欢迎访问爱发表,线上期刊服务咨询

重金属污染处理8篇

时间:2024-03-12 14:37:58

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇重金属污染处理,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

重金属污染处理

篇1

[关键词]镉污染;镉污染来源及危害;事故应急处理方法

中图分类号:Q958.116 文献标识码:A 文章编号:1009-914X(2015)12-0028-02

2004年6月初,楚雄市龙川江发生严重镉污染事件,楚雄水文站、智民桥、黑井等断面的总镉超标36.4倍;2005年12月15日北江韶关段出现严重镉监测浓度超标,高桥断面检测到镉浓度超标12倍多……到近期的广西龙江河镉污染,龙江河宜州拉浪码头前200米水质重金属超标80倍。现在大家都已经闻“镉”色变,这么频繁的镉污染事件给我们敲响警钟,在面对镉污染事件的时候,我们不能坐以待毙,要懂得怎么应对,怎么处理,怎么消除污染。针对重金属镉的污染治理上,我国研究人员与国际上许多研究人员都在进行相关的研究。本文就是在前人对含镉废水的各种处理方法研究的基础上,寻找出快速有效地应对镉污染事故的方法,做出的总结性概述。

1 污染来源

镉是炼锌业的副产品,镉作为原料或催化剂用于生产电池、塑料、颜料和试剂、塑胶稳定剂;由于镉的抗腐蚀性及耐摩擦性,也是生产不锈钢、电镀以及制作雷达、电视机荧光屏等原料;还是制造原子核反应堆用控制棒的材料之一。随着电池工业的发展,镍镉电池以其优良的性能得到了广泛的应用,镍镉电池的生产在20世纪80年代中后期快速增长,在镉年产量不断增长的。同时,1981年镍镉电池用镉占镉消费量的23%。因此水体中镉的污染源主要来自铅锌矿、有色金属冶炼、电镀、玻璃、油漆颜料、纺织印染、照相、陶瓷和用镉作原料的化工厂等的排水。镉的废旧产品也会造成环境污染,如废镍镉电池。镉在水体方面的污染也较为严重。据有关资料表明,硫铁矿石制取硫酸和磷矿石制取磷肥时排出的废水中含镉较高,每升废水中镉的含量可达数十至数百微克。此外,大气中的铅锌矿以及其它有色金属的冶炼、燃烧、塑料制品的焚烧所形成的镉颗粒也可能进入水中污染水源,研究发现,若水源中镉的含量达到0.57-3.88mg/L时,下游水体中的鱼类就会受到严重污染,如水中氯化镉的含量为0.001mg/L时,就可使鲤鱼在8-18小时内死亡。另外,用镉作原料的触媒、颜料、塑料稳定剂、合成橡胶硫化剂、杀菌剂等排放的镉也可能对水体造成污染,导致饮用水中镉含量显著增加。

2 镉对人体的危害

2.1 对肾脏的影响吸收的镉主要通过肾脏经尿排出,当环境的镉长期暴露时,机体内最先出现的是尿镉的增加,研究资料显示,当尿中镉含量>2.5-5ug/g时,肾小管和肾功能的损伤都会有所变化。随着尿中镉含量的增多,肾皮质中尿蛋白和UNAG的不断升高,导致肾胞浆中总钙和非蛋白结合钙明显升高,说明镉对肾损伤时,细胞钙稳态受到了破坏,使肾功能发生异常,进而影响尿锌和镁排泄的增加。镉对肾脏的损害不仅表现在尿蛋白和UNAG的升高,而且还与MT的结合有关,有人认为当镉与MT结合后对肾脏功能产生的影响会比不与结合时损害大,而刘杰[3]等在用删除了MT的转基因动物慢性感染镉时发现,镉在不与MT结合时就能直接对肾脏造成损伤,而且比起结合时更严重。

2.2 对骨骼的影响镉对组织的毒害作用是通过镉和钙竞争与钙调素(CaM)结合,干扰钙与CaM结合时所调控的生理生化体系,使Ca2+-ATP酶和磷酸二酯酶活性受到抑制,影响细胞骨架,刺激动脉血管平滑肌细胞致使血压升高。十大公害病之一的“疼痛病”就是镉通过上述机制导致的,当以居住在镉污染20年以上的居民为调查对象时发现,该人群的前臂骨密度(BMD)随着尿镉(UCD)含量的增加而下降,而且镉污染区居民在脱离镉污染环境20年后,体内镉含量仍然处于较高水平,这样,下来的镉就加速了骨脱钙,致使骨密度下降,引发骨质疏松。

3 污染事故应急处理方法

氢氧化镉是为高度稳定、难溶的物质。因此饮用水中的镉可以通过沉淀混凝过滤去除。强化混凝工艺通过采取一定措施,可以发挥混凝的最佳效果,而且这些药剂就在常规生产中使用,选择强化混凝作为应急处理技术,易于实现“平战结合”,具有简单易行、实用性强等特点。因此:

3.1 对于微污染的水源水,投加碱调节pH值的方法处理

把pH值调到8.5~9.5之间时,能达到除镉和混凝沉淀的最佳效果。但若pH值大于9.5时,聚合氯化铝的混凝效果不好,出现反池的现象。采用投加生石灰,把pH值调到9.0左右进行中试。某水厂进行中试验中发现投加生石灰20mg/L,镉的去除率达75%。若上游的含镉源水到达,亦能保证出厂水水质符合国家标准。

该方法简单可行,除镉效果理想,而且对正常生产影响不大。并对两种加氯消毒方式进行比较试验后,发现二次加氯(反应前加氯,滤后加氯氨消毒)的消毒方式更简单。

3.2 对于遭受大的突发性镉污染的水体,在水厂常规工艺的基础上,考察了化学沉淀技术对镉污染原水的应急处理效果

突发性污染时,镉主要以溶解态形式存在,所占比例在60%以上。通过氢氧化物沉淀法,具有除镉范围广、药剂来源广泛、不产生二次污染等优点,此类方法已经在广州北江镉污染事件中得以成功运用。当分别采用三氯化铁和聚合氯化铝为混凝剂时,分别将滤后水pH值控制在8.69和8.58以上,可有效去除超标50倍的镉污染物,且对镉的去除率随着pH值的提高而增大;在最大应急能力方面,将滤后水pH值分别控制在9.17和8.73以上,可分别有效去除超标500和80倍的镉污染物,使镉浓度降至国标限值以下。在混凝前pH值变化不大的情况下,投加聚合氯化铝的滤后水pH值的降低幅度要大于投加三氯化铁的。

3.3 突发性重金属污染的应急处理方法

目前,针对突发性重金属污染事故的应急处理方法主要有化学沉淀及吸附法。

化学混凝沉淀技术是通过调整水厂混凝处理的pH值,使重金属污染物生成金属氢氧化物或碳酸盐等沉淀形式,再通过铝盐、铁盐等絮凝及沉淀去除。

2005年广东北江突发性镉污染事故应急处理中,科研人员通过首先把原水pH值调至9左右,使镉形成沉淀物,然后在弱碱性条件下进行混凝、沉淀、过滤处理,以矾花絮体吸附去除水中的镉;最后在滤池出水处加酸,把pH值调回至7.5~7.8,以满足生活饮用水的pH值要求。罗旺兴等的研究表明,高锰酸盐聚铝投加量为20mg/L,复合药剂(PPC)投加量为4mg/L,pH值为8,PPC在混凝前1min投加,此时锌的去除率在90%以上。谭丽红等的研究表明,当水体pH值为10.0,FeCl3投加量为25mg/L可使原水镍的质量浓度由0.226mg/L降为0.0187mg/L,达到《城市供水水质标准》(CJ/T20―2005)中对镍含量的要求。化学混凝沉淀法适合于水处理厂水中重金属的应急去除,但针对自然水体调节pH不太实际,向水体中添加酸碱会造成水体二次污染,加剧水污染的严重程度。混凝沉淀必须把污染水域隔离开来,混凝沉淀物的回收及混凝沉淀后水体的后续处理等都十分繁琐,对于流动水体,该方法的适用更加局限。

吸附法工艺简单、效果稳定,尤其适用于大流量低污染物含量的去除,成为应对重金属突发水污染事故首选的应急处理技术。王新刚等的研究表明,投加40mg/L的PAC可使黄浦江超标5倍的镉降低为超标2倍以内,镉分别超标10,50和100倍时,投加50mg/L的PAC,去除率分别为58%,38%和41%。吸附法成功处理了国内多起突发性重金属污染事故,但在自然水体中,吸附法除存在固定后去污效能降低、回收困难等问题外,吸附材料与重金属形成的絮凝物会沉在水底并随推移质和悬移质一起继续迁移,通过水中食物链成为二次污染源。

3.4 后续长期生态恢复建设

突发性水污染事故发生后其对生态环境的影响是深远的,事故排放的污染物特别是有毒有机污染物、重金属等会残留在湖泊、河床上,对水体生态系统造成严重危害。因此,在污染事故得到控制后,还需要对遭受破坏的生态系统进行长期的恢复建设。

对于后期生态恢复,首先可采用工程措施如底泥疏浚、换水等将有污染物残留的水体及沉积物等介质清除干净以免残余的污染物继续对水生态系统造成危害,为生态恢复创造条件。同时,通过生物措施(植物、微生物及动物修复技术)来修复受污染物的水体及沉积物,逐步恢复破坏水生态系统的结构及功能,维持生态平衡。恢复的同时加强修复生物的监测及管理,避免难降解污染物通过食物链积累及放大。另外还应修编相关法律法规,便于理赔及杜绝事故再次发生,同时还应提高民众安全意识。

4 结论

水是生命之源、生产之要、生态之基,自古以来,人类就是在水的滋养下生存和繁衍的,今后也将同样依赖于水资源而继续存在和发展。无论社会如何进步,时代如何发展,我们都不可以水环境的恶化为代价换取一时的经济发展,那将会造成人类无法承受的后果,也必将导致人类文明的毁灭。

参考文献

[1] 杨智宽,韦进宝,编.污染控制化学.武汉大学出版社,2002,1∶388-401.

