欢迎访问爱发表,线上期刊服务咨询

生物信息学培训8篇

时间:2024-01-24 16:58:55

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇生物信息学培训,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

生物信息学培训

篇1

关键词:生物信息学;医学;教育;建议

生物信息学(Bioinformatics)是一门发展迅速的生物学分支学科,由生物学、计算机学、信息管理学、应用数学及统计学等多门学科相互交叉而形成,本质是利用计算机技术解决生物学问题,通过信息的处理和整合实现发现和创新。它主要包括以下3个方面的内容:①生物数据的收集、整理、存储、检索、加工、分析和整合;②生物系统和结构的建模;③与生物科学相关的计算机技术的应用,这个范围还在不断的扩增中[1]。医学生物信息学是指以医学研究和临床应用为中心开设的生物信息学,本文讨论的内容主要围绕医学生物信息学展开。近20年来,互联网、数据库和计算方法的发展,为生物信息学的研究提供了更为广泛和灵活的方法;多种模式生物基因组测序的完成,功能基因组、蛋白质组研究的开展,各种高通量生物实验技术快速发展为生物信息学,提供了更大研究空间的同时,也对海量的生物学数据进行有效地挖掘和整合提出了严峻的挑战;而以基础研究与临床医疗结合为宗旨的转化医学的兴起对衔接二者之间的桥梁———生物信息学,提供了广阔的应用空间。对生物信息学人才的热切需求,以及上述机遇和挑战导致了生物信息学专业在全世界的蓬勃发展。以美国为例,在1999年之前,全美只有6所大学设置有计算生物学与生物信息学专业,而到2002年,则有31所大学设置了计算生物学与生物信息学专业博士学位,其中有12所大学是在2001年~2002年之间设置的这门专业[1]。这些大学通常以生物学、生物统计学、计算机科学或者生物医学信息学为依托设置这门专业,不同大学对该专业学生的培养模式也有所不同。在我国,很多高等院校将生物信息学作为专业课程设立,医学高等院校也逐步将其作为基础课程或选修课设立。作为一门新生学科,生物信息学在大部分院校尚处于探索阶段,没有成熟完善的教育模式可以借鉴[2]。在这种情况下,来自前期已毕业学生和用人单位的反馈意见对生物信息学教育模式的总结提高具有重要意义。作为一名临床医师和医学研究人员,笔者深刻体会到在实际工作中,无论是自身合理应用生物信息学知识进行思考和设计,还是找到能够迅速融入并满足实验室研究和临床工作需求的生物信息学专业人才都不是一件容易的事情。因此,本文作者就自己的一些切身体会,结合文献和思考,对我国医学生物信息学人才培养列举了一些意见和建议,希望能够在生物信息学教学模式的完善中起到微薄的助力作用。本文着重探讨信息技术在医学领域中的应用,侧重于医院信息管理和信息系统建设方面的医学信息学(Medical Informatics)不在本文讨论范围内。理想的医学生物信息学人才培养目标应该是这三类人的集合:①计算机专家,掌握计算机算法、计算机语言、软件、数据库结构和相关知识框架,以及硬件知识;②生物信息学专家,具有熟练应用计算机储存、处理、分析和整合相关生物信息的能力;③基础研究或临床工作者,具有查阅文献,提出生物学或临床医学问题,合理使用上述生物信息学来思考、设计和解决问题的能力,并能收集和正确提供用于研究的初始数据。结合我国实际情况,想让临床医学专业学生或医学生物信息学专业学生同时完成以上3个方面的培训显然不切实际。理想的培训模式,是通过对临床医学专业和医学生物信息学专业学生不同侧重的培训,再通过二者的合理分工和配合,来满足以上3个方面的需求。对医学院校学生,尤其是医学研究生,生物信息学培训的内容应侧重于对其计算思维能力和信息学应用能力的培养,目的是使其能熟练地从生物信息学角度发现和提出生物学或临床医学方面的科学假设,针对该假设设计合理的研究方案,并为后续研究提供正确的初始数据;对以生物医学为中心的信息学专业人才培养,内容应侧重于对其计算机技术和生物信息学在医学实践应用方面能力的培养,目的是与前者配合,指导并帮助其完成科学假设的设计,对前者提供的初始数据进行管理、存储、检索、分析和整合,以及完成更高要求的计算机技术方面的应用,例如应用软件的设计,生物系统和结构的建模,等等。

