与操作控制,以及机器人过程控制与环境约束。②基于谓词逻辑表示的机器人行为规划设计。定义表达状态的谓词逻辑;用谓词逻辑描述问题的初始状态、问题的目标状态以及机器人行动规划过程的中间状态;定义操作的约束条件和行为动作。③机器人控制系统。定义机器人平台的控制体系结构,包括反应式控制、包容结构以及其他控制系统等。④基于神经网络的模式识别。采用神经网络方法以及BP算法对桌面茶壶、杯子等物体进行识别,提取物体图形特征。⑤机器人程序设计语言。运用人工智能语言实现机器人行动规划行为的可视化。案例教学手段:机器人行动规划的模拟演示。思考/讨论内容:人工智能将会怎样发展?应该在哪些方面进一步开展研究?
3案例教学环节和过程的具体实施细节
人工智能案例教学的实施面向笔者所在学院软件工程专业三年级本科生展开。具体实施细节如下。(1)教学内容的先进性、实用性和前沿性。引进和整合国外著名人工智能教材内容,保证课程内容具有先进性。同时将前沿人工智能的研究成果与技术有机地融入课程案例教学之中。(2)案例教学的创新教学模式。在教师的引导下,将案例中涉及的人工智能内容推广到对人工智能的一般性认识。案例的教学过程,成为认识人工智能、初步运用人工智能的理论与方法分析和解决实际应用问题的过程,使学生具备运用人工智能知识解决实际问题的意识和初步能力。在课程教学中,打破国内常规教学方式,建立和实施开放式案例教学模式。采用动画课件、录像教学、实物演示、网络教学等多种多媒体教学手段,以及集中讲授与专题讨论相结合的教学方式将理论、方法、技术、算法以及实现有机结合,感性认识与理性认识相结合,理论与实际相结合,极大地激发学生自主和创新性学习的热情。(3)“课堂教学—实践活动—现实应用”的有机融合。在案例教学过程中,从传统教学观以学会为中心转化为创新应用型教学观以创新为中心,以及从传统教学的以课堂教学为中心转化为以课堂教学与实践活动并重为中心,构造具体问题场景以及设计教学案例在情境中的现实应用,加深学生对教学内容的理解,同时提高学生的思考能力和实际综合应用能力。
4结语
关键词:人工智能;研究生教学;教学内容;启发式教学
作者简介:于化龙(1982-),男,黑龙江哈尔滨人,江苏科技大学计算机科学与工程学院,讲师。(江苏?镇江?212003)
基金项目:本文系江苏科技大学引进人才科研启动项目(35301002)的研究成果。
中图分类号:G643.2?????文献标识码:A?????文章编号:1007-0079(2012)28-0074-02
人工智能是研究理解和模拟人类智能及其规律的一门学科,中心任务是通过编程赋予计算机部分的“人类智能”,从而使其可替代人类完成某些烦琐而危险的工作。自1956年人工智能学科诞生以来,其研究成果已广泛应用于政治、经济、文化、教育等诸多领域,并对社会发展产生了巨大的影响,[1]因而人工智能逐渐发展成了高等院校信息类专业广泛开设的一门核心课程。作为一门课程,其具有如下一些特点:涉及知识面广、研究领域广泛、内容抽象、实践性强。[2]
目前,高校“人工智能”课程普遍分本科和研究生两个教学阶段讲授,前者注重学生对基本概念、基础知识的掌握,并使其能应用所学知识进行简单的开发实践,而后者更加注重学生自主学习能力、创新能力以及科研能力的培养,因而二者的教学与培养目标是不同的。[3]本文针对“人工智能”课程自身特点和研究生培养目标,并结合笔者多年来的教学经验,分别从课程内容设定、教材选择、教学方法、考核方式等多个方面对该课程的教学改革进行了探索与研究。
一、“人工智能”课程教学内容的设计
“人工智能”课程的突出特点是研究领域过于广泛,而学时数却较短(据笔者了解,各高校相关研究生专业开设该课程的时数为32~48学时不等),因而在讲授该课程时,追求授课内容“大而全”是不切实际的,有必要精选教学内容,使学生在有限的时间内学到最有用的知识。
