欢迎访问爱发表,线上期刊服务咨询

交通的智能化8篇

时间:2024-03-04 14:41:14

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇交通的智能化,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

交通的智能化

篇1

1概况

随着计算机技术的不断发展,以及道路交通监控领域中国家系列规范的颁布和实施,“高清监控”愈来愈受到人们的重视和青睐。具有图像清晰、信息量丰富、色彩逼真、视角宽广等重要特征的“高清监控”被运用到实际工程当中,带来了不可低估的经济和社会效益。100万、200万、500万像素的高清摄像机,CCD或者是CMOS的感光材料,全嵌入式、工控式、混合式结构等,都在这样的大背景下竞相登场,呈现出一派“百舸争流”的景象。笔者将通过本文,与读者分享对当下高清卡口、电警工程技术发展新特点的认识。

2前端采集环节趋于采用全嵌入式、智能化、工业级别的高清抓拍、控制、采集系统

(1)高清抓拍摄像机采用以TI公司的DM6467为核心的嵌入式主板,功耗低;采用无风扇设计,耐75℃高温;内置硬件看门狗电路,能够在系统异常后自动重启、恢复工作。软件方面,高清抓拍摄像机采用专门针对DM6467设计的嵌入式Linux系统,避免遭受网络攻击和病毒侵袭。相对于工控机模式或者是嵌入式的工控机,以上改进显然提高了系统的整体稳定性。(2)高清抓拍摄像机内部集成高清抓拍系统软件和号牌定位识别软件;植入自动控制模块,将线圈触发、视频触发、雷达触发与启动补光无缝地集成;直接把图像数据上传到远端服务器的数据库中。(3)前端存储采用嵌入式网络硬盘盒,以固态电子硬盘为存储介质。相对于采用SD卡或者使用工控机而言,此举可使存储的稳定性和可靠性得到大幅的提升。(4)采集设备防护罩采用特殊设计。护罩的窗口采用透光率达99.5%的特殊光学防尘玻璃(普通玻璃透光率为80%左右),减少了反射干扰,使采集的图像色彩更加扎实、细节更加丰富。另外,护罩还引入了对承受高温、低温、雨淋、盐雾、粉尘等各种气候环境压力的考虑;具有一定的机械强度且达到适应应用环境的防尘、防水密封的要求,长期使用不会有严重锈蚀,符合IP66的防护要求。

3前端采集设备通过集成多功能应用软件实现更完善的智能化

对多功能应用软件的集成,使得系统在更有广泛性的同时,凭借特殊功能的引入获得了更强的针对性。下面分别对高清卡口、高清电警、后端平台的特殊功能加以介绍。(1)目前的高清卡口系统,对监控区域内正向、逆向行驶的机动车、非机动车、行人及其他物体的图像捕获,以及车辆品牌识别(如大众、奥迪等)、车身长度识别等捕获功能的扩展,准确率可达99%以上。除了能够捕获所有车道上行驶的车辆外,系统还可以捕获到在车道中线上行驶的车辆,并能保证不受各种异常状况干扰:支持逆行抓拍,可抓拍逆行机动车、非机动车,并且将其标示为逆行;支持并行抓拍,可抓拍并行(含双向并行)车辆,并识别成两条记录;可抗停车干扰,能在路边停车干扰下准确识别运动车辆(不会误将路边停放的车辆作为识别对象);支持抗干扰抓拍,可保证在灯光、阴影、雨天等干扰因素下不误拍。①高清智能卡口(图略)基本配置如下:选用25mm高清镜头时,摄像机与抓拍位置距离16~18m;每条车道配置一台摄像机、一个闪光灯;频闪灯闪光方向与车辆行驶方向的夹角在45°左右;建议在摄像机镜头前安装偏振镜,以消除车辆挡风玻璃反光的不良影响;每个方向配置一台高清全景摄像机,采用LED灯补光。②在不允许安装地感线圈的点位,系统可以采用虚拟线圈抓拍技术:在监视画面合适的位置上设置一个虚拟线圈框;当运动车辆的整个车头进入虚拟线圈时,虚拟线圈触发抓拍,并联动对抓拍图片的车牌定位、号牌识别。在安装了地感线圈的点位,当地感线圈故障时,摄像机可自动开启虚拟线圈功能进行抓拍。③当运动车辆正常通过抓拍位置时,系统自动抓拍,并开启频闪灯进行同步补光,保证抓拍效果。④针对超速、逆行的车辆,系统自动抓拍两张不同位置的照片,用于违章处罚的举证。⑤每台摄像机的监控范围覆盖一个半车道,大约6m路面宽度,保证能够抓拍到骑线行驶车辆完整的车辆号牌。⑥由于交通路况等原因,当前后车辆的车距比较近时,往往会出现前面的大型车挡住后面的小型车的情况(尤以市区内部最为常见)。系统在对此种情况予以充分考虑的情况下可保证不漏拍。⑦除了机动车以外,治安卡口还需要对非机动车、行人及其他物体进行抓拍。通过运用视频检测技术,摄像机能够完成对正行、逆行的非机动车,以及行人和其他物体的抓拍。(2)目前的高清电警系统同时具有直行车道左、右转抓拍功能,左、右转车道直行抓拍功能,逆向行驶抓拍功能,借逆向车道闯红灯抓拍功能,闯禁左、禁右抓拍功能。①基本路口电警配置(图略)。②系统具有高清智能卡口功能。在任何状态下,当车辆离开第一个线圈(位置见下文)时,系统能够完成对每一辆经过车辆的抓拍(捕获率不低于99%)和对车辆车牌号码、车身颜色的识别,准确地记录并存储车牌和全景影像等信息(每辆车辆都有相对应的一张全景图片和一张车尾特写的合成图片),并在图片上添加车辆经过的时间(年、月、日、时、分、秒,精确到0.1秒)、路口(地点)、方向、车道(左转、直行、右转)等相关信息。各条车道的监控是独立完成的。如交通灯由红转绿时,两辆车同时通过,触发抓拍;系统将生成两条记录。其全景照片可能为同一帧,但特写照片为各自车尾的照片。③系统支持闯红灯抓拍。在地感线圈模式下,一般每个车道安装两个线圈,第一个线圈安装在停车线以内,第二个线圈安装在停车线以外,两个线圈中心相距2m左右;在视频检测模式下,在监控画面每个车道停车线前后的相应位置上,各设置一个虚拟线圈,用于对车辆的检测。当前车道处于红灯状态时,若系统检测到有车辆经过,即对该车辆进行连续抓拍:当车辆进入第一个线圈时,抓拍第一张照片;当汽车离开第一个线圈时,抓拍第二张;当汽车离开第二个线圈时,抓拍第三张。整个过程在红灯状态下完成才认为是闯红灯行为。而后摄像机对三张照片进行合成,并发送到数据库中,作为违章记录。图片可清晰地记录违法车辆的车型、车身的彩色特征、车辆牌照及信号灯色,并显示车辆经过时的时间(年、月、日、时、分、秒,精确到0.1秒)、路口(地点)、方向、车道(左拐、直行、右拐)、红灯时间(精确到0.1秒)等相关信息。④系统采用车辆跟踪技术分析车辆的行驶轨迹,因此同时具有直行车道左、右转抓拍功能,左、右转车道直行抓拍功能,逆向行驶抓拍功能,借逆向车道闯红灯抓拍功能和闯禁左、禁右抓拍功能。⑤系统支持对过往车辆进行动态实时监控。摄像机可在输出高清抓拍图片的同时输出720P、H.264、2~4Mbps高清实时视频(非25帧),用于高清监控。⑥前端抓拍摄像机具有网管功能,能够把工作状态及故障情况,如摄像机实时视频功能是否异常、抓拍功能是否异常、闪光信号是否异常、前端存储功能是否异常等发送到网管平台。维护人员可通过查询网管平台的报表,掌握设备的运行状态(表略)。系统在检测到线圈或红灯信号异常时,自动切换到视频检测模式,并且实时通知网管平台。⑦系统中的所有设备、设备通信接口均引入防雷设计,立杆及基础符合防雷设计标准要求。系统弱电部分引入了防雷设计后,在静电放电、浪涌、电源短时中断等电磁干扰下,摄像机通信接口可能出现性能指标的暂时降低,但不会出现电气故障;系统内已贮存的图像、数据不会丢失。摄像机通信接口防雷设计(图略)。系统供电线路中加入空气开关、电源防雷器和稳压电源,以避免路口电源的不稳和干扰导致设备工作异常。摄像机电源的大地线和护罩外壳大地相连。若有雷击等干扰时,干扰电流将通过护罩外壳大地导到立杆上,最终导入大地。为了保障系统正常运行,还需要引入立杆防雷设计(3)后端平台技术特点如下:包括卡口平台、内网视频监控平台、专网视频监控平台、网管平台、实战平台,实战平台可以调用卡口平台、视频监控平台数据,以支持业务应用;支持视频监控基本功能,调用录像不需要经过前端网络摄像机;卡口平台具有各种数据检索功能、布控功能,以及可疑车辆自动挖掘功能;能够支持电子地图;具有录像智能视频分析功能;支持电视墙、大屏拼接应用;具有设备权限、用户权限管理功能,拥有丰富、实用的信息共享数据库,可将智能识别所得的车牌号、车型、颜色、时间、经过路段统一归档,形成数据库文件,供实战平台、交通管理处罚平台以及公安(交警)、治安、刑警监控平台共享使用。