1 医学生的计算生物学与生物信息学思维培养

本部分特指医学专业学生的生物信息学教学,部分医学院校开设的医学生物信息学专业教学将在下一部分中提及。无论是医学基础研究,还是以循证医学为代表的临床研究,生命科学研究的一般过程,都遵循发现问题资料查询预实验提出科学假设设计实验验证假说资料查询和结果分析科学理论总结的基本思路[3]。在这个过程中,计算生物学与生物信息学不仅是进行资料查询和结果分析的重要工具,更应是在提出科学假设和实验设计阶段就需要贯彻执行的理念和思维方式。换言之,具体的生物信息学与分子生物学实验一样都是验证生物医学假说的实验方法,是将一个生命科学假设用计算和信息学思维方式表达和实现的过程。在我国,绝大部分医学基础研究和临床研究课题都是由医学院校毕业的临床工作者设计和申请的。由于临床医师大都承担了繁重的临床工作,申请者亲自完成课题的机会很少,获批课题的具体实施及数据管理、存储、检索、分析和整合多由研究生或实验室工作人员负责。因此结合我国的实际情况,将生物信息学与具体课题耦合,即将一个科学假设用计算和信息学表示并有效实施的思维和实践培训,才是医学生生物信息学培训的中心内容。由于我国临床医学教学采用长学制(5年、7年或8年)教学,对实践性和针对性都很强的生物信息学而言,过早或过于笼统的培训都显得意义不大,所以笔者认为针对医学生的生物信息学培训安排在研究生阶段是比较合适的,教育中心是以医学研究需求为指导,强调信息学思维培训和实践操作。具体提出的建议有两点,一是根据学生专业背景调整理论教学内容。医学院校学生的数理基础、计算机基础及统计学理论基础不能和工科院校的学生相比,医学专业包括基础医学、临床医学、口腔、预防等专业,涉及广泛,各个专业背景的学生对这门课程的需求不尽相同。因此在理论课程上,要根据不同的专业背景和研究内容形成“个性化”的培养方案,目的是让学生有选择有针对性地掌握相关生物信息学内容,例如数据库的类型和选择,常用软件的种类和应用等,同时又不会对过于高深的生物信息学理论产生反感。二是结合研究生阶段的课题,开展研究内容模拟和实践操作练习。为了更好的配合研究生阶段的课题,可将《生物信息学》开课时间调整到研究生阶段的第三学期,即在学生进入课题研究阶段之后,让学生在清楚面临的课题内容后,有针对性地学习在完成课题过程中要使用到的知识、工具和解决问题的思路,包括文献查阅、保存、编辑,核酸序列查找和同源性比对及进化分析,PCR引物设计,基因功能、结构预测,调控元件及转录因子预测,蛋白质基本理化性质分析,跨膜区及信号肽预测,二级结构和空间三维结构的预测等。这样学生的学习兴趣和效率会大大提高。为了解决上课时间与课题时间冲突的问题,可以采用生物信息学授课老师加入导师组成员,通过网上教学和答疑、夜间授课、集中授课与个别指导结合等多种方式灵活解决。

2 以医学为中心的生物信息学专业人才培养

如果说对医学生进行生物信息学教育的目的是使其学会将一个生命科学假设用计算和信息学表示,并正确提供初始数据,那么以医学为中心的生物信息学专业人才培养的目的,就是使其学会用计算机学和信息学处理并证实科学假设的过程。具体的内容包括,与实验室工作人员和临床医生配合,从计算生物学与生物信息学角度指导并帮助其完成科学假设和课题内容设计;在课题实施阶段对后者提供的初始数据进行管理、存储、检索、分析和整合,以及满足后者更高要求的计算机技术的需求,例如应用软件的设计,生物系统和结构的建模,等等。目前,计算生物学与生物信息学专业研究生的培养模式主要有3种:①以生物学为中心的多学科培养模式。理论教育以生物学为中心,在6~9个学期内陆续完成生物学部分课程(相当于普通生物学系1/3~1/4课程)的选修,然后根据兴趣和实际情况选择一个相关实验室完成研究生课题。这种培养模式被大多数综合大学采纳。②以工程设计为中心的培养模式。③以医学为中心的培养模式。指以医学研究和临床应用为中心设置计算生物学和生物信息学,绝大多数由医学院校设置,侧重生物信息学与临床医学的结合。在进入课题阶段之前会有1~2年临床相关概念和信息的培训,主要开设的课程包括生物学、细胞生物学、分子生物学与基因组学、化学与物理学、计算机科学、数学和统计学等,甚至包括部分医学课程,后期实践阶段通常选择一个相关实验室完成研究生课题。总的看来,医学生物信息学基础课程设置与国际趋势相符,也符合以医学为中心计算生物学与生物信息学的培训要求。但从近年生物信息学专业研究生就业情况来看,确实存在素质参差不齐,学不能致用,不能很快融入研究工作等问题。笔者认为,这种现象可以从三个方面加以改进:①以职业发展和学位教育为导向,建立多层次、多形式的医学信息学教育和继续教育体系。各医学院校可在统一专业培养目标和定位的基础上,根据自身的学科基础和特色,结合学生毕业后的工作领域和就业方向,形成“个性化”的专业方向和培养方案。②加强师资力量的建设,形成以课程为中心的教学团队。现有医学生物学教材内容宽泛、偏重理论,对实践环节的指导较少,需要授课老师有选择的挑选合适的内容并予以补充和完善。这对授课教师的素质提出了更高要求,要求其能根据实际情况因材施教,有所取舍,强化重点。目前,各院校教学团队和师资力量配备受限,建议可以课程为中心,培养、引进学术带头人,从其他专业挑选骨干教师兼任等多种形式,形成以课程为中心的教学团队。③实践教学与综合能力的培养。生物信息学是一门实践性非常强的学科,要将“学有所长,学以致用”作为人才培养的最终目的。可以通过构建开放式实践教学平台,建设实践教学基地等方式尽可能强化实践操作训练[4],后期部分学生可以结合个人兴趣,本着双向选择的原则,将实践阶段训练固定到导师和实验室,并安排其参与完成某一项课题的设计、实施和总结,在整个过程中要特别注意培养学生的学习兴趣和自学能力,强调知识的自我更新。

综上所述,医学生物信息学人才培养的最终目的是使生物信息学能满足现代医疗和医学研究发展的需要,使医学生物信息学人才成为有效连接基础研究与临床医疗的桥梁,为现代医学的发展提供新途径[5]。

参考文献:

[1]Mark Gerstein,Dov Greenbaum,Kei Cheung and Perry L.Miller.An interdepartmental Ph.D.program in computa-tional biology and bioinformatics:The Yale perspective[J].Journal of Biomedical Informatics,2007,40:73-79.

[2]倪青山,胡福泉,饶贤才,等.医学院校生物信息学实践教学初探[J].基础医学教育,2011,13(6):538-539.