鉴于大部分学生在本科阶段已简单学习过该课程,因此可适当减少基本概念和基础知识的授课时数,如知识表示、知识推理及搜索技术等,这部分知识点只需安排共6~8学时即可。而对于一些相对陈旧的知识,如专家系统(该技术兴起于20世纪八九十年代,目前相关研究已很少见),可在对其他知识进行讲授时,做简单介绍,没有必要占用独立的授课时数。课程的重点应放在新兴且实用的人工智能技术上,如计算智能、机器学习、模式识别、数据挖掘、多Agent系统以及自然语言处理等方面。上述知识的特点在于内容更新快且抽象,与实际应用联系紧密,极有可能成为学生在未来整个研究生阶段的研究方向,因此有必要在这些知识点上投入更多的精力,有助于学生了解并掌握学术的主流发展趋势,从而能够更好地培养自身的科学素养和创新能力。
当然,授课教师在实际授课过程中也应根据学科的研究进展,学生的基础﹑研究方向与兴趣等特点随时对教学内容作出调整,真正做到理论联系实际、与时俱进。
二、精选“人工智能”课程教材
在教材选择上,笔者分析比较了目前已公开出版的数十本人工智能教材,并结合我校研究生的特点,选定了由清华大学出版社出版﹑蔡自兴和徐光祐编著的《人工智能及其应用》(第4版)作为教材,该教材在前一版的基础上做出了较大的改进与扩展,增加了本体论、蚁群算法、粒子群算法、强化学习、词法分析以及路径规划等很多新内容,具有知识覆盖面广、讲解深入浅出,实用性、可读性强等诸多优点。同时,该教材也是普通高校“十一五”国家级规划教材,辅有国家级精品课程建设网站,是一部经典的人工智能教材。
与此同时,笔者还为学生推荐了多本经典的参考书,如清华大学出版社由拉塞尔等编著的《人工智能——?一种现代方法》(第3版)、科学出版社由史忠植编著的《高级人工智能》等,并围绕各研究专题精心挑选了数篇经典和最新的文献,力求反映各相关领域的国内外研究现状﹑发展趋势以及存在的问题等,以供学生参考。
三﹑教学方法的改革
相比于本科生,研究生通常具有更强的理论基础、接受能力和求知欲,因而在教学过程中应避免传统“填鸭式”的教学方法,要充分突出学生的主体地位,注重培养学生的学习兴趣以及自主学习的能力。为此,笔者结合该课程的特点,对教学方法进行了如下探索。
1.多样化的教学手段
“人工智能”课程的突出特点是涉及知识面广、理论性与应用性强、内容抽象且学时数短,因此有必要充分发挥现代教学手段的作用,提高教学效率。为此,笔者精心设计了整套多媒体教学课件,将较难的知识点以动画的形式呈现给学生,如基于问题归约法的汉诺塔问题求解过程、基于蚁群算法的旅行商问题求解过程等,均可以这种形式呈现。课堂教学中以课件为主,辅以少量的板书,充分利用了多媒体信息量大、直观性强的优点,改善了教学效果。除此以外,笔者也搜集了大量的视频资料,如行人检测与计数视频、机器人地震现场搜救视频等,当讲解相关专题时,作为应用实例为学生播放,充分吸引了学生的注意力,提升了他们的学习兴趣。
2.启发式的课堂教学
关键词:人工智能;专家系统;ARM;单片机
人工智能(AI)[1]是计算机科学的重要分支,是计算机科学与技术专业的核心课程之一。本课程在介绍人工智能的基本概念、基本方法的基础上,主要是研究如何用计算机来模拟人类智能,即如何用计算机实现诸如问题求解、规划推理、模式识别、知识工程、自然语言处理、机器学习等只有人类才具备的“智能”,本课程重点阐明这些方法的一般性原理和基本思想,使得计算机更好得为人类服务。
1人工智能课程体系
人工智能主要研究传统人工智能的知识表示方法,包括状态空间法、问题归约法谓词逻辑法、语义网络法、框架表示、剧本表示等;搜索推理技术主要包括盲目搜索、启发式搜索、消解原理、规则演绎算法和产生式系统等。