篇2

关键词:上海;静态交通;智能化建设

城市交通根据交通流状态,分为动态和静态交通道路交通系统。动态交通是指在道路上运动行驶的所有机动车的总体交通流情况;静态交通是指机动车由于不同原因在各个场所停止行驶的状态。静态交通和动态交通均是当前城市交通系统的组成部分,两者相互依赖相互影响。随着本市社会经济建设发展和人民收入改善,私家车保有量增长迅猛,静态交通问题已引发市民的广泛关注。停车泊位的有限数量和缓慢增长与持续增长的机动车保有量之间,存在明显的供需矛盾。静态交通建设滞后、管理落后,“行车难,停车更难”矛盾日益凸显。秉承“城市,让生活更美好”理念,如何推动静态交通智能化建设,改善城市静态交通问题,缓解停车难,打通舒适的交通出行环境,具有重要现实意义。

1 上海静态交通的现状及存在不足

(1)停车位缺口较大,停车矛盾日益凸显

最新统计数据显示,截止2014年底,全市机动车保有量为304万辆(不含外省市号牌车辆),年增幅7.2%。全市小客车219万辆,年增幅9.7%,其中沪C牌照的郊区小客车总量67万辆,年增幅16%,私人小客车注册量达181万辆,年增幅12%。与此同时,本市停车位总量并未相应增长,土地资源紧张的中心城区停车设施建设更为滞后,截止2014年5月,全市道路泊位数29751个,环比略增0.11%;公共停车场(库)443760个,环比微增0.84%,同比增长8.4%。停车矛盾同时衍生占道停车、损坏绿化等诸多问题。

(2)停车信息化尚未普及,区域发展差别较大。

总体来看,上海市停车智能化在国内尚属走在前沿,已经出台了一项上海地方标准和三项行业技术规范,并将停车智能化建设纳入上海市综合交通体系规划、停车十二五规划等规划中,明确提出停车信息平台建设,完善停车诱导系统,从而提升整个动静态交通功能。但从区域来看,停车区域发展差别较大。黄浦区、青浦区、嘉定区等已陆续实施停车诱导系统,而其他区县尚未推行,只有部分电子收费系统,信息化建设比较薄弱,造成部分公共停车场由于缺乏醒目的停车信息诱导,外来人员难以在短时间内找到停车泊位,增加绕行距离,间接增加道路交通流量,同时部分停车泊位闲置。从诱导形式上来看,主要以设置诱导路牌为主,尚未开发APP等应用软件查询模式。从诱导效果来看,相关信息与实际空位数误差较大,技术尚不成熟。

(3)占道停车现象严重,管理方式落后。

截止2014年5月,本市(崇明县除外)16个区设置了757条收费道路停车场,共计收费道路停车泊位29751个,按标准车位5.3米/个,估算停车收费道路里程约157.6公里,按全市(崇明县除外)城市道路4919条,总里程4363公里对比,停车收费道路里程约占总城市道路里程的3.6%。当月上海道路停放车数为1323226次,平均泊位周转率为1.43辆次/泊位/天。欧美、香港等日周转率均高于6,上海道路停车泊位周转率明显偏低,大量机动车实际占道随意停车。同时绝大多数停车场(库)仍使用取卡+人工收费模式,自动识别车牌的自主停车管理系统及支付系统尚未普及,停车管理模式比较落后。

(4)停车设施规划滞后,建设量小

经过上海世博、“十二五”等多轮市重大交通基础设施建设高峰期,上海市骨干路网、越江通道、轨道交通在量上均有了显著增长,而在静态交通基础设施建设方面则呈现短板。除商业、住宅等配建停车场(库)外,在P+R停车场、立体停车场等建设方面明显投入不足。一方面是由于对于停车需求预测不足,现有的停车配建标准在分类和指标等方面过于笼统、简单;另外一方面是地方政府在停车问题上未予以足够重视,采用相应措施和投入相应资金来缓解停车问题,住宅类、办公类等项目在土地出让、建设程序审批等环节中,对于停车位建设指标也过于放松,未结合区域停车需求预测及现实条件给予足够的指导要求。

(5)差异化定价制度不明显

部分郊区县缺乏合理的差异化定价制度,现行地下公共停车场高于道路停车收费,导致驾驶者倾向停放在路侧,影响道路通行,助长了乱停车现象,加重了执法压力。同时收费停车场利用率低,建设成本高,难以吸引社会资金投资停车场建设。

2上海市静态交通智能化建设思考

静态交通智能化建设对于上海市静态交通的系统管理和发展有着至关重要作用,利用停车诱导系统和停车信息平台对停车需求进行调控管理也是今后停车管理的重要手段和方式。

(1)静态交通智能系统化

静态交通智能网络化包括公共停车信息系统、停车诱导系统、道路停车自动收费系统(咪表或手持POS机收费系统)和停车场(库)信息系统。以公共停车信息系统为核心,集成停车诱导系统、咪表系统、停车场(库)信息系统,实现实时的停车场信息服务。

(2)停车诱导智能网络化

2002年,黄浦区率先建成上海首个区域停车诱导系统。2005年,黄浦区推出网上查询停车泊位、电话预定泊位、向驾驶员提供各项停车咨询等服务,在城市交通“排堵保畅”中起到了积极作用,其标准已作为上海市停车诱导系统地方标准,成为全国第一部停车诱导系统的地方标准。在停车诱导方面,可通过城市一级、二级引导屏、互联网网站、手机终端、车载GPS终端等方式各个停车场的实时车位信息,诱导驾驶员查找车位、停车场及路线,并对停车场车位信息进行实时监控、统计,规范停车场管理,提高车位利用率。

