时间:2024-03-30 08:30:56
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇热力学在生命科学中的应用,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
关键词:配位化学;无机化学;配位化合物;研究方向
一、配位化学的起源与研究范围
配位化学是在无机化学基础上发展起来的一门边沿学科。它所研究的主要对象为配位化合物(CoordinationCompounds,简称配合物)。早期的配位化学集中在研究以金属阳离子受体为中心(作为酸)和以含N、O、S、P等给体原子的配体(作为碱)而形成的所谓“Werner配合物”。第二次世界大战期间,无机化学家在围绕耕耘周期表中某些元素化合物的合成中得到发展,在工业上,美国实行原子核裂变曼哈顿(Manhattan)工程基础上所发展的铀和超铀元素溶液配合物的研究。以及在学科上,195l年Panson和Miler对二茂铁的合成打破了传统无机和有机化合物的界限。从而开始了无机化学的复兴。
当代的配位化学沿着广度、深度和应用三个方向发展。在深度上表现在有众多与配位化学有关的学者获得了诺贝尔奖,如Werner创建了配位化学,Ziegler和Natta的金属烯烃催化剂,Eigen的快速反应。Lipscomb的硼烷理论,Wnkinson和Fischer发展的有机金属化学,Hoffmann的等瓣理论Taube研究配合物和固氮反应机理,Cram,Lehn和Pedersen在超分子化学方面的贡献,Marcus的电子传递过程。在以他们为代表的开创性成就的基础上,配位化学在其合成、结构、性质和理论的研究方面取得了一系列进展。在广度上表现在自Werner创立配位化学以来,配位化学处于无机化学趼究的主流,配位化合物还以其花样繁多的价键形式和空间结构在化学理论发展中。及其与其它学科的相互渗透中。而成为众多学科的交叉点。在应用方面,结合生产实践。配合物的传统应用继续得到发展。例如金属簇合物作为均相催化剂,在能源开发中C1化学和烯烃等小分子的活化,螯合物稳定性差异在湿法冶金和元素分析、分离中的应用等。随着高新技术的日益发展。具有特殊物理、化学和生物化学功能的所谓功能配合物在国际上得到蓬勃的发展。
自从Werner创建配位化学至今100年以来,以Lehn为代表的学者所倡导的超分子化学将成为今后配位化学发展的另一个主要领域。人们熟知的化学主要是研究以共价键相结合的分子的合成、结构、性质和变换规律。超分于化学可定义为分子间弱相互作用和分子组装的化学。分子间的相互作用形成各种化学、物理和生物中高选怿性的识别、反应、传递和调制过程。而这些过程就导致超分子的光电功能和分子器件的发展。
二、我国配位化学的研究现状
我国配位化学的研究在前几乎属于空白。1949年后随着国家经济建设的发展,仅在个别重点高等院校及科研单位开展了这方面的教学和科研工作,60年代中期以前。主要工作集中在简单配合物的合成、性质、结构及其应用方面的研究。特别是在溶液配合物的平衡理论、混合和多核配合物的稳定性、取代动力学、过渡金属配位催化以及稀土和W、Mo等我国丰产元素的分离提纯以及配位场理论的研究。除了个别方面的研究外,总体来说与国际水平差距还较大。
80年代后。在改革开放政策指引下,我国的配位化学取得了突飞猛进的发展。我国配位化学研究已步入国际先进行列,研究水平大为提高。特别在下列几个方面取得了重要进展:
(1)新型配合物、簇合物、有机金属化合物和生物无机配合物,特别是配位超分子化合物的基础无机合成及其结构研究取得丰硕成果,丰富了配合物的内涵。
(2)开展了热力学、动力学和反应机理方面的研究,特别在溶液中离子萃取分离和均向催化等应用方面取得了成果。
(3)现代溶液结构的谱学研究及其分析方法以及配合物的结构和性质的基础研究水平大为提高。
(4)随着高新技术的发展,具有光、电、热、磁特性和生物功能配合物的研究正在取得进展。它的很多成果还包含在其他不同学科的研究和化学教学中。
我国配位化学的进展具有一系列特点。作为化学的重要分支领域之一的配位化学。在其学科本身发展的同时创造出更为奇妙的新材料,揭示出更多生命科学的奥妙。在研究对象上日益重视与材 料科学和生命科学相结合。在从分子进到材料合成的研究中更加重视功能体系的分子设计。金属离子在生物体系中的成键。除维生素B12中的Co-C键以外,几乎都是以配位键形式结合。其功能体系组装是一个更为复杂的问题。这时要求将正确的物种放在正确的位置(在与动力学有关的问题中,还要按着正确的时间)才能发挥应有的功能。高效、经济和微量的组合化学的应用,将有助于分子合成和设计的实践。
从超分子之类的新观点研究分子的合成和组装,在我国日益受到重视。化学模板有助于提供组装的物种和创造有序的组装,但是其最大的困难在于克服热力学第二定律所要求的无序。这时配位化学家的任务之一就是和热力学进行妥协。尽管目前我们了解一些局部的组装规律和方法。但比起自然界长期进化而得到的完满而言。还有很大差距。正如有了一群能分别演奏各种乐器的音乐家。若没有很好的指挥。还不能演奏出一场满意的交响乐。其原因就是缺乏有意识地进行组装。对于组装的本质和规律。有很多基础性研究有待深入进行。
三、配位化学的研究方向
作为边沿学科的配位化学日益和其他相关学科相互渗透和交叉。正如Lehn所指出。超分子化学可以看作是广义的配位化学。另一方面,配位化学又是包含在超分子化学概念之中。配位化学的原理和规律,无疑将在分子水平上对未来复杂的分子层次以上聚集态体系的研究起着重要作用。其概念及方法也将超越传统学科的界限。我国配位化学家在进一步促进它和化学内有杌化学、物理化学、分析化学、高分子化学、环境化学、材料化学、生物化学、以及凝聚态物理、分子电子学等学科的结合方面有了很好的开端。进一步的发展必将给配位化学带来新的发展前景。
中医是我国传统、独创的治疗方式,但是,中药制药的制药手段和方式正在突破传统工艺,如中药配位化学研究就是一个极有发展前途的新的研究方向。
我国幅员辽阔,资源丰富。经济建设中有备方面的要求。还存在一些无人问津的薄弱领域,例如配位光化学、界面配位化学、纳米配位化学、新型和功能配合物以及配位超分子化合物的研究。金属配合物的研究有明显的应用背景,具有开发成重大经济效益的潜力。它的基础和理论性研究也处在现代化学发展的前沿领域。对下一世纪我国化学学科的发展。必将产生深远影响。
【参考文献】
[1]翟慕衡.配位化学[M].北京:安徽人民出版社,2007-09
[2]李英华,吕秀阳,刘霄,柳叶.中药配位化学研究进展[J].中国中药杂志,2006年8月 31卷第16期
1.1光谱法研究含氟卟啉-蒽醌化合物与DNA相互作用卟啉类化合物具有较强的吸光和发光性能,是一种良好的大环芳香系光敏剂,蒽醌类化合物具有良好的DNA光断裂特性,它们易于插入DNA碱基对之间,以不同的作用机理使DNA断裂。含氟化合物具有强的生理活性,它有可能和生物组织相互作用而显示出抗肿瘤作用。黄冈师范学院的赵胜芳等[4]采用微波辐射合成了以二肽键联的含氟卟啉-蒽醌化合物及其金属锌配合物。用紫外可见光谱法和荧光光谱滴定法考察了两种合成的目标化合物与质粒DNA的相互作用,探讨了它们与DNA的作用模式。即卟啉-二肽-蒽醌化合物与DNA发生自堆积的外部键合。该研究将在生命科学、医药学、配位化学的研究中得到广泛应用。
1.2基于DNA自组装无酶循环放大猝灭化学发光法检测核酸G-四链体DNA酶是一类具有催化功能的核酸分子,由于富含G的核酸分子可以在血红素存在下,形成G-四链体的结构,表现出类似于辣根过氧化物酶的活性,可以催化H2O2氧化鲁米诺产生化学发光。基于目标催化DNA自组装,广西师范大学的褚志丹等[5]基于G-四链体是富含鸟嘌呤碱基的DNA序列形成的一种特殊的DNA二级结构,当其与血红素结合后,可显示较强的过氧化物酶催化活性的事实,利用DNA自组装、G-四链体的催化化学发光性能,构建了一种无酶循环放大猝灭化学发光生物传感新体系,用于DNA检测。该传感系简单、低耗、灵敏。该研究将在生命科学、医学及生物学研究中得到广泛应用。
1.3基于DNA链置换酶辅助信号放大G-四链体脱氧核酶DNAzyme催化化学发光检测腺苷腺苷在各种生物组织和器官功能的生理活性调节中起着重要的作用。因此检测生物体中腺苷含量意义重大。化学发光检测具有灵敏度高、线性范围宽、分析速度快等优点。广西师范大学的李梅等[6]利用富含G碱基的DNA在血红素和K+存在下,形成G-四链体结构并表现出过氧化物酶活性的特点,结合DNA链置换反应和核酸内切酶的置换反应,构建了一种基于DNA链体脱氧核酶DNA链置换反应和核酸内切酶辅助信号放大的G-四链体脱氧核酶(DNAzyme)的催化发光检测腺苷的新方法。该方法灵敏度高、选择性好、检测限量为0.5μmol/L,用于人血清中腺苷的检测效果良好。
1.4南海红树林真菌Fusariumsp.301次级代谢产物研究红树林生态系统是一种分布在热带、亚热带潮间带具有海洋环境特有森林类型的木本植物群落,其特殊环境孕育出的红树林内生真菌是此生态系统的主要降解者,也是海洋真菌的第二大生态群落[7]。从1994年至今,国内外对海洋真菌次级代谢产物的研究表明,红树林内生真菌的次级代谢中含有极其丰富的结构新颖且在抗肿瘤、抗氧化、抗真菌、细菌等药理方面表现出良好活性的化合物。海洋真菌活性代谢产物已经成为重要的新型药物来源之一。为了寻找结构新颖且具有药理活性的海洋真菌次级代谢产物,中山大学的方平等[8]对一株采自海口桐花树的红树林内生菌Fusariumsp.301次级代谢产物,根据化合物的理化性质、采用正反相硅胶、凝胶柱层析法和高效液相色谱法对其次级代谢产物进行分离纯化,通过波谱解析以及文献数据对照的方法,分离得到并确定了5个链红菌素类化合物的结构。该研究将在生命科学、生物学及医药学中得到广泛应用。
1.5盐酸氨溴索的电化学氧化作用盐酸氨溴索(AMB),trans-4-[(2-氨基-3,5-二溴苄基)氨基]环己醇盐酸盐,是治疗呼吸系统疾病的一种特效药物。它对活性自由基(ROS)有不同的清除能力,对羟基自由基(HO•)的清除能力强,对超氧阴离子(O2-)弱,对过氧化氢(H2O2)很少或没有作用。因此研究AMB的氧化作用和过程对了解AMB的生化过程很有意义。为此西北大学的孙杰娟等[9]在酸性水溶液中,研究了盐酸氨溴索(AMB)的伏安行为,参照取代苯胺的伏安特性,说明了AMB的氧化机理。该研究将在生命科学、医药学的研究中得到应用。
2现代有机及生物分析在有机物分析分离科学中的应用
2.1壳聚糖衍生化杯[4]芳烃键合硅胶固定相对八种单取代苯的分离及分析壳聚糖大分子中有活泼的羟基和氨基,具有较强的化学反应能力和生物相容性;杯芳烃的孔腔大小可调,构象和取代基可以人为控制。郑州大学的卢静等[10]利用二者的优点将其结合制备了一种新型固定相并对八种单取代苯进行了分离分析研究。他们的做法是采用自制壳聚糖衍生化杯[4]芳烃键合硅胶固定相(CBS4),对8种单取代苯(苯胺、苯甲醛、苯酚、甲苯、氯苯、溴苯、碘苯、丁苯)进行了分离、热力学、疏水作用的研究。实验结果表明,8种单取代苯在CBS4上分离时间短,分离效果好,符合反相色谱机理;分析物的保留时间会随柱温的增加而减小;疏水作用在分离单取代苯时起着重要作用。该研究将在分析分离科学、环境科学、生物学中得到应用。
2.2Cu2+-羧甲司坦络合物的光谱特征及其应用羧甲司坦为一种黏痰调节剂,用于治疗支气管炎、支气管哮喘等疾病引起的痰液黏稠,咳出困难者,但用量过大会有医疗副作用。为此广西大学的林瑜等[11]根据羧甲司坦分子结构特征,推测其分子应该具有与金属离子络合的条件。通过紫外可见分光光度法考察了羧甲司坦与各种金属离子络合的可能性。他们的研究发现,羧甲司坦与Cu2+可以形成稳定络合物,该络合物在237nm处有一个最大特征吸收峰。确定了络合物的络合比羧甲司坦Cu2+为2∶1,络合物稳定常数为4.98×109,在237nm处络合物的摩尔吸光系数最大为4.74×103L/(mol•cm)建立了基于Cu2+络合的紫外分光光度法定量测定羧甲司坦的新方法。该方法简单、快速、灵敏、准确,且成功的应用于药厂的产品分析,结果与标量相符合。
3结束语
【关键词】生物医学工程普通化学课程教学改革
【中图分类号】G【文献标识码】A
【文章编号】0450-9889(2012)10C-0135-02
一、生物医学工程专业的特点
生物医学工程旨在运用工程技术的原理和方法,研究和解决生物学和医学问题的新兴、边缘、交叉学科。其主要任务是:从工程学角度研究、解释生物体特别是人体的生理、病理变化过程。其主要研究方向包括:生物系统的建模与仿真、生物医学信号的检测与分析、生物医学成像和图像处理、电磁场生物效应、脑科学与认知、人工器官以及相关的医疗设备的研制等。生物医学工程学是医疗卫生健康、保健性产业的重要基础和动力,它所带动的产业在国民经济中占有重要地位,世界各国都在不断加大对生物医学工程的投入。经过本专业培养的学生,不仅应能够在医学中较熟练地运用电子技术、信息处理技术、计算机技术,而且还应具备生物科学理论基础以及医工结合的研究和实验技能,以及医疗电子设备、医学信息处理的初步开发、研究、应用、维护和管理能力。本专业毕业的学生择业面宽,就业适应能力强。毕业生既可以在医疗仪器行业从事新产品的开发与应用,又可以在医院医学工程部门比如医学仪器、医学影像设备与技术,国家技术监督部门,以及其他电子技术、计算机技术、信息产业等部门从事研究、开发、维护与维修、教学及管理等方面的工作。此外,本专业的学生还可以进入生物医学工程、电子信息工程、通信工程与技术、计算机应用技术等方向继续深造。生物医学工程专业培养要求知识方面:打好坚实的数学、化学、物理学、外语、计算机与信息科学和电子技术的基础,掌握宽厚的生物医学工程专业知识,具备宽广而深远的科技视野、强烈的求知欲望、事业心和创新意识。