人工智能的研究论题包括计算机视觉、规划与行动、多Agent系统、语音识别、自动语言理解、专家系统和机器学习等。这些研究论题的基础是通用和专用的知识表示和推理机制、问题求解和搜索算法,以及计算智能技术等。
人工智能课程在我校计算机科学与工程学院是作为大三年级的一门专业选修课开设,总共学时数为:60(其中理论学时为36,实验学时为24),随着计算机技术的不断更新发展,人工智能的应用领域变得越来越广,因此人工智能(AI)这个学科已不再陌生,很多学生对其充满兴趣,所以在选课人数上远远超过其他选修课的人数,另外结合我校的实际情况,部分理论或实验设计项目可以与其他相关专业结合起来而应用。
2人工智能教学实践
50多年以来,人工智能获得很大的发展,已经引起众多学科和不同专业背景学者们的日益重视,成为一门广泛的交叉和前沿科学,但是到目前为止人工智能至今仍尚无统一的定义,要给人工智能下一个准确、科学和严谨的定义也是困难的。
由于人工智能[2]是一门交叉性的学科,涉及到了控制论、语言学、信息论、神经生理学、心理学、数学、哲学等许多学科。所以该学科具有知识点多、涉及面广、内容抽象、不易理解、理论性强、需要较好的数学基础和较强的逻辑思维能力等特点,导致了在教学过程中老师讲得吃力、学生听得吃力。尽管在多年的教学过程中积累了一些经验,但是对于如何把握这门课程的特点,提高学生的学习兴趣,帮助学生更好的理解这门课程,目前仍然有很多问题需要研究解决。
目前在整个教学过程中存在的主要问题[3]是:
1) 教学内容陈旧,部分参考书相关内容或案例都过于陈旧。在整个教学过程中,多数教学案例涉及到人工智能理论的高级应用――机器人,目前在国际及国内机器人的水平已经达到相当高的水平,但是部分教科书中仍沿用关节型机器人为例,教学内容稍显陈旧。
2) 教材难易程度不均匀,部分章节学生难以理解。由于人工智能课程的部分章节,本身就可以独立成一门课程,但由于是面向本科生的内容,因此很多内容压缩于一章来讲解,同时由于课时所限,完全不能将相关的内容讲透讲通;例如:神经计算中的神经网络,与模糊逻辑控制的相关理论与应用。
3) 教学手段单一,教学过程中缺乏师生之间的沟通与交流。经过自己的实践教学及对兄弟院校的人工智能的教学内容与教学手段的调研,同时也在学生之间进行沟通交流,发现多数同学反映,理论与应用虽然前沿,但是在学习过程中,教师教学手段单一,内容枯燥乏味,一般的教学模式,多采用“老师讲,学生听”的方法,整个教学效果并不理想。
4) 考核方法不科学,不能体现学生实际的学习情况。目前对于课程学习的考核采用闭卷考试的方式,很多考点有的同学根本不理解,完全死记硬背,考后又将内容丢弃,从学习的效果来讲,收获甚微且完全没有达到真正学习及应用的能力。
3教学方法改进
3.1注重激发学生的学习兴趣
科学家爱因斯坦曾说过:“兴趣是最好的老师。”如何在教学工作中激发和培养学生的学习兴趣,提高他们学习的主动性和积极性是当前教学改革中迫切需要解决的重要问题。
在实际的课堂教学中发现,刚开始听课由于有兴趣学生整体学习的积极性很高,但是一段时间过后发现部分学生由于教学内容抽象,难点比较多,不便于理解,兴趣日渐变少,针对此种情况,可以采用任务驱动式教学或案例教学。
例如:在讲专家系统章节时,在授课之前先通过互联网,采取案例教学法,给学生们实时在线演示一个医疗专家诊断系统,演示其中的功能,同时与学生互动,以问答式与学生互动,了解目前专家系统的具体应用、可以解决的问题、给人民生活带来的益处等。通过这种教学的形式,一方面可以激发学生的学习兴趣;另一方面也使同学们体会到人工智能与我们生活的贴近程度。第二步,采用任务驱动法,具体来说,它是指教学全过程中,以医疗专家诊断系统若干个具体任务为中心,通过完成任务的过程,介绍和学习基本知识和具体设计方法。