[2] 崔福义,等.城市给水厂应对突发性水源水质污染技术措施的思考[J].给水排水,2006,32(7):7-9.

[3] 蔡展航,等.镉污染源水处理的中试研究[J].水处理技术,2007,33(5):61-62.

[4] 高中芳,等.镉污染源水的应急处理技术研究[J].给水排水,2009,25(11):86-88.

篇2

关键词:重金属废水;水处理;膜技术

Abstract: This paper briefly introduces the harm of heavy metal pollution on the human body, research status of heavy metal wastewater treatment techniques were summarized, and expounds the advantages and disadvantages of various methods, using membrane separation technology as the representative of the new process is put forward, and the development of heavy metal wastewater treatment technologies are prospected.

Key words: heavy metal wastewater; water treatment; membrane technology

中图分类号:TU2文献标识码A 文章编号:

前言:

重金属是指相对密度大于5的金属,包括铜、铅、锌、锡、镍、钴、锑、汞、镉和铋10种金属。由于重金属不能被生物所降解,在水体中大部分通过物理化学反应沉积在水底,随着环境的不断变化,沉积物会向水体缓慢释放溶解态重金属,因此重金属污染水体存在持久的危害性。随着污染物的迁移转化,还能够在食物链中进行生物累积,进而对食物链顶端的人类产生极大的危害。日本的“水俣病”和“痛痛病”都是由重金属污染导致的人体健康受损的典型案例。含重金属离子的工业废水主要来源于机械加工、钢铁及有色金属的冶炼、矿山开采和部分化工企业。此外,一些轻工业和化学工业排出的废水也含有汞、镉、砷等重金属[1]。国内仅电镀行业每年产生的重金属废水就超过40亿m3。重金属废水处理已经成为资源与环境领域中一个严峻且迫切的重要课题。本文简述了国内外含重金属废水的处理现状及研究趋势。

目前,含重金属废水的的处理方法主要分为两大类:传统法和新型处理方法,传统法包括化学沉淀、吸附、离子交换、生物处理法等,电化学法和膜分离技术则是近年来发展起来的新型处理技术。

1传统方法

1.1化学沉淀法

化学沉淀法是指向废水中添加化学药剂与重金属发生化学反应,从而使重金属离子变成不溶性沉淀物质分离出来。该方法技术成熟、投入少、自动化程度高。最常用的就是氢氧化物沉淀法和硫化物沉淀法。例如向含镉废水中投加氢氧化钠,会形成氢氧化镉沉淀。化学沉淀法也存在一些不足:产生重金属污泥、沉淀剂的加入容易造成二次污染以及处理效果受水质条件影响等,限制了其在工程上的应用。

在化学沉淀法中,铁氧体法是较为新型的处理工艺。它是指向废水中投加铁盐,通过对工艺条件的控制,使重金属离子在铁氧体的包裹和夹带作用下进入铁氧体的晶格中,进而形成复合铁氧体,最后再用固液分离的手段,一次脱除多种重金属离子的方法。该方法克服了传统化学沉淀法易形成二次污染的弊端,但是反应过程需要加热,能耗高。

1.2吸附法

吸附法主要是利用高比表面积或具有多孔结构的物质作为吸附材料去除重金属离子。该法的核心是吸附剂的选择,常用的吸附剂有活性炭、矿物质、分子筛等。活性炭有较强的吸附能力,可以同时吸附多种重金属离子,去除率高,但再生效率低,处理水质达不到GB标准,价格高,应用被限制[2]。近年来逐步研究出多种新的吸附材料,如凸凹棒、浮石、硅藻土、蛇文石、大洋多结核矿等。大洋多结核矿吸附能力强,它是多孔结构,表面积大,矿物大部分以晶型存在,因此吸附重金属废水效果好。

另一类是利用微生物作为吸附材料,主要有菌体、藻类和细胞提取物等,这些生物吸附剂对不同的重金属离子表现出不同的吸附能力,造成吸附能力大小的主要原因在于微生物细胞表面的结构,并且受外界环境因素和水体pH值的影响。

1.3 离子交换法

离子交换法的实质是离子交换剂上的可交换离子与废水中的重金属离子之间的交换反应,在此过程中,废水中的重金属离子被去除。当离子交换剂上的重金属离子达到饱和时,使用再生液反复冲洗离子交换剂,使之得到再生。重金属废水处理中常用的离子交换剂主要是离子交换树脂,如阴离子交换树脂、阳离子交换树脂以及螯合树脂等。

离子交换技术在处理重金属废水的同时,可实现重金属的资源化,具有较高的经济价值,对改善环境质量和增加可利用资源也具有极其重要的意义。但是该方法不足之处在于:树脂进行再生时需消耗大量的酸碱,且易造成二次污染。

1.4 生物处理法

生物处理法是指利用微生物或植物的吸收、絮凝、还原等作用去除水中的重金属离子的方法,主要包括生物化学法和生物絮凝法等。

生物化学法是指利用微生物的氧化还原反应能力使重金属离子沉降或降低其毒性。对硫酸盐含量较高的重金属废水的处理是典型的生物还原法,该方法能够把硫酸盐还原成硫化氢,使重金属离子和硫化氢发生反应生成金属硫化物沉淀而除去。研究者[3]用基因工程菌对含汞废水进行了研究,但浓度过高毒性强的重金属离子对菌有一定的影响,使此法有一定局限性。生物絮凝法是指借助生物产生的代谢产物进行絮凝沉淀的一种方法。目前的生物絮凝剂主要有五大类,即半乳甘露聚糖类、淀粉类、微生物多糖类、纤维素衍生物类和复合型生物混凝剂。生物絮凝法以其安全无毒、絮凝剂效果好、絮凝物易于分离等特点,在重金属废水处理领域中有着广泛的应用前景[4]。但该方法也有不利之处,如生产成本高、活体生物絮凝剂保存困难等。

2 新型处理方法

2.1电化学法

电化学法是指利用电化学原理处理重金属废水,兼具絮凝、气浮、杀菌等多种功能,是近年发展起来的颇具竞争力的重金属废水处理方法。该方法因装置紧凑、工艺成熟、无二次污染,便于控制管理等特点,在国内外得到广泛应用[5]。Amin N K[6]等的研究表明对一些金属离子的去除效果可达到0.1mg·L-1以下,适合重金属浓度高的废水,但此方法耗能大,析氧和析氢等副反应多,不适合处理低浓度废水。

2.2 膜分离技术

膜分离技术是一项新兴的分离技术,自60年代,作为一项高新技术从实验室中走向社会开始进行大规模工业化应用以来,已逐渐并迅速发展成为了在各个工业系统中获得大规模应用的高效节能的分离过程。近年来,将液体分离膜技术用于重金属废水处理的报道日渐增多并渐成主流。将膜分离技术应用于重金属废水处理具有以下优点:(1)过程无相变,可以常温操作,能耗低,污染小;(2)膜过程可通过模拟装置实现,而且可以连续操作;但是,膜分离过程也有其弊端:(1)在某些情况下,膜容易结垢,降低膜分离过程效率,甚至降低膜的使用寿命;(2)与化学法相比,膜分离工艺初期投资较高[7]。

电渗析(ED)是指以直流电场产生的电压为推动力,溶液中的带电离子进行定向迁移,选择性的透过离子交换膜的过程。含Cu2+、Zn2+、Cr2+和Ni2+等重金属离子的废水都可采用电渗析处理,其中含镍废水处理技术最为成熟,已有成套工业化装置。但是电渗析法处理废水要求具有足够的电导以提高渗透效率,因此不适宜处理低浓度的重金属废水。例如,电渗析用于处理镀镍清洗水时,要求清洗水中镍盐的浓度不低于1.5mg·L-1。

电去离子技术(EDI),又称填充床电渗析技术,是将树脂填充在电渗析器的淡水室中,在直流电场作用下,膜堆内部自发水解离产生H+和OH-再生离子交换树脂,同时实现离子的深度脱除和浓缩的新型复合分离过程。相对传统的电渗析过程而言,电去离子技术的分离效率得到显著提高。因此EDI技术具有巨大的技术和经济优越性,EDI技术在用于处理低浓度重金属废水领域所展现出的良好潜力正日益引起人们的重视。