[3]张乐平,冯红玲,宋茂海,等.生物信息学教学与医科学生计算思维培养[J].计算机教育,2012,19(4):12-16.

[4]寻萌,陈艳炯,杨娥,等.《生物信息学》教学实践探讨[J].西北医学教育,2011,19(6):1220-1223.

篇2

关键词:生物信息学;导师制;培训;文献抄读

随着生物信息学的蓬勃发展,许多大学尤其医学院校近些年来相继开设生物信息学相关课程,用以培养学生的生物信息学技能。因为信息学专业的相关课程对于生物信息学内容学习的有利性,一些院校,尤其医学院校,更加注重对本校信息学专业进行生物信息学技能培养[1]。由于生物信息学是多个学科的交叉产物,需要掌握的技能很多。并且生物信息学对于创新实践能力要求较高,仅仅学习理论课程是远远不够的。增加学生的创新实践能力对于生物信息知识学习尤为重要。本文将以哈尔滨医科大学大庆校区为例,探讨医学院校生物信息学创新实践能力培养。哈尔滨医科大学大庆校区共有两个专业与生物信息学密切相关。因此,以在这两个专业学生中开展的生物信息学创新实践能力培养活动为例,具体内容如下。

1 生物信息学创新实践能力培养活动的组织和领导

学院组建由主管科研副院长任组长、从事生物信息学科研的优秀教师任组员的创新活动小组,对大二、大三本科生生物信息学创新实践能力培养进行全程指导。建立生物信息协会,并设立学习部、纪检部、宣鞑俊⑽郎部。每个部门均有一位老师当顾问,选拔优秀的学生任各个部门的负责人,对创新活动小组进行日常管理。并且在大二和大三学生中选拔出一位会长和一位副会长。对创新活动小组进行全面管理。教师的角色为顾问性质,不直接参与管理。这样的好处是,教师不会陷入到日常的管理中,为教师节省时间,从事更重要的生物信息技能培养。

2 生物信息技能培训

聘请本学院从事生物信息学科研的优秀教师对学生进行有针对性的基础知识集中培训,每学期40-80学时,均安排在晚上和周末。开展了复杂疾病代谢、信号子通路识别、全基因组生物学通路网络分析及平台开发、基因大数据的分析、数据库开发、circRNA等培训内容。注重上机实践,通过真实操作体验和结果可视化来提升成就感,且能使学生在实践中打破生物信息学的神秘感。在学校的大力支持下,建立了一个容纳30多人的实验室用于生物信息学创新实践能力学习的场地。而且,研究生实验室也部分开放,鼓励学生与研究生学习和交流。

3 导师制

生物信息学创新实践能力培养采用导师制。学生根据各位导师的研究方向,自愿选题、选择导师。一位导师每年级招入2名以内学生,对其进行导师所从事科研内容的针对性技能培养。通过培养,学生能够达到帮助促进导师从事的科研。导师为学生分配各种实际的课题任务。开始时候,分配一些简单的任务。如果学生能力受到认可,导师加大任务量,进行更创新的技能探索,甚至让学生自己开发新的生物信息学程序、数据分析和软件。达到这一能力的学生,将很大程度提升学生的能力,并因为学生能帮助老师解决科研中的技术和数据分析问题,因此促进教师指导学生的积极性。每学期,对学生进行考核,所有导师和研究生参与考核,内容包括生物信息学技能掌握情况、团队合作能力、数学和英语成绩。合格者才可以继续进行导师指导下的创新实践活动。

4 文献抄读

从事科研的指导教师和生物信息研究生每周进行三次的文献抄读,均安排在晚上和周末。论文内容往往是发表在国际顶级杂志上的生物学和生物信息学文章。参加培训的本科生,同时要求他们听教师和研究生的文献抄读。不像培训内容,文献抄读对于低年级的学生,听懂难度较大。对学生来说,这也是最艰难的考验。我们在最开始实施过程中,学生由于听不懂,对生物信息产生厌倦,许多学生因此退出。然而,令人欣喜的是,坚持下来的学生,毕业时取得很好的培养效果,2012级8人报名学习生物信息,一年后坚持下来的学生有5人。其中3人成功考入研究生,1人在生物信息科技公司就业 (见表1)。2013级初始报名时有19人,一年后坚持下来的学生,7人中,6人成功考入研究生(见表1)。究其原因可能是,坚持下来的学生因为长期接受国际顶级杂志上的生物学和生物信息学文章的熏陶,生物信息学水平有了明显提升。这鼓励了后来者的信心,即使难也愿意挺住,等待“黑暗后的光明!”。因此,我们认为本科生听文献抄读很可能是提升能力的一个捷径。2014级和2015级坚持下来的学生人数均有增加,分别达到了12人和11人(见表1)。由于尚未毕业,无法统计考研和就业情况。但,教师反馈信息显示,学生能力培养效果整体有了进一步的提升。

文中插图为我校本科生进行生物信息学创新实践能力培养活动的现场照片。

5 结束语

本文以生物信息学创新实践活动的开展情况为例,探讨了医学院校生物信息学创新实践能力培养的方法。我们试图寻找一种既能有效培养学生创新能力,又能减轻教师负担、并促进教师积极培养学生的方式。

基金项目:哈尔滨医科大学于院士杰出青年培养基金项目;哈尔滨医科大学(大庆)校内教学研究基金项目,类别:人才培养(课题编号:XNJYJJ15203)

