时间:2024-03-27 10:23:25
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇欧姆定律含义,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
一、牛顿第一定律。采用边讲、边讨论、边实验的教法,回顾“运动和力”的历史。消除学生对力的作用效果的错误认识;培养学生科学研究的一种方法——理想实验加外推法。教学时应明确:牛顿第一定律所描述的是一种理想化的状态,不能简单地按字面意义用实验直接加以验证。但大量客观事实证实了它的正确性。第一定律确定了力的含义,引入了惯性的概念,是研究整个力学的出发点,不能把它当做第二定律的特例;惯性不是状态量,也不是过程量,更不是一种力。惯性是物体的属性,不因物体的运动状态和运动过程而改变。在应用牛顿第一定律解决实际问题时,应使学生理解和使用常用的措词:“物体因惯性要保持原来的运动状态,所以......”教师还应该明确,牛顿第一定律相对于惯性系才成立。地球不是精确的惯性系,但当我们在一段较短的时间内研究力学问题时,常常可以把地球看成近似程度相当好的惯性系。
二、牛顿第二定律。在第一定律的基础上,从物体在外力作用下,它的加速度跟外力与本身的质量存在什么关系引入课题。然后用控制变量的实验方法归纳出物体在单个力作用下的牛顿第二定律。再用推理分析法把结论推广为一般的表达:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。教学时还应注意公式F=Kma中,比例系数K不是在任何情况下都等于1;a随F改变存在着瞬时关系;牛顿第二定律与第一定律、第三定律的关系,以及与运动学、动量、功和能等知识的联系。教师应明确牛顿定律的适用范围。
三、万有引力定律。教学时应注意:①要充分利用牛顿总结万有引力定律的过程,卡文迪许测定万有引力常量的实验,海王星、冥王星的发现等物理学史料,对学生进行科学方法的教育。②要强调万有引力跟质点间的距离的平方成反比(平方反比定律),减少学生在解题中漏平方的错误。③明确是万有引力基本的、简单的表式,只适用于计算质点的万有引力。万有引力定律是自然界最普遍的定律之一。但在天文研究上,也发现了它的局限性。
四、机械能守恒定律。这个定律一般不用实验总结出来,因为实验误差太大。实验可作为验证。一般是根据功能原理,在外力和非保守内力都不做功或所做的总功为零的条件下推导出来。高中教材是用实例总结出来再加以推广。若不同形式的机械能之间不发生相互转化,就没有守恒问题。机械能守恒定律表式中各项都是状态量,用它来解决问题时,就可以不涉及状态变化的复杂过程(过程量被消去),使问题大大地简化。要特别注意定律的适用条件(只有系统内部的重力和弹力做功)。这个定律不适用的问题,可以利用动能定理或功能原理解决。
五、动量守恒定律。历史上,牛顿第二定律是以F=dP/dt的形式提出来的。所以有人认为动量守恒定律不能从牛顿运动定律推导出来,主张从实验直接总结。但是实验要用到气垫导轨和闪光照相,就目前中学的实验条件来说,多数难以做到。即使做得到,要在课堂里准确完成实验并总结出规律也非易事。故一般教材还是从牛顿运动定律导出,再安排一节“动量和牛顿运动定律”。这样既符合教学规律,也不违反科学规律。中学阶段有关动量的问题,相互作用的物体的所有动量都在一条直线上,所以可以用代数式替代矢量式。学生在解题时最容易发生符号的错误,应该使他们明确,在同一个式子中必须规定统一的正方向。动量守恒定律反映的是物体相互作用过程的状态变化,表式中各项是过程始、末的动量。用它来解决问题可以使问题大大地简化。若物体不发生相互作用,就没有守恒问题。在解决实际问题时,如果质点系内部的相互作用力远比它们所受的外力大,就可略去外力的作用而用动量守恒定律来处理。动量守恒定律是自然界最重要、最普遍的规律之一。无论是宏观系统或微观粒子的相互作用,系统中有多少物体在相互作用,相互作用的形式如何,只要系统不受外力的作用(或某一方向上不受外力的作用),动量守恒定律都是适用的。
六、欧姆定律。中学物理课本中欧姆定律是通过实验得出的。公式为I=U/R或U=IR。教学时应注意:①“电流强度跟电压成正比”是对同一导体而言;“电流强度跟电阻成反比”是对不同导体说的。②I、U、R是同一电路的三个参量。③闭合电路的欧姆定律的教学难点和关键是电动势的概念,并用实验得到电源电动势等于内、外电压之和。然后用欧姆定律导出I=ε/(R+r)(也可以用能量转化和守恒定律推导)。④闭合电路的欧姆定律公式可变换成多种形式,要明确它们的物理意义。⑤教师应明确,普通物理学中的欧姆定律公式多数是R=U/I或I=(1/R)U,式中R是比例恒量。若R不是恒量,导体就不服从欧姆定律。但不论导体服从欧姆定律与否,R=U/I这个关系式都可以作为导体电阻的一般定义式。中学物理课本不把 R=U/R列入欧姆定律公式,是为了避免学生把欧姆定律公式跟电阻的定义式混淆。这样处理似乎欠妥。
关键词:全电路;欧姆定律;实验教学;感性教学
中图分类号:G712 文献标识码:A 文章编号:1672-5727(2012)08-0098-02
欧姆定律是《电工基础》中最常用的基本定律之一,技工院校现在使用的《电工基础》教材(中国劳动社会保障出版社出版,第四版)中把欧姆定律分为部分电路欧姆定律和全电路欧姆定律两部分。对于部分电路欧姆定律,由于中学物理课本已作详细介绍,学生容易接受,但对于全电路欧姆定律,由于其涉及的概念较多且各物理量之间的关系复杂,再加上教材未附相应的实验,学生缺乏感性认识。因此,学生很难理解和接受,也是其成为教师教学中重点和难点的原因。笔者针对学生在学习过程中容易产生的困惑和疑问,借助实验来帮助学生理解,收到了较好的效果。