3.2注重教材选择
这一任务的执行者主要是由教研室主任或任课老师来完成。目前在各高校中所使用的人工智能相关教材的种类繁多,章节和内容的设置上也存在差别。笔者在订阅教材或参加教材展销的活动中,都比较重视人工智能教材的情况,通过比较发现,有的教材内容及难度太低,完全不符合高等本科院校的要求,而部分出版社的教材则是内容及章节安排内容太多太泛,有些知识点讲的又过于深奥,限于学时所限也不适合选用。在选教材方面,除了关注内容方面外,还要注重书上所讲的一些实例,注重这些例子的典型性、时效性及新颖性,例如,部分教材在自动规划这一章,选用机械手作为例子来说明积木世界的机器人规划问题,还有一些选择关节机器人,前些年这样的机器人技术确实是个难点,但是依据现在成熟的机器人技术,无论是国际还是国内都已不再是技术难点,再拿这个例子去配合理论去讲解,无论内容还是形式都稍显陈旧,目前机器人技术发展水平基本上达到尽可能高仿真状态。
3.3运用现代化的多媒体教学手段
针对人工智能课程相关内容比较抽象,公式推导比较繁琐,除了具有完善的教学大纲、合理的教学计划以及好的教材外,还应该根据学校的实际硬件条件尽可能地选择多媒体教学手段来辅助教学。因此在实践教学中,配合教学内容,充分利用计算机、投影仪以及互联网的优势,结合多种教学方法与手段组织整个教学过程。例如:在讲述搜索推理技术时,使用一些小的演示软件,将相关推理技术的理论通过动画的形式一步一步演示出来;在讲专家系统相关理论知识时,尤其是各种类型的专家系统,采用互联网上的一些在线视频资源为例,给同学进行详细讲解,同时结合农业院校的特点,在线资源有如农业专家系统或动物专家诊断系统等,这样学生可以加强对理论知识的理解,同时也体会到理论不再是抽象空洞的文字描述;在自动规划这一章,给同学们选择演示发达国家目前研制的各种类型机器人,通过这些形象生动、行为举止逼近真实人的机器人来给学生讲理论,这样学生通过观看视频资源,不仅可以拓宽知识面及视野,同时也可以及时地了解国际及国内机器人的发展水平及差距,不断更正自己的错误观点并更新自己新的专业认识,另一个方面也可以同时激发学生们的学习热情和积极性,这一点在课堂实践教学中得到验证,得到广大同学的认可和接受,整个教学课堂不再那么单调枯燥呆板了,基本可以达到在娱乐中传授专业知识。
3.4加强对实验教学的重视
目前高校在人工智能的教学过程中,实验所占的学时比较少,有的甚至就不安排实验课学时;另外实验内容也相对比较简单,应用不到理论课堂上所学到的人工智能原理,实验效果不是很好。面向人工智能课程的程序设计语言,多采用Prolog程序设计语言,该语言是一种基于一阶谓词的逻辑程序设计语言,它在AI和知识库的实现技术方面具有十分重要的作用,具有表达力强、表示方便、便于理解、语法简单等优点。但在整个实验教学环境也遇到了如下问题:首先是目前有关人工智能的专门配套实验教程很少;其次是即使有诸如《面向人工智能程序设计Prolog》教程,则主要是侧重介绍这门自然语言的程序设计,而其中很多部分与AI实验环节关联度不大,另外教材价位也比较高。针对此种情况,笔者在24个学时的实验教学过程中,安排7个实验内容,其中最后一个专家系统的设计与实现作为一个综合性实验来设计。在进行实验教学的过程中,首先参考多本Prolog程序设计教程,选择其中与实验教学计划中相关的内容,专门编写相应的电子教程,同时也结合我校学生本身的特点[4],有侧重地体现和编写,总的目的是给学生一份完整的、系统的、规范的电子教程。这样做的目的是:一方面作为学生参考的技术文档;另一方面也可以节省学生的部分经济开支。