篇3

2010年夏,我们单位参加无锡市疾控钱云老师组织授课的该项目师资培训班后,返回社区,选择群众基础较好的阳山社区,针对实际,精心准备,并结合高血压、糖尿病两大慢病为具体切入点,开展了《高血压、糖尿病等慢病自我管理技能推广培训》讲座。在内容编排上作了增减,一方面加进了高血压、糖尿病的有关健康科普知识,使讲座更具实用性和说服力。另一方面,对讲座中有些一时难以为基层居民理解接受的知识作了选择梳理,从而保证了大家在短时间内接受体验慢病知识的实效性。反馈表明,我们带来了一种新的医疗理念,一种新的慢病应对思维,取得了预期效果。

阳山是著名桃乡,根据居民随阳山水蜜桃种植特殊性多有起居早晚、忙闲不定这一特点,及中老年人慢病特点,在授课时,我们以讲解为主,穿插讲一些居民身边的活生生的失败或成功的病例,让大家从具体案例中体会到慢病管理的重要性和益处,吸取教训,改进不足,做得更好。在课件中,具体加进了目前CDC重点关注之“高血压、糖尿病”两大慢病的健康科普知识与“和平共处原则”,如何管理,如何服药,什么是它们的应急状况、必须立即医疗干预等等。结合一些桃农的疑问:为什么卖桃子的时候不觉得累,卖过了,闲了,反而觉得累,要生病?我们就试着利用祖国的中医中药知识,用王琦教授的“9种体质相”理论跟他们解释:什么是阴虚体质,阴虚的人为什么不觉得累,怎么调理等等。针对居民关注的一些具体健康问题如整体健康自评、健康担忧、疲劳、气短、疼痛、失能、情绪低落及社会活动/角色受限等,我们也按培训要求做了简单扼要的阐述,并让大家互动,互相交流应付慢性不适的经验与体会,让学员互相学习,取长补短,共同体验和战胜疾病痛苦。针对失眠患者,我们教他们怎样有效助眠、不拒绝助眠药,并用季羡林大师和身边一些长寿者的实例,解开他们的的困惑。针对各种疼痛,我们也提出了一些可以试试的缓解方法,如冥想、太极,适当参与麻将、扑克等民间娱乐,尤其如参与阳山地区群众基础较好的健身舞、门球、爬山等锻炼活动。课后,一些居民由衷感慨道:原来看病可以这么看,原来我们可以与慢病和平共处。

我国的医疗体制虽然正在转型,但由于国情所致,在解决一些慢性病问题时,医疗干预所起作用有限、且费用昂贵已成诟病,又由于慢性病人的预防性干预和卫生保健活动通常都必须长期在社区和家里执行,单纯的医疗行为可操作性和可持续性均有不足。慢性病已成为我国多数地区的主要健康问题之一,随着我国人口老龄化的加剧,慢性病者患病的绝对数和相对数更将日益增加。这些均是客观存在的事实。而通过这次交流传播,我们体会到,该技能的推广培训的确可以让一部分社区居民学会自我管理,解决一些健康问题和慢病困扰。

篇4

中图分类号: G643;Q-3 文献标识码: B 文章编号: 1008-2409(2008)05-0967-03

人类基因组计划的成功实施使生命科学进入了信息时代。基因组学、蛋白质组学和生物芯片 技术的发展,使得与生命科学相关的数据量呈线性高速增长。对这些数据全面、正确的解读 ,为阐明生命的本质提供了可能。连接生物数据与医学科学研究的是生物信息学(Bioinform atics)。应用生物信息学研究方法分析生物数据,提出与疾病发生、发展相关的基因或基因 群,再进行实验验证,是一条高效的研究途经。医学是研究生命的科学,医学研究在基础上 就注定离不开对生物信息的了解。

我国目前医学研究生教学模式主要有两种, 一是医学本科教育延续过来的理论型, 这种类型 的教育是在本科教学大纲的基础上, 按照教学计划进行理论讲授, 最后按照导师指定的课题 完成毕业论文。这种培养模式突出理论学习, 忽视了实验机能和科研能力的培养。二是科研 能力培养的前轻后重型, 前期只是进行理论授课, 后期由导师指导学生的科研。这种模式虽 然开设了一定的实验项目, 但对研究生科研能力的培养缺乏系统性, 并且前期的培养不足直 接影响到研究生后期的学位课题和论文的进度、质量。

因此,笔者对生物信息学在医学硕士研究生中的教育初探,不但有利于该门课程尚未完全形 成成熟的课程体系之际,为教师学习借鉴先进的教育思想与教学实践经验,更有利于医学硕 士研究生对生物信息学的学习。

1 生物信息学的研究范围

生物信息学是一门新兴的交叉学科,涉及生物学、数学和信息科学等学科领域,并注定以互 联网为媒介,数据库为载体,利用数学知识、各种计算模型,并以计算机为工具,进行各种 生物信息分析,以理解海量分子数据中的生物学含义。

生物信息包括多种类型的数据,如核酸和蛋白质序列、蛋白质二级结构和三级结构的数据等 。由实验获得的核酸蛋白序列和三维结构数据等构成初级数据,由此构建的数据库称初级数 据库。由初级数据分析得来的诸如二级结构、疏水位点、结构域(Domain),由核酸序列翻译 来的蛋白质以及预测的二级三级结构,称为二级数据。创新算法和软件是生物信息学持续发 展的基础,高通量生物学研究方法和平台技术是验证生物信息学研究结果的关键技术。因此 ,现代生物信息学是现代生命科学与信息科学、计算机科学、数学、统计学、物理学和化学 等学科相互渗透而形成的交叉学科,是应用计算机技术和信息论方法研究蛋白质及核酸序列 等各种生物信息的采集、存储、传递、检索、分析和解读,以帮助了解生物学和遗传学信息 的科学。从其研究所涉及的学科上看,生物信息学是集生物学、数学、信息学和计算机科学 一体化的一门新的科学;从其研究的主要内容上看,基因组信息学、蛋白质的结构模拟以及 药物设计是生物信息学的三个重要组成部分,并有机地结合在一起[1]。