(3)管理系统智能自动化

2005年以来,上海在黄浦等四个中心区36条停车收费道路上试点安装了232台咪表,由于少数车主延时停车、拒不缴费等原因,不得不退回到“人机共守”模式。电子收费模式在准备计费、及时提供泊位信息等方面,具有不可替代的优势,因此,建议进一步总结吸取咪表使用过程中的经验,强化管理,同时推广手持POS机道路停费工作试点,真正发挥电子收费系统的作用。

(4)收费系统智能便捷化

在收费方面,可充分发挥公共交通卡功能,实现刷卡收费,简化收费时间,或推行不停车收费系统(ETC),可大幅减少车辆出入停车场所需要的时间。ETC系统成功应用于上海市普陀区海普苑小区停车场管理,实践证明,该系统具有良好的软件界面,识别率高,可有效提高停车场的智能化管理水平。

3 结束语

霍华德在《明日的田园城市》一书中提到“一座城市就像一棵花、一株草或一个动物,它应该在成长的每一个阶段保持统一、和谐、完整”。改善静态交通,以动制静―以静制动,动静相协调,实现动静平衡,关键落脚到应用科学技术手段,加快推进静态交通智能化、信息化发展,提高城市交通效率,并实现绿色节能环保,创造宜居的城市环境。

参考文献:

[1] 吴润元.上海静态交通信息化建设的实践[J].综合运输,2005(9):

[2] 籍学武,邱志鹏.我国城市发展中的静态交通问题[J].合作经济与科技,2008(2):34- 35.

篇3

关键词: 波形合成; 智能交通系统; 直接数字频率合成器; 测量雷达

中图分类号: TN959?34 文献标识码: A 文章编号: 1004?373X(2013)13?0147?03

Waveform design and realization of instrumentation radar

for intelligent traffic information

L? Bo1, ZHOU Chang?you2, ZHANG Hong?wei1

(1. Ordnance Engineering College, Shijiazhuang 050003, China; 2. Unit 75124 of PLA, Fusui 532199, China )

Abstract: In order to meet the needs of intelligent traffic development, a new waveform of multifunctional traffic information instrumentation radar was designed. The functional requirements of the instrumentation radar are introduced in brief. With an eye to these functional requirements, the needed radar waveform was educed from a theory analysis. Based on the advanced DDS, PLL, microwave frequency multiplication and filtering technique, the waveform generating method of this radar is elaborated in detail. The principle diagrams of its software and hardware are offered. The tested results is given. The accuracy of this method was verified.

Keywords: waveform synthesis; ITS; DDS; instrumentation radar

0 引 言

交通信息检测是智能交通系统中的重要环节,其主要任务是获取道路上车辆的状况,这些信息主要包括车流量、平均车速、车道占有率、车型等。交通信息的实时准确获取是整个智能交通系统的基础,现有的交通信息探测技术手段主要有环形线圈检测、红外线检测、视频检测、超声波检测、微波检测等。其中,环形线圈检测精度高、使用范围广,但是安装维修时需封闭部分路段并对道路进行破坏,时间和经济成本较高;红外和视频检测器受气候因素影响很大,晚上、大灰尘和阴雨雾天气时检测精度低;超声检测必须顶置安装,安装条件受到一定限制[1]。基于雷达的检测技术不受上述缺点限制,具有安装维护方便、检测精度高、抗干扰能力强、受环境影响小、全天候、体积小等诸多优点,发展前景广阔,具有重要研究价值[2]。

波形设计是一部交通信息测量设备的核心问题,它是系统功能实现的关键。本文分析了基于雷达的交通信息测量设备的波形设计,并详细介绍了用于某型交通信息测量雷达的微波源设计方法。

1 测量雷达功能要求及雷达波形分析

1.1 测量雷达功能

测量雷达侧向架空安装于路边的灯杆或电线杆上,波束指向垂直于车道,灯杆或电线杆到第一车道的水平距离[l0]在2 m左右,架设高度[h]约8 m,具体安装态势如图1所示。

测量雷达主要完成以下任务:实时测量每部车的速度,实现不同时间段内平均通行速度的统计;测量车辆通过雷达波束时所处的车道及行驶方向,实现双向八车道的通行量统计;测量车辆长度,实现双向八车道的车型通行信息统计。

1.2 功能实现分析及波形分析

车辆速度测量常用的方法是多普勒测速,雷达发射连续波信号,比较发射信号与接收信号之间的频率差测出车辆的速度。本设备由于侧向垂直路面安装,车辆通过雷达检测剖面时没有相对雷达的径向速度,多普勒频率为零,因此多普勒测速方法并不适用本系统。为了测出每辆车的速度,该设备采用双天线、双波束的方式来测速,通过记录车辆通过两个天线波束的时间差进而得出其速度。

图1 交通信息测量雷达安装示意图

车道交通流量的统计问题,实际是不同车道的触发累计问题。根据工作环境的不同,对每一个车道设置一定的检测门限,当有车辆通过时,该车道的信号电平会超过设置的门限,触发累加器做加1操作,实现统计值的更新。该指标实现的关键是车辆所处车道的准确判定,而车辆所处车道的准确判定关键又在于车辆到雷达距离的准确测量。为了准确判断车辆的车道,雷达需发射线性调频连续波信号,当有车辆通过时产生较大幅度的回波信号。由于不同车道车辆的回波到测量雷达的延迟时间不同,便会产生不同的频率差。雷达通过时域的幅度检测来触发测量,再通过频域频率差的测量,便可以准确判定出那个车道有车通过,并对相应车道的统计值加1。

车型的区分利用不同车通过波束的时间长短来进行判断。不同车型由于自身结构、长度各异,因此它们通过雷达波束的时间长短各不相同,且回波波形包络各有特点。测量雷达提前采集不同车型的波形并建立数据库,当测量到一辆车的回波信号时,与数据库进行比对,便可确定出车型信息。

根据以上分析,交通信息测量雷达系统组成框图如图2所示,其发射信号波形宜采用线性调频连续波(LFCW)信号。

2 测量雷达波形产生与实现

测量雷达工作于Ku波段,信号形式为线性调频锯齿连续波,调频带宽为120 MHz,波形时频特性如图3所示。

为了生成Ku波段的调频信号,雷达采取混频加倍频的方式。首先利用DDS生成较低频率、小带宽线性调频信号,然后混频至中频,再利用16倍频产生Ku波段、大调频带宽的辐射信号。波形产生单元的组成框图如图4所示。

图2 系统组成原理框图

图3 系统组成原理框图

图4 波形产生单元组成框图

2.1 DDS芯片选择

本系统选用的DDS芯片为AD9954 ,它是AD公司生产的性能最好的芯片之一。与普通的DDS芯片相比,AD9954为了实现线性调频和高度集成,除了具有一般DDS芯片所必要的相位累加器、正弦查找表外,输出端还增加了D/A转换器[3]。

AD9954内含1 024×32静态RAM,利用该RAM可实现高速调制,并支持几种扫频模式。AD9954可提供自定义的线性扫频操作模式,通过AD9954的串行I/O口输入控制字可实现快速变频,且具有良好的频率分辨率[4]。

AD9954的应用范围包括频率合成器、可编程时钟发生器、雷达和扫描系统的FM调制源以及测试和测量装置等。

2.2 单片机与DDS的接口设计

AD9954有单频模式、RAM控制模式和线性扫频三种工作模式,因为测量雷达需要产生FMCW信号,所以需置高CFR1寄存器的第21位,选择DDS工作于线性扫频模式。