由于重金属废水中成分复杂,仅采用一种膜分离技术很难满足处理要求,而采用集成膜过程,可发挥每种膜的最大优势,提高了处理效率和装置运行的稳定性。国家海洋局杭州水处理中心[8]采用了一套处理能力为1200m3/d-1的三级膜分离装置处理电镀镍漂洗废水,总浓缩倍数为100倍,一级膜分离系统对镍离子的截留率为98%,二、三级膜分离系统对镍离子的截留效率均在99%以上。但随着膜使用时间的增长,膜通量会逐渐下降,膜系统也需要定期进行清洗。也有研究者[9]将双极膜技术与电去离子技术结合用于重金属废水处理,为膜分离技术在该领域的应用提供了新的思路。

3展望

为了满足日益严格的环保要求,研究新型、高效的重金属废水处理技术迫在眉睫。传统

的处理技术均存在不同程度的二次污染、效率偏低、工艺复杂、高能耗、高成本等缺陷。而膜分离技术在实现高效分离过程、废水零排放与资源化方面优势突出,已经并将继续成为该领域的重要发展方向。今后需要在膜材料及膜制备工艺方面进行重点研究,降低膜技术的应用成本。此外,将现有工艺进行组合,实现优势互补,也是达到水污染处理和废水资源化双重目标的可行方法。

参考文献

王宏镔,束文圣,蓝崇钰.重金属污染生态学研究现状与展望[J].生态学报,2005,

25(3):596~605

Giovanni Toscano,Corrado Caristi,Giuseppe Cimino.Sorption of heavy metal from

aqueous solution by volcanic ash.Applied Surface Science,2008,11(6):765~771

袁建军,卢英华.高选择性重组基因工程菌治理含汞废水的研究[J].泉州师范学

院学报,2003,21(6):71~75

李娜,靳晓洁.含重金属废水处理技术的研究进展概述[J].电力科学与工程,2008,

24(4):42-45

叶春雨,黄雪莉,刘贵昌.电解法回收化学镀镍废液中镍的研究[J].辽宁化工,

2009,38(8):512~515

Abdelwahab O,Amin N K.Electrochemical removal ofphenol from oil refinery

wastewater.Journal of Hazardous Materials,2009(163):711~716

任安娟.电去离子技术同步纯化与浓缩电镀镍漂洗水的研究[D].南开大学,2009.

楼永通,宋伟华,罗菊芬等.1200m3/d-1电镀废水膜法回收工程[J].膜科学与技

术,2003,23(4):43-46

篇3

关键词:生物吸附 菌剂 海藻酸钠 固定化 重金属污水 Cr

一、水体重金属污染现状

重金属是非降解型有毒物质,由其引发的水环境重金属污染可导致生物急性或慢性中毒,而且由于重金属在环境中不能被降解具有累积效应,会通过食物链的富集放大其生物毒性,存在显著的生态和健康风险。现有的重金属污染处理工艺主要有物理-化学法和生物吸附法两大类。化学法、物理-化学法普遍存在成本高、能耗大、操作困难、易造成二次污染等缺陷,且对低浓度重金属的处理效果不太理想。微生物处理法作为治理重金属污染的一项新技术,具有微生物吸附材料来源广泛、成本低、对低浓度重金属废水处理彻底、可对某些贵重金属进行高效回收等优点[1,2]。

本文研究使用海藻酸包埋法固定菌体,将微生物细胞截留在水不溶性的凝胶聚合物孔隙的网络空间中,阻止了微生物细胞的泄漏,同时能让六价铬渗入,去除水中六价铬的污染。

二、实验设备、材料及方法

1.主要实验设备

原子吸收分光光度计AA600,恒温振荡器HZ-9211K,高速冷冻离心机KDC-160HR,小型高速离心机TCL-16H Centrifuge,扫描电子显微镜PHILIPS XL-3 0ESEM

2.实验材料

酵母菌R32:通过电场诱导融合构建,出发菌株是解脂假丝酵母(Candida ipolytica)和热带假丝酵母(Candida tropicalis)。对Cr6+具有较好的吸附还原能力。

含铬模拟污水(15-30mg/L)、酵母培养基、海藻酸钠、CaCl2、活性碳

3.实验方法

从实验室菌种库中接种酵母菌R32,活化、扩大培养36h后,菌液经4000rpm离心分离20min得到工程菌菌体。称取一定量的海藻酸钠及50g/L的酵母R32工程菌混合后加入定量蒸馏水配置成海藻酸钠-菌体混合液,用注射器将混合液注入过量的15%的CaCl2溶液中(1L CaCl2溶液适合制备100ml混合液),得到海藻酸钙包埋菌球(直径约为2mm)。稳定清洗晾干后,得到吸附用的固定化菌剂(含水率约为95%)。用扫描电镜观察固定化菌剂内部机构[3,4],长时间震荡方式判定菌剂含量不同的固定化菌剂的抗破碎能力和菌体泄露情况。将固定化菌剂按一定的投加量投加到30mg/L含铬模拟污水瓶中, 120rpm振荡吸附一定时间。吸附完成后取上清液稀释一定倍数,用原子吸收分光光度法测定样品中的金属浓度。

三、实验结果与分析

1.海藻酸钠固定化菌剂扫描电镜观察

实验结果如图2,未固定菌体的海藻酸钙小球具有较松散的溶洞结构。图3的海藻酸钠固定化菌剂中,工程菌以圆形颗粒的形式被紧密包埋于海藻酸钙所形成的包囊里,圆形颗粒间紧密相连。这能最大量将工程菌紧密的包埋于海藻酸钠包囊中,避免菌体泄露,最大化体系比表面积,提高工程菌的吸附能力。同时圆形颗粒间又充满了微小的孔隙,保证了整个菌剂的通透性,使包囊中的菌体能很好的与金属污水接触。实验测得菌剂具有更好的抗振能力,增加了其抗破碎的性能。可见,以海藻酸钠为载体固定化菌剂具有优越的微观结构,保证了菌剂的物理性能和吸附性能。

2.海藻酸钠含量对固定化菌剂吸附能力的影响

制造海藻酸钠含量分别为1%、1.5%、2.0 %、2.5 %和3.0 %(m/v)的固定化菌剂,以一定的投加量投加含铬模拟污水中。振荡吸附8h,测其对Cr的去除率。结果如图3所示,在海藻酸钠含量为1%时,固定化菌剂对Cr的去除率最大。随着海藻酸钠含量的增加,Cr离子进入固定化菌剂的传质阻力增加,菌剂对Cr的去除率略有下降。同时,实验证明,1.0%的海藻酸钠作为载体的菌剂无论在抗破碎能力和菌体抗泄漏能力均优于其他海藻酸钠含量的菌剂。因此,选择选1.0%的海藻酸钠作为载体较为合适。图1 海藻酸钙对照扫描电镜图(2um)图2海藻酸钠固定化菌剂扫描电镜图(10um) 图3海藻酸钠含量对固定化菌体吸附能力的影响

3. 投加量对海藻酸钠固定化菌剂吸附Cr的影响

选择了含量为1%和1.5%海藻酸钠的固定化菌剂进行投加量实验,其结果如图4所示。在海藻酸钠含量为1%和1.5%的条件下,固定化菌剂对Cr的去除率随投加量的增加而增加,在10~40g/L的区间增加的速度最快。当投加量增加到40g/L后,菌剂投加量的增加不能再使Cr的去除率产生显著的提高。

对于未包埋菌体的对照组,其吸附曲线呈不规则变化,这是因为Cr的吸附主要靠包埋在小球内的菌体的生物吸附,而对照组对Cr的吸附主要是通过材料表面快速的吸附和解析动态平衡实现,因此具有波动性。

从以上两组实验可以得40g/L的固定化菌剂可以很好的处理中低浓度含Cr污水。 图4海藻酸钠含量为1%和1.5%时菌剂投加量对吸附效果的影响

4.调理剂加入对海藻酸钠包埋菌剂吸附Cr的影响

实验发现,固定化菌剂对Cr的吸附速度较慢,为使菌剂的吸附速率加快在工程菌固定化的过程中加入活性炭作为调理剂,从而改善固定化菌剂的通透性,改善菌剂的吸附效果及重金属的去除速度。在1%海藻酸钠中分别加入 0.01%、0.03%、0.05%、0.07%(m/v)的活性碳制成固定化菌剂,活性碳调理菌剂对含Cr模拟污水的吸附去除率曲线如图5所示。可见,活性碳的加入对固定化菌剂的吸附速度具有一定的促进作用,当活性碳的加入量为0.05%时,菌剂在吸附3h时达到吸附平衡,此时,菌剂对Cr去除率达到90%。 图5 活性碳的加入对固定化菌剂吸附能力的影响