2 医学硕士研究生中的生物信息学教学初探

2.1 课堂教学重在教授实践技巧与方法

生物信息学在医学研究生中的教学应以教授实践技巧为主,以介绍原理为辅,深入浅出,注 重课堂知识与科研实践的紧密结合。课堂讲授应简要介绍生物信息学的相关算法、原理,着 重介绍其使用技巧与方法,真正做到“有的放矢”,而这也是教学的重点和难点。

在教学中对于这部分内容应遵循深入浅出、避繁就简的原则,结合具体实例分析算法,避免 空洞复杂的算法讲解让学生觉得枯燥乏味、晦涩难懂,产生畏惧心理,知难而退;注重讲解 使用技巧与方法的思想和来龙去脉,让学生真正掌握解决问题的思路,培养其科学思维能力 ,并采用探讨式教学鼓励学生思考,通过讨论与研究的方式循序渐进的掌握复杂的内容,介 绍相关的教学和物理学知识,使学生充分体会到生物信息学与其他学科的关系,其他学科的 思想方法对于生物科学的重要性,培养其自觉地将其他学科的方法和思想应用于解决生物 学问题的科学素质。 任何学科都处于不断地发展、更新中,生物信息无论是理论研究还是 应用研究仍处于不断发展完善中,同时随着新的应用领域和新问题的发现,其他学科的方 法也在不断地应用于生物信息学,进一步增加了其多学科交叉融合的深度和广度。

2.2 充分利用现代化教育技术,采用案例教学

目前,高等院校在教室内配备的多媒体投影播放系统,促进了多媒体教学的广泛应用。生物 信息学采用多媒体教学是适应学科特点、提高教学效果和充分利用现代化教育技术的一项基 本要求。作为生物信息学教学的基本模式,多媒体教学使讲解的内容更加直观形象,尤其是 对于具体数据库的介绍以及数据库检索、数据库相似性搜索、序列分析和蛋白质结构预测等 内容涉及到的具体方法和工具的讲解,可以激发学生的学习兴趣,加深学生对知识的理解和 掌握,提高学生理论与实践相结合的能力。

但多媒体教室也有局限性,学生主要以听讲为主不能及时实践,教师讲解与学生实践相脱节 ,如果将生物信息学课程安排在计算机房内进行,并采用多媒体电子教室的教学方式可以解 决上述问题。在教学中采用启发式教学,为学生建立教学情景,学生通过与教师、同学的协 商讨论,参与操作,发现知识,理解知识并掌握知识。例如在讲授“目的基因序列的查寻” 时,除对基本内容的介绍,如数据库的发展、分类等,其他采用案例法,让学生利用搜索工 具查找三大公共核酸数据库,并通过数据库网站的介绍内容对该数据库的发展、内容、特点 进行学习并总结,通过讨论和实际的数据库浏览操作了解三大公共核酸数据库并且掌握数据 库使用方法。

2.3 采用“讲、练”一体化的教学模式,强调学生实践能力的培养

生物信息学课堂教学积极学习借鉴职业培训和计算机课程教学中“讲、练、做”一体化的教 学模式,在理论教学中增加实训内容,在实践教学中结合理论讲授,改变了传统的“以教师 为中心、以教材和讲授为中心”教学方式。

根据教学内容和学生的认知规律,灵活地采用先理论后实践或先实践后理论或边理论边实践 的方法,融生物信息学理论教学与实践操作为一体,使学生的知识和能力得到同步、协调、 综合发展。通常采用先讲后练的方法,即首先介绍原理、方法,之后设计相关的实训内容 让学生上机实践。对于操作性内容和生物信息分析的方法和工具的讲解采取了进行实际演示 的方法,教师边讲解边示范,学生在听课时边听讲边练习或者教师讲解结束后学生再进行练 习,理论与实践高度结合,充分发挥课堂教学的生动性、直观性,加深学生对知识的理解, 培养和提高学生的实践操作能力。

2.4 发挥网络教学优势,优化生物信息学实验教学内容

生物信息学实验教学主要是针对海量生物数据处理与分析的实际需要,培养学生综合运用生 物信息学知识和方法进行生物信息提取、储存、处理、分析的能力,提高学生应用理论知识 解决问题的能力和独立思考、综合分析的能力。生物信息学实验教学内容的选择与安排应按 照循序渐进的原则,针对特定的典型性的生物信息学问题设计,以综合性、设计性实验内容 为主,明确目的要求,突出重点,充分发挥学生的主观能动性和探索精神,以激发学生学习 的主动性和创造性为出发点,加强学生创新精神和实验能力的培养。生物信息学实验教学以 互联网为媒介、计算机为工具,全部在计算机网络实验室内完成。在教学中,充分利用网络 的交互特点实现信息技术与课程的结合。教师通过电子邮件将实验教学内容、实验序列、工 具等传递给学生,学生同样通过电子邮件将实验报告、作业、问题和意见等反馈给教师,教 师在网上批改实验报告后将成绩和评语发送给学生,让学生及时了解自己的学习情况。

生物信息实验教学与现代网络和信息技术密不可分,在教学工作中充分利用现代教育技术较 其他课程更具优势。区别于其他生命科学课程,在教学过程中要求有发达的互联网和计算机 作为必备条件。调查显示国内高校都已建立校园网,其中拥有1000 M主干带宽的高校已占调 查 总数的64.9%,2005年一些综合类大学和理工类院校将率先升级到万兆校园网[2] ,这些都为生物信息学课程在高校开设提供了良好的物质基础。