AD9954有2线串口编程方式和3线串口编程方式。串口操作时,前8位为指令位,用于确定是读操作还是写操作,以及操作的是哪个寄存器。串口编程时序图如图5所示。

图5 DDS串口编程时序

SCLK为串行时钟,用于数据同步。SCLK上升沿时才能向寄存器写入数据,下降沿可用于读出数据。AD9954最高支持25 MHz的时钟频率。[CS]为片选信号,只有当其为低电平时才允许进行串口通信;当[CS]为高电平时,SDO和SDIO将变为高阻状态。SDIO为串行数据输入输出口,所有写入DDS的数据必须经由此端口,而且利用寄存器CFR1的第9位,还也可将其配置为双向数据口。

2.3 单片机程序设计

信号源程序流程图如图6所示。

图6 程序流程图

单片机加电后,首先进行单片机的初始化设置,然后进入到DDS的配置程序,具体步骤如下:

(1)利用Reset端口将AD9954复位一次。因为DDS要工作在线性扫频模式,将无用的PS1、OSK、IOSYNC等置为低电平;

(2)置低IO update和PS0端口;

(3)配置CFR1寄存器。设置CFR1为高电平,使DDS工作于线性扫频模式;设置CFR1为高电平,使DDS扫频至最高频率后不停留,直接跳回起始频率;

(4)配置CFR2寄存器。设置参考倍频系数为20,实际DDS所用外部晶振为20 MHz,则系统时钟频率将达到最高值200 MHz;

(5)配置FTW0寄存器,设置线性扫频的起始频率;

(6)配置FTW1寄存器,设置线性扫频的终止频率;

(7)配置RLSCW寄存器,设置线性调频斜率;

(8)I/O update端口电平翻转一次,更新各个寄存器中的数据;

(9)定时,每隔0.24 ms PS0端口电平翻转一次。

第(9)步每执行一次,DDS便可输出线性调频信号的一个“调频锯齿”,不断循环执行,便产生了所需的线性调频连续波信号。

2.4 其他部分设计与实现

混频所需的本振由AD公司生产的集成PLL芯片AD4360?6产生,它内部集成有分频器、鉴相器、VCO等,只需外部配置参考晶振和无源环路滤波器便可构成完整的PLL系统,使用非常方便。通过单片机对它的寄存器进行配置,产生600 MHz的混频本振。

600 MHz本振与DDS产生的LFCW信号混频,得到中频LFCW信号。由于混频器输出中包含很多的高次分量,为了得到纯净的输出频谱,增加一个窄带滤波器,滤除高次混频分量。中频滤波器选用介质滤波器较为合适,它的体积小、成本低,矩形系数高、损耗低,频率温度系数小[5],非常适合用于本系统。

16倍频器选用集成有源倍频器,它除了产生需要的16次谐波外,也会产生大量其他次的倍频谐波。为此,倍频器后面采用一个微波腔体滤波器完成滤波任务。经过上述处理后便得到了测量系统所需的微波信号。

3 测试结果

为了验证设计的正确性,分别使用频谱分析仪MS2668C和计数器CNT?90对输出信号进行了测量,结果如图7所示。测量结果表明,该信号源中心频率为12.06 GHz、调频带宽为120 MHz、调频周期为0.24 ms,各项指标均与设计相符,满足雷达测量设备的需求。

图7 信号源测试结果

4 结 论

该波形产生信号源已经设计完毕,可输出锯齿波调频的连续波信号,并成功应用某型交通信息测量雷达。该测量雷达可同时测量车辆的速度、所处的车道、行驶的方向、车辆的长度等多个指标,满足了省道、国道、高速公路交通信息采集的准确性要求,且安装方便,工作不受天气因素影响,取得了非常好的测量结果,为公路交通的智能化管理提供了有力的手段。

参考文献

[1] 蒋铁珍.数字雷达技术在车流量检测雷达中的应用[D].上海:中国科学院上海微系统与信息技术研究所,2006.

[2] 奈存亮,张浩,余稳,等.微波交通信息检测雷达信号处理系统设计[J].微计算机应用,2009,30(11):60?64.

[3] 李申阳,苏广川.基于DDS技术的高性能雷达信号源的设计[J].军民两用技术与产品,2006(9):41?43.

[4] 许加枫,刘抒珍,刘小红.高性能DDS芯片AD9954及其应用[J].国外电子元器件,2004(11):23?26.

篇4

突破困境

交通量的持续增长是造成堵车的最根本原因。传统的解决方法主要有两个:一是加大交通基础设施建设的投入,但资金、土地等稀缺资源的有限性又是不可回避的问题,道路基础设施不可能无限制地扩展;二是对交通流量进行限制,主要通过法制和行政手段来实现。例如控制车辆出行,鼓励和发展公共交通,控制汽车保有量,以高额的税、费甚至控制上牌等,来限制汽车数量的增长。但是这些方法短期可以奏效,从长远的角度来看,是治标不治本。那么如何更有效地使用现有的道路,就成为更好地解决上述问题的重要途径。人们希望将高科技运用于交通管理系统,从而提高现有道路的利用率,提高道路交通的安全程度和道路使用的舒适性,于是智能化交通系统便应运而生。

所谓智能化交通系统,就是将信息处理、通讯、自动控制、电子技术等最新的科研成果,应用于交通运输网络中。它与传统的交通管理的一个最显著的区别是,将服务对象的重点由以往的管理者转向道路的使用者,即用先进的科技手段向道路用户提供必要的信息和便捷的服务,以减少交通堵塞,从而达到提高道路通过能力的目标。同时,它将道路管理者、用户、交通工具及设施有机地结合起来,并纳入系统之中,从而大大提高了交通运输网络的运行效率。

绿波交通:让车辆通行一路绿灯

智能交通系统的功能包括:信息提供、安全服务、计收使用费和顺畅通行等。系统向道路管理者和用户提供的信息有:路况、交通事故情况、交通管制、停车泊位等;安全服务包括危险警告、人车事故预防、行车辅助等,目的是通过不同方式来帮助减少交通事故;费用收取是以电子方式自动向用户收取道路使用费和车辆停放费等。

专家们发现,如果用先进的电子设备来控制交通,可以最大限度地利用好城市的每一寸道路和交叉道口的空间,既提高了道路利用率,又保证了交通安全。从这个要求出发,专家们提出了“绿波交通”概念。

绿波交通是指信号灯智能化设计和控制,以求车辆一路连过多个路口都是绿灯,畅行无阻。这种信号灯的“绿波”优化控制看似简单,实际是一个高深的理论问题。每一个交叉路口的信号优化控制都需要针对左传、右转、直行这3个运动量乘以4,即12个运动量的优化过程,连续5个交叉路口就会有60个运动量,对这60个交通流运动量的优化控制,是一个基于统计学、模糊数学、最优控制等理论的复杂数学计算问题。目前,绿波交通控制系统在国外已投入应用。

将来,一种实时交通信息系统的“远程信息处理器”在车载系统中投入使用后,司机只要向车载电脑输入出行的目的地,电脑通过信患处里,就能及时地向司机提供最佳的出行路线,让司机躲开拥堵地段。行车途中,你可以通过自动控制系统而不是加速器换档来控制车速,同时;不可以预订停车位。

磁卡与电子收费系统

如何减少中心城区车流量,解决交通拥堵问题,收“买路钱”是一个好办法。1998年,新加坡采用电子道路收费系统来代替人工收费。这种方式是先让车主在银行购买磁卡,当司机驾驶车辆进入中心城区时,将磁卡插入车辆的读卡器中,路边的电子收费系统就会自动读取相应的信息,从卡上扣除一定的费用。