5.处理含Cr污水固定化菌剂吸附动力学

为了更好的将菌剂应用于实际,研究了处理含Cr污水固定化菌剂的吸附动力学,并对其进行了动力学方程拟合。菌剂的吸附动力学曲线如图6所示。从实验结果可见,固定化吸附菌剂的吸附动力学能够很好的用准二级吸附动力学方程拟合,其R2达到了0.9941。可见固定化菌剂的吸附是多层吸附,并伴随有内部扩散现象。由表1的参数还可以看出该吸附是一个较慢的吸附过程,在实际应用过程中应保证足够的吸附处理时间。表3-2 各动力学方程拟合参数 图3-13菌剂吸附动力学曲线

四 、结论

1.无毒无害的天然高分子凝胶海藻酸钠是较为环境友好型的固定化载体。包埋后菌剂具有良好微观埋结构,有利于最大量的包埋细菌,同时有留有空隙,为重金属的渗入提供良好的通透性。

2.用1%(m/v)海藻酸钠包埋固定化酵母R32制得的Cr高效吸附菌剂具有良好的物理特性和Cr吸附性能。菌剂投加量为40g/L(湿重含水率约为95%),吸附时间为8h时其对Cr的最高去除率可达98%。在固定化菌剂中加入0.05%的活性碳作为调理剂能提高固定化菌剂的吸附速率。

篇4

关键词:重金属污染;土壤污染;生物修复;超量积累

作为人类发展的基础,土壤资源往往在城市化以及工业化的发展之下出现了不同程度的污染以及破坏。在这样的背景之下,我国的土壤容易受到重金属的污染而危害人类的生命安全。本文基于此,分析探讨国内外土壤重金属污染防治技术以及相关研究的发展。

1 土壤重金属污染预防的发展历程

1.1 预防体制

基于世界各国城市化以及工业化发展程度的日益加深,各国家普遍存在土壤重金属污染的问题。为了进一步促进各类问题的解决,世界各国加强了对于土壤重金属污染预防。关于土壤重金属污染预防的发展历程,笔者进行了相关总结,具体内容如下。

日本为了进一步促进土壤重金属污染问题的解决,颁布了《土壤环境标准》《土壤污染对策法》等法律法规,而我国自改革开放之后,逐步加强了对于环境问题的关注,并于1989年颁布《中华人民共和国环境保护法》,开始了我国土壤重金属污染问题的处理,随后中国在该法律的基础之上进行修订工作,从而实现了对于污染物排放的限制与处理。

1.2 预防技术

为了进一步实现按土壤重金属污染问题的解决,各国逐步提出了清洁生产的概念。在这样的背景之下,欧共体于1979年宣布推行工业清洁生产的政策。在这样的背景之下,该区域的农业生产部门加强了对于各类先进生产技术的运用,从而实现了农业的清洁生产,规避了农业化学产品的超量使用对土壤污染。

事实上,这种从源头上降低污染源的措施,能够降低了土壤中重金属离子的引入,从而实现了土壤资源的保护。

2 土壤重金属污染治理方法

目前,我国处于经济结构转型期间,土壤重金属污染的问题也较重。在这样的背景之下,为了实现我国社会的绿色、低碳、可持续发展,我国的有关部门加强了对于该类问题的解决。关于常见的土壤重金属污染治理方法,笔者进行了相关总结,具体内容如下。

2.1 工程治理法

所谓的工程治理法,指的是相关单位借助物理原理以及方法进行土壤重金属污染问题的解决。在传统的工程治理过程中,工作人员多借助换土、翻土等方法进行作业,但伴随着科学技术的不断变更,我国有关部门逐步采用淋洗法、电解法、热处理等办法进行作业。

一般而言,工程治理方法在运行的过程中具有效果显著等特点,但是其因为工程复杂、工程量等问题进而导致工程成本的进一步增加。此外,该方法在运用的过程中往往因为维护措施不到位而导致部分土壤中的金属元素被迁移到其他地区,造成土壤重金属污染面积的扩大,难以真正改善土壤的重金属污染现状。

以日本富士县神通川流域的土壤重金属污染防治为例,为了降低土壤中的镉元素,相关单位加强了对于工程治理法的运用。在这一过程中,工程单位去除污染区域15cm的表土,并压实心土,并采用淋洗法对污染土壤进行清洗。

2.2 农业治理

所谓的农业治理,指的是通过优化、完善传统的耕作管理制度,实现土壤重金属污染的降低。在这一过程中,工作人员需要依据重金属污染的实际状况而选择相应的植物种植,从而实现了对于土壤中重金属元素的消除。此外,在农业治理的过程中,作业人员还需要合理选择花费,从而降低土壤中的重金属元素。

学者林汲等人就通过实验分析发现了硅藻土有机肥能够实现对于Cd、Zn重金属离子的吸收,从而降低了土壤中的重金属离子。一般而言,该方法在运行的过程中普遍存在操作简便、费用低的特点,但是由于其仍旧未能够从根本上消除重金属污染,进而导致其只能够作为辅助手段进行处理。

在进行广西壮族自治^环江县废矿土壤污染治理的过程中,中科院地理所环境修复中心陈同斌率团队,借助蜈蚣草等植物开展了土壤重金属处理工作,并成功修复1280亩重金属污染农田。

2.3 生物治理

生物治理方法在运行的过程中主要借助生物生命代谢活动的开展,从而降低了环境中重金属污染的浓度。从而确保部分受到污染的土壤能够恢复到初始状态。一般而言,生物治理方法在运用的过程中因为参与治理的主角不同,故而分为动物修复、微生物修复以及植物修复。

所谓的动物修复技术,指的是有关部门以及人员利用土壤中的低等动物进行土壤中重金属的吸收,从而实现了土壤中重金属含量的进一步降低。相关的研究表明,蚯蚓的出现能够实现对于硒、铜元素的吸收。事实上,该方法在推行的过程中也具有一定的问题:诸如低等动物往往会将吸收的金属元素再次释放到土壤中,从而造成了二次污染。

微生物修复技术则是利用土壤中的微生物进行各类金属元素的吸收。目前,最为常用的微生物就是――真菌。真菌在生存的过程中往往能够分泌一定量的氨基酸、有机酸等物质,从而实现了对于重金属的溶解。目前,从相关的研究分析可以发现:微生物修复技术在运行的过程中具有较为光明的前景,且能够较好的实现我国土壤重金属问题的解决。

植物修复技术的运行原理主要是在污染的区域种植特定植物,从而借助植物的生长过程实现对于重金属的吸收以及化解。目前,植物提取技术获得了相关研究人员的重视,并由此促进了土壤重金属问题的解决。现阶段,最为常用的植物有遏蓝菜、高山甘薯等。

仍旧以日本富士县神通川流域的土壤重金属污染防治为例,土壤重金属处理单位在含镉100mg/kg土壤上进行苎麻的种植,从而由此实现对于土壤中镉元素含量的降低。该地区在采取生物法治理土壤重金属污染的过程中,实现了镉元素含量降低27.6%。

3 发展论述

为了进一步促进我国土壤重金属污染问题的解决,我国的有关部门需要从法律的角度出手,加强对于各类土壤重金属污染法律法规的制定。此外,我国还需要加强对于清洁生产的发展,并大力运用清洁能源。而在已经发生的土壤重金属污染问题,作业人员需要加强植物修复技术的运用。

4 结束语

为了进一步促进我国土地重金属污染问题的解决,我国的有关部门以及人员需要采取科学的方式进行问题解决。本文基于此,分析探讨土壤重金属污染预防的发展历程(预防体制、预防技术),并就常见的土壤重金属污染治理方法进行分析,最后论述了我国土壤重金属污染问题解决的措施。笔者认为,随着相关措施的落实到位,我国的环境问题必将得到显著的改善。

参考文献

[1] 李录久,许圣君,李光雄,张祥明,王允青,刘英,况晶.土壤重金属污染与修复技术研究进展[J].安徽

农业科学,2014(1):156-158.

[2] 董文洪,杨海,令狐文生.土壤重金属污染及修复技术研究进展[J].化学试剂,2016(12):1170-1174.

[3] 廖健.土壤重金属污染及其化学修复技术的研究进展[J].中国石油和化工标准与质量,2013

(24):30+28.