二、普通化学课程及其教学的基本要求
(一)课程的地位、性质和任务
化学是在原子、分子层次上研究物质的组成、结构、性质及其变化规律的一门科学。在解决人类最关心的环境、材料、能源、医药保健、粮食增产、资源利用等问题中,化学科学处于中心地位。而普通化学则是化学的导言,它包含了现代化学的基本理论、基础知识和基本技能,是现代大学生应该普遍掌握的自然科学基础知识的重要部分,是高等院校非化学专业必修的一门重要的基础课。通过本课程的学习,学生在一定程度上掌握一些必需的近代化学基本理论、基本知识和基本技能,并了解这些理论、知识和技能在生物医学工程领域中的应用;培养学生具有应用化学观点分析生活、生产中的一些简单的化学问题的初步能力;为今后的专业学习和工作打下一定的化学知识基础。
(二)课程教学的基本要求
通过对普通化学课程的学习,学生应掌握化学热力学、化学动力学、化学平衡以及原子、分子结构等方面的基本理论和基础知识;掌握一定的元素化合物的基本知识;掌握重要的有机化合物结构、性能以及一些重要的有机合成反应;掌握分析化学基本原理和一些重要的化学、仪器分析方法;并了解化学在生物医学、环境保护、新材料的研究与应用、能源开发与利用以及生命科学研究等领域的作用,为生物医学工程专业课程打下化学理论基础。
三、普通化学教学改革的具体措施
(一)修改教学大纲
应根据生物医学工程专业的培养方案,修改普通化学的教学大纲,并将本课程分为理论教学和实验教学。理论课时为32学时,实验课时为16学时。首先从普通化学课程的地位、性质和任务来定位。普通化学则是化学的导言,它包含现代化学的基本理论、基础知识和基本技能,使学生掌握化学热力学、化学动力学、化学平衡;掌握一定的元素化合物的基本知识;掌握重要的有机化合物结构、性能以及一些重要的有机合成反应;掌握分析化学基本原理和一些重要的化学、仪器分析方法;并了解化学在生物医学以及生命科学研究等领域的作用,为生物医学工程专业课程打下化学理论基础。
为了培养学生的动手能力,应让学生熟悉化学实验及实验室的基本规则;培养学生认真观察实验现象、正确记录和实验数据的习惯;了解常用化学仪器的性能、使用和维护方法。同时,应培养学生正确处理实验数据,正确书写实验报告的能力;促使学生逐渐养成严谨的科学态度、实事求是的实验习惯和工作作风,并初步具有独立思考、独立设计实验、独立进行实验以及独立分析、综合问题的能力,从而为后续课程的学习和进一步的科学研究打下基础。主要实验项目如下:玻璃工操作实验(2学时);离解平衡与沉淀一溶解平衡(2学时);铜、锌、银、镉及其离子的鉴定(2学时);烃的性质和鉴定(2学时);粗盐的提纯(4学时)。
值得注意的是,理论教学大纲和实验教学大纲的修订,应体现专业特色明确、重点突出、思路清晰的教学思路。
(二)探索新的教学方法
1.理论联系实际。普通化学是非化学化工类专业学生开设的一门基础化学课,主要介绍化学学科基本情况,化学各个分支对社会发展的作用,化学学科的发展现状、发展趋势,化学与其他自然科学、工程技术学科的关系。因此,普通化学课程知识点多、内容复杂、概念跨度大,需要与学生所学专业及实际情况有机结合起来。然而,在教学实践中,本课程的教学课时不足,教学过程中,化学理论和化学与专业结合选择是,教师往往容易顾此失彼,使化学教学演变成一堆化学名词和专业术语的堆积,枯燥乏味。同时,学生重视度不够、学习兴趣不浓。但是化学知识在各种领域中不断渗透,在日常社会生活中起着越来越重要的作用。面对实际问题,针对生物医学工程专业特点,在教学过程中,教师可首先和学生进行讨论,解决如下问题:(1)学习的原动力。(2)学习的方法和习惯;告诉大学课程内容多,上课进度快、信息量大,并且辅导课和习题课少,要掌握好学习方法;设计了从实验现象一引发思考一理论内容一实验内容一在线测试的教学路线。(3)学习精神,只有更加刻苦才有可能适应大学阶段的学习。通过讨论和示范,激发学生的学习兴趣,以求达到最佳教学效果。
将普通化学中基础部分的讲授与中学化学教学良好接轨,在上课时首先回顾一下中学化学相关知识点,再引入新的知识点。在讲例题的采用为“先示例、后解析”的方式。上实验课,采用实验前提问和预习,代替实验课先讲实验原理和步骤的方式,要求、鼓励学生预习和思考。在指导实验时,及时发现问题,引导学生深入思考。建议学校平时适当开放实验室,为对化学感兴趣的学生提供实际操作平台。鼓励学生根据个人兴趣参加项目创新活动,和指导教师一起选题,查阅文献,学习相关知识,进行科研活动。当然,也可结合其他课外科技活动展开教学。
2引入实例。在实际的教学过程中,针对生物医学工程专业特点,可适当引入生活和专业应用中的具体实施例。课堂讲授时,利用具体实例,引入每一章节内容,再将每一章节的重点、难点内容在学生深入挖掘的基础上,将内容分解成若干小问题或将若干相关小问题合并起来,指导学生联想、讨论思考、联想归纳、比较总结本课程的目标是系统讲授化学基本理论和知识,加强基础,提炼基本,按需拓宽,注重实践性和应用性。
在讲到酸碱时,可把知识点延伸,把电子舌知识和酸碱性结合起来。电子舌测量酸味时就是利用酸性,检测出酸的浓度,也就是将酸的浓度通过化学传感器转化为可检测的信号,信号的强弱就能反映酸的浓度。同样,电子舌检测其他味觉,就是将其味觉物质,通过化学传感器转化为可检测的信号,通过信号的强弱来反映味觉物质的含量,进一步体现味道的内涵。
可引入直观形象的化学反应动画效果,加强学生对反应机理和抽象概念的理解;同时,可采用动态图表,充分发挥各类图形的优势。
3.突出重点,扩大信息量。根据培养方案和生物医学工程专业的特点,可将下列内容列为普通化学的教学重点和难点:热力学的基本概念;盖斯定律和标准生成焓、标准熵、标准吉布斯自由能计算方法;化学反应自发进行的判剧;化学平衡常数、化学平衡移动的规律及有关计算;分散体系的概念及分类;溶液的依数性;胶体分散体系的性质及结构;弱酸、弱碱解离平衡;溶度积规则和溶解平衡;电极电势的概念;用电极电势的数据判断氧化剂和还原剂的相对强弱及氧化还原反应自发进行的方向和程度;配位体的相关概念及命名规则;核外电子运动的特殊性;四个量子数的取值及物理意义。教学难点为:化学反应等温方程式的应用;相似相溶液原理;能斯特方程式的应用;吉布斯自由能变、原电池电动势、氧化还原反应平衡常数的关系。根据重点和难点,可采取理论讲解、PPT、板书和学生互动相结合的教学模式,讲解后再让学生来回答问题,加深学生对重点知识点的印象与理解,在原有知识点的基础上扩大信息量。
【关键词】:渗透 物理 化学 同位素示踪法 光学知识
自然界是一个相互联系的、统一的有机整体,生物学与物理、化学、数学等各门学科之间也是相互联系、纵横贯通的。因此必须加强学科间的横向联系,这样有利于打破因单学科教学而造成的知识、思想的禁锢,解决多学科之间交叉渗透的一些问题.现代生物学研究需要大量运用物理、化学等学科的知识和方法。因此,教师在生物教学中,要加强学生生物学科与其他学科,特别是理化学科之间的联系。培养学生的综合能力,有利于高素质人才的培养。
一、生物与化学的渗透
高中生物内容与化学有着高度的双向渗透性(在大学中甚至就有一门生化学科)。在教材中,几乎每一章都渗透着化学知识,一些生物学的实验现象、实验原理都是建立在一定的化学知识上。这些知识是理解生命现象的基础。但是由于高中生物教材与化学教材知识点存在脱节。对于高一学生而言,高中生物最初一段时间所学的知识如:蛋白质、多肽、氨基酸及肽键的分子结构等知识都难以理解及记忆。因此我上高一课的时候,对一些化学知识进行适当的解释、补充。并且安慰学生生物学在开始时较难理解与记忆,万事开头难吧。以后的知识点好学多了,以防止学生一开始就失去学生物的信心和兴趣。与化学知识的联系渗透的例子主要有:
1.生物组织中的还原糖、蛋白质和脂肪的鉴定原理与化学知识。
在化学学科中学过、做过许多物质的鉴定实验,其原理大多是利用被鉴定的物质与所用的化学试剂发生颜色反应,或者产生沉淀。我们生物学上物质鉴定也利用此原理:如某些化学试剂能够使生物组织(如花生的子叶)的某些有机化合物产生特定的颜色反应。
例如:①可溶性还原糖+ 斐林试剂(水浴加热)砖红色沉淀。
②脂肪 + 苏丹Ⅲ染液(显微镜观察)橘黄色。
③蛋白质 + 双缩脲试剂(要先加NaOH 溶液创造碱性环境再加CuSO4 溶液)紫色反应。
高一学生对什么是还原糖、蛋白质和脂肪还不是很了解,因此先通过直观的实验培养他们学习生物的兴趣。了解生物学是一门实验的科学。
2.蛋白质、核酸、糖类和脂质的结构、性质与化学知识。
还是由于高中生物教材与化学教材知识存在脱节,高一学生有机化学还没有学习。因此许多学生对氨基酸、核苷酸和多肽等结构难以理解。教师除要把有关知识讲透,还是要让学生了解教材知识的脱节问题,以提振学生的信心。
3.同位素示踪法在生物科学中的应用与渗透。
高一学生对放射性同位素的概念还不了解,应适当加以介绍:同位素示踪剂对研究对象进行标记, 可以利用放射性探测技术来跟踪,判断放射性原子通过什么路径,运动到哪里去,以及分布情况等。用于示踪技术的同位素一般是构成细胞化合物的重要元素。例如3H、15N、18O、32P和35S等。在生物科学的许多实验中广泛使用。如:
①分泌蛋白在细胞中合成部位及运输方向。科学家用3H标记的亮氨酸注射豚鼠的胰脏腺泡细胞中,观察放射性同位素的转移情况。从而得到是按照:内质网高尔基体细胞膜的方向运输的。
②光合作用中氧气的来源。1939年,鲁宾和卡门研究光合作用中释放的氧到底是来自于水,还是来自于二氧化碳。他们用氧的同位素18O标记H218O和C18O2,做两组光合作用的实验,最终证明了光合作用中释放的氧全部来自水。
③ 噬菌体侵染细菌的实验。1952年赫尔希和蔡斯用被35S(只标记蛋白质)和32P(只标记DNA)标记的噬菌体分别去侵染未标记的细菌,然后测定子代噬菌体中含放射性同位素的情况,而得到DNA是遗传物质。
此外,在研究光合作用的暗反应(卡尔文循环)、DNA分子半保留复制的确认及胚胎发育的过程等方面也运用到此化学知识。
二、与物理学的渗透
高中生物内容与物理也有着高度的双向渗透性,在《普通高中生物课程标准》所列的具体内容标准中,许多都涉及物理学知识。例如,“使用显微镜观察有丝分裂的细胞”应用了光学知识;在 “叶绿体色素的提取和分离”实验中也涉及光谱的知识;而“神经冲动的产生和传导”则要物理学上的关于电势差的内容。当然,在各个版本教材中,还可能涉及其他的物理学知识。这些物理学的知识对于学生学习生物有着重要的促进作用。下面对涉及到的主要物理学知识做一简介。
1.与光学的联系:
①光学知识和显微镜
显微镜是生物实验常用的仪器之一。在初中阶段,学生已经使用过显微镜,并在生物和物理教材中,对显微镜的结构和原理做了简单的描述。在高中阶段,进一步要求学生使用高倍显微镜来观察各种细胞及结构。(如:花生子叶中脂肪的检测和观察、观察有丝分裂的细胞等实验)。 而显微镜的工作原理就涉及到物理学知识。可以给有兴趣的同学提供有关材料或进行讲座。
②光学知识和色素
必修第一册课本P100的例题:海洋中的藻类植物习惯上依其颜色分为绿藻、褐藻(如:海带)和红藻(如:紫菜),它们在海水中的垂直分布依次是浅、中、深,这与光能的捕获有什么关系?要解释好本题就得让学生先了解有关光学的知识。
在光合作用“叶绿体色素的提取和分离”中也涉及到光谱的知识;在光合作用的研究史上,美国科学家恩吉尔曼的实验就是利用光通过棱镜时的色散,得到叶绿素主要吸收红光和蓝紫光。
③ X射线衍射图和DNA双螺旋结构的提出
必修二在介绍DNA双螺旋结构模型的提出时,出示一张富兰克林使用X射线拍的DNA分子的衍射图,但对这张照片是如何获得、什么意思则没有做说明。如果要了解这张图,就需要物理学上,关于光的衍射的知识。其实从1951年开始,富兰克林、威尔金斯就研究DNA对X射线的衍射,获得了一系列DNA的X射线衍射图谱,沃森和克里克则是根据这些图谱、数据提出了DNA的双螺旋结构模型。从而奠定了现代分子生物学发展的基础,开辟了生命科学的新纪元。
当然在生物教材中还有许多与物理学的渗透点。利用物理因素(X射线、紫外线)提高了基因的突变率;有氧呼吸、无氧呼吸的能量转换效率要联系的热力学第二定律等等。
正因为生物科学与物理、化学等多学科知识的高度双向渗透,高中生物教材中,几乎每一章都渗透着物理、化学的知识,这些知识又是理解生命现象的基础。因此要让学生形成各学科间融会贯通的知识体系;培养和提高学生综合运用知识的能力和创造力,从而造就高素质的人才。
参考文献
关键词:原子力显微镜 探针 RNA聚合酶 分子间相互作用
一、原子力显微镜(AFM)简介
原子力显微镜(AFM)有两种类型:接触式和非接触式,分别基于排斥作用和吸引作用。原子力显微镜(AFM)试验中,探针尖端近似为显微球,则针尖与样品表面间的作用力为:F(Z)=2πR0B/3Z3其中Z为针尖与样品之间的距离,R0为近似显微球针尖的半径,B为一个与物体介电常数有特殊关系的常量。原子力显微镜(AFM)探针安装在一个灵活的悬臂上,激光二极管发出的一束激光经悬臂反射后,打在一个分裂式光电二极管上,当探针在样品表面扫描时,由于样品表面原子结构起伏不平,悬臂也就随之起伏,于是激光束的反射也就起伏。光电二极管将其接收、放大,即可获得样品表面凹凸信息的原子结构图像。原子量级的表面形态记录是原子力显微镜(AFM)特有的性能。
二、原子力显微镜(AFM)的技术特点
原子力显微镜(AFM)本身的优势是其在生物学中得以迅速发展的主要原因。首先,原子力显微镜(AFM)技术的样品制备简单,无需对样品进行特殊处理,因此,其破坏性较其它生物学常用技术(如电子显微镜)要小得多;第二,原子力显微镜(AFM)能在多种环境(包括空气、液体和真空)中运作,生物分子可在生理条件下直接成像,也可对活细胞进行实时动态观察;第三,原子力显微镜(AFM)能提供生物分子和生物表面的分子/亚分子分辨率的三维图像;第四,原子力显微镜(AFM)能以纳米尺度的分辨率观察局部的电荷密度和物理特性,测量分子间(如受体和配体)的相互作用力;第五,原子力显微镜(AFM)能对单个生物分子进行操纵;另外,由原子力显微镜(AFM)获得的信息还能与其它的分析技术和显微镜技术互补。