这种卡与普通IC卡的区别在于它超强的信息传递功能。普通IC卡必须经过刷卡机才能进行识别,但这种磁卡加上了类似于现在“蓝牙”一样的装置,有效识别距离可达数十米远。这种“非接触式”卡极大地方便了使用者和管理者。

电子收费系统由四部分组成:一是在道路入口处装设能对路过车辆进行扫描的高架装置;二是可识别多种智能卡的车载读卡器;三是一个计算机通讯子系统;四是中央控制中心,它把获得的每辆车的信息进行汇总和记录。这种系统的工作原理是:载有特定装置的车辆进入收费区后,收费区的信号探测器发出扫描信号,检测并获取该车的有关信息,然后根据不同方式计费。

有了这样的磁卡和金自动电子收费系统,缴费工作仅在几秒钟内完成,车辆甚至无需减速通过便能实现。目前这种系统的功能日益多样和先进,如信号探测系统能获得并记录车辆的尺寸、重量、车型等数据,还能将那些违规或不符合要求的车辆用摄像机记录车牌号,从而大大减少或避免因收费、车检而带来的交通堵塞。

自动汽车与自动化公路

目前,随着GPS卫星导航系统的广泛应用,开发一种无人驾驶的智能化自动汽车的工作提到了汽车制造厂家的议事日程上来。

日本最新推出的概念车HSR-VI,该车可以手动驾驶,也可以完全自动驾驶。在自动驾驶时,车载电脑搜集激光雷达、立体图像传感器、多用途通讯系统和交通管理方面发出的各种信息,以操纵汽车行驶,能够自动转向、刹车和换档。这种装置还可以将外部情况及时提供给司机,以避免发生交通意外。

开发这种自动汽车的关键技术有两点:一是要研制能正确选择车道、感应障碍物、自动避免冲撞的技术。如德、法等国研制的“自动智能巡航控制系统”就是这样一种装置,它可以用来选择最佳行车路线,防止与前面的车辆靠得太近,还能自动控制本车相对于其他车辆的速度。车上的红外激光不断地扫描前面的道路,寻找障碍物,同时把所获得的数据在挡风玻璃上显示出来;遇有危险情况时,会自动降低车速,或紧急刹车,处理时间仅为300毫秒。

二是必须铺设专用车道。这种道路的核心是各种信息设备和传输技术,它通常由监测器、数据搜集器、中心电脑、电子显示牌和闪光灯等组成。监测器设置在道路两旁或上方,汽车驶过时它会把车流信息输入路旁的数据搜集器,而后传至中心电脑,由中心电脑自动调节红绿灯时间,使车辆的停留时间减至最小。同时,路旁的电子显示牌会显示交通堵塞的程度、范围及其他交通情况。

篇5

关键词:智能化技术 公共交通 管理 应用

2012年国务院下发《国务院关于城市优先发展公共交通的指导意见》,再次强调了我国城镇化加速发展,优先发展城市交通的重要性。城市公共交通具有集约高效、节能环保等优点,优先发展公共交通是缓解交通拥堵、转变城市交通发展方式、提升人民群众生活品质、提高政府基本公共服务水平的必然要求,是构建资源节约型、环境友好型社会的战略选择。

“智能交通发展”是城市优先发展公共交通的重要举措。按照智能化、综合化和人性化的要求,推进信息技术在城市公共交通运营管理、服务监管和行业管理等方面的应用。重点建设公众出行信息服务系统、车辆运营调度管理系统、安全监控系统和应急处置系统。同时要加强城市公共交通与其他交通方式、城市道路交通管理系统的信息共享和资源整合,提高服务效率。如何让智能化技术在公共交通运营管理发挥作用,成为了课题。

1 国内外公共交通信息化发展的现状

对于国外利用智能技术发展城市公交的研究,我们选取了城市规模类似,同样经历了城市高速发展的香港和首尔为参考。

1.1 香港城市交通智能化建设促进了公共交通的发展。现在香港89%的市民出行依靠公共交通。城市地铁是香港公交的骨干,专营巴士是香港公交的主体,非专营巴士等提供辅助服务,有轨电车是游客浏览香港岛市容的上佳选择。全世界的公交运营都面临亏损,但香港公交系统不仅为市民提供了畅通便捷的服务,而且实现了盈利,特区政府及公交体系充分利用高科技手段,推行电子化、智能化,提供公交资讯服务和自动缴费服务。“八达通”自动收费系统的建立大大提高了香港公交机构的服务效率,减少了成本,也方便管理。乘客上下车的速度快了,客流周转加快,减少了拥堵。随着“八达通”的广泛使用,用硬币付费者大大减少,公交搬运和计算硬币的人力也可节省不少。“八达通”卡还有收集信息的功用。公交机构通过“八达通”卡可以精确地统计出每条线路不同时间的客流量,有助于公司分析和预测趋势,及时调整路线和行车时间表。

1.2 首尔50年城市发展人口增长4倍,私家车作为一种出行方式迅速赢得了许多人的青睐,使首尔交通越来越拥挤。首尔政府发动了公交改革,重组公交线路,建成由快线、干线、支线以及区间线组成的公交网络,集成使用多种电子自动收费系统和集成交通运营信息管理系统。通过智能化技术平衡公共交通供给量和需求量之间的矛盾,提高了公交的运营效率,增加了乘客人数,减少了公交运营企业的亏损,减少了政府的补贴,改善了公交运输的交通条件,产生了一个更好的决策制定过程。

1.3 深圳市为国家公交都市试点示范工程的试点城市,连接了香港和珠三角城市群,深圳市实有人口约1500万,公交分担率已达到53%,处于国内领先水平,深圳市已经初步建成了以轨道交通为骨干、常规公交为主体、出租车为补充的一体化公交体系。深圳将着力实施公交提速、多元网络、枢纽支撑、智能公交、慢行交通、服务整合、低碳交通、示范引领、需求管理等九大工程。深圳市综合交通运行指挥中心是以深圳智能交通重点建设项目,包括了“智能公交、智能设施、智能物流和智能政务”四大应用平台,实现了“数据管理、运行监测、决策支持、信息、应急协同”五大功能,打造了智能交通案件的信息处置、车辆监管、场站和道路视频联网监控、道路交通实时监测和交通指数、综合交通信息和基础数据挖掘利用。

2 公交智能化建设的主要任务

公交智能化建设的主要任务是“提升管理水平,提供信息服务,提高行业竞争力”,包括以下几个方面:

①通过智能公交系统准确掌握市民出行需求,以多样方式向百姓提供实时准确的公交信息。②通过智能公交系统掌握区域的OD流向,科学规划线网,分析调整和优化线路车班。③通过智能公交系统安排科学调度,充分调动线路车辆和人力资源,提高公交运力投入。④通过智能公交系统实时掌握场站运转情况,管理好车辆机务计划实施,处理车辆故障的救援和应急,做好机修和仓库管理等后勤保障工作。⑤通过智能公交与智能交通等外部系统的协同互联,利用城市交通设施和信息数据,为市民出行提供出行帮助,提高社会综合效益。

3 目前公交管理存在的问题

公交主要产品是提供优质的公交服务,属于基础性便民服务,具有公共的特性和难点问题。

3.1 公交主要业务是组织好资源,以较快的速度,适宜的成本向公众提供适当的公交服务。要提供相关服务,就必须准确掌握社会公众的出行需求,了解整体性的出行需求和对公交服务的质量要求。通过公众详细了解全面的出行需求较困难,一方面,并不是出行人的所有出行需求都是有规律性的,出行者个人很难表达完整的出行需求。二是公交服务是个普遍,线路和车辆是共用资源,即使出行人个人参与服务需求的表达,不一定就能够得到公交服务;三是表达需求的渠道效率不多,公众提出公交意见,多为投诉和表达不满情绪,可作为整体性需求参考的价值不大。公交公司了解社会公众出行需求的另外一条办法是要掌握市民工作、学习、消费的分布及总体人群数量和出行方式,宏观掌握出行的总体需求并按需求量分配供给能力。但由于这方面的信息化程度不高,数据的共享性弱,一直未能有可靠的OD出行需求数据。