明确教学目标是教师组织
全电路欧姆定律教学的关键
掌握全电路欧姆定律对于学好《电工基础》这门课程来说至关重要。因为后续章节中多处电路的分析和计算要应用到这一定律。教学是一个教师与学生双向互动的过程,作为教师,要组织好全电路欧姆定律教学,必须先明确教学目标,做到心中有数,才能更好地开展教学。
知识目标:(1)理解电动势、内电阻、外电阻、内电压、外电压、端电压、内压降等物理量的物理意义;(2)掌握全电路欧姆定律的表达形式,明确在闭合电路中电动势等于内、外电压之和;(3)掌握端电压与外电阻、端电压与内电阻之间的变化规律;(4)掌握全电路欧姆定律的应用。
能力目标:(1)通过实验教学,培养学生的观察和分析能力,使学生学会运用实验探索科学规律的方法;(2)通过对端电压与外电阻、端电压与内电阻之间的变化规律的讨论,培养学生的思维能力和推理能力。
理解各物理量的物理意义是
学生掌握全电路欧姆定律的基础
全电路欧姆定律的难点在于概念较多,且各物理量之间的关系复杂。因此,首先,应让学生准确理解各物理量的含义。
全电路是指含有电源的闭合电路,如图1所示。其中,R代表负载(即用电器,为简化电路,只画一个),r代表电源的内电阻(存在于电源内部),E代表电源的电动势。整个闭合电路可分为内、外两部分,电源外部的叫外电路(图1中方框以外的部分),电源内部的叫内电路。外电路上的电阻叫外电阻,内电路上的电阻叫内电阻。当开关S闭合时,电路中就会有电流产生,I=,该式表明:在一个闭合电路中,电流强度与电源的电动势成正比,与电路中内电阻和外电阻之和成反比,这个规律称为全电路欧姆定律。
要理解这个定律,要先理解以下几个物理量的物理意义:第一个是电动势,它是指在电源内部,电源力将单位正电荷从电源负极移到正极所做的功。这个概念比较抽象,涉及知识面较广,要使学生全面、深刻地理解它是有困难的。考虑到学生的接受能力和满足后续知识的需要,需向学生讲清两个问题:一是电动势的值可用电压表测出——电动势等于电源没有接入电路时两极间的电压;二是电动势的物理意义是描述电源把其他形式的能转化为电能的本领,是由电源本身的性质决定的。第二个是电源的端电压(简称端电压),它是指电源两端的电位差(在图1中指A、B两点之间的电压,也等于负载R两端的电压)。需要注意的是,端电压与电动势是两个不同的概念,它们在数值上不一定相等。第三个是内压降,它是指当电流流过电源内部时,在内电阻上产生的电压降。全电路欧姆定律也可表示为:“在闭合电路中,电动势等于内、外电压之和。”
掌握各物理量的变化规律是
掌握全电路欧姆定律的重点
全电路欧姆定律的难点在于各物理量之间的变化规律,也是学生容易产生疑惑的地方。可以利用演示实验来验证各物理量之间的变化规律,以增加学生的感性认识,提高学生的逻辑推理能力。
第一,验证电源内电阻的存在并计算其大小。对于电源的内电阻,由于存在于电源的内部,既看不见,也摸不着,学生对此存在质疑。为此,可用图2进行实验,不但可以证明内电阻的存在,还可测出内电阻的大小。在图2中,用1节1号干电池作电源,电阻R为已知值(可根据实际情况选定)。开关闭合前,记下电压表的读数U1(此值即为干电池的电动势),开关闭合后,记下电压表的读数U2,发现U2比U1小(见表1),就是因为电源内部存在内电阻的缘故。
根据公式r=R可算出该电池的内电阻。再用不同型号的干电池(如5号干电池、7号干电池)进行重复实验,发现它们的电动势虽然相等(为了后面实验的需要,尽量选用电动势相等的电池,并保留这些电池),但内电阻不一定相同。
第二,端电压U跟外电阻R的关系。
实验电路如图3所示,用1节1号干电池作为电源,移动滑动变阻器的滑动片,观察电流表和电压表的读数变化,并将它们的读数记录到表2中。通过观察发现:当滑动片从左向右移动时(为保证实验设备安全,滑动片不要移到最右端),电流表的读数慢慢变大,电压表的读数慢慢变小;当滑动片从右向左移动时,电流表的读数慢慢变小,电压表的读数慢慢变大。由此得出结论:端电压随外电阻上升而上升,随外电阻下降而下降。根据表2中的数据可绘成曲线(如图4所示),即电源的端电压特性曲线。从曲线上可以看出:电源端电压随着电流的大小而变化,当电路接小电阻时,电流增大,端电压就下降;当电路接大电阻时电流减少,端电压就上升。
思考:如果滑动片移到最右端,电压表、电流表的读数将为多少?
第三,端电压与内电阻r的关系。
根据公式U=E-Ir分析可知:当电流I 不变时,内阻下降,端电压就上升;内阻上升,端电压就下降。实验电路同图3,只需将电路中的电源用前面已测过内阻值的不同型号的电池代替即可,观察电流表、电压表的读数,上述结论即可得到验证。
应用规律,解决实际问题
首先向学生提出问题:你是否注意到,电灯在深夜要比晚上七八点钟亮一些?这个现象的原因何在?在回答这个问题之前,可先通过实验验证这一现象的存在,如图5所示。图中5个灯泡完全相同,先将开关全合上,使灯泡发光,再逐个断开开关,发现灯泡逐渐变亮,原因分析:随着开关的断开,外电阻增大,导致干路电流减小,使得内压降下降,从而端电压增大,即灯泡两端的实际电压增大,故灯泡变亮了。上述问题也得到了解决。
在教学过程中,如果尽可能地增加一些实验,通过生活中的实验记录其数据并指导学生得出规律,提高感性认识,不但可以提高学生的学习兴趣,也会提高教学效果。
参考文献:
[1]李书堂.电工基础(第4版)[M].北京:中国劳动社会保障出版社,2001.