原子力显微镜(AFM)还具有对标本的分子或原子进行加工的能力,例如,可搬移原子,切割染色体,在细胞膜上打孔等等。综上所述,原子级的高分辨率、观察活的生命样品和加工样品的力行为成就了原子力显微镜的三大特点。
三、使用原子力显微镜(AFM)研究生化过程
原子力显微镜(AFM)能对转录的过程进行实时观察,在加入核苷酸后,沉积到云母上的延长复合物沿着DNA模板单向移动。两个对照实验证实RNAP与DNA的相对移动与转录的实际情况相符。通过PAGE对反应产物进行分析,结果显示与云母结合的复合物具有活性,而且转录的速度与用原子力显微镜(AFM)测得的近似生物分子的构象改变也是原子力显微镜(AFM)的重要观察内容。将尿素酶沉积到云母上并用原子力显微镜(AFM)扫描,在液池中加入尿素后发现,悬臂的垂直波动明显增加,这提示由酶活动引起的构象改变能直接通过原子力显微镜(AFM)记录下来。
原子力显微镜(AFM)在研究分子识别中的应用分子间的相互作用在生物学领域中相当普遍,例如受体和配体的结合,抗原和抗体的结合,信息传递分子间的结合等,是生物体中信息传递的基础。原子力显微镜(AFM)可作为一种力传感器来研究分子间的相互作用。生物素(biotin)和抗生物素蛋白链菌素(streptavidin)间有高亲和力,其相互作用的热力学数据也较为清楚。因而,生物素和抗生物素蛋白链菌素是原子力显微镜(AFM)测定特异相互作用力的良好典型。
原子力显微镜(AFM)在物质超微结构研究中的应用: 原子力显微镜(AFM)可以直接观察到表面缺陷、表面重构、 表面吸附体的形态和位置、以及有表面吸附体引起的表面重构等。原子力显微镜(AFM)可以观察许多不同材料的原子级平坦结构,例如,可以用原子力显微镜(AFM)对DL-亮氨酸晶体进行研究,可观察到表面晶体分子的有序排列,其晶格间距与X射线衍射数据相符。已有文献报道了关于采用原子力显微镜(AFM)对APA薄膜的表面结构进行研究的内容,发现了APA表面的特殊结构,从而揭示了APA表面超微结构对半渗透性的重要意义。目前,利用原子力显微镜(AFM)已获得了DNA、透析薄膜、烷烃分子、脂肪酸薄膜以及多糖等的超微结构的图象。
四、原子力显微镜(AFM)在细胞检测的应用
应用原子力显微镜(AFM)可研究活细胞或固定细胞如红细胞、白细胞、细菌、血小板、心肌细胞、活肾上皮细胞及神经胶质细胞的动态行为。原子力显微镜(AFM)对体外动态细胞的分析具有非凡的能力。这些研究大都把样品直接放置在玻片上,不需要染色和固定,样品制备和操作环境相当简单。用免疫胶体金标记细胞膜则打开了细胞表面抗原高分辨定位之门。原子力显微镜(AFM)细胞成像如:用原子力显微镜(AFM)研究活肾上皮细胞,可在浆膜小斑上以50nm的分辨率观察细胞骨架元素、浆膜浅凹和膜结合丝。用原子力显微镜(AFM)观察血小板的运动,可看到微丝结构、颗粒传输到细胞质外侧及活化中细胞成份的再分配。游走上皮细胞的浆膜可用原子力显微镜(AFM)实时成像。
五、应用前景
原子力显微镜(AFM)现已成为一种获得样品表面结构高分辨率图像的有力工具。而更为吸引人的是其观察生化反应过程及生物分子构象变化的能力。因此,原子力显微镜(AFM)在生物学领域中的应用前景毋庸置疑。而对于原子力显微镜(AFM)技术本身,以下几个方面的进展将更加有利于它在生物学中的应用。大多数生物反应过程相当快速,原子力显微镜(AFM)时间分辨率的提高有助于这些过程的观察。高分辨率是原子力显微镜的优势。其分辨率在理论上能达到原子水平,但目前还没有实现,如何作出更细的针尖将有助于其分辨率的进一步提高。而随着样品制备技术的完善,原子力显微镜(AFM)必将成为生物学领域中一种常规的研究工具。
参考文献:
[1]David p Allison Peter Hinter Dorfer and Wenhai Han ,Biomolecular force measurement and the atomic force microscope, Biotechnology 2002 volume:13 issue:1 47-51
[2]Thomas E Fisher Andres F Oberhanser, The study of protein mechanics with the atomic force microscope, Biochemical sciences 1999 volume:24 issue:10 379-384
[3]李鸿业夏国伟原子力显微镜及其在生物医学中的应用,滨州医学院学报。1997年第20卷第6期:615-617
[4]刘丽丽王金华刘安伟原子力显微镜对APA生物薄膜超微结构的研究,中国生物医学工程学报。1999年第18卷第1期:30-34
[5]戴燕张平城等人免疫球蛋白G的原子力显微镜观察,中国免疫学杂志。1995年第 11卷1期:45-47
[6]邓国宏徐启旺等细菌波动生长过程的原子力显微镜观察,第三军医大学学报。2000年第22卷11期:1111-1112
关键词:生态化学计量学;概念;历史;进展
收稿日期:2011-06-16
作者简介:王振兴(1984―),男,黑龙江齐齐哈尔人,福建师范大学生命科学学院硕士研究生。
中图分类号:F590文献标识码:A文章编号:1674-9944(2011)07-0195-02
1生态化学计量学概念
生态化学计量学(ecological stoichiometry)结合了生物学、化学和物理学等基本原理,包括了生态学和化学计量学的基本原理,考虑了热力学第一定律、生物进化的自然选择原理和分子生物学中心法则的理论,是研究生物系统能量平衡和多重化学元素(主要是碳、氮、磷)平衡的科学,以及元素平衡对生态交互作用影响的一种理论,这一研究领域使得生物学科不同层次(分子、细胞、有机体、种群、生态系统和全球尺度)的研究理论能够有机地统一起来[1]。
2生态化学计量学小史
1862年李比希提出的最小因子定律(Liebig's law of the minimum),这个理论认为低于某种生物需要的最少量的任何特定因子,是决定该种生物生存和分布的根本因素。这个定律阐述的精华就是生物体中元素的组成平衡对于生物体生长是非常重要的。李比希认为化学在动物和植物生理学研究中具有不可替代的地位,许多生命有机体对于贫瘠环境的适应的研究以此为基础产开,大量证据表明,限制性元素的含量不同会影响有机体元素的组成。
1925年,Lotka首先将物理-化学系统热力学定律与生物世界相联系起来,著成了《物理生物学的基础》(Elements of Physical Biology) 一书,提出了一个重要的模型s捕食者-猎物相互作用模型,这个模型定量阐述了生物之间的相互作用关系。许多生态学基础理论由于他的思想的影响得到了广泛的完善和发展。1958年,哈佛大学的A.Redfiel首次提出了Redfield比率:海洋浮游生物的C、N、P有特定的组成,摩尔比为106:16:1,后人认为这个比率不是不变的,而是受海洋环境和生物相互作用的调节。这个假设的提出极大发展了海洋生物地球化学研究。
1986年Reiners 集合前人的研究结果,提出了化学计量学理论在生态学中的应用,并且结合化学计量学理论提出了生态学研究的理论模型。
自Reiners提出生态化学计量学,拉开了化学计量学在生态学中应用的序幕,科学家们在20多年的时间内取得了瞩目的成绩。研究结果显示,不仅群落结构与动态、物种共生、营养级动态、生物的养分限制受生态化学计量学的影响,生态系统养分循环与供求平衡和全球生物地球化学循环等关系也受生态化学计量学的制约。因此,生态化学计量学成了探索从个体到生态系统的统一化的一个重要理论,成为连接分子、细胞、种群、群落和生态系统等不同尺度生物学研究的新工具,为研究营养级动态、生物多样性和生物地球化学循环提供了崭新的视点[2]。
生态化学计量学近年来在国内发展较快。最近的研究不仅包括了不同生态系统类型之间不同演替阶段植物之间生态化学计量特征的差异,还包括了植物叶片生态化学计量学特征的季节变化,以及植物叶片和细根不同器官之间计量特征的关联[3]。
3生态化学计量学在我国的研究进展
3.1不同生态系统类型之间
自从生态化学计量学被作为生态系统研究的一个重要补充理论,已经在需多个方面得到了应用,比如种群动态、森林演替和碳循环。尽管我国在这方面的研究起步较国外玩,但是也在东部南北样带、草地生态系统及全国水平的陆地生态系统做了大尺度的研究。2004年,McGroddy等总结了世界范围内森林生态系统的叶片和凋落物的生态化学计量学特征,发现了不同生物群(温带阔叶林、温带针叶林和热带森林)具有不同的生态化学计量学特征,但有关同一区域不同森林类型间的生态化学计量学研究还未曾报道,于是吴统贵[4]以珠江三角洲3种典型森林类型(常绿阔叶林、针阔混交林和针叶林)为研究对象,分析了各类型优势乔木叶片C、N、P化学计量特征。闫恩荣[5]以浙江天童常绿阔叶林、常绿针叶林和落叶阔叶林为对象,通过对叶片和凋落物C:N:P比率与N、P重吸收的研究,揭示3种植被类型N、P养分限制和N、P重吸收的内在联系。
3.2不同演替阶段之间
2004年,Wardle等研究发现,如果没有灾难性的干扰,当森林生态系统演替到后期时,生产力经常会呈现下降的趋势,而且新鲜的凋落物和腐殖质中氮磷比增加,这说明随着演替进行,森林生态系统受到磷的限制。我国南亚热带森林分布在低纬度地区,是氮限制的区域,而这个地区由于工业化,城市化的迅速发展,存在高氮沉降的现象,所以植被和土壤中氮、磷状况及其比值特点就需要进一步深入研究。刘兴诏[6]选择南亚热带森林演替过程3个阶段(初期、中期和后期)的典型森林生态系统为研究对象,在测定植物与土壤中全氮,全磷含量的基础上,揭示了该地区的森林演替过程中植物与土壤的氮磷化学计量特征。
3.3不同季节变化之间
已有研究表明植物叶片的养分含量随季节而变化。在新叶中N和P随着生长季节的变化而变化,通过研究叶片养分含量季节变化,可以估算叶片养分的转移,植物叶片在凋落前将养分转移到生长组织中,降低了因为叶片凋落而引起的养分损失,提高了植物对养分的利用效率,这是植物保存养分的一个重要途径,可以减少植物对土壤养分的过分依赖。由于N和P是植物生长的重要限制元素,所以N、P在树木体内的转移受到普遍的重视。虽然对叶片养分含量季节变化以多有研究,但进行分析时多是以浓度为基础。当叶片成熟时,干重会增加,因为纤维素和木质素增加了。以干重的百分比来表示养分,那么碳在成熟叶中的积累以及在老叶中的减少将使养分含量的计算产生偏差。因为叶片充分展开后的大小形状变化不大,所以单位叶面积的养分含量变化可以客观地反映养分转移,基于此,薛立[7]对日本中部10 种树木叶片中氮和磷的季节变化及其转移做了研究,更加精确的揭示了植物叶片的养分含量的季节变化规律。
3.4植物叶片和不同器官之间
理解物种性状演化的一个关键是查明植物叶片和不同器官之间计量特征的联系,阐明不同器官结构和功能属性的关系,这对于确定控制功能性状的内在机制以及性状间的比例关系是非常有益的,许多全球生态系统机理模型将因此得到重大改进,周鹏等对调查研究了植物叶片和细根不同器官之间计量特征的关联,以此来探索温带草地草本植物各功能性状在不同器官内是否具有一致的关系;这些性状在不同器官间是否存在一致的相关关系。
4结语
尽管叶片生态化学计量学研究涉及到了植物生态学的多个尺度,但是各个尺度上的生态化学计量学研究并未同步展开。已有的研究显示我国的生态化学计量学特征与全球尺度的生态化学计量学特征有所不同,但是,目前针对生态系统的生态化学计量学的研究,主要是针对植物个体水平和物种水平的研究调查,对于群落水平的研究报道尤为罕见,植物在群落水平和个体水平生态化学计量学特征是否相似,目前还是个未知数,这一问题关系到能否将不同植物个体的特征和生理生态功能与群落以及生态系统的结构、动态相连接,统一各个尺度的相关问题,综合理解群落乃至生态系统水平的化学计量学特征以及相关功能。杨阔[8]等就探讨了群落水平的化学计量学特征及随环境的变化,这必将是以后研究的一个重要方向。
参考文献:
[1] 王绍强,于贵瑞.生态系统碳氮磷元素的生态化学计量学特征[J].生态学报,2008(8):3 937~3 947.
[2] 程滨,赵永军,张文广,等.生态化学计量学研究进展[J].生态学报,2010(6):1 628~1 637.
[3] 贺金生,韩兴国.生态化学计量学:探索从个体到生态系统的统一化理论[J].植物生态学报,2010(1):2~6.
[4] 吴统贵,陈步峰,肖以华,等.珠江三角洲3种典型森林类型乔木叶片生态化学计量学[J].植物生态学报,2010(1):58~63.
[5] 阎恩荣,王希华,郭明,等.浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征[J].植物生态学报,2010(1):17~18.
[6] 刘兴诏,周国逸,张德强,等.南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征[J].植物生态学报,2010(1):64~71.
[7] 薛立,罗山,谭天泳.日本中部10种树木叶片中氮和磷的季节变化及其转移[J].应用生态学报,2003(6):875~878.
[8] 杨阔,黄建辉,董丹,等.青藏高原草地植物群落冠层叶片氮磷化学计量学分析[J].植物生态学报,2010(1):17~22.