3.2 由于无法得到详细准确的出行需求,线路调整优化周期长,优化的绩效评估较难,通过线网的优化来提高公交出行服务效率的效果不明显,公交出行分担率往往不能与车辆和驾驶员投入成正比关系,企业不得不投入更多的公交车辆和配套的场站资源。公交车辆的增加即使高于已经是快速增长的社会车辆快速增长速率情况下,也无益于直接解决道路日益拥堵所造成的行进速率越来越慢的问题。目前公交公司的线网规划和线路优化多半是被动型的,主要依据公共交通院校专家和规划设计研究院人员的外部智力,对线网规划;规划的质量和实际运行效果难以直接定量评价;线路优化也主要出于大型市政建设和大型活动进行临时性被动的调整。公交公司和行业主管部门期望利用公交载客通行能力远大于社会车辆的特点,通过智能公交系统中的辅助支持系统,帮助规划设计人员根据历史数据、策略模型模拟不同的线网方案,选择较优的方案试运行,并能够对线网实际运维效果进行评价,并做出相应的优化方案以持续改进线网质量。

3.3 公交出行“潮汐”现象是公交运营特点,该时间段的公交出行效率低,公交准点率低,延误多,给乘客和公交企业带来压力。公交多投入资源就容易造成车辆和人员浪费,影响正常的班次执行和驾驶员的正常休息,不安排临时加班车就无法应对需求波动;出行人员如果早上班或者晚下班就影响正常作息和时间和经济损失。通过公交智能化建设缓解公交出行早晚高峰波动导致的波动,吸引更多百姓依靠公交环保出行。

3.4 公交企业特点驾驶员多,管理人员少,应对日常复杂的行车管理与监控已消耗大量人力和普通管理人员精力,靠手工方式来进行精细化管理和考核非常困难。在外部因素方面,公交场站、车辆和司机自然增加,而各岗位的管理人员不会同比增加,而且人员分布会越来越分散,管理的压力自然加大;二是面对城市交通环境越来越来越差,所需要投入运营监控和紧急事件应对的时间和精力也就越多。在内部因素方面,精细化管理和考核需要内部管理和考核制度,需要有历史统计数据支持,管理与考核制度本身也有一个持续完善的过程,不能一蹴而就,需要建立考核指标体系,需要有行业对标和内部合适KPI指数。

3.5 如何提高人员、车辆、油料、维修物资等公交资源利用率,如何提高公交车辆周转率和运营管理的效率、降低调度和监控人员的劳动强度,让管理人员有更多时间投入到业务研究,从日常繁杂的一般性事务工作解脱出来,提高管理有效性和效果。信息化系统能够快速实时采集信息,及时在不同业务流程环节中处理和传输大量信息数据,信息化系统有利于固化常规的业务流程,这也是智能公交对于公交企业形成较好的内部收益的关键点。

4 智能化在公共交通中应用需求建设

4.1 面向出行人的公交出行信息服务系统。公交出行信息服务的用户既包括公交出行人,也包括虽然本次未采用公交出行但获取公交出行信息进行决策的其他出行人员。公交出行信息服务的时间和场所不限。涉及公交出行基本信息、公交出行动态信息、综合交通信息和面向特定人群的个性化公交信息。

4.2 面向规划人员的客流信息采集与统计系统。客流统计和分析系统是监控客流时间状态,掌握客流分布和OD需求,预测客流变化趋势,进而做好线网优化的基础系统。

4.3 面向设计人员的线网管理与规划系统。公交线网规划辅助支持系统,面向线路设计人员提供线路规划支持和线网优化调整辅助支持服务,需要运用系统工程、计算机模拟、GIS等方法与工具,采用对比分析和多种规划模型等理论研究方法与手段,在区域功能布局和现有路网和公交线网等基本信息的基础上,结合OD需求,产生并优化公交线网调整方案。

4.4 面向调度人员的智能调度管理系统。智能调度管理系统的出现解决了传统单纯依靠人工的低效率调度模式,实现通过系统自动收发的调度信息。

4.5 公交信号灯优先控制系统。公交优先是解决城市拥堵的一项实施策略,公交优先策略包括公交优先发展和公交优先通行两个层面,公共交通优先通行就存在道路优先和信号灯优先两个方面。

4.6 面向监控的公交运营监控系统。公交运营监控包括多方面,包括车辆监控、场站监控、收费监控、运营监控等。

4.7 面向高级管理层的运营分析和决策支持系统。公交运营分析与决策支持系统主要涉级两个方面,微观指标的数据监测,包括线路客流量统计、日常运营收入和成本统计、运营质量统计。宏观指标的数据监控,包括基础设施总体指标和运营服务总体指标。

4.8 面向场站支持人员的机务后勤管理系统。机务后勤管理系统、燃润料管理系统、仓储管理系统等。

4.9 面向全员的安全管理系统。面向全员的安全管理系统,是在完善的安全管理组织下,对重要场站、车辆、人员及消防设施的安全管理。

5 小结

公交智能化的建设投资所带来的总效益远大于建设投资成本,社会综合效益远远高于公交企业的收益,印证了国家反复强调优先发展公共交通,推广信息化系统促进智能城市运营的政策的科学性,符合社会民众利益,是项利国利民的信息化建设内容。

参考文献:

[1]姚楠,王晓武.电网污区图中智能化技术应用[J].电力自动化设备,2007.

[2]周涛.电弧防护及其智能化技术应用[J].低压电器,2012.07.003.

[3]王超.现代住宅小区智能化技术应用的研究[D].长安大学,2009.

[4]李培.“绿色建筑”智能化技术应用创新的发展方向——由天津市行政许可中心论智能化工程创新[A].//第四届国家信息化发展论坛论文集[C].2007:283-289.

[5]张永祥.电气工程自动化中智能化技术应用探析[J].科技致富向导,2013(18):106.

篇6

关键词:交通管理;智能化仪表

1引言

路试检验行车制动性能与制动距离、充分发出的平均减速度(MFDD)、制动协调时间(t)与制动稳定性有关。传统的路试检验行车制动性能的仪器是五轮仪,尽管其测量精度较高,但是使用起来较为繁琐,不够便捷,测试的工作量也较大,在实际工作中并不适用。这就需要一种便携式能够直接测定制定动协调时间和充分发出的平均减速度的仪器,也就是笔者将在下文中介绍的MBK-01型便携式制动性能测试仪。

2工作原理和技术方案

2.1测量传感器

该测试仪的主要探测元件是加速度传感器,利用对车辆的加速度、减速度的测量,从而达到对车辆制动性能所需的各项参数检验的目的。该测试仪选用的传感器属于目前世界顶尖水平的硅微电容式固态加速度传感器,其主要材料由硅组成,并使用微光刻和蒸汽沉积技术制作而成,其温度飘逸不大,适合用于车辆制动检测。传感器的工作原理在于通过电容和位移的关系,让惯性元件与两个固定电极组成可变电容器,惯性元件会在车辆经过振动时通过电容测量电路转化成加速度量输出,得到测量结果。