篇5

摘 要:一直以来,治理土壤中的重金属污染都是全球各国亟待解决的一项难题。当前我国土壤重金属污染问题相对较为严峻,且引发这一问题的因素相对也比较复杂。而此种污染问题的出现,不仅会对生物的生长带来极大的危害,还会降低作物的总产量,并对人的生命健康造成极大的威胁。对此,本文以土壤的重金属污染为立足点,通过对我国土壤污染现状和危害的分析,从而就缓解和解决土壤污染问题的策略展开研究。

关键词:土壤重金属污染;危害;修复技术

中图分类号:X53 文献标识码:A DOI:10.11974/nyyjs.20170230224

就土壤本身来看,其之所以会产生重金属污染,主要是因为人类在活动期间将重金属物质带入到土壤内部,使得土壤内的重金属含量增多,破坏生态环境。随着农村人口数量的增长和农业生产过程中对化肥和农药使用量的增加,导致土壤中有害物含量增多,自身生态结构和环境质量被破坏。其中,重金属是对土壤生态结构影响最大的一种元素。为了重塑土壤生态结构,提高土壤内部环境质量,解决土壤存在的重金属污染问题势在必行。

1 土壤污染现状和危害

1.1 重金属污染现状

在2005年到2013年的12月,我国土地管理局第一次开展了有关全国土壤污染情况的调查研究。按照我国在2014年由国土资源部和环保部共同的有关《全国土壤污染状况调查公报》所公示的调查结果看:当前我国土壤生态环境的状况整体来讲十分严峻,特别是重金属污染问题,更是极为严重。在我国一些废弃工矿所在区域的周边位置,土壤的重金属污染问题十分的突出。其中,我国有16.1%的土壤,重金属污染总超标率相对较重,11.2%超标率属于轻微范围;而轻度超标率和中度以上的超标率分别达到了2.3%和2.6%。

1.2 重金属污染的危害

同其他土壤污染类型相比,重金属污染本身的隐匿性、长期性、不可逆性较强,且这种污染问题一旦出现,则很难消逝。一旦重金属污染存在于土壤中,不仅很难被移动,还会长时间滞留在其产生区域,不断污染周边土壤。与此同时,重金属污染物不仅无法被微生物有效降解,还会借助植物、水等介质,被动植物所吸收,而后进入到人类食物链之中,对人体健康a生威胁。从具体的情况来看,重金属污染主要存在以下几种危害类型:对作物生产造成不利影响。因为重金属污染物在土壤与作物系统迁移的过程中,会对作物正常的生长发育和生理生化产生直接影响,从而降低作物的品质与产量。例如,镉属于对植物生长危害性较大的重金属,如果土壤镉含量较高,植物叶片上的叶绿素结构就会被破坏,根系生长被抑制,阻碍根系吸收土壤中的养分与水分,降低产量;会对人体生命健康带去影响。土壤中存在的重金属污染物可以借助食物链对人体健康造成危害。例如,汞进入人体后被直接沉入到肝脏中,破坏大脑的视神经。

2 解决重金属污染问题的方法

2.1 工程治理法

所谓的工程治理法,是通过利用化学或者是物理学中的相关原理,对土壤中的重金属污染问题展开有效治理的一种方法。现阶段,工程治理法主要包括了热处理法、淋洗法与电解法等[1]。在众多重金属污染处理方法中的处理效果更好、处理工艺的稳定性更高。但该项方法处理过程和处理工艺复杂,需要花费的成本高,且经过该方法处理后的土壤,其本身的肥力会有所降低。

2.2 生物治理法

该方法指的是借助生物在生长过程中的一些习性,来达到改良、抑制、适应重金属污染的目的。在该项治理方法中最为常见的就是微生物、植物和动物治理法。生物治理是利用鼠类和蚯蚓等动物能够吸收重金属的特性;植物治理则是利用植物积累到一定程度可以清除重金属污染,对重金属具有忍耐力的特质。工程治理法相比,生物治理方式投资相对较小、管理便利、对环境破坏性小等优势,但治理时间较长[2]。

2.3 化学治理法

化学治理法是通过向已经被重金属污染的土壤中投入适量的抑制剂和改良剂等其他化学物质的方式,增加有机质、阳离子等在土壤中代换量和粘粒含量,来改变被污染土壤电导、Eh、pH等其他理化性质,使重金属可以通过还原、氧化、拮抗、吸附、沉淀、抑制等化学作用被有效消除[3]。

3 结束语

在社会经济发展水平不断提升,重金属对土壤污染程度逐渐加深的今天,对重金属污染现状,以及其可能会造成的危害等问题展开细致的分析与研究,并利用工程、生物、化学等方式来有效的缓解和治理土壤当前存在的重金属严重污染问题,能够对我国土壤的生态环境和内部结构进行重构,为我国城市发展和社会建设提供充足的土壤资源。

参考文献

[1]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报,2004(3):366-370.

篇6

Key word: water treatment; chironomus larva; prevention

摇蚊幼虫(红虫)大量孳生是由于水体污染导致的富营养化而变得日益突出的困扰供水界的新问题。摇蚊幼虫的抗氧化性较强,常规水处理的消毒工艺难以将其有效地杀灭,使得在我国一些大中城市的水厂清水池乃至管网水中都曾发现过摇蚊幼虫。在我国南方一些城市,由于气候具有常年温暖潮湿的特征,适于昆虫繁殖,问题更加突出。摇蚊幼虫不仅给用户带来了不良的感官影响,引起用户对水质信心的下降与恐慌,更为重要的是摇蚊幼虫还是人类多种传染疾病的传播媒介,对居民的饮用水安全带来极大的威胁。

1.摇蚊幼虫的生活习性及分布

摇蚊分属昆虫双翅目摇蚊科[1],由于身体内含有血红蛋白而成红色。摇蚊的生活史经过卵—幼虫—蛹—成虫四个阶段。有的两年只有一个世代,有的一年却有七个世代,但大多数每年有两个世代,第一个在春季(5~6月),第二个在夏季(8~9月)。

摇蚊的卵产于水面,卵块内有300~700个卵。初孵的摇蚊幼虫具趋光性,经过3~6天浮游生活后,转入底栖生活,利用藻类、腐屑、细沙、淤泥、唾液腺所分泌丝状物筑巢,多数种类筑成两头开口的管型巢。随着幼虫转入底栖,幼虫由趋光性改为背光性。幼虫经四次蜕皮后进入蛹阶段,每蜕皮1次,体色加深,从淡红色、鲜红色、深红色至变成黑褐色的蛹。幼虫的食性,除了环足摇蚊属Cricotopus中某些专吃植物的种类外,其余种类可分肉食性与杂食性两大类。肉食性种类以甲壳类、寡毛类和其他摇蚊幼虫为食。而杂食性则以细菌、藻类、水生植物和小动物为食。幼虫的摄食方式有:粘食、滤食、沉食、采食和捕食几种[2]。

摇蚊分布很广,其幼虫几乎在任何水域中均可见到,它们适应性亦强,如在海拔3200余米的青海湖、海拔4000多米的西藏阿里班公湖附近均有分布。在阿塞拜疆,一年积雪达8个月之久的哈里湖,也有羽摇蚊的栖息。大多数种类幼虫生活在淡水中,但也有在盐份很高的水体中生活的,如盐生摇蚊T.gr.salinarius,它不但在氯离子浓度较高的青海湖中生存,也能在碱性苏打型的水体中生存[2]。

2 影响摇蚊生长繁殖的主要环境因素

环境因子对摇蚊生长繁殖的影响作用是一个十分复杂的论题,表现为不仅因子众多,加之在不同的底栖环境中因子有不同的影响作用,因此至今尚未有一个较全面的理解,一般文献中探讨的内容主要从以下几个方面来进行阐述。

2.1温度

在食物和其他环境条件适宜的条件下,升高温度可加快摇蚊的生长发育速度,缩短周转率[3]。温度与世代时间呈负相关性,摇蚊完成一个世代的时间随温度的变化情况如图1[4]。

2.2 溶氧

许多深水湖泊或其他遭受有机污染的水体中底质环境的溶氧常处于相对较低水平,这对于生活在这种环境中的底栖动物来说,溶氧明显地成为它们的限制因子。Kitagawa认为,决定摇蚊幼虫分布的主要因素是湖体底部的溶解氧含量[5]。也有研究发现,含氧量与摇蚊羽化成虫数量呈负相关,即含氧量增高时羽化成虫数量却减少 [6]。有研究认为,摇蚊幼虫的呼吸是通过体壁从水中交换气体的。体色血红色的幼虫体内含有血红蛋白,它比非红色幼虫耐缺氧,甚至在无氧条件下也能生存30~120天。这是体内营养物质不经氧化分解成乳酸或脂肪酸,以释放能量维持生命[2]。

2.3 pH值

pH值也是影响摇蚊幼虫生长的环境因素之一。摇蚊的多数种类能生存于pH为6~8的水域,个别种类如Cacerbiphilus能生活在pH为1.4的极酸性水域中[2]。在实际的水厂生产中,水的pH值一般都控制在7.0~8.0,是摇蚊幼虫生长的最佳pH值范围,为摇蚊幼虫的孳生提供了良好的水质环境。

2.4底质

无论在湖泊还是河流,底质的特性与组成都是一个影响摇蚊幼虫的重要环境因子。摇蚊幼虫能够直接利用有机物,可以认为,水体中摇蚊幼虫的分布在很大程度上由底质中的有机物含量所决定,而有机物的含量在一定程度上反映了水体的富营养化状态和污染水平。Lundbeak的研究成果认为:湖泊与水库水体中底质中的有机质含量决定了摇蚊幼虫的种类组成和数量[7]。据刘建康等的资料,武汉东湖腐泥底质中摇蚊幼虫密度和生物量大于沙泥等其他底质[8]。所以有机物耗氧量的年平均值与底栖动物生物量之间存在非常显著的正相关。