Research Advances and Prospect of Ecological Stoichiometry in China
Wang Zhenxing
(College of Life Sciences,Fujian Normal University,Fujian,Fuzhou 350108,China)
[关键词] 中医药基础理论;经络脏腑;脏象;中药药性;超分子;化学;物质基础;方证关联;中药;中药复方;气析;中医药现代化
[收稿日期] 2013-06-09
[基金项目] 国家自然科学基金项目(81073142,81173558,81270055);国家博士点基金项目(20124323110002);湖南省自然基金重点项目(11JJ2055);湖南省教育厅十二五药学重点学科项目
[通信作者] 贺福元,教授,博士生导师,主要从事中药药理学、中药药剂学、中医药超分子机制及数理特征化研究工作,Tel:(0731)5381372,E-mail:
超分子化学(supramolecular chemistry)根源于配位化学,有人称之为广义配位化学(generalized coordination chemistry),是30多年来迅猛发展起来的一门交叉学科,它与材料科学、信息科学、生命科学等学科紧密相关,是当代最前沿的化学研究领域之一。这个领域起源于碱金属阳离子被天然和人工合成的大环和多环配体,即冠醚和穴醚的选择性结合。1967年C J Pederson报道了冠醚配位性能的发现,揭开了超分子化学发展的序幕。1973年,D J Cram基于在大环配体与金属或有机分子络合化学方面的研究,提出了以配体(受体)为主体,以络合物(底物)为客体的主客体化学。超分子化学概念和术语是1978年J M lehn模拟蛋白质螺旋结构自组装体的研究内容而引进的,在一定程度上超越了大环与主客体化学而进入了所谓“分子工程”领域,即在分子水平上制造有一定结构的分子聚集体而起到一定的特殊性质的工程,并进一步提出了超分子化学即“超越分子的化学”的概念。“基于共价键存在着分子化学领域,基于分子组装体和分子间键而存在着超分子化学”是对分子与超分子化学的中肯诠释。自从1987年Pederson,Cram和Lehn因为对超分子化学领域的杰出贡献而获得该年度的诺贝尔化学奖以来,超分子化学便蜚声世界,受到了科学界和大众的广泛关注[1]。
分子化学是原子之间通过化学键作用形成分子,是以分子为研究对象的化学,可称为特征化学;而超分子化学是以多种弱相互作用力而非化学键为基础,是由多个分子通过这种弱的分子间非共价键的相互作用为研究对象的化学,和原子间由化学键作用而形成分子的化学不同,超分子化学是研究分子间相互作用的科学,也可以称为表观化学[2-3]。
超分子化合物是由主体分子和一个或多个客体分子之间通过非共价键作用而形成的复杂而有组织的化学体系。主体通常是富电子的分子,可以作为电子给体,如碱、阴离子、亲核体等;客体是缺电子的分子,可作为电子受体,如酸、阳离子、亲电体等。超分子体系中主体和客体之间不是经典的配位键,而是分子间的弱相互作用,即氢键、主客体作用、静电作用、π-π堆积作用等,其键能大约为共价键的5%~10%,且具有累加性,但形成的基础是相同的,都是分子间的协同和空间的互补,因此可以认为,超分子化学是配位化学概念的扩展。
中医药基础理论是中华民族几千年同疾病临床斗争的结晶,其正确性与科学性不容置疑。众所周知,中医药理论是建立在对人体有序的多分子群作用基础上的宏观规律表征,长期以来大家多是从宏观方面寻找解决问题的线索,对于能否从微观物质基础层面找到诠释物质基础多持否认的态度,并且认为这是中医药理论区别于西医的固有特点,这些观点容易强化“中医药不存在微观物质属性”的观点。这主要有2个原因,一是中医药长期的宏观思维阻碍了以体现中医药理论为核心的微观物质的寻找,从思想上固执地认为找不到,也不想怎么找到,这多体现在中医药院校的人才思维之中;二是长期寻找无果,由于对现代非医学科学缺乏系统而精心的学习,没有找准现代非医学科学理论,只牵强附会地将中医药理论与现代科学凑合,多借助现代科学仪器设备从“静态”的角度进行人体观察,却试图找到能反映宏观“动态”中医药理论的微观物质基础,其结果注定要失败,这多体现在非中医药院校的人才思维之中。由于中医药理论的微观物质运行规律长期不明,累遭非中医人士的诟病,因此能否从微观层面找到中医药理论化学作用的本质规律是能否诠释中医药理论并为现代社会所接受(所谓的中医药现代化)的关键,长期萦绕在作者心头。近年作者在研究网络药理学的成分群与网络靶点的作用规律、在研究中药“穴药”法归经理论、在研究单成分的构效关系时,首次接触到了超分子化学,发现两者有天然渊源关系,这种大小分子群间作用的印迹模板(钥匙)关系理论正是整合人体“海洋般”分子群相互作用而表现出的宏观规律,阐述中医药理论的“不二法门”理论。因此,本文先从超分子化学的研究现状入手,然后与中医的经络脏腑理论与中药药性理论结合,剖析人体大小分子群作用的超分子运行规律,证明能从微观物质作用规律层面上勾画出中医药基础理论,据此可提出中医药基础理论微观与宏观现代化的途径与框架图。
1 超分子化学的研究现状
1.1 超分子化学研究的3个阶段
超分子化学研究经过了主客体化学、分子识别化学和自组装化学3个发展阶段。主客体化学是以主体洞穴包裹客体小分子而形成超分子,为超分子研究的起初阶段,只追求特异的非化学键组成的超分子特异性结构;分子识别化学与医学有历史渊源,早源于免疫学的抗体与抗原识别化学,抗体依抗原表面决定簇识别而合成抗体,两者结合可形成巨大的超分子;自组装化学是基于既有氢键供体又有氢键受体的易形成氢键的分子,或基于既有电子供体又有电子受体的易形成传荷络合物分子,当这种分子以特定的结构存在时会自组装成高分子聚合物。当然,这3个过程不是严格的顺承关系,而是相互渗透和相互关联的。例如,在模拟细胞膜的研究中,超分子化学家就同时运用了主客体化学和超分子自组装化学的知识和手段。荷兰的Reinhoudt率先提出了分子印刷板(molecular-printboard)的新概念[4],即将修饰有主体分子(自组装单分子层)的表面作为分子印刷板。这种富集了大量主体分子的表面像自然界的细胞膜一样具有表面识别位点,在这种表面上,客体分子通过超分子相互作用可以有效定位。由超分子化学研究的3个阶段可知,其理论将对中医药基础理论的解释将会产生重大而深远的影响。
1.2 超分子中的主要主体化合物
超分子的主体化合物是指构成超分子印迹孔穴(通道)的化合物,其中潜在特异的可结合的模板分子,两者为钥锁关系。在超分子化学的发展过程中,越来越多的主体分子被发现或者合成,目前经典的超分子化学中的主体化合物如下。
1.2.1 冠醚配合物 这是最早发现和研究的化学超分子物质。冠醚一般是具有(CH2CH2X)重复结构单元的大环化合物,其中X代表杂原子。从环上所含杂原子来看,冠醚化学己从最初的全氧冠醚发展到硫、硒、氮、磷、砷、硅、锗和锡等杂冠醚。冠醚化合物都具有确定的大环结构,不像一般非环配体那样,只是在形成金属配合物时才形成环[5]。
1.2.2 环糊精和环糊精包合物 环糊精(cyclodextrin,CD)也称作环聚葡萄糖,是由若干D-吡喃葡萄糖单元环状排列而成的一组低聚糖的总称。它具有圆筒状疏水性内腔和亲水性外沿,与柔性的开链类似物相比具有特别的物理和化学性质。Villiers于1891年通过用酶降解淀粉发现了环糊精并分离出来,1904年Scharidinerge表征它们为环状低聚糖,1938年Freudenberg等把它们描述成吡喃葡萄糖单元通过α-1,4-糖苷键连接构成的大环化合物。迄今为止,己有不少专著与若干长篇综述、多于1 400个以上的专利和数以千计的文章描述环糊精及其包合物的结构、性质和应用。在药剂学上已有广泛的应用,多采用β-环糊精。含有环糊精结构的自组装体己经被应用到分子识别[6]、药物输运[7]、超分子凝胶[8]和微反应器等领域。我国著名化学家徐光宪院士曾经特别指出环糊精超分子科学是21世纪化学领域11个突破口之一[9]。
1.2.3 杯芳烃 杯芳烃是一类对位烷基苯酚通过亚甲基在酚羟基邻位连接而构成的一类大环化合物,是酚醛树脂缩合的环状化合物。最有代表性的是20世纪40年代Zinke等用对叔丁基苯酚和甲醛在氢氧化钠存在下加热得到的由对叔丁基苯酚结构单元和亚甲基交替连接的四聚体。该化合物的分子模型表明它的形状像一个杯子或花瓶,故称之为杯芳烃。在杯芳烃p-tert-butylcalix(n)-arene的杯状结构底部紧密而有规律地排列着n个酚羟基,而杯状结构的上部具有疏水性的空穴。前者鳌合和输送阳离子,后者则能与中性分子形成配合物。由于杯芳烃的这种独特的结构,离子和中性分子均可作为其形成配合物的客体。
1.2.4 瓜环 瓜环是一类由n个甘脲单元和 2n个亚甲基桥联起来的大环化合物,具有刚性疏水性穴腔及亲水性端口的特殊结构,与客体作用后有可能改变客体物质的理化性质,使得瓜环成为超分子化学的重要主体之一。瓜环作为一种潜在的药物运转、缓释或控释载体,药物与瓜环作用后,可显著地改变药物性质。瓜环是继冠醚、环糊精和杯芳烃等大环化合物之后的一类新型大环化合物[10-11]。
1.2.5 其他类型的大环化合物 ①葫芦脲:由尿素、乙二醛和甲醛之间的简单反应获得的大环化合物[12]。葫芦脲与环糊精或其他大环化合物相比,其另一特征是具有更加刚性的结构;②卟啉和酞菁:卟啉是在卟吩环上拥有取代基的一类大环化合物的总称。卟吩是由4个吡咯环和4个次甲基桥联起来的大π共轭体系;卟吩分子中4个吡咯环的8个β位和4个中位的氢原子均可被其他基团所取代,生成各种各样的卟吩衍生物,即卟啉。酞菁是与卟啉结构相近的大环化合物。卟吩环“中位”上的碳原子被氮原子取代即为酞菁。环上未曾和氢结合的氮原子可以接受2个质子,形成正二价离子;已和氢结合的氮原子又能给出2个质子,形成负二价的离子,而同正价的金属离子形成配合物。卟啉和酞菁阴离子对过渡金属离子有很强的配位能力[13];③环肽:环肽是以多个氨基酸的肽键构成的环状化合物,广泛存在于自然界中,已报道的环肽大多来自于海棉状和海洋中的节肢动物等低等生物中,实际上环肽和类环肽也广泛存在于微生物、真菌、藻类和高等植物,并在生物体的生命活动中扮演着重要的角色。除此,还有杂多酸类、多胺类、树状、液晶类等超分子化合物[14]。
1.2.6 人体巨复超分子体 首先人体内的单分子、超分子通过自组织、自组装、自识别与自复制组成一定功能的超分子,在众多小分子模板基础上进行超分子主体结构的合成,如参与的各种生化代谢反应酶合成、基于氨基酸的蛋白质合成、基于葡萄糖的肝糖元合成,基于核苷酸的DNA,RNA合成等。这此合成的超分子主体又以亚单位合成巨大功能性超分子主体,众多功能性巨大超分子主体组成细胞器,众多细胞器构成细胞,然后通过自我复制分化成各种功能类型的细胞,再联接形成器官组织,最终构成整个人体。在这个多级的超分子主体生成过程,母体超分子保留了子体超分子的印迹模板,因此人体就是一个拥有各种层次印迹模板,按一定的空间孔穴通道结构进行联接所形成的巨复超分子体。
1.3 超分子的结构与作用的主要特征
1.3.1 超分子结构的主要特征 由上述的主体化合物可知超分子结构特征有:①超分子是主体与客体两部分分子组成的非成键化合物,可以结合也可以脱离,主客体分子存在一定的分子构象关系,两者结合程度由构象决定;②主体分子中存在一定形状的孔穴,容纳与孔穴模板相同或相似小分子,不相同或不相似的小分子难能进入孔穴或结合不紧,两者存在钥锁关系;③超分子主体之间可结合形成更大的超分子主体化合物; ④主体分子可以环合生成封闭孔穴,也可非环合聚合成开放孔穴,以螺旋状、片状、胶束、纳米囊、聚合亚单、细胞器及细胞等各种形式,由小分子到大分子形成各种超分子聚集主体;细胞是庞大超分子聚集主体体系,人体更是巨复超分子聚集主体体系,包含了从单分子到各种超分子聚集体的通道结构与印迹模板;⑤各种层次的超分子主体化合物以特定的孔穴模板相连,形成经络脏腑,组织器管,能与相一致的模板小分子进行作用;⑥超分子的主体与客体结合后形成的超分子,会改变主客体分子的性质,宏观上会表现出小分子在主体分子中的迁移、理化性质的各向异性,同时主体分子的理化性质也会发生变化。
1.3.2 超分子作用的主要特征 具有分子间的自组织、自组装、自识别和自复制。
自组织:分子自组织通常指许多相同的分子,由于分子间力的协同作用而自动组织起来,形成有一定结构但数目可以多少不等的多分子聚集体,有以下特点:①包括在空间上或时间上都表现出自发的有序性体系;②包括空间结构和平衡结构和非平衡的结构两者的瞬间动力学的有序性,结构的有序性,结合的非线性化学过程的有序性及能量流动和时间方向上的有序性;③仅仅限于非共价键的超分子层次;④多组分在分子组分间由分子识别或在动力学过程中产生特殊相互作用,表现出超分子的自组织和长程有序性,从而形成多分子有序体。简而言之,就是越有序,组织性越好。如分子层、分子晶、体膜、液晶、胶束、胶体、细胞器、细胞等都是自组织的有序体,人体更是自组织的有序体。
自组装:自然界中存在众多的自组装作用,在生物过程中,基质和蛋白质受体的结合,酶反应中的锁钥关系,蛋白质-蛋白质络合物的组装,免疫抗体抗原的结合,分子间遗传密码的读码翻译和转录,神经递素诱发信号等。自组装体包含了①分子识别:主体有选择性地识别客体并以某种方式与客体配位形成化合物。②分子催化:自组装的超分子配合物具有反应性和催化作用,体现高效能、高选择性。生物体内的氧化、还原、酰基转移、β-消除、C-C键形成及断裂等可在特定的酶中进行[15]。③分子转移:组装后的超分子常能促进光子、电子或离子的传递。
自识别:分子在自组装过程会产生自识别。这是在主客体体系中,主体有选择性地识别客体并以适宜的形式形成主客体化合物,亦超分子体系,与没有相互作用的主体和客体的混合物相比,这种超分子体系体现出不同的特性。主体识别各种客体的主要方式有与主体空穴的大小形状匹配、配位点特性及数目、配体种类与数目、电荷强弱等。
自复制:超分子的自复制作用就相当于DNA 的自复制。对于后者,首先是DNA 双螺旋的两辫拆开,两根母辫即形成模板,它们的复制原理是一样的。
1.4 超分子的研究与检测手段
现阶段超分子化学的目标主要集中于超分子形成中的机制及应用研究,如确定分子间作用力的协同;研究分子识别与位点识别的机制与过程;研究不同结构层次的组装体、组装过程及组装方法,尤其是生物活性体系及低维体系的组装,自然界的自组装,以及超分子体系中结构与功能的关系等等。