2.2智能化信号处理单元

智能化信号处理单元是测试仪整个仪表的关键所在。制动性能测试仪在工作时,是对车辆在行驶过程中的动态测量,由于测试仪的性能限制以及汽车加速度较快,使得整个过程的极快,要想使测量结果更加精确,就需要仪表对汽车行驶的响应时间够快,同时需要具备较大的数据存储量。所以,当加速度传感器的信号传输到AD转换器后就被送入到微处理端实施数据处理,接着再进行数据存储工作,最后按照交通管理中心按照实际需求把所得数据利用RS232串行通讯输送到计算机终端。在制动测试模式下,微处理机在接收到汽车刹车踏板的信号后,就马上把AD转换器所取得的减速度数据存储到仪表内部,接着通过微处理机处理数据,得到测试汽车制动性能所需的各项参数。在加速测试模式下,微机会把收集到的加速数据存储到仪表中,然后当车辆行驶速度加速到预定的数值后,就通过仪表内的微机处理数据,得到平均加速度、加速过程所花费的时间。

3交通管理领域智能化仪表的应用前景和性能指标

3.1性能指标

笔者在这里将MBK-01便携式制动性能测试仪和目前国内外常用的先进设备VC2000PC刹车测试仪性能指标做一个对比

3.2应用前景

从目前国内交通管理的实际情况来看,传统使用的五轮仪由于安装繁琐、费时,和目前的交通管理工作不相适应;而MBK-01便携式制动性能测试仪由于特点突出,优势显著,适用于对机动车制动性能的检测,能够在全国的车检所、汽车修理厂乃至于交通事故勘察单位中都推广使用,从而及时地检测出制动性能存在问题的汽车。

4交通管理中使用智能化仪表的必要性

传统的路试检验仪器尽管有着测量精度高的优势,不过从安装到操作到计算都不够简捷,对于每天都需要检测大量机动车的车检所、技术监督部门以及机动车修理厂等各个单位而言明显不实用。新形势下,智能化设备在各领域都开始推广使用,智能化设备的使用能够减少人工操作的失误,加强工作效率和精准度,是我国各种电子产品和机械设备未来发展的主要方向。现阶段中,该测试仪已经通过专家鉴定,开始大规模生产,用来取代传统的测试仪表。笔者相信,这种组装方便、操作智能、测量精准的仪器很快就能在国内机动车检验工作中推广使用。

参考文献

[1]自诊断技术在智能化仪表中的应用[J].刘国光.自动化与仪器仪表.2000(06).

篇7

自上个世纪80年代以来,以计算机、控制和通信技术在交通领域的应用为重点的智能交通系统技术,一直是世界各国用来解决交通拥堵问题、改善交通环境的最重要技术手段。上世纪90年代美国系统地提出第一个智能交通体系,在此之后,日本、欧盟、韩国等国家和地区,以及国内一些大、中城市都相继开展了关于智能交通系统的相应规划、研究及应用[1]。智能交通系统的实际应用效果使得各国政府、投资主体以及用户逐步地认识到智能交通系统技术在解决城市交通拥堵问题中所起到的巨大作用。

本文提出的智能交通一体化运维系统是智能交通系统的重要组成部分,主要为智能交通系统的稳定、安全、高效、快速应用提供强有力的支持。

1 智能交通一体化运维系统概述

1.1 智能交通一体化运维系统所面临的问题

随着智能交通系统建设的深入,城市交通管理对智能交通系统的依赖也越来越强,如何确保所建设的智能交通系统稳定、安全、高效地运行,如何实现对所有智能交通系统和设备的智能实时监控,如何在故障发生的第一时间启动最优运维流程,调用最有力的资源快速解决问题,恢复系统运行等等问题是摆在每一个智能交通系统运作管理者面前的重要问题[2]。

例如某市交警支队智能交通系统涉及9大系统,设备类型有400多种,数量有几万台之多。目前由5家以上单位负责运维服务,但由于各个单位缺乏对系统、设备维护管理上的整体考虑且自成一套实施流程,导致设备流程单据格式和内容都存在很大的差异,很难实现总体的统计、评定和服务质量的评估,久而久之运维服务质量无法提升,无法满足智能交通系统建设和应用的发展需要,运维成效较不理想。

1.2 智能交通一体化运维系统需求分析

智能交通系统存在着设备种类多、覆盖范围广、部署分散、系统功能复杂、运维方式不统一等多方面的特性。主要功能需求包括:智能交通设备设施资产的生命周期管理、设备状态和视频质量等的智能监控、流程管理、财务结算管理、知识管理、服务水平管理等。

2 智能交通一体化运维系统的体系结构

2.1 设计思路与架构

根据运维管理实际需求,智能交通一体化运维管理系统的结构整合了ITIL理念,分为运维门户层、运维管理层、监控管理层、数据统一汇聚管理等四个层次,层次之间进行整合并通过安全、高效的内部接口保障各层之间数据的共享和互通。在功能上无缝集成RFID、PGIS、智能监控与分析等相关技术,并在统一的平台上实现业务数据监控、设备监控、视频质量诊断、流程管理、资产管理等功能。给用户方决策管理层和系统运维管理人员、第三方运维外包服务公司、工程运维人员等提供一个智能化、操作风格统一、交互界面友好的运行维护系统。

2.2 系统功能设计

2.2.1 运维门户层

运维门户层作为面向操作员和管理层的最终界面,提供一站式、个性化的登录管理门户和报表展示窗口,拥有单点登录、多种服务视图、基于角色的权限控制、个性化定制、信息、个人待办事项、部门公告、通知提醒、信息统一展现和报表管理等功能,旨在帮助各个层面的使用者更好地获得当前设备的实时状态、业务运行情况以及各流程处理进度等信息。

2.2.2 运维管理层

运维服务管理层的设计从服务管理的角度出发,结合ITIL v3,ISO20000等国际标准。在层次上采用了包括数据层、控制层、服务层和展现层四层架构模式[3],功能上包括运维管理基础平台、配置及资产管理、维修维护管理、问题管理、变更管理、配置管理、服务水平管理、资产全生命周期管理、知识库管理等功能,同时结合核心管理数据库的概念[4],不仅为运维管理平台提供统一、可信的数据支持和监督管理,其开放接口更可为其他用户现有的业务系统提供配置管理数据支撑。

2.2.3 监控管理层

监控管理层主要将基础架构部件和外场设备中收集到的性能数据和各种告警事件,经过初步的过滤后,发送到运维管理平台进行处理。并通过预先设定相关的阀值,建立起一整套的性能、故障、容量等预警和报警机制。在结构上分为数据采集层、监控数据汇聚处理层、统一展现层三层,涵盖了数据抓取、数据分析、数据整合、主机监控、网络监控、存储监控、虚拟主机监控、电子大屏监控、其他设备监控等功能。

2.2.4 数据统一汇聚管理

数据统一汇聚管理主要提供核心管理数据库数据的输出与汇总管理,并可在此数据标准上输出PGIS地图、大排查系统、RFID标签、智能卡口、SCATS、诱导系统等各种应用。

3 系统的实践

智能交通一体化运维管理系统已在某市交通管理部门得到实际应用。表1是该交警支队智能交通部分系统在运维管理系统上线前后运维质量的提升情况(数据是将2011年12月和2012年12月进行比较后所得)。

4 结束语

智能交通运维管理系统的建设已成为智能交通系统的重要组成部分,本文以某市交警支队智能交通一体化运维管理系统设计与实践为基础,提出了一套全新的设计与实现方法。此方法已在某市交警支队智能交通系统的运维管理工作中取得了较丰硕的成果。实践证明,该方法能够有效解决交通信息设施覆盖面广、设备多、系统复杂、运维外包服务单位多等问题,充分考虑作为运维人员的工具和助手,能有效减轻运维人员的日常工作压力,并且具有良好的可扩展性和良好的推广应用前景。

参考文献:

[1] 杨建,崔合芳,蔡国良.面向出行者的综合信息服务系统设计[J].青岛理工大学学报,2010.31(2).