[2]毕淑娥.电工与电子技术基础(第2版)[M].哈尔滨:哈尔滨工业大学出版社,2004.
[3]王兆良.关于“全电路欧姆定律”的教学[J].福建轻纺,2007(2).
课题:闭合电路的欧姆定律(第一课时)
课型:复习课
【教学目标】
一、 知识目标
1. 理解闭合电路的欧姆定律,并用它进行有关电路问题的分析和计算.
2. 理解路端电压与负载的关系.
二、 能力目标
1. 通过对U-I图线的分析培养学生应用数学工具解决物理问题的能力.
2. 利用闭合电路欧姆定律解决一些简单的实际问题,培养学生运用物理知识解决实际问题的能力.
三、 情感目标
通过本节课教学,加强对学生科学素质的培养,通过探究物理规律培养学生创新精神和实践能力.
【教学重难点】
1. 闭合电路的欧姆定律
2. 路端电压与电流(外电阻)关系的公式表示法及图线表示法.
【考点再现 设疑激思】
一、 电动势
1. 电源是通过非静电力做功把 的能转化成 的装置.
2. 电动势:非静电力搬运电荷所做的功跟搬运的电荷电量的比值,E= ,
单位:V .
3.电动势的物理含义:电动势表示电源 本领的大小,在数值上等于电源没有接入电路时两极间的电压.
电动势与电压有什么区别?
(1、其它形式、电能 2、 Wq 3、将其它形式的转化为电能)
(电动势反映其它形式的能转化为电能的本领,电压形成电场,促使电流做功.)
二、闭合电路欧姆定律
1.定律内容:闭合电路的电流跟电源电动势成 , 跟内、外电路的电阻之和成 .
2.定律表达式为I=
3.适用条件
4.闭合电路欧姆定律的两种常用关系式:
(1)E=
(2)E=
你认为电源的内阻是恒定的还是不断变化?定律表达式怎样推导出来的?
电路中电流一定从高电势流向低电势,对吗?
(1、正比、反比;2、I=ER+r; 3.纯电阻电路;4.E=U内+U外、E=U外+Ir)
(电源内阻短时间可认为不变、定律从能量守恒推导、不对,内电路电流方向从低电势流向高电势)
三、路端电压U与外电阻R的关系
根据U= 知,当外电路电阻R增大时,电路的总电流I ,电源内电压U内 ,路端电压U外 .
(E-Ir 、减小、减小、增大)
四、U-I关系图
由U= 可知,路端电压随着电路中电流的增大而内电压 ;
1.当电路断路即I=0时,纵坐标的截距为 .
2.当外电路电压为U=0时,横坐标的截距为 .
3.图线的斜率的绝对值为电源的 .
注意点:纵轴起点是否为零.
电源的U-I关系图与电阻的U-I关系图有什么不同?
(E-Ir、减小 1.E 2.I短 3.r)
(电源的U-I关系图反映路端电压与电流关系、电阻的U-I关系图反映电阻两端电压与通过它的电流关系)
五、电源的功率
1.电源的总功率P总= .
2.电源的输出功率P出=.
(1.EI 2.UI)
考点说明: 闭合电路欧姆定律是二级要求,常在选择题中出现动态电路分析,实验中常考查U-I图线的有关知识点.
复习考点还须引导学生多阅读教材,多思考,多归纳总结,多联系实际.
【典型例题剖析 学会归纳总结】
题型1闭合电路欧姆定律的动态分析
例1 如图所示,电源电动势E=12 V,内阻r=1 Ω,R1=5 Ω,R2=12 Ω,R3的最大阻值为6 Ω.
(1)求:流过电流表的最小电流?
(2)若R3的阻值减小,其它元件均不变,判断电路中电压表、电流表的示数如何变化?
答案:(1)0.8A;(2)V1、V2减小A增大
方法点拨:支路-干路-支路
学生的疑点:1.总电阻的变化不清;
2.内电压变化忘了分析;
3.路、支路,电压、电流变换搞昏了头.
【当堂巩固1】
如图所示,电源电动势E=8 V,内阻不为零,电灯A标有“10 V,10 W”字样,电灯B标有“8 V 20 W”字样,滑动变阻器的总电阻为6 Ω.闭合开关S,当滑动触头P由a端向b端滑动的过程中(不考虑电灯电阻的变化) ( A )
A.电流表的示数一直增大,电压表的示数一直减小
B.电流表的示数一直减小,电压表的示数一直增大
C.电流表的示数先增大后减小,电压表的示数先减小后增大
D.电流表的示数先减小后增大,电压表的示数先增大后减小
探究:P移动电路总电阻怎样变化?
题型2探究含电容电路的判断与计算
例2 如图所示,E=10 V,r=1 Ω,R1=R3=5 Ω,R2=4 Ω, C=100 F,当S断开时,电容器中带电粒子恰好处于静止状态.求:
(1)S闭合后,带电粒子加速度的大小和方向.
(2)S闭合后流过R3的总电荷量.
答案:(1)10 m/s2向上;(2)400 C
方法点拨 电容器两极电压与R2两端电压关系?R3在电路中有什么作用?
学生疑点:1.电容两端电压变化没搞清;
2.与电容串联的电阻作用不明;
3.电路结构认识不清.