由于主客体分子间包合作用力的主要来源是分子间存在的范德华力、疏水作用力及氢键作用力等,超分子体系分子间弱相互作用力的理论研究目前常用的方法有量子化学和统计热力学2种。量子化学方法主要在电子结构水平上准确地研究分子间弱相互作用力,可望在深层次的理论水平上揭示生命现象的本质[16],用于超分子体系弱相互作用力研究的量子化学方法有abinitio,HF,SCF,MP,DFT等方法。热力学方法主要是研究超分子中的主客体作用的形成随着温度变化的重要的热力学参数。主要主体分子、客体分子与超分子的自由能变(ΔGsup)和平衡常数Ksup,可用热力学的方法研究过程的状态函数变量[17]。用 Schneid提出的成对作用的自由能线性估算方法进行超分子自由能变(ΔGsup)的研究,可得到较满意的结果。
实验方法有多种形式,用谱学方法研究分子间弱相互作用已成为实验研究的主要手段。红外光谱法:形成了超分子体系时,相互作用部位或基团伸缩振动受到影响,从而吸收峰频率发生一系列的位移,根据位移可对超分子体系间选择性作用力作半定量研究;核磁共振法:形成超分子体系时,选择性部位原子的化学环境发生变化,根据化学位移发生变化的值可研究超分子体系的弱相互作用。分子散射法:对于简单超分子体系给出精确的分子间相互作用势函数,根据散射数据可以确定超分子体系的弱相互作用,但对复杂超分子体系无能为力;X 射线单晶衍射法:则可通过键长及键角直观地确定超分子体系的弱相互作用力,另外还有色谱法和生成热测定法。其余研究超分子化学的手段也很多,例如可见光谱和荧光光谱、圆二色光谱、电位法和色谱法等[18-21]。
1.5 超分子药物与应用
1.5.1 超分子药物研究 在药物制备、合成与发现中超分子化学得到了广泛的应用。①超分子动态组合化学用于药物发现:以酶、受体型蛋白等作为模板加入到动态组合库中,库中与之最有亲和力的成分就被放大,而与之无作用的成分将减少。这些放大的成分是该库中最有可能成为先导化合物的成分。②超分子载体用于药物合成:在多相合成药物时,可采用金属超分子载体形式将金属催化剂由水相转移到有机相而促进药物的合成。③包合型超分子药物制备:将主体分子包合客体药物分子制成超分子包合物,形成分子胶囊可改良药物的水溶性与稳定性。目前,多采用环糊精作为主体分子包合亲脂性药物以增加其生物利用度。如采用β-环糊精包合物包合大蒜素[22]、苯佐卡因[23]。利用环糊精制备结肠、脑、特殊细胞靶向给药系统[24]。还可用来掩盖药物的不良气味,降低药物的刺激性与毒副作用等[25]。④印迹模板技术用于药物分离:先将被分离的物质作为模板分子与高分子材料进行聚合,然后水解释放模板药物分子。
超分子化学药物可能改变药物的稳定性和在人体的传送机制,即改进药物在体内的膜运输,使药物达到特定的作用靶点,提高和特异靶点结合的能力,提高药物的有效利用度,降低药物的毒副作用。因此可能开发出具有新的结构、药理、药效和剂型的药物。
1.5.2 超分子药物 对超分子药物进行了概括,主要包括以下几类①抗癌超分子药物:基于卟啉及唑类化合物的结构特点及抗癌活性[26],如替加氟和硝基咪唑类卟啉[27]。替加氟修饰的卟啉化合物对肝癌细胞 SMCC-7721、结肠癌Volo细胞的体外抑瘤有较好活性。②抗炎镇痛类超分子药物:如将阿司匹林、 烟酰胺与锌离子形成的络合物超分子佛立沙后,不仅改善了阿司匹林的胃肠道刺激性,还有效地提高了其镇痛抗炎作用[28]。锌(II)-巴氯芬络合物超分子的止痛活性也强于其母体药物[29]。③抗疟类超分子药物:将青蒿素与环糊精制成络合物超分子,水溶性得到了很大改善,其口服生物利用度得到了提高。还有二茂铁喹是含二茂铁结构的抗疟类络合物,可以长期稳定的在生物体内表现出抗疟活性,已成为抗疟类候选药物[30]。 ④抗菌类超分子药物:将过渡金属与抗生素或其他潜在抗菌化合物形成的络合物大部分具有比配体本身更好的抗菌活性,如将喹诺酮类、磺胺类、席夫碱类、缩氨硫脲类和大环类与过渡金属Au(I),Ag(Ⅰ),Pd(Ⅱ)等生成超分子,从这些络合物超分子中筛选出了良好抗菌活性的药物分子。⑤抗结核类超分子药物:异烟肼是一个良好的金属离子螯合剂,能与锰(Ⅱ),钴(Ⅱ),镍(Ⅱ),铜(Ⅱ),锌(Ⅱ),镉(Ⅱ),铅(Ⅱ)及稀土等金属离子形成稳定的络合物,研究发现将异烟肼及其衍生物制成络合物超分子可提高其脂溶性[31-32],增强其抗结核作用。⑥心血管系统的超分子药物:将硝苯地平、尼群地平、卡托普利、尼卡地平和尼莫地平制成β-CD或HP-β-CD包结络合物,可有效提高该类药物的稳定性、生物利用度和溶解性等。将硝苯地平分别用2-HP-β-CD和羟丙基纤维素制成双层片剂,可通过调节二者比例来满足不同释药速率要求[33]。
由上可知,目前的超分子药物多为过渡态金属络合物和β-CD的包合物两大类,多以化学药物的形式研究报批,总体研究层次不高,作为中药及复方制剂的化学成分存在天然的超分子形式,并且中药本身就是生物体的模板分子产物,具有与人体共模板的生物相容性,因此作为超分子的中药药物的研究更有广阔的空间。
2 生物体内、中药超分子存在形式及超分子现象
超分子化学的起源在一定程度上来自生物体系,如植物进行光合作用的叶绿素是卟啉环的镁络合物超分子;血红蛋白吸收和运载氧的血红素是卟啉环的铁络合物超分子等。在生物体内,超分子的主体是各种酶、受体、基因、免疫系统的抗体和离子载体的接受位点等,客体是底物、抑制剂、抗原或者药物等。主客分子的共同协作用是产生生命现象的基础,因此可以说生命体系是一个巨复的生物超分子体系[34-35]。
2.1 糖类
可以分为单糖类、低聚糖和多聚糖类及其衍生物,有均多糖与杂多糖之分。高聚糖类的螺旋结构是开环的主体分子,可与小分子形成超分子,如淀粉与碘呈蓝色;环糊精是由5~7个葡萄糖而成的闭环聚合主体分子,可与很多分子量较小的药物形成超分子,改善药物的不良水溶性与稳定性;氨基糖类也是很好的细胞间质连接物,与脂肪、蛋白质构成细胞间孔穴通道,是构成中医经络脏腑的重要物质基础;同时糖类又是很好的氢供体与受体,分子间可相互作用、结合及自组装形成超分子体系;单糖也可作为客体分子与其他的主体分子结合形成超分子体系;而多糖则可以作为主体分子包合其他中药成分构成超分子体系。由于糖类的普遍存性,研究糖类的超分子形式对解释人体的经络脏腑现象有重大作用。
2.2 氨基酸、蛋白质类
自然界中各种形式的氨基酸300左右,但能以肽键形成蛋白质的为20种,均为α-氨基酸。蛋白质是超分子主体最好的表现形式。常现的酶类及催化作用,抗体抗原反应,受体、转运体及各种离子通道均能发现超分子物质及能寻找到超分子作用踪影。蛋白质的螺旋、β-片层及四级结构形式是形成天然超分子体最杰出的代表。与糖类一样,蛋白质普遍存在,因此蛋白质的超分子形式对解释人体内经络脏腑现象具有更加重大意义。
2.3 核苷酸及DNA类
生物体的遗传信息靠核苷酸顺序结构产物DNA贮存,构成DNA的核苷酸双螺旋结构本身就是超分子物质。在DNA,RNA的合成及基于RNA信息合成蛋白质均是以超分子形式而发生作用。
2.4 苷类
苷类是糖或糖的衍生物与非糖物质(称为苷元或配基)通过糖的端基碳原子连接而成的化合物,也是在自然界广泛存在的天然产物。根据其结构中苷元、糖或糖的衍生物的存在形式,可自身结合形成各种形式的超分子,如甾醇类与甾体皂苷形成的分子复合物,金属离子与苷元的酚羟基、羧基形成的络合物,多电子苷与缺电子苷形成的传荷络合物等;同时也可与体内的大分子主体形成超分子化合物。
2.4.1 醌及苷类 这是一类分子中具有醌式结构的化合物,分子中多具有酚羟基,有一定的酸性。醌类为缺电子基团,可与供电子基团,如酚、苯胺形成传荷络合物,如氢醌复合物;也可与β-环糊精(β-CD)衍生物形成包合物,同样可被多糖螺旋形成包合物;也可与空轨道的金属离子形成络合物;也易与酰胺键形成氢健络合物;也可与蛋白质形成氢键络合物等超分子。
2.4.2 香豆素及苷类 其基本骨架可视为由邻羟基桂皮酸形成的内酯,在稀碱溶液中内酯环可水解开环,生成能溶于水的顺邻羟桂皮酸的盐,加酸后可环合成为原来的内酯。主要与多糖、蛋白质等主体分子形成超分子。
2.4.3 木脂素及苷类 这为苯丙素的二聚体,本类化合物可作为客体分子与多糖、蛋白质主体分子结合形成超分子。
2.4.4 黄酮类 泛指具有2个苯环通过中间三碳链相互联结而成的一类化学成分。为多电子供体,可与空轨道的金属离子、氢键受体、电子受体等形成超分子;也可作为客体分子与多糖、蛋白质主体分子结合形成超分子体系。
2.5 萜类和挥发油
萜类和挥发油由异戊二烯单位构成,分单萜、倍半萜、二萜等。根据其结构不同形成超分子能力相差很大。大多可作客体分子与β-环糊精孔穴分子形成包合分子;也可自身聚合成树脂,也可形成分子复合物;也可形成低共熔物;也可与吐温等表面活性剂形成氢键复合物与传荷络合物,也可作为客体分子与多糖、蛋白质主体分子结合形成超分子体系。
2.6 生物碱
生物碱是一类存在于生物体内的含氮有机化合物,结构复杂而多样。可作为客体小分子被包合成超分子;在酸性条件下可与重金属、有机酸、多电子基团形成复合物;与鞣质结合形成超分子;环肽类大分子可作为主体分子包合其它成分形成超分子,因此在不同条件下,不同结构的生物碱可能形成不同形式的超分子,因此生物碱应是形成各种超分子物质较为丰富的一类化合物,加上它富有强大的生物活性,因此研究生物碱各种形式的超分子对阐明中医药理论具有重大意义。
2.7 甾体类
甾体类是一类结构中具有环戊烷骈多氢菲甾核的化合物。可作为客分子进行包合,另外最重要的是β-甾醇类形成有机分子复合物超分子。
2.8 三萜类
三萜类是一类基本骨架由30个碳原子组成的萜类化合物。可作为客分子、氢或电子供受体形成超分子复合物,也可作为客体分子与多糖、蛋白质主体分子结合形成超分子体系。与糖结合形成皂苷具有表面活性作用,自已可以聚合成胶束形成超分子。
2.9 鞣质
鞣质是一类复杂的多元酚类化合物的总称,可与蛋白质结合形成致密、柔韧、不易腐败又难透水的超分子化合物;也可与生物碱复合生成超分子;同时自身聚合生成鞣红超分子;还可与重金属盐如醋酸铅、醋酸铜等产生超分子沉淀。因此鞣质是中药成分中最易生成超分子的一类物质。
由上可知生命体及中药中各种成分均可以以主体或客体形成超分子,是研究超分子化学,阐明生命现象的最好载体材料。
3 具有超分子载体特性的生物体决定了超分子化学对阐明中医药理论科学内涵的特殊影响
诚如前述作为生物体的人体与中药可以看成是一个由单分子、超分子、聚合超分子及巨复超分子构成的复杂体系。在由小分子构成整个人体有序超分子过程中,其超分子主体保留了客体小分子的印迹模板,形成孔穴通道结构与外界发生化学反应,进行物质能量联系,否则生命现象难以为继。当人体的各类小分子在心脏搏血功能的推动下,人体各组织器官的主体分子对客体小分子表现出机体结构的各向异性作用,亦“气析”现象。水为洗脱剂,溶于水的各类客体分子与组织器官主体分子的孔穴通道产生印迹作用,包括“分子筛、离子交换、吸附、分配与亲合色谱”的各种形式,体现出“印迹模板”特征的“气析”(由于这种作用是产生中医气的本源,并且各组织器官能能象色谱学那样区别客体分子,故定义为“气析”)现象,亦经络脏腑现象。其结果是与组织器官“印迹模板”相吻合的分子产生作用,而不吻合的分子就难产生作用。因此,中医经络脏腑理论正是对人体众多大小分子群在血液流动下所表现出各种 “印迹模板”形式的超分子印迹作用规律高度总结:具有相同或相似的“印迹模板”分子通道结构便构成了经络脏腑;通过通道结构与外界机体子体小分子作用就形成了脏象;具有与之相同或相似的“印迹模板”中药分子便构成了中药有效成分;中药有效成分与经络脏腑的印迹作用便形成了中药药性理论和功效[36];中药复方配伍又能显著性地改变这一超分子印迹作用规律,由此便形成了中医药的“理、法、方、药”基础理论的微观物质基石。
诚如上述分析,人体各个脏器与血液中的各类成分作用的选择性或偏向性,用现在的化学语言表述为分子间作用的结构因素的各向异性,亦超分子钥锁关系;而宏观上就是几千年来中医药总结出来的临床用药的药性理论。其实这种类似的作用在单分子药物与靶点的构效关系研究中已有表述,也很容易用超分子的自组织、自组装、自识别与自复制解释,但由于中医药研究者没有将其归纳总结上升到分子群间的超分子印迹作用规律,以超分子化学解释罢了。
由于与生物体具有自然渊源的中药及复方成分必然是这个巨大的超分子体系中的一部分,中医药基础理论正是这种形形的各种形式的超分子共同作用的宏观现象。因此超分子化学在阐明中医药基础理论中所蕴藏的巨大作用是其他现代科学理论所无与伦比的。据目前仅有的超分子化学知识,对中医基础理论可作初步解释如下。
3.1 经络及现象
经络的宏观属性已为大量的针灸临床治病实践所证实,但微观属性却没有完全阐明。据目前研究结果,对经络认识有:①神经系统观;②广义的经络观;③生化物质观,代表性观点有P物质的观点,细胞外基质的观点,钙离子(Ca2+)富集观点;④经络的生物物理学特性研究,表明声传播的高振声、低频声和声信号循经性,电传导的低电阻、高电容、良导络性[37],体表红外线热辐射轨迹的循经性,体表发光强度与对称的循经性,磁振动线的循经性,图象扫描(用正电子发射断层扫描仪的透射扫描图象和发射扫描图象的融合技术显示出示踪迹循经迁移线在体内的三维断层图像及立体透视图像[38])。古人采用内视的方法观察经络的走向。据上述研究结果可知,经络的组织形态学位置至今仍在肉眼观察能力之外,没有一种公认的学说进行解释,但大量的临床与科学实验表明,人体经络及现象是客观存在的。
如果将目前的经络研究结果与人体超分子化学结合,由超分子的自组织、自组装、自识别与自复制的性质可以推断人体特定模板分子孔穴通道结构,亦经络的必然存在。因此人体经络的微观物质基础是:基于细胞内外巨型超分子主体物质的一定“印迹模板”分子孔穴空间有序排列通道结构;而经络现象是:基于这一通道的体内“印迹模板”分子在心脏搏血作用下,按“气析”所表现出的印迹宏观作用现象,体现出各组织器官“印迹模板”通道的各向异性。根据主体通道结构与客体“印迹模板”分子的钥锁对应关系,具特定通道结构的经络必然体现与客体“印迹模板”分子相一致的光、电、磁、热等效应。由此推知,与十四经络一致,人体的主体“印迹模板”孔穴通道大体上为14种模式,而这种微观的“印迹模板”分子孔穴通道相互混杂重叠,你中有我,我中有你,散布于各个实体脏器之中,因此相互干扰大,同时经络中的客体小分子受当时的身体状态、饮食习惯不同而变化,因此采用目前的“静态”的观察方法是很难发现其踪迹的,但如果采用“静态”与“动态”相结合的超分子化学研究方法,定能找到“蛛丝马迹”,本团队现已展开了各脏器的体外印迹吸附动力学实验研究工作,结果初步验证上述假说。