2.5 考试无纸化,加强实践能力考核

考试重点是考查学生对生物信息分析的基本方法和技能的掌握程度和对结果的分析解释能力 。因此,在生物信息学考试中尝试引入实践技能考试,重点考核学生知识应用能力。实践技 能考试采用无纸化考试方式,学生在互联网环境下,对序列进行生物信息分析并对结果进行 解释,不仅考核学生对基本知识和基本原理的掌握,而且考查学生进行生物信息分析的实际 能力和分析思考能力。通过实践技能考试,淡化理论考试,克服传统的死记硬背,促进学生 注重提高理论用于实践的综合能力,同时更有效地提高学生计算机应用能力。除采用实践技 能考试并将其作为学生成绩的主要部分外,还加强了对学生平时学习态度、学习能力、创新 思维等方面的考核。

总之,生物信息学教学是网络环境下生物教学的全新内容。通过上述教学措施,提高了学生 的 学习积极性、实践操作能力、解决实际问题的综合应用能力及创新能力,收到了良好的教学 效果,得到了学生的普遍欢迎,具有较强的可操作性和实践性。在今后的教学实践中,随着 教师自身素质的提高和进一步的教学改革将会不断完善生物信息学教学,培养具有“大科学 ”素质和意识的医学研究生人才。

参考文献:

[1] 张阳德.生物信息学[M].北京:科学出版社,2004:4.

篇5

关键词:生物信息学 课堂教学 实验教学 现代教育技术

前言

生物信息学(Bioinformatics)是一门新兴的交叉学科。广义地说,生物信息学从事对生物信息的获取、加工、储存、分配、分析和解释,并综合运用数学、计算机科学和生物学工具,以达到理解数据中的生物学含义的目标[1]。其含义是双重的:一是对海量数据的收集、整理与服务,即管理好这些数据;二是从中发现新的规律,也就是使用好这些数据。以1987年出现Bioinformatics这一词汇为标志,生物学已不再是仅仅基于试验观察的科学。伴随着21世纪的到来,生物学的重点和潜在的突破点已经由20世纪的试验分析和数据积累,转移到数据分析及其指导下的试验验证上来。生物信息学作为一门学科被广泛研究的根本原因,在于它所提供的研究工具对生物学发展至关重要,因此成为生命科学研究型人才必须掌握的现代知识。今天的实验生物学家,只有利用计算生物学的成果,才能跳出实验技师的框架,作出真正创新的研究。现在基因组信息学和后基因组信息学资源已经成了地球上全人类的共同财富。如何获取和利用基因组和后基因组学提供的大量信息,如何具有享用全人类共有的资源的初步能力,成了当今世纪生命科学学生必须掌握的基本技术和知识以及必须具有的初步能力[2]。

生物信息学以互联网为媒介,数据库为载体,利用数学知识、各种计算模型,并以计算机为工具,进行各种生物信息分析,以理解海量分子数据中的生物学含义。区别于其他生命科学课程,其在教学过程中要求有发达的互联网和计算机作为必备条件。调查显示国内高校都已建立校园网,其中拥有1000M主干带宽的高校已占调查总数的64.9%,2005年一些综合类大学和理工类院校已率先升级到万兆校园网[3],这些都为生物信息学课程在高校开设提供了良好的物质基础。该门课程与现代网络和信息技术密不可分,在教学工作中充分利用现代教育技术较其他课程更具优势。另外,该门课程尚未完全形成成熟的课程体系,为教师学习借鉴先进的教育思想与教学实践经验,在各方面尝试教学改革提供了广阔的空间。

1 课堂教学

生物信息学主要以介绍原理、方法为主,深入浅出,注重知识更新。课堂讲授以介绍生物信息学的相关算法、原理、方法为主,而这也是教学的重点和难点。在教学中对于这部分内容应遵循深入浅出、避繁就简的原则,结合具体实例分析算法,避免空洞复杂的算法讲解,以免学生觉得枯燥乏味、晦涩难懂,产生畏惧心理,望而生畏;注重讲解算法的思想和来龙去脉,让学生真正掌握解决问题的思路,培养其科学思维能力,并采用探讨式教学鼓励学生思考,通过讨论与研究的方式循序渐进地掌握复杂的内容,介绍相关的教学和物理学知识,使学生充分体会到生物信息学与其他学科的关系及其他学科的思想方法对于生物科学的重要性,培养其自觉地将其他学科的方法和思想应用于解决生物学问题的科学素质。在教学工作中教师必须能够紧跟学科发展方向,随时进行知识更新,了解最新的前沿动态,掌握新方法,将最新的知识和方法教给学生。同时,也要在教学中鼓励学生通过各种途径自觉地关注学科发展动态,拓宽知识面,培养其自学能力和创新意识。

2 充分利用现代化教育技术,采用启发式教学

目前,高等院校在教室内配备的多媒体投影播放系统促进了多媒体教学的广泛应用。生物信息学采用多媒体教学是适应学科特点、提高教学效果和充分利用现代化教育技术的一项基本要求。作为生物信息学教学的基本模式,多媒体教学使讲解的内容更加直观形象,尤其是对于具体数据库的介绍以及数据库检索、数据库相似性搜索、序列分析和蛋白质结构预测等内容涉及的具体方法和工具的讲解,可以激发学生的学习兴趣,加深学生对知识的理解和掌握,提高学生理论与实践相结合的能力。同时,由于生物信息学依赖于网络资源和互联网上的分析工具和软件,教室内的多媒体计算机连接到互联网,极大地提高了教学效果。但在实际教学中发现,多媒体教室也有局限性,学生主要以听讲为主,不能及时实践,教师讲解与学生实践相脱节,如果将生物信息学课程安排在计算机房内进行,并采用多媒体电子教室的教学方式,就可以解决上述问题。在教学中采用启发式教学,可为学生建立教学情景,学生通过与教师、同学的协商讨论、参与操作,能够发现知识、理解知识并掌握知识。