【当堂巩固2】
如图电路中,当滑动变阻器的触头P向上滑动时,则 ( D )
A.电源的总功率变小
B.电容器贮存的电荷量变大
C.灯L1变暗
D.灯L2变亮
题型3 探究 U-I图象的应用
例3 如图所示,直线A为电源的路端电压U与电流I的关系图象,直线B是电阻R的两端电压与通过其电流I的关系图象,用该电源与电阻R组成闭合电路,则电源的总功率为 W,电源的输出功率为 W电源的效率为
.
答案:6 W 4 W 23
探究:图线的交点有什么物理意义?(工作点)
【当堂巩固3】
如图所示,为一个电灯两端的电压与通过它的电流的变化关系曲线.由图可知,两者不成线性关系,这是由于焦耳热使灯丝的温度发生了变化的缘故.参考这条曲线探究下列问题(不计电流表的内阻).
(1) 若把一个这样的电灯串联,接到电动势为6 V,内阻为10 Ω的电源上,如图甲所示求流过灯泡的电流和灯泡的电阻?
(2) 若将两个这样的电灯并联后接在这个电源上,如图乙所示,则通过电流表的电流值和每个灯泡的电阻?
方法点拨:写出U=E-Ir其中I为通过电源的电流,并作图找交点.
答案:(1)0.35 A 7.1Ω (2)0.24 A 17.5Ω(提示写出U=E-2Ir其中2I为通过电源的电流,并作图找交点)
学生难点:
1.图像特别是曲线,不会找具体信息;
2.对电阻与电源的U-I图象的区别不清楚;
授课时间: 授课地点:
授课教师: 授课课题:串并联电路的电阻关系
一 教学目标
知识与技能
1.培养学生理论联系实际,学以致用的科学思想。
过程与方法
1.体会等效电阻的含义,学会等效替代的研究方法。
情感态度与价值观
1. 能根据欧姆定律以及电路 的特点,得出串、并联电路中电阻的关系。
2.能进行两个电阻的串、并联电路的分析和计算。
二 教学重难点
重点:欧姆定律在串、并联电路中的应用。
难点:串、并联电路计算中公式的选择。
三 课前准备
电池组、开关、导线、电流表、定值电阻等。
四 教学过程
1. 复习回顾
2. 新课引入
演示:(1)将一个电阻接入电路,读出电流表示数
(2)将两个电阻接入电路,读出电流变示数
现象:一个电阻和两个电阻电流表示数一样,效果相同
阅读课本p93问题与思考,解释什么叫做等效电阻
1. 串联电路中的电阻规律:
推论:串联电路的总电阻比任何一个分电阻都大。
例题1:把一个4Ω的电阻R1和一个5Ω的电阻R2串 联在电路中,如图12-7所示,电源两端的电压为 6V。这个电路中的电流是多大?
2. 并联电路中的电阻规律:
推论:并联电路中,总电阻比任何一个分电阻都小。
练习课本p96例题2,并用不同的方法解答
五 课堂总结:
1.串联电路中电流、电压和电阻的关系。
2.并联电路中电流、电压和电阻的关系。
1 与牛顿运动定律相关的图象问题
1.1 图象用于规律探究
探究“加速度与力、质量的关系”,最后的数据处理和规律的得到就是借助于图象进行分析的,尤其是“加速度与质量的关系”,学生很难直接从数据上看出两者成反比关系,不过当作出如图1所示的a-m函数图象时,学生从经验出发很容易猜测其是双曲线,继而猜测是反比,是不是呢?再进一步变化坐标,作出如图2所示的a-1[]m图象,得到一条过原点的直线,归纳出结论:得到当合力一定时,加速度与质量成反比的结论.
1.2 提取图象信息解运动学问题
从图象中找出解题信息,把图象与物理图景相联系,应用牛顿运动定律及其相关知识解答.
1.3 借助于v-t图象切线斜率的变化比较加速度
x-t图象切线的斜率表示瞬时速度,同样可以推理得v-t图象切线的斜率能表示加速度a,切线斜率的变化可以反映加速度大小的改变.
例2 木块A、B质量相同,现用一轻弹簧将两者连接置于光滑的水平面上,开始时弹簧长度为原长,如图4所示,现给A施加一水平恒力F,弹簧第一次被压缩至最短的过程中,有一个时刻A、B速度相同,试分析此时A、B的加速度谁比较大?
解析 在弹簧压缩过程中,隔离A、B进行受力分析,对A有:F-kx=maA,弹簧形变量变大,A做加速度减小的加速运动;对B有:kx=maB,B做加速度增大的加速运动.接着定性画出A、B运动的v-t图象如图5所示,交点为C表示两者速度相同,直观地呈现该处B切线的斜率大于A的斜率,即aB>aA.[HJ1.5mm]
2 电路中的图象问题
2.1 U-I图象问题
导体的伏安特性曲线能直观的体现导体电流随所加电压的变化关系.线性元件对应的伏安特性曲线是斜直线,直线的斜率k=I/U,物理意义是电阻的倒数.对于非线性元件来说,伏安特性曲线是曲线,任意一点对应坐标的比值k=I/U,物理意义也是电阻的倒数.计算阻值时两者有很大的区别.但任意一点对应坐标的乘积P=UI的物理意义是元件的实际功率,这个结论对两种元件都适用.
电源的路端电压与干路电流的关系图象也是考查的重点.根据闭合电路欧姆定律的变形式:E=U+Ir,可得出路端电压与电流的关系式为:U=E-Ir.作出此图象可以得出是一个一次函数的图象.斜率物理意义k=-r,纵截距的物理意义b=E.