3.2 脏腑理论
如果经络的微观物质基础及现象得以阐明,则中医的脏腑理论自出。心、肝、肺、脾、肾脏象系统为与心、肝、肺、脾、肾经络相似的超分子主体“印迹模板”孔穴通道结构,但可能更规则,更集中。同样六腑也与相应的经络有相似超分子主体“印迹模板”孔穴通道结构。脏腑所体现的脏象与功能也与超分子主体孔穴通道印迹作用相关,是血液中客体分子物质与组织器官主体分子“气析”作用的结果。由于五脏、六腑有各自的超分子主体物质孔穴通道,且相互混存重叠,只是在各脏器中的比例大小不同而已,所以不能用简单的西医形态学的研究来发现经络脏象,按目前西医的实体解剖器官来阐明中医药理论是行不通的。因此,对于中医药基础理论研究,只能基于超分子化学,以经络脏腑与各分子所表现出的“共“印迹模板”气析”规律的研究为核心,建立人体内超分子孔穴通道、“印迹模板”、迁移规律、微观物质与宏观现象关联的新分析方法才能揭示中医药作用规律。其中小分子对经络脏腑孔穴通道的“印迹模板”规律,也就是各经络的标准“印迹模板分子”的研究尤为重要,也最为困难。
3.3 气的物质特征
中医所述气抽象而不好解释,但根据经络的微观物质基础及产生脏象的超分子印迹作用原理则变得容易解释。中医所述的气是指运行于经络脏腑主体之中的客体分子及作用关系。根据经络脏腑主体与客体的特点,可分为①元气:泛指所有经络脏腑主体之中的客体分子及作用关系,包括先天、后天所产生主、客体分子及相互作用关系。②宗气:与呼吸相关的经络脏腑主体及客体小分子及作用关系。③营气:运行于经络脏腑主体的食物客体分子及作用关系。④卫气:与免疫功能相关的经络脏腑主体的客体小分子及作用关系。⑤经络脏腑之气:运行于具体经络脏腑主体的客体小分子及作用关系。因此中医气的共同特点是所观察经络脏腑主体与客体分子的“印迹模板”特征及“超分子印迹”作用关系。根据主体与客体的作用及表现形式不同而分类,关系错综复杂,仅用中医抽象的概念难以解释和理解,若用超分子化学则变得非常清楚明了,而且还可以测定。
3.4 中药药性理论
同样中药药性理论也就不难研究了。基于与经络脏腑“印迹模板”是中药有效成分的物质基础理论,可建立超分子“印迹模板”通道法:根据各经络脏腑孔穴通道特征,建立最佳的模板分子模型,然后采用分子相似度方法,分析各分子与各经络脏腑的相似程度,再经多元统计学可以得出所含成分群的中药对哪个经络脏腑的选择性最强,效应最好,首先解决中药归经问题;再根据各经络的分布走向,分析中药成分群的升降沉浮;再研究味蕾的超分子孔穴分子模板特征并将其与药物归经结果联系,则解决中药的五味问题;再结合中药毒性效应,阐明中药有毒无毒问题;最后将中药作用规律与生物热效应关系,解决中药四性问题。因此中药与经络脏腑的超分子印迹作用规律,亦中药的归经理论既是研究中药药性突破口,也是阐明中医经络脏腑理论的突破口,而中药四性问题研究表面容易,实际最难,只有等到中医药研究方法的全部建立后才能研究,在掌握中药作用前后主、客成分的变化规律后,可建立热力学方程解决。
3.5 中医药理、法、方、药理论
当经络、脏象、气与中药药性基础问题解决,则可阐明中医基础理论、中医的诊断、方剂学等基础性学科问题;构建中医药的理、法、方、药基础理论。
中医基础理论:构建起以经络、脏象、气为核心的印迹作用规律研究方法及理论体系,包括微观的经络脏腑超分子作用机制,宏观的超分子作用现象测定方法及状态函数表征体系。
中医诊断学:构建主、客体分子的“印迹模板”超分子化学作用规律的中医诊断系统,包括微观与宏观、体内与体外、宏观现象测定与状态函数表征、测算与预测等相统一的理论体系。创立适用于中医药基础理论“气析”的现代诊断仪器系统。
方剂学:构建基于中药群体配伍超分子群对经络脏腑“印迹模板”作用规律的预测及验证科学体系,阐明中医方剂的配伍理论。
其他临床学科:将中医药理论与临床诸科的特点结合,构建中医临床诸科的疾病的病因分析、治则、治法及遣方用药的科学体系。
因此,就目前的已知超分子化学知识来看,超分子化学对诠释中医药基础理论将会产生重大的作用,应引起中医药现代化工作者的高度重视。
4 当前中医药基础理论现代应注意的问题
自从1997年全国第一次召开中医药现代化战略研讨会至今,中医药理论现代化历程快20年了,虽取得了一些成绩,但突破性的进展甚微,究其原因,主要存在以下应注意的问题。①强调中医的整体观念,但研究时却难能推行:众所周知,中医藏象证候、中药复方作用机制、经络研究为实现中医药现代化的三大基础关键枢纽问题,目前一般都将三者分开单列研究,尽管单独研究可取得一时成果,但要获得突破性进展困难。这种研究方法容易割裂中医治病“理、法、方、药”的整体关系,与中医药的整体观相悖。由于中医的理、法需中药干预则明;方、药需对证治疗才灵;理、法、方、药需整体贯通方活。因此在中医药现代化过程中,应将其作整体融为一炉进行研究才能收到事半功倍的效果。②中医药基础理论自成体系,不需要现代化。目前中医药现代化进展不大,研究处于低潮,有一部分对现代科学知识还不了解的中医药工作者认为中医药难能、也不需要现代化,持这种观点的人最终会损害中医。③过分强调整体,忽视微观。整体观念是中医特色,但不能认为中医只有整体而没有微观,应重视整体与微观的辨证关系。众所周知,物理学既研究宏观物质的运行规律,如力学、电磁学;也研究微观物质的运行规律,如原子结构理论,统计物理学;也研究宏观与微观的关系,如热力学、动力学方程。因此宏观与微观物质运行规律是相互联系的,中医药也是如此。有中医药经络脏腑理论的临床存在,必然有其微观的物质基础进行支撑。④区分宏观与微观的测定与表征方法。目前尽管中医药理论强调宏观特征,但研究思路与方法却是微观成分;因此应区别宏观与微观的研究与表征方法不同,宏观采用状态函数表征,多测定光、电、磁、色等宏观变化,微观采用化学物质结构表征,多测定物质的量变及化学性质等。⑤中医与西医结合。中西医来源于不同体系的医学理论,尽管目前还难能从科学的本源上实现结合,但随着中医药理论作用物质基础的揭示,中西医药会从微观化学本源基础进行结合:基于单分子化学成就西医理论;基于超分子化学则辉煌中医理论。⑥中医药的发展方向。由上述中医药超分子化学分析可以预知本世纪将是中医药理论现代的世纪。代表了未来化学发展方向的超分子化学也同样代表以此为基础的中医药理论是未来生命学科的发展方向。⑦药物研究方向。同样基于生物体超分子理论,药物将由目前单一“化学型”药物向基于“印迹模板“超分子客体群的宏观“数理型”药物方向发展。
由上可知,随着中医药超分子化学研究的不断深入,随着以上问题的不断廓清与解决,中医药与西医将在化学与超分子化学间消融,以超分子理论表征的现代化的中医药理论将会成为21世纪医药发展的主流方向。
5 中医药基础理论现代化路线图
经过上述分析可知,中医药现代化的过程已非常清晰,中医药现代化实际上是用超分子化学重新整合中医药理论并进行表述的过程。对于超分子化学研究中所采用的方法在一定程度上适用于人体的超分子作用规律研究,但由于人体是更为复杂的超分子体系,体内各种主、客体分子混杂,相互干扰。因此创立适用于人体的超分子物质、性质与现象的研究技术与现代仪器将会更加重要与艰苦。下面就中医药现代化的框架图进行说明。
5.1 首次创立中医药体内超分子化学与技术研究方法
在超分子化学与技术(主要是体外)的研究基础上,结合中医药物质基础的特殊情况,创建以研究生物体(主要为人体)为主的超分子化学与技术方法研究平台。
5.2 展开经络超分子印迹孔穴通道的物质基础研究,阐明经络实质
采用超分子化学手段,展开经络超分子印迹孔穴通道的基本属性、特异性与各向异性研究,阐明经络的科学内涵,主要难点在于寻找标准的经络“印迹模板”分子,作为探针分子研究经络,通过光、电、磁、色等组织性质的各向异性变化,显现经络的实体。
5.3 展开脏腑超分子印迹孔穴通道的物质基础研究,阐明脏腑实质
采用超分子化学手段,展开脏腑超分子印迹孔穴通道的基本属性、特异性与各向异性研究,阐明脏腑的科学内涵,主要难点是怎样克服各实体脏器孔穴相互混杂干扰测定的难题,建立各经络脏腑孔穴印迹模板专属性高的检测方法。
5.4 展开经络脏腑实质(超分子印迹孔穴通道)与功能关系研究,阐明脏象与气的实质
采用超分子化学手段,展开经络脏腑实质的特性与其功能属性关联性的研究,阐明微观超分子物质基础与宏观脏象、气的内在联系的本质规律,解决气的物质属性。主要难点是怎样测定各孔穴通道与模板分子的印迹效应,建立中医经络脏腑、气血的测定方法与仪器。
5.5 展开经络脏腑的宏观状态函数的表征方法研究,建立脏象表征方法
采用生物数学、物理学、化学动力学原理,展开经络脏腑宏观状态函数的表征方法,建立相应的数学模型,阐明微观超分子作用规律与宏观脏象表征规律,主要难点是建立微观分子与宏观统计学的数学模型及参数体系。这一过程叫中医药数理特征化(而非中医药数字化),也就是用数学、物理学、物理化学方法表征基于巨复超分子体系的宏观综合性质。
整合上述5个方面,结合现在的中医基础理论,将创立起以超分子化学为基石的中医经络脏腑理论与数理特征化现代学科体系。完成这一过程,可实现中医基础理论、针灸及中医诊断学科现代化。
5.6 展开中药微观物质基础及宏观状态函数的表征方法研究,阐明中药微观物质基础的实质
采用超分子化学、免疫学与现代仪器科学建立基于印迹孔穴为基础的免疫芯片中药成分高通量分析方法;结合生物数学、化学动力学、化学计量学和计算化学原理,展开中药微观物质基础的宏观状态函数的表征方法,建立相应的数学模型,阐明中药微观超分子结构与宏观脏象作用的印迹表征规律,主要难点为中药全成分群快速高通量测绘分析方法的建立。
5.7 建立中药药性与功效研究方法,实现中药学现代化
如前述,采用超分子化学、生物数学、化学动力学、化学计量学和计算化学原理展开中药归经、升降沉浮、五味、毒性及四性及功效研究,构建以经络脏腑的超分子作用规律为核心的中药药性及功效理论。实现中药学学科现代化,主要难点是构建中药药性定量表征体系。
5.8 建立中药复方配伍研究方法,实现方剂学现代化
采用超分子化学、生物数学、化学动力学、化学计量学和计算化学原理展开中药复方配伍及方证关联研究,构建以经络脏腑的超分子作用规律为核心的中药复方配伍理论,实现方剂学现代化。
5.9 中医临床诸学科的现代化
以已现代化的中医药学科的研究方法为基础,展开中医临床诸科病因与病机、治则与治法、遣方用药规律研究,实现诸学科现代化。
5.10 中药学诸学科的现代化
以已现代化的中医药学科的研究方法为基础,展开中药学诸学科,如中药药剂学、中药鉴定学、中药炮制学与中药药理学规律研究,实现诸学科现代化。
这样就可以创立以中医药经络脏腑为基础,以中药复方多成分群用药为特点,以超分子化学印迹作用规律为表达内容的“理、法、方、药”现代化的中医药理论体系。至此,作为以单物质属性研究擅长的西医将与中医药理论融合成新的医学体系:既体现单分子特征化学属性,又体现多分子的超分子表观化学属性的医学理论体系,宏观与微观实现高度的统一。
值得一提的是目前超分子化学研究方法多为体外建立的方法,对于像人体这样包含了极其复杂的超分子复合体,上述方法能否适用还需验证,但创建适用于人体的超分子分析方法及仪器设备将对阐述中医药基础理论至关重要,是实现中医药现代化的瓶颈问题,充满着挑战。
综上所述,本文首次阐明了超分子化学理论可以重构中医药基础理论的科学内涵,这为实现中医药现代化与国际化奠定了基础。
[参考文献]
[1] Ariga K, Kunitake T. Supramolecular chemistry-fundamentals and applications[M]. Verlag Berlin Heidelberg:Springer, 2006.
[2] 徐家业. 超分子化学发展简介[J]. 有机化学,1995,15(2):133.
[3] Conn M M,Rebek J J. Self-assembling capsules[J]. Chem Rev,1997,97:1647.
[4] Lehn J M. Supramolecular chemistry scope and perspectives[J]. Angew Chem Int Ed,1988, 27(1):89.
[5] 刘育,尤长城,张衡益. 超分子化学:合成受体的分子识别与组装[M]. 天津:南开大学出版社,2001:38.
[6] Sun H Y,Bai Y,Zhao M G. New cyclo dextrin derivative 6-O-(2-hydroxybutyl)-β-cyclodextrin:preparation and its application in molecular binding and recognition[J]. Carbohydr Res,2009,344:1999.
[7] Shen J,Hao A Y,Du G Y. A convenient preparation of 6-oligo(lactic acid)cyclo-maltoheptaose as kinetically degradable dericative for controlled release of am oxicillin[J]. Carbohydr Res, 2008,343(15):2517.
[8] Li Y Y,Liu J,Du G Y. Reversible heat-set organogel based on supramolecular interactions of β-cyclodextrin in N,N-dimet hylformamide[J]. J Phys Chem,2010,114:10321.
[9] 余德顺,杨明.环糊精包埋技术及研究进展[J].重庆理工大学学报:自然科学,2010,24(11):44 .
[10] 马艳辉,黄英,祝黔江,等.抗癌药物甲胺蝶呤与八元瓜环相互作用的研究[C]. 重庆:全国第十五届大环化学暨第七届超分子化学学术讨论会,2010.
[11] 李春荣,丛航,薛赛风,等. 瓜环作为异烟肼新型潜在药物载体的研究[C]. 重庆:全国第十五届大环化学暨第七届超分子化学学术讨论会,2010.
[12] 杨辉,谭业邦,黄晓玲,等. 葫芦脲的研究进展[J]. 化学进展,2009,21(1):164.