转贴于 3摇蚊幼虫在水处理流程中的发生与分布规律

天然水体污染程度的加重,直接导致底栖动物多样性明显降低,而适应富营养水体的摇蚊类水生昆虫在水体中却占优势地位,在水体富营养严重时常可发现大量的摇蚊科幼虫。摇蚊幼虫在水厂中的产生经由两个方面,一方面摇蚊在水源的地表水体水面产卵并在水中繁殖,大量的摇蚊幼虫及虫卵个体随着水流进入水处理系统,通过挂网实验发现进入水厂的原水中含有大量的摇蚊虫卵及低龄的幼虫;另一方面,摇蚊成虫在水处理流程中的沉淀池等敞开水面产卵并在水中繁殖。这两个形成因素协同作用,使得摇蚊幼虫污染问题很难通过单一的办法来解决。

摇蚊幼虫孳生要有理想的筑巢场所,观察发现在水处理工艺中平流沉淀池由于只有四壁可以适合幼虫的筑巢,所以摇蚊幼虫污染现象比较轻微;而对于斜板(斜管)沉淀池,由于斜板(斜管)表面粗糙,易于沉积矾花淤泥,因而摇蚊幼虫可以在斜板(斜管)上及沉淀池的池底利用絮凝体、泥土等筑巢,以水中的藻类、有机物为食,并羽化为摇蚊成虫;摇蚊成虫在沉淀池池壁上产卵,卵孵化成幼虫后,一些幼虫沉入池底生长,一些就随水流进入滤池。由于刚孵化的幼虫直径仅80μm,对常规的滤池有可能穿透并进入清水池,就可能在清水池内进行二次繁殖或直接进入管网(如图2所示) [9]。

4 摇蚊幼虫污染防治技术

国内自1996年起至今,在上海、广州、北京和宁波等地城市供水系统发生了摇蚊幼虫污染事件[10],引起了水处理工作者的关注,一些研究者对摇蚊幼虫污染防治技术进行了研究,主要包括如下几个方面。

4.1物理防治

物理防治是利用机械方法,以及声、光、电、温度等条件,捕杀、诱杀或驱除害虫。近年来,在这方面研究得较多的是光电诱杀,利用蚊虫的趋光性,用一定波长的灯光,将害虫诱来,再用灯外的高压电去杀,或用机电动力将蚊虫吸入网内。

抑制摇蚊成虫产卵,从而可以达到控制摇蚊幼虫数量的目的。由于水池池壁是摇蚊栖息、产卵的主要场所。在沉淀池面上架装喷雾装置来隔断摇蚊成虫后到水面上产卵的途径,同时迫使羽化不久的成虫翅被打湿而不能飞起、,基本上能达到杜绝摇蚊在水池池壁上产卵的目的[11]。

代田昭彦指出[12],摇蚊产卵大体与成虫形成蚊柱的时间一致,光强在300lx以上摇蚊就不再产卵。400W橘黄色探照灯较为合适,该光源光束集中,穿透力强,当光强超过300lx时,光照能从很大程度上抑制摇蚊产卵,但还不能彻底根除[11]。

超声波对大龄摇蚊幼虫杀灭率随着溶解氧浓度的提高和超声波幅射时间的延长而上升;而且超声波与二氧化氯、液氯之间存在着明显的协同增效效应,且余氯的效果要优于二氧化氯,这可能与大龄摇蚊幼虫身体构造有关[13]。

由于水厂的原水中含有大量的摇蚊虫卵及低龄的幼虫,造成了摇蚊幼虫在水处理工艺中富集,使物理方法不能从根本上抑制摇蚊幼虫在水厂中的孳生,所以物理方法只能作为一种辅助手段来使用。

4.2化学防治

化学药剂对生物的灭活作用主要是由于生物接触药剂后其体内的蛋白酶遭到破坏,不能参与氧化还原系统的活动,代谢机能发生障碍而引起的[14]。化学药剂可通过吸附、渗透作用或直接破坏生物体壁的结构而进入到生物体中。药剂氧化性能的高低导致其在摇蚊幼虫灭活率方面的差异,需要有强氧化能力的化学药剂、并且有足够的作用时间,才能对其进行有效灭活。John.C.Hoff与Edwin E.Geldreich对大肠杆菌和病原体的灭活试验研究表明,几种氧化剂的氧化能力由高到低依次为:O3>ClO2>Cl2>NH2Cl,可见二氧化氯和臭氧的氧化能力高于氯气。但是由于臭氧在水体中的分解速度较快很难保证较长时间的持续灭活能力[15],所以尽管它的氧化能力比二氧化氯强,但由于有效灭活作用的接触时间短使得它达到100%灭活率时的投药量高于二氧化氯。

无论是二氧化氯、液氯还是过氧化氢、臭氧,只要保证在一定的投加量(表1)以上,都能在较短时间内将摇蚊幼虫杀灭。在几种药剂的对比中,现场发生二氧化氯的杀虫能力最强,适宜的投加量很低[11]。

Michael K.Alexander曾采用美国卡尔岗公司生产的絮凝剂和浓度为35%的过氧化氢溶液进行针对摇蚊幼虫的短期和长期杀灭实验,得出了短期半致死浓度均为112 mg/L,长期半致死浓度分别为13 mg/L和51 mg/L [16]。

叶劲[10]进行了过氧化氢、次氯酸钠、高锰酸钾、石灰水等化学药剂喷洒和浸泡杀灭实验。结果表明:喷洒5%浓度的过氧化氢效果最佳,能在短时间内杀死摇蚊幼虫,而过氧化氢、次氯酸钠的浸泡杀灭效果较佳。在成都市某水厂快滤池的生产实验表明,过氧化氢实际浓度为0.23%(有效浓度),浸泡时间2h,杀灭摇蚊幼虫效果显著。

液氯是水处理工艺中最常用的化学氧化剂,但是摇蚊幼虫的生物体对不良环境会产生一定的抗性,若连续提高投氯量会使摇蚊幼虫对氯产生较强的抗性,所以可以采用间歇提高前加氯量的方法,使摇蚊幼虫未来得及产生抗性前毒杀它们,这样效果较显著,且节约了氯耗。但摇蚊的虫卵对水中余氯有较强的抵抗力,2mg/L的余氯量对之并无影响,在自来水中虫卵孵化率可达95%以上[17]。

深圳水司的实践表明,采用一定浓度的液氯浸泡沉淀池,可以长时间抑制摇蚊幼虫的发生与孳生。但是由于液氯浸池的时间长达24h,影响了水厂的正常供水,所以这种方法可以在摇蚊幼虫大规模爆发时采用。在不影响水厂正常生产的情况下,在沉淀池中投加化学氧化剂,可以利用摇蚊幼虫在凝絮体中筑巢的生理特点,往往使灭活率较高。但是该方法既增加了生产成本,又由于加大氧化剂的投量而加剧了副产物的生成,给出厂水的水质安全造成新的问题。

4.3 微生物防治

微生物防治害虫是生物防治的一个重要组成部分。特定微生物能直接杀死害虫,不污染环境。目前国内外尚无微生物杀虫剂用于饮用水的报道。1987年后期美国印第安那州的洛厄尔城发生了城市供水系统摇蚊幼虫污染。洛厄尔城实施了清洗消毒等处理措施,但是没有取得明显的效果。他们曾尝试利用苏云金杆菌以色列变种(以下简称Bti)来治理,但提案被印第安那州政府否决,首先是因为Bti尚未被批准应用在饮用水中,其次是因为在相关法规上,不允许在饮用水中投加杀虫剂。最后他们采用Cat-floc Ls食品级聚合物来治理,其作用是作为水絮凝剂去除摇蚊幼虫所需的食物—硫化细菌和铁细菌[16]。

4.4 环境防治

环境防治是通过环境改造以防止或减少害虫的孳生繁殖。环境防治是对昆虫生态学的实际应用,它是根据害虫生物学的特点,对害虫生活环境治理,使之不利于害虫的生长、繁殖,而达到防治害虫的目的。

摇蚊幼虫以水中的有机物碎屑、细菌及藻类为食[10]。强化混凝,通过投加聚丙烯酰胺助凝,控制待滤水浊度小于3NTU,可以提高原水中有机物和藻类等的去除率,减少幼虫的食物来源,使其生活环境质量下降,降低幼虫的生存机率;针对摇蚊幼虫可在沉淀池底泥中越冬生活的特点,增加冬季和秋季的大强度清洗工作,可以除去底泥中存在的摇蚊幼虫,抑制其再度生长繁殖;加强滤池管理,保证滤池的正常运行,滤池池壁要勤洗刷,对气水反冲洗滤池的池底水区要经常排空,以保持池体的清洁,同样可以减少摇蚊幼虫的滋生机率[9]。

4.5 生物操纵技术

“生物操纵”技术其内容就是利用生态系统食物链摄取原理和生物的相生相克关系,通过改变水体的生物群落结构来达到改善水质恢复生态平衡的目的[18]。摇蚊幼虫是多数经济鱼类的优良天然饵料,在浮游阶段时,可被不少幼鱼摄取;当转入底栖时,则是底层鱼类鲤、鲫、青鱼等的良好铒料。鱼类属于水生生态系统中食物网的顶级消费者,放养大型不同食性的鱼类,势必影响鱼类的群落结构,并对其他生物群落,特别对饵料生物群落产生极大的影响,进而影响整个生态系统的结构和功能[19]。所以利用生物种群间的捕食关系,从生态学的角度入手,可以通过生物操纵技术来抑制摇蚊幼虫的滋生。