[TP9GW879.TIF,Y#]
例3 小灯泡通电后其电流I随所加电压U变化的图线如图6所示,P为图线上一点,PN为图线的切线,PQ为U轴的垂线,PM为I轴的垂线,则下列说法中正确的是
A.随着所加电压的增大,小灯泡的电阻增大
B.对应P点,小灯泡的电阻为R=U1[]I2
C.对应P点,小灯泡的电阻为R=U1[]I2-I1
D.对应P点,小灯泡的功率为图中矩形PQOM所围的面积
解析 坐标的比值等于电阻的倒数,所以A选项正确,B选项正确.因为是非线性元件,欧姆定律不再适用,所以不能用切线的斜率等于电阻,C选项错误.坐标的乘积代表实际功率D正确.
点评 本题即为伏安特性曲线的数形结合考查,根据R=U1[]I2,得出图象上点的坐标比值为电阻倒数,根据P=UI得出图象上点的坐标的乘积为实际功率.
2.2 闭合电路中的常见的功率的图象问题
闭合电路中经常遇到的三个功率:电源总功率P=EI,电源的输出功率P=EI-I2r,电源的内热功率:P=I2r.
例4 某同学将一直流电源的总功率PE、输出功率PR和电源内部的发热功率Pr随电流I变化的图线画在了同一坐标上,[TP9GW880.TIF,Y#]如图7中的a、b、c所示,根据图线可知
A.反映Pr变化的图线是c
B.电源电动势为8 V
C.电源内阻为2 Ω
D.当电流为0.5 A时,外电路的 [LL]电阻为6 Ω
解析 a为P总-I关系图象,根据P=EI,可得E=4 V,b为P出-I关系图象根据P=EI-I2r,可得r=2 Ω;c为Pr-I关系图象.再根据闭合电路欧姆定律可得R=6 Ω,正确答案:A、C、D.
点评 根据图象和表达式的数形结合,待定系数法可以求出电源的电动势和内阻结合闭合电路欧姆定律求出外电阻的大小.
2.3 电源电动势和内阻测定的常见图象问题
测量电源电动势和内阻的常见方法有三种:U-I法,I-R法,U-R法,三种方法都是围绕闭合电路欧姆定律的表达式来的.在研究图象问题上却是有所不同,斜率和截距的物理意义大不一样,需要我们数形结合明确各自的含义.
关键词:物理;规律教学;思维
物理规律(包括定律、定理、原理、公式等)反映了物理现象、物理过程在一定条件下必然发生、发展和变化的规律,反映了物质运动变化的各个因素之间的本质联系,揭示了物理事物本质属性之间的内在联系,是物理学科结构的核心。整个中学物理是以为数不多的基本概念和基本规律为主干的一个完整体系,物理基本概念是基石,基本规律是中心,基本方法是纽带。要使学生掌握学科的基本结构,就必须让学生学好基本规律。
纵观整个初中物理,可以将物理规律分为以下三类:
1.实验规律
物理学中的很多规律都是在观察和实验的基础上,通过分析归纳总结出来的。我们把它们叫做实验规律。如杠杠平衡原理、欧姆定律、阿基米德原理等。
2.理想规律
有些物理规律不能直接用实验来证明,但是具有足够数量的经验事实。如果把这些经验事实进行整理分析,抓住主要因素,忽略次要因素,推理到理想的情况下,总结出来的规律,这样的规律我们把它叫做理想规律,如牛顿第一定律、真空不能传声等。
3.理论规律
有些物理规律是以已知的事实为根据,通过推理总结出来的,我们把它叫做理论规律。如并联电路中电阻大小的计算等。
怎样才能搞好规律教学呢?
1 联系新旧知识、收集事实依据,学会研究物理规律的方法
物理规律本身反映了物理现象中的相互联系、因果关系和有关物理量间的严格数量关系。因此在物理规律的教学中必须将原来分散学习的有关概念综合起来。只有用联系的观点来引导学生研究新课题提出新问题才能激发学生新的求知欲与新的兴趣。另一方面物理规律本身总是以一定的物理事实为依据的。因此学生学习物理规律也必须在认识、分析和研究有关的物理事实的基础上来进行。尤其是初中学生他们的抽象思维能力不强理解和掌握物理规律更需要有充分的感性材料为基础。
2 建立思维方法,理解物理规律
初中阶段所研究的物理规律一般着重于用文字语言加以表达即用一段话把某一规律的物理意义表述出来,有些规律还用公式加以表达。对于物理规律的文字表述要认真加以分析,使学生真正理解它的含义而不是让学生去死记结论。例如牛顿第一定律这一理想规律的教学就可采用“合理推理法”,即在实验的基础上进行推理想象,由有摩擦的情况推想到无摩擦时的运动情况,最后把这一规律的内容表述出来。在理解时要弄清定律的条件是“物体没有受到外力作用”。还要正确理解“或”这个字的含义,“或”不是指物体有时保持匀速直线运动状态有时保持静止状态,而是指如果物体原来是静止它就保持静止状态,如果物体原来是运动的它就保持匀速直线运动状态;许多理论物理规律的内容可以用数学形式表达出来就是公式。要使学生从物理意义上去理解公式中所表示的物理量之间的数量关系而不能从纯数学的角度加以理解。例如:对于欧姆定律的表达式应当使学生理解这一公式表达了电流的强弱决定于加在导体两端电压的大小和导体本身电阻的大小,即某段电路中电流的大小与这段电路两端的电压成正比与这段电路中的电阻成反比,公式中的I、U、R三个物理量是对同一段电路而言的。把公式进行变换得到电阻的定义式R=U/I。如果不理解公式的物理意义就可能得出“电阻与电压成正比”这一错误的结论。
3 明确物理规律的适用条件和范围