电子教程的结构分为三个部分来完成,首先为人工智能理论及原理,Prolog语言的使用说明;其次具体的例子演示(均经过调试正常运行);最后为布置给学生具体的实验内容及相关题目,以提供给学生自己动手实践的机会。此外在实验教学过程中,同时也会给学生们自由发挥的机会,比如专家系统的设计与实现作为一个综合性实验,学生可以采用Prolog编程实现,也可以采用其他自己擅长的程序设计语言,例如有的同学选择C语言、VC++、Visual Basic、Java及网页开发设计语言ASP/JSP等,此外在实验内容方面,实验递交的专家系统涉及多个领域(有动物辨别、医疗诊断、动物养殖咨询等专家系统)、范围也颇广,实验内容重复性很小,在设计过程中,绝大部分同学均是结合自己的兴趣爱好来完成设计。
4结语
人工智能的研究成果将能够创造出更多、更高级的智能“制品”,并使之在越来越多的领域超越人类智能,同时将为发展国民经济和改善人类生活做出更大的贡献。作为一名当代的大学生有必要学好这门课程,但是根据实际教学情况,教师与学生仍然需要继续进行相应的研究与发展,只有不断地探索和提高,才能使我们的教学工作更上一层楼,才能培养出符合时代和社会需求的人才。另外人工智能与农业等方面存在很多结合应用的契机,这样计算机就可真正地服务于社会、服务于人类、服务于农业、应用于农业、发展农业。
参考文献:
[1] 蔡自兴. 人工智能及其应用[M]. 3版. 北京:清华大学出版社,2007.
[2] 陈峰,文运平. 浅谈人工智能课程的教学[J]. 消费导刊,2006(12):123.
[3] 赵蔓,何千舟. 面向21世纪的人工智能课程的教学思考[J]. 沈阳教育学院学报,2004,6(4):131-132.
[4] 王莲芝. 高等农林院校人工智能教学的探讨[J]. 高等农业教育,2003(12):64-65
Study of the Artificial Intelligence Teaching Methods
HAN Jie-qiong1, YU Yong-quan2
(1. School of Computer Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
2. School of Computer, Guangdong University of Technology, Guangzhou 510075, China)
关键词:高校;人工智能;伦理道德教育
中图分类号:G642.0文献标志码:A文章编号:1674-9324(2019)41-0144-02
一、人工智能课程伦理考虑的基本内涵
人工智能课程中进行伦理考虑,是在人工智能课程中有针对性地加入道德教育的元素。在方式上,可以借用西方的“隐形教育”方式。在内容上,必须符合中国的人工智能发展态势,更要受中国社会主义核心价值体系的引导。目前中国的人工智能课程,过度偏向于技术性。尤其是许多社会机构提供的课程,更是偏向于功利性,目的在于让学习课程的学习者快速获得工作。因此,必须从源头入手,对这些社会机构进行一定的约束和规范,对人工智能课程内容进行整体的架构。
二、高校人工智能课程中伦理考虑的必要性
(一)我国对于科技工作者职业道德建设的要求
首先,科技工作者的职业道德建设是促进社会治理体系现代化的必然要求。加强社会治理制度建设,一靠法治,二靠德治。中国正聚焦力量加强自主创新,科技是第一生产力。基于当代中国语境下,科技工作者的职业道德建设就至关重要。科技工作者对自己的社会责任与伦理责任应该有着充分的理解,在科研活动中既要着眼于为社会提供科学技术上的新成果,同时也要强调在伦理道德建设中起到应有的作用。