周令等人[11]对原水前加氯的情况下沉淀池养鱼的可行性进行了试验研究,试验鱼种采用鲫鱼鱼苗。结果表明:(1)沉淀水余氯<1.0mg/L,鱼苗在沉淀水中生长良好,没有出现不适应症状;(2)鱼喜食摇蚊幼虫特别是老龄红虫,有利于灭蚊和控制红虫数量;(3)几种鱼类配合放养,使鱼在沉淀池中呈立体分布,有利于消灭不同生活习性的各发育阶段的摇蚊幼虫;(4)放养鱼苗的沉淀池出水浊度及氨氮含量与未放养鱼沉淀池出水相差不大,说明鱼的正常活动及其排泄物不会影响沉淀效果。

沉淀池养鱼由于可操作性差,有一定的局限性,但此方法可在水源中使用以控制原水中的摇蚊幼虫及虫卵。在水体中实施以生态治理为目的的鱼类放养,其放养的生物量应远低于以提高鱼产量为目标的水体渔业养殖中的高密度放养量。在微型生态系统中鱼类放养实验表明,在放养生物量为30g/m3的条件下,水体中的氮、磷等营养物质得到了一定程度的去除,有机物的指标下降、溶解氧的浓度有所提高,浮游植物藻类尤其是蓝、绿藻的生物量也被控制在较低的水平,有效地控制和缓解了水体富营养化的进程。“生物操纵”技术可以在水体生态治理中发挥重要作用,这也是解决水处理工艺中摇蚊幼虫污染问题的重要途径之一。

总之,单凭某一种物理、化学或生物的方法还不能对城市给水处理过程中摇蚊幼虫的孳生进行卓有成效的控制,必须各种方法兼用,互相渗透,多级设防,多层屏障,贯穿于整个净水厂净水工艺系统中。

5研究展望

水处理过程中摇蚊幼虫污染问题的研究,目前仍处于探索阶段,今后应从以下几个方面进行深入研究,以期早日实现摇蚊幼虫污染防治的系统化,确保饮用水的安全。

5.1进行传统制水工艺的各净水单元对摇蚊幼虫去除的特性研究,了解摇蚊幼虫在工艺中的孳生规律及机理,以指导水厂在其暴发期间采取强化工艺或应急措施。

5.2进行摇蚊幼虫在饮用水深度处理工艺(如紫外—臭氧氧化、膜滤、臭氧—生物活性炭等)中的去除规律及机理研究,为水厂采用深度处理工艺去除摇蚊幼虫污染提供理论指导。

5.3从生态学角度出发,研究摇蚊幼虫、鱼类、营养物质水平之间的关系,建立有效的生物控制方法。

水处理工艺中摇蚊幼虫污染控制是一项复杂的系统工程,应结合污染的实际状况采取适当的措施,把水源水富营养化控制与净水处理工艺有机地结合起来。从长远来看,强化水源水体的保护与管理,对已被污染的水源采取有效方法治理,是解决饮用水摇蚊幼虫污染乃至水体富营养化的根本措施。

转贴于 [1] 王俊才,鞠复华.摇蚊幼虫的水生态研究进展[J].辽宁城乡环境科技.1998,18(3):83-84.

[2] 何志辉.淡水生物学[M].北京:农业出版社.1994.336-339.

[3] Armitage P,Cranston P S,Pinder L C V.The Chironomidae :The biology and ecology of non-biting midges[J].London :Chapman&Hall,1995.225-268.

[4] 朱利斌.花翅摇蚊生物学及实验种群生态学的研究[D].中山大学硕士论文.1997.10-11.

[5] 孙刚,盛连喜,李明全.长春南湖底栖动物群落特征及其与环境因子的关系[J].应用生态学报.2001,12(2):319-320.

[6] 薛瑞德,Arshad Ali,赵彤言.用于杀虫剂评价的水池中无脊椎动物的群落结构及其种群动态[J].寄生虫与医学昆虫学报.1996,3(1):50-57.

[7] 吴洁,王国龙.西湖与青山水库底栖动物群落的研究[J].环境监测管理与技术.2000,12(增刊):17-19.|

[8] 刘建康.武汉东湖生态学研究[M].北京:农业出版社.1990,415-421.

[9] 章诗芳,刘韦宏.有关摇蚊幼虫的习性及其防治问题的探讨[C].第二届环境模拟与污染控制学术研讨会.2001.

[10]叶劲,李彬,刘恒,唐雪惠,李朝晖.摇蚊幼虫杀灭试验及相关问题的初步探讨[C].中国土木工程学会水工业分会给水委员会第八次年会.成都,2001.

[11]周令,张金松,雷萍,梁明.净水工艺中红虫污染治理的研究动态[J].给水排水.2003,29(1):25-28.

[12]代田昭彦著,鲁守范等译.摇蚊幼虫的研究—养鱼饵料的饲育培养法[M].北京:农业出版社,1998.

[13]卢靖华,周广宇.超声波对自来水中大龄摇蚊幼虫的杀灭作用[J].中国给水排水.2003,19(1):91.

[14]Huang J L , Wang L, Ren N Q.Disinfection Effect of Chlorine Dioxide on Viruses, Algae and Animal Plankton in Water[J]. Water Research, 1997,31(3):455-460.

[15]王晓昌.臭氧用于给水处理的几个理论和技术问题[J].西安建筑科技大学学报.1998,30(4):307-311.

[16]Michael K,Alexander.New Strategies for the Control of the Parthenogenetic Chironomid[J]. Journal of the American Mosquito Control Association1997,13(2):189-192.

[17]卢靖华.自来水中塞氏摇蚊幼虫的生长规律及防治对策[J].中国给水排水.2001,17(6):53-54.

篇7

(一)重金属污染的形成机制。重金属污染的形成机制,可以从产生因素、来源途径、产生主体和产生时间等方面来分析。(1)产生因素:包括自然因素和人为因素。重金属在大气、水体、土壤、生物体中广泛分布,个别地区如喀斯特地区因石漠化导致重金属释放而造成自然环境中重金属污染;重金属一般以天然浓度广泛存在于自然界中,由于人类对重金属的开采、冶炼、加工及商业制造活动日益增多,造成不少重金属如铅、汞、镉、钴等进入大气、水、土壤中,人为引起严重的重金属污染。(2)产生途径:主要来源工业污染、交通污染和生活垃圾污染。工业污染大多通过废渣、废水、废气排入环境,在人和动物、植物中富集,从而对环境和人的健康造成很大的危害;交通污染主要是汽车尾气的排放;生活污染主要是一些生活垃圾的污染,废旧电池、破碎的照明灯、没有用完的化妆品、上彩釉的碗碟等。(3)产生主体:首先,许多地方政府大力发展经济,盲目追求GDP的高速增长。因此,对于涉重金属污染的企业,不少地方政府往往采取非常宽松的投资政策,对涉重金属企业项目考察不严格、监管力度松散,发生了多起重金属污染事故。据报道,某地由于土壤重金属污染严重,曾经在2007年大规模整治铅酸蓄电池生产企业,但被整治企业却接到了山西、河南、湖南、广西等地的邀请,将污染企业成功的转移,也为后来各地的重金属污染事故埋下了伏笔。其次,企业是造成重金属污染的主要来源者。湘江流域涉重金属企业总计1635家,湘江重金属污染与地方产业结构直接相关。大部分大、中型企业,尤其是有色金属和稀有金属矿藏的开采、冶炼企业在湘江流域齐聚。虽然湖南省在全国率先扛起重金属污染治理示范大旗。尽管旷日持久的“排毒”战已持续20多年,然而,专家的定性仍为“积重难返”。再者,日常生活中,民众的不恰当处理废旧电池等造成的重金属污染也是组成部分。(4)产生时间:历史的沉淀与现实的积累。重金属污染的形成不是一朝一夕的,既有历史的沉淀,以各种化学状态或化学形态存在的重金属,在进入环境或生态系统后就会存留、积累和迁移,造成危害。如随废水排出的重金属,即使浓度小,也可在藻类和底泥中积累,被鱼和贝的体表吸附,产生食物链浓缩,从而造成公害。根据湖南省环保厅历年对湘江水质监测数据,湘江总体水质在自上世纪90年代呈恶化趋势,总体污染特征是以有机污染为主的重金属、微生物复合污染,其中重金属污染特征尤为突出。也有现代工业的三废排放、农业化肥的过度使用和人们生活垃圾无序处理而形成的污染,而且,经济越发达,重金属污染的现象愈发严重。