每一个物理规律都是在一定的条件下反映某个物理现象或物理过程的变化规律,而规律的成立是有条件的。因此每一规律的适用条件和范围也是一定的。学生只有明确规律的适用条件和范围才能正确地运用规律来解决问题才能避免乱用规律、乱套公式的现象。例如,欧姆定律I=U/R,适用于金属导体,不适用于高电压的液体导电,不适用于气体导电,不适用于含源电路或含有非线性元件的电路。而且I、U、R必须是同一段电路上的三个物理量。
4 认清关系,加以区别
物理规律总是与许多物理概念紧密联系在一起的,与某些物理规律也是互相关联的,应当使学生把物理规律与同它相关的物理概念和物理规律之间的关系搞清楚。如:牛顿第一定律与物体的惯性虽有联系但二者有本质的区别不能混为一谈。在教学中经常发现学生把惯性与运动状态等同起来,把物体不受外力作用保持原来的运动状态说成是“保持物体的惯性”。我们知道惯性是物体的固有属性,物体无论是静止还是运动、是否受力,任何时候都有惯性。而牛顿第一定律是一个反映这些客观事实的物理规律,两者不能混为一谈。
5 联系实际应用,掌握物理规律
关键词:电源的输出功率;外电路电阻;极值;图像
在闭合电路欧姆定律的教学中,电源的输出功率与外电阻的关系是高中物理的主干知识,是高考的热点,但对学生来讲却是一个难点,特别遇到外电路是非纯电阻电路的题目时,学生会顺理成章的把R=r作为电源的输出功率达到最大的条件,导致错误。下面就针对这部分内容的教学方法与大家共享。
一、实验法
将滑动变阻器作为外电路电阻,用电压表测出滑动变阻器两端的电压,用电流表测出通过滑动变阻器的电流。根据P=UI计算出电源的输出功率。改变滑动变阻器的阻值再继续测量,测出不同电阻对应的电压和电流值。在这个实验中,我们探究三种情况下电源的输出功率与外电路电阻的关系。
第一,当R
第二,当R=r时,电源的输出功率怎样变化?
第三,当R>r时,随着R的增大,电源的输出功率怎样变化?
由于在此实验中,电源的内阻较小,想使R
■
通过实验获取数据如下:
■
分析实验数据可得:当Rr时随着R的增大输出功率减小。
二、求极值法
如果外电路是纯电阻电路,闭合电路欧姆定律适用,那么电源输出功率,根据P出=UI=I2R=(■)■R=■=■=■。由上式可得当R=r时,电源的输出功率最大Pmax=■;当Rr时,电源的输出功率随R的增大而减小。
三、图像法
根据P=■画出电源的输出功率与外电路电阻的图像。
■
由图像获得信息:
当R
当R=r时,电源的输出功率最大Pmax=■。
当R>r时,随外电路电阻R的增大电源的输出功率P减小。
通过三种教学方法的结合,学生能较熟练地应用该部分内容来解决相关问题。
典型例题:
如图所示:R为电阻箱,电表V为理想电压表。当电阻箱读数为R1=2 Ω时,电压表读数为U1=4 V;当电阻箱的读数为R2=5 Ω时,电压表读数为U2=5 V。求:
(1)电源的电动势E和内阻r。
(2)当R的读数为多少时,电源输出功率最大?最大值是多少?
■
解析:(1)闭合电路欧姆定律,上述两种情况可列以下两个方程:
E=U1+I1r(1)
E=U2+I2r(2)
而I1=■=■A=2 A,I2=■=■ A=1 A,代入数据解得r=1 Ω,E=6 V。
(2)当R=r=1 Ω时,电源的输出功率最大,Pmax=■=9 W。
扩展:如图所示:
■
电源电动势E=6 V,r=10 Ω,固定电阻R1=90 Ω,R2为变阻器,在R2从0 Ω增大到400 Ω的过程中,求:
(1)可变电阻R2所消耗的功率最大的条件和最大功率。
(2)电源的内阻r和固定电阻R1上消耗的最小功率之和。
解析:(1)如图电路为纯电阻电路,把R1看成电源内阻的一部分,则r'=r+R1,根据电源输出功率最大的条件,有R2=r+R1=100 Ω时,R2上消耗功率最大P2max=■=■=■ W。
(2)因为r和R1是固定电阻,所以当电路电流最小时,电阻最大,即R2=400 Ω时,电源的内阻和固定电阻R1上消耗的功率之和最小。
以上方法和结论只是满足外电路是纯电阻电路,如果外电路是非纯电阻电路,闭合电路欧姆定律不再适应,那么电源的输出功率P出=IE-I2r-I2+■=-(I-■)2+■。
不难看出当I=■时,电源的输出功率有最大值P出max=■,且此最大值与外电路电阻R无关,仅由电源本身决定。
典型例题:
一个电源,电动势E=6 V,内电阻r=1 Ω,下列结论正确的是( )
A.当外电路只分别单独接R1,R2时,若R1
B.此电源可对额定电压为2 V,额定功率为5 W的电动机供电,使其正常工作。
C.此电源可对额定功率是12 W的用电器供电,使其正常工作。
解析:①当外电路分别接电阻R1,R2时,是纯电阻电路,R1,R2消耗的功率是电源的输出功率,有图可知,由于不知道R1,R2的具体数值以及R1,R2和r的大小关系。可能会有P1>P2,P1
综合以上可知,电源的输出功率最大的一般条件应该是I=■,这既适合纯电阻电路,也适合于非纯电阻电路。条件R=r只是当外电路是纯电阻电路的一种特殊情况。所以我们要挖掘物理规的本质,体会其真正含义,才能收到事半功倍的效果。
(作者单位 安徽省固镇县第二中学)
一、滑动变阻器滑片移动引起电路变化