[13] Zhou C H,Xie R G,Zhao H M.Convenient and efficient synthesis of imidazolium cyclohanes[C].Org Prep ProcInt,1996,28(3):345.
[14] 李文林,李梅兰. 超分子化学的现状及进展[J]. 广东化工,2009, 36(9):80.
[15] 陈琴,冯腊梅,赵为民,等. 壳聚糖担载Sn配合物催化金刚烷酮的BaeyerVilliger氧化反应[J]. 西北师范大学学报,2008,44:462.
[16] 陈强,谭民裕,刘伟生. 超分子中分子间弱相互作用力的研究方法概述[J]. 化学通报,2001(4):236.
[17] Parca T N,Caulder D L,Raymond K N. Selective encapsulation of aqueous cationic guests into a supramolecular tetrahedral [M4L6]12- anionic host[J]. J Am Chem Soc,1998,120(31):8003.
[18] 黄英,王娟,郭改英,等. 光谱法研究硫鸟嘌呤与七元瓜环及牛血清白蛋白的超分子相互作用[J]. 高等学校化学学报, 2013,34(2):375.
[19] 李慧. 荧光光谱法研究磺化杯芳烃与药物分子的相互作用[D]. 太原:山西大学,2008.
[20] Venyaminov S Y, Baikalov I A, Shen Z M, et al. Circular dichroic analysis of denatured proteins: inclusion of denatured proteins in the reference set[J]. Anal Biochem,1993,214(1):17.
[21] Perczel A, Hollósi M, Tusnády G, et al. Convex constraint analysis: a natural deconvolution of circular dichroism curves of proteins[J]. Protein Eng,1991,4(6):669.
[22] 齐美玲,高晶,邵清龙. 大蒜素-β-环糊精包合物的制备及大蒜素的含量测定[J]. 北京理工大学学报,2004,24(7):650.
[23] 高永良. 苯佐卡因-β-环糊精包合物的研究[J]. 中国药学杂志, 1991,26(3):154.
[24] 聂淑芳,潘卫三,郭宏. 环糊精在靶向给药系统中的应用[J]. 药品评价,2005,2(1):69.
[25] 赵梅,王晓东,张莉莉,等. 超分子包合技术在新药研制中的应用[J]. 山东科学,2012, 25(1):103.
[26] 于克贵,周成合,李东红. 卟啉类抗癌药物新进展[J]. 化学研究与应用,2007,19(12):1296.
[27] 周成合,张飞飞,甘淋玲,等. 超分子化学药物研究[J]. 中国科学B辑:化学, 2009,39(3):208.
[28] Zhou Q D,Hambley T W,Kennedy B J,et al.XAFS studies of anti-inflammatory dinuclear and mononuclear Zn(Ⅱ)complexes of indomethacin[J].Inorg Chem,2003,42(25):8557.
[29] Jain S,Jain N K,Pitre K S.Electrochemical analysis and analgesic behavior of Zn(Ⅱ)-baclofen complex[J].J Pharm Biomed Anal,2003,31(5):1035.
[30] Dive D,Biot C.Ferrocene conjugates of chloroquine and other antimalarials:the development of ferroquine,a new antimalaria1[J].Chem Med,2008,3(3):383.
[31] Bottari B,Maccari R,Monforte F,et al.Isoniazid—related copper(Ⅱ)and nickel(Ⅱ)complexes with antimycobacterial in vitro activity. Part 9[J]. Bioorg Med Chem Lett,2000,10(7):657.
[32] Bottari B,Maccari R,Monforte F,et al.Nickel(Ⅱ)2,6-diacetylpyridine bis(isonicotinoylhydrazonate)and bis(benzoylhydrazonate)complexes:structure and antimycobacterial evaluation. Part XI[J].Bioorg Med Chem,2001,9(8):2203.
[33] Wang Z,Hirayama F,Uekama K.In vivo and in vitro evaluations of amodified——release oral dosage form of nifedipine by hybridization of hydroxypropyl-beta-cyclodextrin and hydroxypropyIcelluloses in dogs[J].J Pharm Pharmacol,1994,46(6):505.
[34] 张中强,涂华民,葛旭升.超分子化学的研究进展[J]. 河北师范大学学报,2006,30(4):453.
[35] 夏赞韶,贺福元,邓凯文,等. 中药分子印迹技术对中医药理论的特殊影响[J]. 中国中药杂志,2013,38(8):1266.
[36] 邓凯文,贺福元. 中药归经研究的现状及“穴药”法的提出[J]. 中国中药杂志, 2013, 38(10):1643.
[37] 陶必修. 中医经络的现论[J]. 应用物理, 2013(3):13.
[38] 祝总骧,徐瑞民,田嘉禾,等. 正电子断层扫描显示经脉血气运行的三维定位[J]. 中国自然医学杂志,2003(3):129.
Special impact of supramolecular chemistry on Chinese medicine theories
HE Fu-yuan, ZHOU Yi-qun, DENG Kai-wen, DENG Jun-lin, SHI Ji-lian,
LIU Wen-long, YANG Yan-tao, TANG Yu, LIU Zhi-gang
(1. Department of Pharmaceutics, Hunan University of Chinese Medicine, Changsha 410208, China;
2. Property and Pharmacodaynamic Key Laboratory of Chinese Material Medica, State Administration of
Chinese Medicine, Changsha 410208, China;
3. Pharmaceutical Preparation Technology and Evaluation Laboratory of Chinese Medicine, Hunan University of
Chinese Medicine, Changsha 410208, China;
4. The First Affinity Hospital, Hunan University of Chinese Medicine, Changsha 410007, China;
5. Supramolecular Mechanism and Mathematic-Physics Chracterization for Chinese Materia Medica,
Hunan University of Chinese Medicine, Changsha 410208, China)
[Abstract] The paper aimed to elucidate the specific impact of supramolecular chemistry on the Chinese medicine theories(CMT)in their modernization, after had summarized up the research status of supramolecular chemistry and analyzed the possible supramolecular forms of Chinese medicine(CM), as well as considered the problems in modernization of CM theories. On comparison of the classical chemistry that delt with chemical bonds among atoms,the supramolecular chemistry was rather concerned with varietes of weak noncovalent bonds intermolecules, and reflected the macro-apparent chemical properties of each molecules, and was the most appropriate chemical theories to explain the CMT and microcosmic materials. The molecules in the human body and Chinese material medica(CMM)formed supramolecules by way of self-assembly, self-organization, self-recognition and self-replication, with themselves or with complexation, composition, chelation, inclusion, neutralization etc. Meridian and Zang-fu viscera in CMT might be a space channel structure continuously consisted of unique molecules cavity that was imprinted with the supramolecularly template inside and outside of cells, through which the molecules in CMM interacted with the meridian and Zang-fu viscera. When small molecules in human body imprinted with macromolecules in meridian and Zang-fu viscera, in other words, they migrated along within imprinting channels of meridian and Zang-fu viscera on behavior of "Qi chromatography" impulsed by the heart beat, finally showed up on macroscopic the anisotropy of tissue and organ, as described namely as visceral manifestation in Chinese medical science. When small molecules in CMM interacted with imprinting channel on meridian and Zang-fu viscera, the natural properties and efficacy regularities of CMM was reflected on macroscopic. Therefore, the special representation forms of basic CMT is based on the macroscopic expression of "Qi chromatography" abided by imprinting effect regularities, and on whether the imprinted template of small molecules matched with cavity template of macromolecules in meridian and Zang-fu viscera, only is the adequate representation of supramolecular chemistry for them. The CMM materials is the mixture including single molecules and supramolecules. The compatibility for CM prescriptions can significantly change the function rules. Therefore in the study of basic CMT, we should pay special attention to the laws of supramolecular chemistry. It is the most essential differences of the CMT from the modern medicine which established by the laws of single molecular theories.
作为新陈代谢的活性中间体,正常状态下自由基在生物体中保持相对稳定的动态平衡。细胞自身的细胞色素c(Cytochromec,Cyt.c)、超氧化物歧化酶(Superoxidedismutase,SOD)等具有抗氧化能力,可以将自由基转化为无害物质进行自我修复,这一系列的过程对细胞增殖、凋亡、损伤具有重要的影响,并在细胞信号转导过程中起着十分重要的作用。当细胞受到外界剌激或发生病变过程中会产生过量O2'_自由基,使得细胞产生氧化应激,引起癌症、神经性疾病、帕金森病等生理病变,从而对细胞的生理和病理功能产生重要的影响。因此,检测生物体中O〗_自由基的浓度具有十分重要的现实意义。
然而,因为自由基具有氧化活性高、体内浓度低、寿命短等特点,所以需要发展原位、实时、活体的自由基检测方法。电化学方法具有操作简单、易微型化、灵敏度高、易于原位、实时、在体检测等优点而备受关注,其中,基于酶传感器的电化学分析方法最为引人注目。
2溶液/电极界面的设计及酶的直接电子传递
2.1溶液/电极界面的设计
针对自由基的电化学分析,对溶液/电极界面进行设计以改善和提高电极的分析性能是一个极其关键的问题^2?16。酶自身体积较大,而活性中心通常都深埋在其内部,从而加大了活性中心到电极表面的电子传递距离,不利于实现直接电子传递。第二代酶传感器采用氧化还原电子媒介体在酶的氧化还原活性中心与电极之间传递电子,但存在媒介体的流失和干扰大的缺陷,给O〗_自由基的准确测定带来干扰,从而极大限制了其实际应用。第三代酶传感器的开发使这个领域向前迈进了一大步。通过界面设计优化,利用酶的直接电子传递机理克服了原先的不足,能够实现细胞或生物体中自由基的直接检测。界面设计优化是人为地设计电极表面微结构和其界面反应,通过将酶固定在电极表面上,使暴露的电活性中心更接近电极表面,实现酶与电极之间快速的电子传递,达到预期检测的目标。2.1.1分子设计分子自组装是对固体表面进行修饰最为有效的手段之一。高度有序、结构可控、定向密集的稳定分子层为保持酶蛋白质的天然结构和构象提供理想的微环境。同时,单分子作为加快电子传递的促进剂,可以用于探索电极表面分子微结构和宏观电化学响应之间的关系。巯基化物在金属表面自组装是目前研究得最广泛、最深入的一类物质。其自组装膜有序性强,不易聚合,条件控制容易等优点扩展其在传感方面研究和应用的范围。Tian等^在金电极表面自组装一层巯基半胱氨酸单分子膜来考察溶液中SOD的电化学活性,同时以裸金电极作为对比,实验结果证实SOD能够固定于分子修饰电极的表面上,使得电极反应更容易实现,这可能由于半胱氨酸在界面自发形成的一种热力学稳定分子层,更有利于实现SOD“软着陆”。随后,他们又将3种SOD(Cu,Zn-SOD,Fe-SOD和Mn-SOD)分别固定在巯基半胱氨酸修饰的金电极界面上,首次同时实现3种SOD的直接电子传递;巯基半胱氨酸作为促进剂加快电子的传递。通过分子设计在界面上自组装单分子体系考察电子转移过程,为更深层次的分子设计和功能组装反馈信息M。