其次,从长期看,科技工作者的职业道德建设利于国家科技的发展,利于促进科技难题的解决。发展是连续和间断的同一,科技发展不能一蹴而就。在面临科技瓶颈问题时,就更要求科技工作者具有坚韧不拔的品质和无私奉献的精神。这些精神都是进行职业道德教育中的重要内容,也是科技工作者承担的社会角色中必不可少的特质。
最后,高尚的职业道德是科技工作者奋进的不竭动力。一个科技工作者只有站在最广大人民的立场上,奉献自我才能成就事业。随着全球化的发展,受西方“享乐主义”的负面影响,科技工作者只有更加坚守自我、承担社会责任,才能具有不断前进的精神支柱。
(二)对解决人工智能伦理困境的源头性作用
随着人工智能应用领域的广泛化,以及应用群体的普及化,难以避免的带来一些伦理问题上的困境。例如伦理学中经典的“电车难题”,在当代科技发展中也出现了在人工智能领域的“无人车难题”。无人车产生事故的责任归属与分配就是目前很多学者在关注的伦理问题。人工智能的发展对当前的法律规制,还有现存的人伦规范都产生了挑战。人工智能的未来发展方向,在操作性上要避免技术鸿沟,在设计过程中要坚持算法公开化、透明化,并且在出现数据漏洞时应尽快地进行自我修复。这对于科技工作者自身的素质提出了很高的要求,不但要求科技工作者自身的知识素质与知识能力过硬,而且要求科技工作者要严于律己,具有较高的思想道德素质。要求科技工作者对于人工智能的发展保持理性的态度,坚持为国为民。许多科幻电影和小说中都体现了未来人工智能发展到一定阶段时,人与机器产生的情感迷思。作为科技工作者,在设计与调整过程中都应保持情感中立,勇于承担社会责任。目前我国正处于人工智能发展的初级阶段,人工智能尚不能拥有自主意识,人工智能的行为责任必须要找到其背后的拥有自主意识的人。无论是现阶段还是未来,作为人工智能产品开发者与设计者的科技工作者树立正确的价值观和承担相应的社会责任是十分必要的。科技工作者的知识层次与道德品质在某种程度上说,是研发人工智能产品的起点。因此,对科技工作者的成长过程中进行持续的道德教育,使其树立高尚的道德观念,对于解决许多人工智能带来的伦理困境都具有源头性、基础性的作用。
三、高校人工智能课程与伦理道德教育的结合方式探索
(一)高校人工智能课程资源的充分运用与更新
从资源形态上看,实物化资源与虚拟化资源,线上资源与线下资源都应充分运用。随着智能校园的普及,有基础条件的地区与校园可以充分运用好身边的人工智能。人工智能课程是一门理论与实践相结合的课程,因此课程的内容也不能仅停留在理论层面。除了对于学术资源的运用,也应当结合实体的人工智能产品进行学习。但因为人工智能的发展程度还没有普及化,人工智能机器人也远没有达到触手可及的程度。因此运用新媒体技术,通过虚拟现实的手段进行在教学过程中的知行结合是可以尝试的路径。VR技术在网络设备硬件教学中可以节约成本,便于人工智能课堂的普及化。在理论教学中,可以通过与虚拟机器人的交互增强趣味性。VR技术有3个最突出的特点:交互性、沉浸性和构想性。课程设置者可以充分借助VR的沉浸性设置相应的场景,让课程学习者通过对特定道德场景的判断引出思考。这种新媒体手段既可以更新原有课堂知识的教学教法,更适合作为伦理教育走入人工智能课堂的重要媒介。
从资源时态上看,人工智能课程资源必须随着人工智能的发展而不断更新。从现实角度来看,最初开设人工智能课程时,其教学目标还是相对简单的——即培养学生的创造性与知识能力。但随着人工智能的普及应用,产生了许多人工智能语境下的道德困境。从指导思想来看,我国逐步走向世界舞台,随着实力增强指导思想也是不断变化的,新时代会提出新目标,为了实现中华民族的伟大复兴,课程内容的丰富也是十分必要的。因此,人工智能课程若要符合时代需要,就需要不断地更新课程资源。人工智能这一学科是具有学科交叉性的,与之相关各个领域的最新前沿问题都需要结合相应的道德教育,只有这样才能适应时代的发展。