由滑动变阻器滑片的移动引起电路中的总电阻发生改变,进而引起电路中电流的变化或电压的重新分配。在分析电路中各物理量变化时,若题目不加以说明,可以认为电源电压不变,定值电阻阻值不变,导线电阻为零。
1.并联电路中的滑动变阻器
图1例1.(2012・玉林)如图1所示的电路,电源电压为3V且保持不变,滑动变阻器R1标有“1A10Ω”的字样。当滑动变阻器的滑片P在最右端时闭合开关S,通过灯泡L的电流为0.5A,移动滑动变阻器的滑片P,在电路安全工作的情况下,下列说法正确的是()
A.向左移动滑动变阻器的滑片P时灯泡变亮
B.滑片P在最右端时通过干路中的电流是0.9A
C.R1消耗的电功率范围是1.5~3W
D.电路消耗的总功率范围是2.4~4.5W
解析:从电路图可以看出,滑动变阻器与灯泡并联。由于并联电路中各个支路相互独立,互不影响,且电源电压不变,所以在电路安全工作的情况下,无论怎样移动滑动变阻器的滑片P,都不影响灯泡的工作情况,因此选项A错误。滑动变阻器R1标有“1A10Ω”的含义是:滑动变阻器允许通过的最大电流是1A,它的最大阻值为10Ω。当滑片P在最右端时,滑动变阻器阻值最大为10Ω,由电源电压为3V,根据欧姆定律I=U1R可计算通过它的电流为0.3A。再根据并联电路的电流等于各支路电流之和,可计算出通过干路中的电流是0.8A,因此选项B错误。因为滑动变阻器允许通过的最大电流是1A,它两端的电压为3V,根据P=UI计算R1消耗的最大电功率为3W。根据P=U21R可知,在R1两端电压不变时,电阻越大,它消耗的电功率越小。所以R1消耗的最小电功率为P=U21R=(3V)2110Ω=0.9W,所以R1消耗的电功率范围是0.9~3W,选项C错误。灯泡消耗的功率P=UI=3V×0.5A=1.5W,电路消耗的总功率等于R1与灯泡消耗的功率之和。电路消耗的最小总功率为0.9W+1.5W=2.4W,消耗的最大总功率为3W+1.5W=4.5W,因此D正确。
答案:D
点拨:并联电路中的滑动变阻器变化电路分析:由于电源电压不变,且并联电路中各个支路相互独立,互不影响,所以含定值电阻的支路其物理量都不变,含滑动变阻器的支路电压不变,其他物理量可以按以下思路分析:若滑动变阻器阻值变大(或变小),则支路电阻变大(或变小),根据欧姆定律,该支路电流变小(或变大),所以干路总电流变小(或变大)。
图22.串联电路中的滑动变阻器
例2.(2012・福州)如图2所示电路,灯L标有“3V0.9W”,滑动变阻器R上标有“50Ω1A”的字样,电压表量程为0~3V,则灯L正常工作时的电流为A。若电源电压为4.5V,为了保证电路中各元件安全工作,滑动变阻器允许接入电路的阻值范围是。
解析:灯L标有“3V0.9W”的含义是灯泡的额定电压为3V,额定功率为0.9W,根据公式I=P1U可求灯L正常工作时的电流为0.3A,利用R=U1I进一步能求出灯泡电阻为10Ω。要保证电路中各元件安全工作,综合考虑就是电路中的电流不能超过灯L正常工作时的电流0.3A,滑动变阻器R两端的电压不能超过电压表量程3V。因为L与R串联,当滑动变阻器连入电路的阻值最小时,电路中电流最大为0.3A,此时灯泡两端电压为3V。R的最小阻值可以这样计算:R小=U1I=4.5V-3V10.3A=5Ω。当电压表示数为3V时,滑动变阻器连入电路的阻值最大,此时通过灯泡的电流为I=4.5V-3V110Ω=0.15A,R的最大阻值为R大=3V10.15A=20Ω。
答案:0.35~20Ω
点拨:串联电路中的滑动变阻器变化电路分析:由于电源电压不变,按以下思路分析:若滑动变阻器阻值变大(或变小),则总电阻变大(或变小),根据欧姆定律,电路中的电流变小(或变大),定值电阻两端电压变小(或变大),根据串联电路的电压特点,得出滑动变阻器两端电压变大(或变小)。
二、开关通断引起电路变化
开关的开、闭能改变电路的结构,使电路处于不同的连接状态:可能串联,可能并联,甚至可以有部分电路被短路,这使得电路有许多变化。解题过程中,应首先弄清开关在断开、闭合时电路中各电阻的连接情况,其次画出开关不同状态时的电路等效电路图,然后根据串、并联电路的特点进行相关的计算。
1.开关转换串并联电路
图3例3.(2012・昆明)如图3所示,电源电压恒定,R1=30Ω,R2=60Ω,当开关S3闭合,S1、S2都断开时,电流表的示数为0.1A。(1)求电源电压;(2)当开关S3断开,S1、S2都闭合时,求电流表的示数、电路消耗的总功率和通电一分钟电流对R1所做的功。
解析:试题的开关较多,而且开关的开闭情况复杂,要判断每一情况下电路的连接情况,不妨考虑“擦除法”。
(1)当开关S3闭合,S1、S2都断开时,可以先把S1、S2擦除,得到图4(a)。容易看出R1、R2串联,根据电流表示数及串联电路特点和欧姆定律,很容易计算电源电压电源。电压U=IR=0.1A×(30Ω+60Ω)=9V。
图4(2)当开关S3断开,S1、S2都闭合时,电路的连接情况如图4(b)。此时R1、R2并联,电流表测量的是干路电流,电流表示数I′=I1+I2=U1R1+U1R2=9V130Ω+9V160Ω=0.45A。电路消耗的总功率P=UI=9V×0.45A=4.05W,电流对R1所做的功W=U21R1t=(9V)2130Ω×60s=162J。