此外,作为一种常用的选择性结合组氨酸标记蛋白质的方式,次氮基三乙酸/组氨酸(NTA/HT)技术成为组氨酸结合最成功的模版。其将蛋白质定向有序固定在电极表面上,并加快电子传递。Joln_等㈣利用该通用模版技术成功将蛋白质固定在金电极表面上,通过大环效应使NTA衍生物的三氮杂环与金属离子稳定反应,使得该体系具有更高的稳定性。Wang等^1首次利用NTA/HT技术将SOD修饰到电极表面上,极大提高了电子传递速率,电子传递常数为(24±1.1)S!1;同时,实现了SOD的直接电化学,并进一步应用于鼠脑在局部缺血和再灌注的过程中自由基浓度变化的检测。
在简单的蛋白质^分子仿生体系中,分子设计在提高传感器检测底物的灵敏度、控制活性中心与电极表面距离、加快长程电子转移等电分析化学的应用和理论方面发挥了重要作用。
2.1.2纳米材料利用酶的特异性检测O2'_自由基时,往往受限于酶负载量过少或缺乏电子传递导体从而致使电信号过小或者电子传递过慢,影响传感器的整体分析性能。纳米材料是材料学中最基础、最活跃的组成部分。不同于体材料和单个分子,纳米材料具有小尺寸效应、表面效应和量子尺寸效应等独特的物理化学性质,特别是良好的生物相容性和稳定性,可作为负载酶的良好基质,在传感领域获得广泛的应用。
Brown等M将直径12nm单层金溶胶颗粒修饰二氧化锡电极,实现了溶液中Cyt.c的直接、可逆电化学,且无需任何预处理步骤。金溶胶颗粒可看作是空间紧密而独立的微电极组合体。但随着纳米颗粒的聚集,Cyt.c的电化学变的准可逆或者不可逆,表明纳米金属尺寸和形貌在实现蛋白质的直接电子传递中也起到极其关键的作用。Zhu等122首次利用1,5或二硫醇交替连接Au、Ag胶体制备多层Au/Ag膜,在温和条件下通过氯金酸溶液去除成孔物质纳米Ag,通过层层自组装技术在氧化铟锡(ITO)电极表面制备了纳米多孔金膜。Cyt.c保持其生物催化活性,电子转移速率为3.9s!1。同时,该第三代传感器具有良好的选择性和稳定性,其检出限达到6.3x106mol/L,线性范围是1.0x105~1.2x102mol/L。
Bi等M通过将多壁碳纳米管修饰玻碳电极上实现了SOD的固定。多壁碳纳米管表面的晶格缺陷提供了较高的局部电子密度,有利于电子在酶蛋白和碳纳米管之间传递;同时,特殊结构的碳纳米管可以作为“分子导线”,加快电子传递到SOD的活性中心,以上两方面因素致使SOD在电极表面上实现直接电子传递。
Deng等M利用蒸汽方法直接在预处理ITO表面沉积上一层花状ZnO纳米材料,设计出新型纳米材料界面,增大了基底的比表面积和导电性。同时,生物相容性保持了SOD的高生物催化活性,结合ZnO作为“纳米导线”加快电子的传递作用,实现了SOD的直接电子传递,构筑了第三代生物传感器,异相电子传递常数可达(10.4±1.8)s!l。Zhu等123将Cyt.c固定在SiO:纳米材料修饰的玻碳电极表面上,实现了Cyt.c的直接电化学。实验数据证实Cyt.c的直接电子传递及微环境的改变与SiOi双功能结构的空间几何构象有关。该模型能够定性的解释纳米材料的尺寸和浓度对氧化还原蛋白的直接电子传递的影响,同时也为广泛应用无机纳米材料来促进电子传递提供一种新思路。
随着纳米技术的不断发展和壮大,各种纳米材料在传感器领域的应用日趋广泛。纳米材料所具有的高比表面积、高活性、特殊物理性质及生物相容等特性使其成为应用于传感方面最有前途的材料之一。2.2基于酶直接电子传递的传感器
直接电子传递是蛋白质分子与电极表面在没有任何媒介和试剂的情况下直接进行电荷交换,这样有利于电子传递效率的提高,更能反映生物体系内的氧化还原系统,为揭示生物体内电子传递的机理奠定了基础。但是酶蛋白的活性中心通常是深埋在其内部,当其固定在裸电极表面时,没有合适的界面微
环境来实现其直接电子传递,致使阻碍其在活体检测方面的实际应用。通过界面设计使修饰电极可以建立理想的接触界面,暴露酶的电活性中心,实现酶与电极之间快速的直接电子传递,并利用其对自由基的选择性达到预期的检测目的,对于预防和治疗疾病以及抗氧化药物的研发都具有现实意义。
2.2.1基于Cyt.c的传感器Cyt.c是一种存在于线粒体内膜外侧的金属蛋白分子,是呼吸链中一个重要的电子载体。通过血红素辅基中心铁离子价态的变化来传递电子,在细胞呼吸链中具有举足轻重的作用。研究其在电极上的电子传递及与O2'_自由基的生物作用,对于了解生命体内的能量转化和物质代谢具有重要的意义。因此,探索实现Cyt.c与电极表面之间的直接电子传递成为电分析化学研究的方向之一。 Cooper等将巯基半胱氨酸自组装到裸金电极表面,通过碳二亚胺缩合反应固定Cyt.c,考察了yt.c与电极之间的电子传递情况,结果显示Cyt.c在电极表面实现直接电子传递;其表观电位为2mV(vs.SCE),表明此传感器具有潜在实际应用的可行性。Cooper等M采用电化学分析方法检测黄嘌昤/黄嘌昤氧化酶体系酶化反应产生的自由基,其原理如图1所示。酶化反应产生O〗_自由基还原Cyt.c,自身被氧化成Oi;同时还原态的Cyt.c在电极表面正电位下迅速被氧化为氧化态。基于此反应机理,他们实现了嗜中性粒细胞中应激产生的02’_自由基的动态检测,且引起的电流响应速率与02"自由基的产生速率成线性关系。-传感器的灵敏度取决于负载活性酶的数量以及酶与自由基的反应速率。Wegrich等63利用定点诱变技术在Cyt.c活性位点附近引进带正电荷的赖氨酸,考察其在巯基分子修饰的金电极上的分析性能。实验数据表明诱变重组的Cyt.c均具有氧化还原图10厂电流传感器的作用机理示意图电活性,能够实现直接电化学,并且与O2’_自由基的Fig.1Mechanismofoperationofamperometric反应速率显著加快。基于诱变Cyt.c构筑的电化学生sensor物传感器在灵敏度和稳定性上都有不同程度的提
高。纳米材料的不断发展为电极界面设计提供了新的契机,其巨大的比表面积和良好的生物相容性,既
能增大酶的负载量,又能较好的保持酶蛋白的高催化活性,同时作为良好导体加快电子的传递。Rahimi
等M将多层碳纳米管/室温离子液体的纳米复合材料与Cyt.c混匀后,直接滴涂到玻碳电极表面上,简单有效地制备了O〗_第三代生物传感器。首先,多层碳纳米管作为电子促进剂,加快Cyt.c和电极之间的电子传递;其次,室温离子液体保持了Cyt.c的空间构象结构和生物催化活性,二者协同提高了传感器的
灵敏度、响应时间、检测限等分析性能。正如人们所期望的,基于Cyt.c的O〗_传感器可避免抗坏血酸、尿酸的干扰,能够在低电位下检测。然而,作为过氧化物酶的本质特点,Cyt.c同样能够还原来自酶化反应产生和体内共存的&O2,受其干扰。虽然Gobi等M报道可以通过设计电极来控制Cyt.c的过氧化酶活性,但Cyt.c不是O〗-的特异性酶,这极大限制了其在复杂生物体系中的选择性检测的作用。众所周知,SOD可高活性和选择性地将O〗-歧化为O:和H2O2M,从而完成O〗-高选择性测定。因此,采用SOD替代Cyt.c来构筑高灵敏度和高选择性的O〗_生物传感器越来越受到业内人士的普遍关注。
2.2.2基于SOD与仿生SOD的O「传感器SOD是广泛分布于生物体内重要的抗氧化酶,也是生物体内清除自由基的首要物质。作为一种金属蛋白酶,常见的几种不同金属中心SOD是Cu,Zn-SOD,n-SOD,Fe-SOD和Ni-SOD,它们都能将O;-自由基有效的歧化为%。2和。2保护机体不受毒性的侵害。但其电活性中心都包埋于蛋白质深处,致使SOD与电极表面的直接电子传递难以实现。
因此,实现SOD与电极之间的直接电子传递对第三代O2’_生物传感器的构筑以及实际应用的发展具有现实意义。
Ohsaka等M首次将Cu,Zn-SOD修饰在半胱氨酸自组装修饰的金电极表面上构筑了第三代传感器。实验结果表明,自组装的半胱氨酸分子可作为SOD电极反应的促进剂。结合传感器高灵敏度、高选择性和快速响应的良好分析性能,实现对酶化反应产生O^自由基的检测,这一工作是利用SOD直接电化学实现O;_自由基检测的一个巨大突破。Ohsaka课题组M首次发现O;_自由基在SOD电极上能够同时氧化和还原,并进行对比实验证实了可以在氧化和还原电压双向检测自由基,这为实现溶液中自由基的分析检测提供了第一手资料,同时为实现持久和可靠的检测生物体系里的O;-自由基奠定了基础。接着,Tian等^首次在半胱氨酸膜修饰的电极上同时实现3种活性中心SOD(Cu,Zn-SOD,Fe-SOD和Mn-SOD)的直接电子传递。如图2所示,通过活性中心的氧化还原循环,SODs能够催化还原成H2O2和氧化成O2,使得阳极和阴极上的电流响应明显增大,这说明SOD对O;-具有双功能电催化活性。结合SOD快速电子传递的特性,该传感器为双向实现O^电化学检测的提供了一条可行性路线。
Ge等M将Cu,Zn-SOD和Fe-SOD固定在巯基半胱氨酸修饰的裸金电极表面上,研究其动力学和吸附过程,结果表明通过不同动能学过程均能结合到电极表面上。
在实际应用检测中,高灵敏、高选择性的检测方法越来越显示出其重要性。纳米技术的发展为高灵敏电化学分析方法的发展提供了机遇。例如,纳米材料在生物分析检测中得到了广泛应用,已有多种信号放大方法用于高灵敏电化学分析方法的构建。
如图3所示,Tian课题组[43首次在锥状、棒状和球状3种不同形貌的纳米金表面上同时实现了SOD的直接电化学。热力学和动力学分析表明SOD在不同界面上的电子转移速度,与纳米金的形貌有关;同时,
良好的生物相容性让纳米金表面的SOD保持了其自身的生物催化活性,可用来构建既可在氧化电位又可在还原电位下进行0厂自由基检测的生物传感器。
无需其它步骤,结合良好的分析性能大大增加了其应用于实现生物体内O^测定的可行性。
综上所述,分析检测都是在体外分析体系中通过外来不断加入O2'_自由基进行电分析,与体内的复杂生物环境截然不同。因此我们很有必要对体内O;-自由基进行准确的分析检测,以便更好的深入理解O^自由基在生理和病理上中所发挥的作用。
3细胞释放检测
在细胞水平上,当细胞受到外界剌激或者生理病变过程中会产生过量自由基,从而对细胞生理功能产生重要影响,进而引起生理病变。因此,构筑适于检测细胞内O2'_自由基的传感器,原位、实时地检测自由基浓度的变化,对疾病预防与治疗的途径具有重要的生理及病理意义。
Tanaka等[44利用碳纤维修饰电极检测由免疫球蛋白G和卟啉醇肉豆蔻酸乙酸酯剌激单中性白细胞产生O^自由基的氧化电流。实验证明自由基会在剌激1min后产生,5min达到最大值,20min后消失,这种方法获得的电流4寸间关系与传统方法获得的结果一致。随后,Tanaka课题组[45设计了一种检测由单个噬菌细胞释放自由基的电流方法,其灵敏度高达到fA级。
在实际样品检测时,天然酶的空间结构和构象变化容易致使其丧失催化活性,成为制约它们实际应用瓶颈。为了避免这些缺陷,基于活性位点■铜、铁和锰设计的低分子量、具有SOD生物活性的仿生酶研究已陆续报道[4649]。Cabelli等^研究了锰磷酸盐作为仿生SOD在有机活体内的抗氧化机理。为了证明结果的可靠性,他们采用两种不同方法:脉冲辐射法和Co~60i辐射法产生自由基。实验证明Mn2+与O「自由基反应生成暂态的MnO:+,然后MnO:+快速歧化生成O:和^O:。
Tian课题组利用M%(PO4)2具有仿生SOD的生物特性,在高导电纳米针状TiOi膜上构筑了一个具有选择性高和稳定性好的第三代O〗_生物传感器,提供了一种方便、快速原位直接检测贴壁生长在修饰膜表面的正常人胚肾细胞HEK293T和CHO癌细胞释放的O〗_自由基的电化学分析新方法。检测原理如图4所示,在M%(PO4)2仿生酶的催化作用下发生歧化反应的过程中,将Or分别转化成Oi和&O2(如图4A)。此过程可看成是分别在两个电极上独立进行的两个反应。一方面,在阳极反应中图(4B),电解液中的被MnOi+的氧化生成O2,同时MnOi+被还原成Mn2+。而生成的Mn2+能够在电极上失去电子,重新被氧化成MnO2+。另一方面,在阴极反应中(图4C),O;-氧化Mn2+生成MnO2+,而生成的MnO2+在电极表面得到电子被还原成Mn2+。因此,在O〗-存在的情况下,通过Mn2+修饰电极上的氧化或还原电流检测O2'_。因此,通过两极上氧化或还原电流信号的变化,即可实现对O2’_的检测。电化学信号表明此生物传感器可以实现细胞应激反应产生0厂自由基的可逆响应,暗示02'_自由基可作为_种癌症生物标记物,为生理和病理方面的研究提供了基础。
基于SOD生物仿生酶(PO4)2,Zhou等开发了一种可靠和持久原位实时检测O-自由基的方法。Mn2+通过离子交换作用进入zeolite~ZSM-5的纳米结构中,进一步被聚二烯丙基二甲基氯铵化覆盖固定到电极表面上。沸石的纳米微结构加快了Mn2+的直接电子传递,其表观电位是(561±6)mV(vs.Ag/AgCl),位于O2'-/O2和O2'-/H2O2动力学电位内,可以将O〗_歧化为Oi和%O2。利用分子筛较好的生物相容性和细胞黏附性,让细胞贴壁生长,
可靠、持久的原位实时测定了细胞释放出来的O‘-自由基浓度,实现从理论到实践应用的转变。
作为细胞信号的传导分子,自由基与金属离子密切关系,包括Ca2+通道、K+通道、Na+通道等。
Tian课题组153基于Mn^TPAA(Mn-tris2-(2-pyridylmethyl)aminoethyl]amine)仿生酶构筑了O;生物传感器,具有高的稳定性和良好的重现性。以Hela细胞为模型,他们进一步研究了细胞释放O〗_自由基与细胞内Ca2+之间的依存关系。如图5所示,在无抑制剂时,加入Ang后荧光强度明显增强,说明Angn剌激细胞产生的O「促使细胞内Ca2+的释放,Ca2+与Fluo4-AM结合,从而使荧光增强。然而,在实验前先用NADPH氧化酶抑制剂Apo或阴离子通道阻滞剂DIDS处理10min,再进行的相同实验时,AngH剌激细胞前后荧光强度没有明显变化。这说明Apo抑制细胞外O〗_的产生而影响荧光强度的增加,DIDS阻止细胞外O〗_进入细胞而抑制细胞Ca2+浓度的增大。这一研究对认识自由基信号的传导与其它生理和病理的关系提供了一种新思路。
4活体电化学分析
电化学分析方法虽具有高灵敏性、原位、实时在线检测等优点,适于活体内o2'_自由基的分析和检测,但目前这方面鲜有文献报道。
对于植物体内0厂自由基的检测,Deng等M基于半导体ZnO纳米材料成功构筑了第三代生物传
感器,实现了豆芽体内O^的检测。如图6所示,活体实验采用双电极体系,ZnO/SOD微电极作为工作电极,铂丝作为对电极。ZnO/SOD微电极的制备步骤如下:首先,ITO导电玻璃切割成剌状;然后,将ZnO纳米材料电沉积到导电玻璃表面上,并进一步负载Cu,Zn-SOD。结果表明,通过一步、无模版的电沉积得到新型六角形ZnO纳米材料,可实现了SOD的直接电子传递;再结合SOD对O^自由基的催化歧化,实现了豆芽体内O^自由基的在线检测。该项研究不仅为酶蛋白在纳米结构半导体膜上构筑第三代生物传感器建立了一个模型,也为研究生物体内O2’-作用机理开启了一扇窗口,可以更深入的理解O;-自由基在生理学和病理学中的作用。
利用TTCA(5,2:5,2-terthiophene-3-carboxylicacid)聚合物膜依次共价键固定DGPD(1,2-Dipalmi-toylsn~glycero-3~phosphoethanolamine^i~dodecanylamine)和Cyt.c,Rahman等1551制备了一种高稳定、高灵敏的体内检测O2_的第三代传感器。他们通过持续不断的往鼠脑注入可卡因溶液剌激产生O2_,并利用该传感器对细胞外的o2’-进行检测。如图1所示,该传感器在盐水、急性和重复注射可卡因不同实验条件下产生了不同程度的电流响应,其中重复注射可卡因操作下传感器的灵敏度最高。-0.31V的低电位结合聚合物膜的屏蔽可使传感器在测定0厂自由基时避免抗坏血酸、尿酸、过氧化氢、氧气等干扰,从而保证此微型传感器植入鼠脑成功测定体内02'-自由基的浓度,并且能够实现动态检测体内02-自由基浓度随可卡因不断急性注入的变化。该微型生物传感器可以作为监测兴奋剂药物暴露引起细胞外0厂自由基浓度变化的一种有效工具。
近来,Tian等63提出了一种植入型微碳纤维电极直接实现活体内0厂自由基检测的新思路。此碳纤维基底上固定的SOD在测定0厂上拥有显著的高选择性和良好的稳定性;同时背景电流的减小使得碳纤维微电极在高灵敏测定生物体内0厂自由基占有优势。随后,Tian课题组M首次利用NTA/HT技术实现了SOD在NTA修饰电极上的直接电化学,极大提高了电子传递。整个传感器的制备过程如图8(A和B)所示。结合传感器的高灵敏度、高稳定性的分析性能以及碳纤维电极生物相容性和可微型化特点,该课题组成功实现鼠脑在缺血再灌注过程中0厂自由基浓度的变化检测(图8C)。该研究为体内活性氧的进一步研究提供了一种新思路,同时也为理解其在氧化应激和生理病理过程中的作用提供了独特的视角。
建立基于纳米材料与功能分子设计界面的02’-自由基检测新方法和适于活体检测的超微电极技图8(A)NTA和SOD修饰电极过程示意图;(B和C)碳纤维电极制备过程以及利用碳纤维电极检测鼠脑内02’_过程示意图
术,将为研究等活性氧在细胞信号转导中的作用,进而解析0厂自由基等活性氧在生命活动中的作用机理,治疗和预防与氧化应激等有关疾病,以及抗氧化物新药的研制与开发等提供一种新的研究思路。