3 采用讲、练做一体化的教学模式,注重学生实践能力的培养

生物信息学课堂教学应积极学习借鉴职业培训和计算机课程教学中讲、练、做一体化的教学模式,在理论教学中增加实训内容,在实践教学中结合理论讲授,改变传统的以教师为中心、以教材和讲授为中心的教学方式。根据教学内容和学生的认知规律,应灵活地采用先理论后实践或先实践后理论或边理论边实践的方法,融生物信息学理论教学与实践操作为一体,使学生的知识和能力得到同步、协调、综合的发展。

通常可采用先讲后练的方法,即首先介绍原理、方法,之后设计相关的实训内容让学生上机实践。对于操作性内容和生物信息分析的方法和工具的讲解可采取进行实际演示的方法,教师边讲解边示范,学生在听课时边听讲、边练习,或者教师讲解结束后学生再进行练习。理论与实践高度结合,可充分发挥课堂教学的生动性、直观性,加深学生对知识的理解,培养和提高学生的实践操作能力。

4 优化生物信息学实验教学内容,发挥网络教学优势

生物信息学实验教学主要是针对海量生物数据处理与分析的实际需要,培养学生综合运用生物信息学知识和方法进行生物信息提取、储存、处理、分析的能力,提高学生应用理论知识解决问题的能力和独立思考、综合分析的能力。

生物信息学实验教学内容的选择与安排应按照循序渐进的原则,针对特定的典型性的生物信息学问题设计,以综合性、设计性实验内容为主,明确目的要求,突出重点,充分发挥学生的主观能动性和探索精神,以激发学生学习的主动性和创造性为出发点,加强学生创新精神和实验能力的培养。生物信息学实验教学以互联网为媒介、计算机为工具,全部在计算机网络实验室内完成。在教学中,充分利用网络的交互特点实现信息技术与课程的结合。教师通过电子邮件将实验教学内容、实验序列、工具等传递给学生,学生同样通过电子邮件将实验报告、作业、问题和意见等反馈给教师,教师在网上批改实验报告后将成绩和评语发送给学生,让学生及时了解自己的学习情况。教师可以通过网上论坛、聊天室和及时通讯工具QQ、MSN等对学生的实验进行指导,与其讨论问题等。网络环境下的生物信息学实验教学不仅能提高学生的学习兴趣,给学生的学习和师生的互动带来极大的方便,提高教师的工作效率,而且可以及时了解掌握学生的学习情况,有利于教师不断调整教学方案,达到更好的教学效果。

5 生物信息学采用无纸化考试,加强实践能力考核

生物信息学主要是学习利用互联网、计算机和应用软件进行生物信息分析的基本理论和基本方法。考试重点是考查学生对生物信息分析的基本方法和技能的掌握程度和对结果的分析解释能力。因此,在生物信息学考试中可尝试引入实践技能考试,通过上机实践操作重点考核学生知识应用能力。实践技能考试采用无纸化考试方式,学生在互联网环境下,对序列进行生物信息分析并对结果进行解释,不仅可考查学生对基本知识和基本原理的掌握,而且可考查学生进行生物信息分析的实际能力和分析思考能力。通过实践技能考试,淡化理论考试,克服传统的死记硬背,可促进学生注重提高理论用于实践的综合能力,同时可更有效地提高学生计算机应用能力。学生成绩评定大部分是以学生的考试成绩为主,难以对学生的学习情况和学习过程作全面地评价。因此,除采用实践技能考试并将其作为学生成绩的主要部分外,还应加强对学生平时学习态度、学习能力、创新思维等方面的考查。

总之,生物信息学教学是网络环境下生物教学的全新内容。上述教学措施提高了学生的学习积极性、实践操作能力、解决实际问题的综合应用能力及创新能力,收到了良好的教学效果,得到了学生的普遍欢迎,具有较强的可操作性和实践性。在今后的教学实践中,教师自身素质的提高和进一步的教学改革,将会不断完善生物信息学教学,培养具有跨越生命科学、信息科学、数理科学等不同领域的“大科学”素质和意识的生物信息学人才。

参考文献:

[1]赵国屏等.生物信息学[M].科学出版社,2002.

篇6

关键词:个性化习题;生物信息学;QQ群

中图分类号:G811.4 文献标志码:A 文章编号:1674-9324(2016)48-0171-02

生物信息学是生物学、计算机科学和信息技术等支持的,包括存储、组织和生物数据检索的一个现代交叉学科。随着分子生物学和信息技术的不断突破,各种生物数据的获得变得非常容易,但是如何对这些数据进行组织、分析和处理,并从中发掘出能用于解决生物科学问题的信息,成为目前生命科学的难点和热点。生物信息学因此应运而生,其本身不仅是研究现代生物学,也是研究其对工业、医疗等重要领域影响的一门实践性学科(Bloom,2001)。

一般认为,生物信息学主要渗透到统计数学、计算机和生命科学,尤其是生命科学的组学领域(郭丽等,2014),因此在教学中,生物信息学的教学内容往往因学生背景不同而会有不同的侧重。这就需要教师根据学生的背景及知识结构的需求来合理安排教学。本文根据近年来对生物信息学教学的经验,从教学方法、个性化练习题对学生上机的促进及QQ群投票功能在教学中的应用等方面进行了总结,对如何能够提高生命科学学院的学生学习此门课程的兴趣进行了探讨。