[2] 李家然.浅谈公众出行交通信息服务系统[J].中国交通信息产业,2008.11.

篇8

关键词:智能交通;智慧城市;现状;规划设计

中图分类号:S611文献标识码: A

引言

经济飞速发展,汽车保的数量越来越多,然而城市交通枢纽受建设周期长等因素,造成的交通压力逐渐增加,交通拥堵及事故频频发生,许多城市平均行车速度已经下降到20km/h以下,甚至更低。与此同时,由于车辆行驶缓慢,汽车尾气排放量大大增加,使得空气质量大大下降,同时也使气温增加。为了缓解经济发展给交通运输带来的巨大压力,使有限的交通资源发挥最大的作用,我国加大了对城市智能交通的研究建设,智能交通系统建设取得了显著成就。

1 城市智能交通体系发展现状的介绍

目前,我国在智能交通的研究当中ITS领域的起步相对很晚,但随着经济全球化,全球范围之内的智能交通体系的研究也逐渐受到学者专家的重视,加强了对其的研究力度,我国在20世纪90年代也开始加快了对智能交通的研发力度。1999年11月国家科技部批准成立了国家智能交通系统工程研究中心。同时交通部也在“九五”期间提出了“结合我国实际情况,分段地开展交通控制系统、驾驶员细心系统等5个领域的研发,和工程化与系统集成的研究。在研究的基础上将已经成熟的科技成果应用于实际的交通发展当中,工程研究中心也在逐渐成为我国智能交通系统产业化的基地。

同时我国也加大了国际合作,国家科技委员会于1998年11月在北京举办了我国首届ITS应用研讨会,国家计委也将ITS列为100个重点科研的的领域。2000年3月国家科技部组织成立了全国交通领域和专家组成的专家组,起草了构建我国智能交通体系的基本框架,现今,我国在智能交通领域也取得了包括导航技术和先进的交通管理系统等成果,并拥有自主的知识产权。

2 我国智能交通发展面临的问题

经过了多年的研究发展,目前我国交通建设在智能化领域已经取得了重大的进步,然而由于受到时间短、技术基础力量薄弱等条件的影响,我国智能交通建设仍然处于起步的阶段,我国智能交通的发展面临着诸多问题。

2.1 我国智能交通的建立缺乏统一性,各个省、市和地区都各自为战,缺少相互之间的协调与配合。

2.2 是固有的发展模式,科研与生产脱离。使得一些先进的技术不能第一时间推广应用,在一定程度上导致了资源的浪费重叠。

2.3 是我国智能交通的建设仍处于不被广泛重视的境地,不被传统的交通业所接纳,许多的城市没有将智能交通体系的建立作为城市交通发展的目录之中,而且各省市之间的发展内容不一致,这些都导致了智能交通技术不能够及时推广应用,制约了发展速度。

2.4 是我国目前智能交通领域的人才资源短缺,智能交通体系的构建需要技术为支撑,智能交通将传统的交通与现代的信息技术相结合,对于交通行业的人才要求增加,而我国目前对于这种人才的短缺,严重的制约了智能交通体系的发展。

3 对我国城市智能交通建设的构建规划与设计

现阶段,我国城市智能交通体系的建设仍处于探索阶段,建议政府更应加强对城市智能交通系统的技术研发与建设,与国际社会同步,建立和谐的,以人为本的交通体系,应对目前经济发展给交通带来的压力,积极推动智能交通体系的研发和建设的进程,建立全国统一的发展规划,加强区域合作。有效的整合利用现有的资源,使其发挥最大的功效。

3.1 打好ITS发展基础,特别是应加强ITS基础理论的研究工作。目前,国际上ITS理论仍不完善,还处于发展时期,我们应积极加强与ITS开展较先进国家的交流,在国际ITS现有发展水平上结合中国特点,深入细致地进行理论研究,尽快接近或达到世界水平,以迎接21世纪ITS发展的挑战。否则将成为别国的追随者,成为他们不成熟技术的推广试验场。

3.2 顶层制定智能交通行业标准战略规划,为行业发展提供导向。建议结合我国交通、城市规划等部门的相关发展规划,并整合现有标准体系,制订《智能交通标准化发展战略》,系统规划,出台短期、中期和长期相结合的标准战略。同时,建议将智能交通行业标准战略作为省级地区技术标准战略的重要组成部分。

3.3 发挥各级标准化技术组织职能,争取标准话语权。一方面,要继续利用好ITS标委会等现有标准化技术组织,充分发挥标准化技术组织在智能交通标准的组织制定、推动实施、效益评估、信息沟通等标准化公共服务工作方面的积极作用;另一方面,国家相关部门应在充分调研的基础上,协调统筹、引导扶持有条件的省份积极成立或承担相应的标准化技术组织,更大范围地争取标准话语权。

3.4 注重人才的培养。随着ITS的进一步发展,21世纪交通运输将会发生重大变化,而与之相应的是对不同层次的专业人才需求情况与以往大不相同,为此应加强国内高校及科研单位交通运输领域与国外ITS的交流合作,派出人员学习培训,走出去、请进来,将最新的ITS技术溶入交通运输专业的教学内容和科研之中,以高素质的ITS人才去迎接新世纪的挑战。

3.5 突出企业的创新主体地位,发挥企业在标准化工作中的重要作用。鼓励以企业为主体实现标准研发创新,研究制定推动企业研究智能交通技术标准的配套政策,在科研经费安排、工程项目招标活动、行业规划等方面对重视标准化工作的企业给予政策扶持,鼓励企业加大标准化工作的自我投入,建立以企业为主体,协会为纽带,科研机构、大专院校为支撑,政府组织为支持,全方位系统化的标准化推进体系与工作机制。

3.6 国内科研机构企业高校加强合作。我们国家有许多世界著名的交通大学,专业人才资源非常丰富。中国政府应该提供的学习环境,协调他们的工作以及他们,为他们创造一个良好的科研环境,提供技术改造所必要的孵化器,就能在将来推动中国智能交通的发展。

3.7 凸显交通科技的先导地位。我们需要不断改进交通通信设备,依托数字化管理、信息网络化、办公自动化、等科学技术手段,实现用科技解放警力的目的,提高交警部门的快速反应能力。具体做法:一方面可以在主要交通路口设置交通控制电子设备,并逐步整合交通信息资源,建立综合交通信息平台,以实现信息共享。另一方面,可以建立出租车呼叫调度系统,车辆导航系统,物流智能交通系统,停车诱导系统来提高智能交通管理与控制系统以及智能公交调度系统。当前中国高新技术企业从事智能交通技术研究,全国已经有2000多个,应用发展非常迅速的发展。

4 结语

总之,我国城市智能交通体系的规划设计,既要借鉴各国先进的发展经验,又需要从我国交通发展的实际情况出发,选择最能体现中国优势的项目,科学地利用信息技术、物联网技术等新兴技术来发展中国自己的智能交通事业。这需要社会各部门的思想统一,积极配合,并制定分步实施的步骤,让我国智慧型城市建设插上智慧的翅膀,快速发展。

参考文献:

[1]岳建明.我国智能交通产业的发展及技术创新模式探讨[J].中国软科学,2012(9).

推荐期刊