答案:(1)9V(2)0.45A4.05W162J
点拨:解决电学问题的关键,首先是要能够准确地辨别电路是串联电路还是并联电路,能够把比较复杂的电路图准确地简化为等效的串、并联电路。其次要会运用串、并联电路的特点及电学的基本规律正确解题。
2.开关造成用电器短路
图5例4.(2012・宿迁)某电饭锅内有R0=44Ω、R=2156Ω的两根电热丝,将它接入电路,如图5。当S分别置于“1”挡和“2”挡时,挡是保温状态;当S接“2”挡时,电路中的电流大小是A,通电100s电路产生的热量是J。
解析:从电路图看出,当S置于“1”挡时,R0和R串联。当S置于“2”挡时,R被短路无电流通过,电路中只有R0。根据P=U21R可知,在电源电压不变的情况下,电路中的电阻越大,电功率越小,单位时间内产生的热量越少,所以“1”挡是保温电路。当S接“2”挡时,电路中的电流可以利用欧姆定律计算,I=U1R0=220V144Ω=5A。电路产生的热量可利用电热公式计算,Q=I2Rt=(5A)2×44Ω×100s=1.1×105J。
答案:151.1×105
点拨:用电器与开关并联时,当开关闭合,用电器就会被短路,使用电器中无电流通过,分析电路时可以把这个用电器直接拆除。
三、电表变化引起电路变化
电路中含有电流表和电压表以后,电路变得更为复杂。解决这类问题的关键是正确认识电表的双重作用。一是指示作用,即电表能指示出电路中的电流或电路两端的电压;二是连接作用,即电路中的电流表自身电阻很小,相当于一根导线。在分析电路时可以把电流表去掉,并用导线替代电流表;电压表电阻很大,相当于断开的开关,在分析电路时可以把电压表直接拆除。注意:千万不能把去掉电压表的地方用导线连起来。
例5.(2012・沈阳)如图6所示电路,电源电压为6V,灯泡L标有“6V2W”的字样,设灯泡灯丝电阻不变。
图6(1)若表a为电流表、表b为电压表,当S闭合时,电流表的示数为1A,求电阻R的阻值。
(2)若表a、表b均为电压表,闭合开关S,求灯泡L的功率及通电4min消耗的电能。
图7解析:(1)首先简化电路。因为表a为电流表,相当于一根导线;表b为电压表,相当于断开的开关,在分析电路时可以把电压表直接拆除。处理后的电路如图7甲所示,此时灯泡L因与导线并联被短路,而无电流通过,又可以直接拆除,电路进一步简化为图7乙所示,容易看出电路中只有一个用电器R。根据电流表示数和电源电压,结合欧姆定律容易求出电阻R的阻值。
(2)表a、表b均为电压表时,可以把电压表直接拆除,得到图7丙所示,此时灯泡L与电阻器R串联。这一问中,根据灯泡铭牌数据求出其电阻是解题的关键。
答案:(1)当a为电流表、b为电压表时L被短路,只有R连入电路
R=U1I=6V11A=6Ω
(2)当a、b均为电压表时,L与R串联
RL=U2额1P额=(6V)212W=18Ω
I=U1R总=U1RL+R=6V118Ω+6Ω=0.25A
P=I2RL=(0.25A)2×18Ω=1.125W
W=Pt=1.125W×240s=270J
点拨:用电器的铭牌上提供的数据主要有额定电压和额定功率,这两个量在计算中非常重要。(1)正常工作时的电流:I额=P额1U额;(2)电路中,我们一般认为用电器在不同电压下工作时的电阻不变,因此电阻是计算中的“桥梁”,非常有用。用电器的电阻能通过额定电压和额定功率计算出来:由P额=U2额1R得R=U2额1P额。(3)如果知道实际电压,可以利用比例求出实际功率:P实1P额=U2实1U2额。
四、传感器引起电路变化
传感器是指这样一类元件:它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按一定规律转换为电压、电流等电学量,或转换为电路的通断。即传感器能将被测信号量的微小变化转换成电信号的变化。
例6.(2012・德州)为防止酒驾事故的出现,酒精测试仪被广泛应用。有一种由酒精气体传感器制成的呼气酒精测试仪,当接触到的酒精气体浓度增加时,其电阻值降低,如图8甲所示。当酒精气体的浓度为0时,R1的电阻为60Ω。在图8乙所示的工作电路中,电源电压恒为8V,定值电阻R2=20Ω。求:
(1)当被检测者的酒精气体的浓度为0时,电压的示数是多少;
(2)现在国际公认的酒驾标准是0.2mg/ml≤酒精气体浓度≤0.8mg/ml,当电流表的示数为0.2A时,试通过计算判断被检测者是否酒驾。
图8解析:(1)由题目中的已知条件,当被检测者的酒精气体的浓度为0时,R1的电阻为60Ω。电路图中两电阻串联,电压表测量的是R1的电压。根据串联电路中电压的分配规律或欧姆定律容易求出电压表示数。
(2)当电流表的示数为0.2A时,根据欧姆定律容易求出串联电路的总电阻,进一步算出R1的电阻,结合甲图可判断对应的酒精气体浓度,进而判断被检测者是否酒驾。
答案:(1)当被检测者的酒精气体的浓度为0时,R1的电阻为60Ω。
I=U1R=8V160Ω+20Ω=0.1A
U1=IR1=0.1A×60Ω=6V
(2)当电流表的示数为0.2A时
R1=U1I-R2=8V10.2A-20Ω=20Ω
由图8甲可知,被检测者的酒精气体浓度为0.3mg/ml。
0.2mg/ml