(二)高校人工智能课程内容的合理架构
对于不同年龄层次的人工智能课程,必须考虑到不同群体的教育规律。提出合理的教育目标,用不同群体可以接受的方式方法才能达到最优的教学效果。我国人工智能课程目前的课程架构中,已经有学者进行了分年龄层次的研究。人工智能课程可以规划为专业性逐渐增强的、从边缘到中心的课程层级系统。对于高校本科生和研究生来说,人工智能课程设置内容必须具有专业性。在上文的课程体系建构中添加了艺术、文学、哲学等内容,其中包含对于人工智能伦理学的思考与认识。但在某种意义上这些青年的社会价值观就代表了未来科技工作者的社会价值观。因此在这一阶段,人工智能课程的架构与实施,国家应加以引导和监督。一方面需要建立统一标准的高校人工智能课程体系,另一方面在應对课程具体内容的落实方面给予一定程度的监督。
(三)在高校人工智能课程教学过程中充分运用案例
首先应充分运用学术案例,例如度量学习,在其基础上的迁移学习,以及发表在《机器学习》、《数据挖掘》等顶级期刊上的论文。使课堂具有含金量,可以说这也是国家发展与关注的重点。通过学术性经典案例的学习可以拥有不一样的视角,通过历史发展的角度去看人工智能技术的演变与发展。其次应充分运用具体案例。在人工智能课程中对于许多道德问题,不应抽象地去讨论,而应该具体地去讨论。也可以让学生与AI系统进行直接的问答,如:我们能保证它们稳定可靠吗?我们应该如何去测试人工智能?人工智能课堂中既要包容学生多元化的答案,不压抑创造性又要对于错误的思想进行思想转化,这就需要教育者具体问题进行具体分析了。
人工智能专业要学哪些课程
数学基础课程:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析等。
算法基础课程:人工神经网络,支持向量机,遗传算法等,还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM。
人工智能是一个综合学科,人工智能专业的主要领域是:机器学习、人工智能导论、图像识别、生物演化论、自然语言处理、语义网、博弈论等。
人工智能专业就业方向
1、机器人设计、制作相关方向
学习人形机器人相关技术和知识,可以成为当今和以后国家急需的机器人人才,系统了解机器人结构、应用和设计开发,培养科学的工科思维方式,激发兴趣、自由发挥创作、培养沟通、协调、专注能力。
2、基于AI相关知识和技能的各个工种方向
利用AI和机械臂的结合,可以培养动手、制造,维护和解决问题的能力。桌面机械臂的课程,是引向人工智能技工的就业方向;AI技工需要掌握轻工业设备的使用和维护。
3、编程相关的方向
通过学习机器人编程课程,你能领悟或培养出工程结构思维和编程思维,这也是AI时代里任何工作都需要具备的应用技能,部分优秀的学生还能晋级为国家都需要的人工智能高级编程人才。
4、新制造和新设计相关方向
3D打印是未来新制造的基石技术, 3D打印相关技术,将为你打开一扇通往新制造、新设计的就业大门。不管以后你是上班还是自主创业,3D打印技能和思维都能助你一臂之力。
第一:智能化是未来的重要趋势之一。随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。人工智能相关技术将首先在互联网行业开始应用,然后陆续普及到其他行业。所以,从大的发展前景来看,人工智能相关领域的发展前景还是非常广阔的。
第二:产业互联网的发展必然会带动人工智能的发展。互联网当前正在从消费互联网向产业互联网发展,产业互联网将综合应用物联网、大数据和人工智能等相关技术来赋能广大传统行业,人工智能作为重要的技术之一,必然会在产业互联网发展的过程中释放出大量的就业岗位。