(二)重金属污染的主要特点。(1)来源复杂。重金属污染来源于自然界,来源于工业、农业、人们的生活,来源于城市和乡村。(2)主体多元化。人为造成重金属污染的主体众多,有政府、企业、公民。而且受害主体不特定化。(3)时间长,隐蔽性强。由于历史的积累以及对重金属污染防治的忽视,重金属污染的时期长,其造成的危害不会马上体现处理,不易为人们所重视。(4)影响深,危害大。“重金属污染的危害主要体现在两个方面:一是对环境的污染;二是对人体的伤害。”在环境污染方面,重金属污染与其他有机化合物的污染不同,不少有机化合物可以通过自然界本身物理的、化学的或生物的净化,使有害性降低或解除。而重金属很难在环境中降解。在开采、冶炼、加工及商业制造活动中排放的重金属污染物进入大气、水,造成大气污染和水污染,最终,大部分重金属停留在土壤和河流底泥中。当环境变化时,底泥中的重金属形态将发生转化并释放造成水污染。在对人体的伤害方面,重金属通过大气、水、食物链进入人体,在人体内和蛋白质及各种酶发生作用,使它们失去活性,并在人体的某些器官中富集,如果超过人体所能耐受的限度,会造成人体急性或慢性中毒,具有致癌、致畸及致突变作用,对人体会造成很大的危害。(5)综合治理任务艰巨。重金属污染防治涉及多个部门、多个地区、甚至多个省份的协调与综合治理。湘江流域涉重金属的防治就涉及株洲、衡阳、郴州、湘潭、娄底5个市。需要发改、财政、国土、环保、工信、卫生、安全、科技等多部门的合力与协调。

二、重金属污染的形成机制对构建司法保护机制的主要影响

我们所说的重金属污染指的就是因人类活动导致环境中的重金属含量增加,超出正常范围,并导致环境质量恶化。从重金属污染形成机制和特点来探析其法律机制的主要问题,能更好的对症下药。

(一)来源的多样性突显我国重金属污染防治法律制度不完善。重金属污染存在于水体、大气和土壤等。对于重金属污染的防治,我国的《水污染防治法》、《固体废物污染环境防治法》、《土地管理法》、《危险化学品安全管理条例》等立法中均有涉及,但没有形成系统的重金属产过程中污染防治制度体系。原则性立法过多、可操作性差、基本法律制度没有建立起来。(二)主体的多元化导致责任机制不健全。政府的监督责任不健全甚至缺乏;污染企业的法律责任追究机制不健全;民众环保意识不足,法律救济途径存在缺陷。(三)治理的长期性与复杂性彰显出法律规定顾此失彼,不全面。我国重金属污染防治注重工业排放的治理,对农业和生活垃圾污染缺乏应有的关注。我国环境污染防治法注重工业生重金属的排放控制,忽视生活活动中重金属的污染物的排放,也忽视对生活环境中重金属污染物的监测、评价与管理。④而随着科学技术的高速发展,很多重金属应用到日常消费产品及农业用品中。由于这些含有重金属产品的使用日益广泛,回收困难且没有建立完整回收、处理系统,加上消费者对重金属的存在及其危害缺乏了解而容易轻视,易导致含有重金属产品在使用、丢弃、冲洗处理、掩埋中,扩散了重金属污染的范围,加重了污染的程度。(四)影响的深远与严重的危害性考量着国家司法的综合执行力。我国环境法学专家蔡守秋教授指出:“我国现行的污染防治法都存在一个最大的弊端:没有有效的执行手段和责任追究机制。”污染者因为处罚力度不够大,于是污染事件时常发生。但问题的关键是法律法规的责任追究机制不健全、处罚力度不够大。这已经成了解决土壤重金属污染问题的一大顽疾。(五)综合治理的艰巨性使得实践操作中综合治理与协调机制缺乏可操作性。整治重金属污染是一项长期、复杂、艰巨的任务,影响包括重金属污染防治在内的环境保护任务的实现,一是缺乏对政府及其有关部门环境保护责任及其监督的法律规定,环境管理体制有待改革和完善。二是需要加强环境信息公开、公民环境知情权的保障、公众参与环境决策和公众监督机制。三是一些重要的环境管理制度尚需建立和完善,一些环境制度可操作性不强,存在污染防治责任不明确、违法成本低、环境健康损害救济难、环境公益损害救济难等问题。

三、构建我国重金属污染防治法律机制的对策

篇8

摘 要:随着我国工业现代化的发展,很多工厂在生产过程中会产生很多重金属,在排水污水、废物时没有达到环保标准,导致土壤重金属污染非常严重。为了解决这一问题,保护周围土壤,提高农产品质量,在处理中应用了化学固化方法,该方法价格成本低,处理方便,应用范围广。下面就对这些方面进行分析,希望给有关人士一些借鉴。

关键词:重金属污染;治理;化学固化

中图分类号:X53 文献标识码:A DOI:10.11974/nyyjs.20170230222

1 土壤重金属污染危害

1.1 重金属污染导致的危害分析

重金属对土壤和水生态环境会造成严重的危害,在自然环境中,重金属是不能被降解的,植物在生长过程中,会吸收到植物内部,这样对植物的生长发育带来很大影响[1],不仅如此,人和自然是一个统一的整体,形成一个完整的食物链,如果人类误食了这些植物,就会对人体造成伤害,重金属危害性非常大,人体的微量元素含量都是有限的,如果超标,对人体是致命的伤害,人体中的蛋白质,核酸会和重金属发生作用,进而导致人体酶活性的下降,严重的情况还会消失,最终导致核酸结构发生很大变化,甚至会出现基因突变的问题[2]。

1.2 分析当前土壤中的污染情况

通过调查研究得知,农业、工业、以及城市事故污染是重金属主要的污染来源。比如在农业生产过程中,如果使用含有重金属的水体进行农作物的灌溉,或者使用含有重金属的化肥农药,对周围的土壤都会造成严重的重金属污染。而在工业方面,比如选矿采矿,还有冶炼和锻造过程中,其操作的每一个过程都会产生重金属,在排放的废水废气以及废渣中,如果不能很好的过滤消毒处理,那么水体进入土壤中,也会有严重的重金属污染[3]。在这种重金属浓度严重超标的情况下,会对周围的空气,水体,以及土壤造成严重的危害。而在城市当中,污水处理厂是重金属污染的主要来源,有关部门监管不力,导致污水没有达到国家标准就进行了排放,大量的污水引入生活用水中造成污染。

2 土壤重金属污染治理的化学固化分析

2.1 分析重金属固化的原理

为了避免重金属对土壤、地下水造成持续的污染,在应用化学固化方法中,先要向被污染的土壤中添加固化剂,土壤中的活性就会被改变,这样重金属和土壤中的移釉素会相互结合,在外在形式下出现一定的固化现象,为了保证土壤有记性,迁移性等,必须进行化学处理,恢复土壤的活性。化学固化作用后,土壤中的元素都有很大的改变,最终做到对污染土壤的修复。

2.2 沉淀在化学固化中的作用分析

在土壤中放入固化原料后,在不断溶解中产生一定的阴离子,这些阴离子和重金属相互结合,之后就开始出现重金属沉淀,生物有效性等都开始降低。最为常用的固化剂有石灰石,作用机理是将土壤中的pH提高,这样在其中重金属元素发生沉淀,重金属在土壤中其毒性会随时浸出,石灰石可以减少浸出量,这样重金属就会被固定,不会将污染范围继续扩大,控制污染的进一步恶化。

2.3 吸附在化学固化中的作用分析

通过应用化学固化方式,使用的化学元素作用在土壤层中后,这些固化材料对重金属有一定的吸附作用,原理是吸附剂对吸附质的质点有很强的吸引作用,但是处理中分为化学吸附和物理吸附,其中的沸石是主要的添加剂,经过科学人员的研究,沸石具有特殊的Si-O四面体结构,该结构吸附性非常好,在物理吸附作用下可以将 Pb 、Cd等重金属吸附到表面上,这样重金属就被固定减少土壤中的重金属污染。

2.4 分析配位在其中的作用

在固化过程中,会出现配位问题,不同配位表现的情况也不同,黏土矿物中层和层利用分子之间的作用相结合,这样在实际应用中,被重金属污染的土壤中,其金属离子可以进入到这些化学元素的内部,和层间元素结合,之后会和SiO元素发生晶间的配合,黏土矿物添加到污染土壤中后,就可以有效降低重金属生物性和迁移性,这样就对这些污染土壤进行了一定程度的化学修复。除此之外,这些改良剂还能和重金属离子发生很好的配位作用,将 Pb,Cd等重金属吸收,控制其对土壤的污染。

3 总结

通过以上对土壤重金属污染治理的化学固化研究,发现化学固化的作用非常大,其对重金属污染的处理非常强,效果非常好,在以后的发展中,要深入研究这一技术,进一步完善和提高,推动我国对处理重金属污染的技术和水平,为以后的发展奠定基础。

参考文献

[1]孙朋成,黄占斌,唐可,等.土壤重金属污染治理的化学固化研究进展[J].环境工程,2014(1):158-161.

[2]刘云国,夏文斌,黄宝荣,等.重金属污染土壤化学固化技术与萃取修复技术的应用及修复效果(英文)[J].中南林业科技大学学报,2012(4):129-135.

[3]景生鹏,黄占斌,景伟东.化学改良剂对矿区重金属Pb、Cd污染土壤治理的作用[J].资源开发与市场,2016(1):72-76.

推荐期刊