一、现代教学方法的利与弊

随着计算机科技的不断进步,教学已经从传统的板书模式进入到现代多媒体教学模式中。多媒体技术应用的初衷是提高学生的参与度,满足教学手段更民主、多元化及个性化的教学目标,其优点为表现力丰富,可以通过动画、视频、图像、音频等效果将抽象难懂的问题直观化。其次,节省了大量的板书时间,同时教师可将教学的重点、难点链接,以益于学生直观地了解并进行思维拓展(张林,2011)。多媒体最明显的一个特点就是教学容量加大,但正是这些优势也伴随相应的问题:(1)重形式而忽视教学内容。很多学校在进行教学管理及评价时,过分关注多媒体课件的形式以及学生的感受,导致有些教师过分注重多媒体的表现形式而忽视了教学的主要内容。(2)教学容量和学生的吸收量之间反差较大。由于教学内容和容量的增大,教师并没有根据授课对象的具体情况合理安排和讲授学科内容,而被动的成了多媒体的播放员和解说员。总之,多媒体教学利大于弊,因而成为教学改革和发展的必然产物,虽有缺点,但不能因噎废食,需通过其他方法来克服弊端才能达到完美的教学效果。

二、个性化习题是学生实践提高的强力推动器

生物信息学是一门实践性非常强的学科,为了加强学生的实践能力,教师要综合应用启发式、运用式及讨论式等多种教学方法来激发学生的兴趣。笔者在课堂实践中,充分发挥个性化习题的作用,将教师的科研渗入到课堂,注重理论与实践相结合,努力提高学生解决实际问题的综合能力。比如,在讲授第五章内容电子克隆部分,此章节目的是通过一段表达序列标签(EST),综合应用Blast、序列比对、步查法等方法查找各种数据库,通过软件的应用进行拼接、预测、去除内含子等方法,最终获得可能的全长cDNA序列并加以注释。在以往的教学练习中,全班同学的任务一样,难以知道学生是否真正掌握所教授的内容,为此,笔者将学生分组,每组自行通过阅读文献获得一条其感兴趣的EST序列,或者利用他们的毕业论文中涉及的EST序列去进行电子克隆练习,通过这种个性化习题的随堂练习,能显著强化学生的计算机应用能力和实践能力,同时也能提高学生在教学中的积极性、主动性和创新性。

三、发挥QQ群的投票功能在教学练习中的作用

生物信息学是一门交叉学科,对于非生物信息学专业的生命学院的学生而言,虽然教学大纲只要求学生掌握一些基本软件的原理及数据库的熟练使用。但是,这需要学生具有扎实的生物化学、遗传学、细胞学及分子生物学的基础知识。比如,在讲授第三章“核酸序列的分析”时,会要求学生利用已知的EST序列去Blast查找与之有同源性的基因组序列,进行序列比对,预测并利用Bioedit软件找出此基因的启动子、终止子和剪接点。这首先要求学生必须明确这些分子生物学的概念,否则在有限的生物信息学课堂上,会变成分子生物学或遗传学的复习课。而课外QQ群就起到了非常重要的交流促进作用。笔者在将QQ群的功能应用到课外教学辅助平台的基础上,充分发掘QQ群的投票及评论功能为教学所用,例如教授第三章前,将课件放到QQ群的文件中,让学生去预习。为激发学生预习的主动性,要求学生在评论中列出对本章的主要知识点或难点,并对课件中涉及的名词进行解释。为进一步加强理解,对投票功能进行设置,相应的对投票选项1、2、3、4分别设置成A、B、C、D,这样教师可根据需要将知识点转化成练习题,以加强学生的学习。同时,也可鼓励学生将一些新的感兴趣的话题或问题置于QQ群。总之,QQ群的投票功能可以成为教师与学生课下交流的一扇窗口,成为生物信息学的一种及时且重要的学习工具。

四、建议与展望

生物信息学是一门新兴学科,但我国无论是在对学科的重视还是发展程度上,与国外都存在一定的差距。在美国,计算生物学国际协会教育委员会一直致力于将生物信息学整合到高中生物教材中,学生在高中即接触生物信息学,而且高校对高中生物信息学的教学提供相应的培训课程和网上资源,生物信息学和其他分子生物学、植物学等一样较早的深入到学生的知识体系中。而我国由于该学科产生的历史较短,课程的开设集中在“985”、“211”重点院校的生物信息学专业,尽管近十年来,各大高校也意识到此学科的重要性,且课程也在逐步在开设,但由于学时短,很多教学仅限于学生掌握基本的数据库的查询。为使生物信息学能在普通院校的生命科学学院能很好的开展,各个高校应建立合适的课程教学内容。虽然近年“生物信息学”课程在各高校纷纷开设,但由于生物信息学是一门发展中的学科,它的理论及内容尚在不断完善与更新中(郭丽等,2014)。因此,对于教材的选择,不能只追逐信息量充足、内容新颖、知识选材前瞻性好的教材(杨娥等,2014)。作为普通院校的非生物信息学专业的本科生,想在较短的时间内(36课时)很好掌握如此大信息量的知识较为困难(刘宏生等,2010)。因此,需要依据学生基础及院校的人才培养目标和现今生物信息学发展的现状建立合理的课程内容体系。另外,由于缺乏合适的专业人才,生物专业的生物信息学的师资力量薄弱,无法建成高水平的教学队伍。因此,加大生物信息学教师的培养力度,建成一支专业的、年龄和知识结构合理的师资队伍,是提高本科院校生物信息学教学的关键问题之一。

参考文献:

[1]Bloom,M. Biology in silico:The bioinformatics revolution[J]. The American Biology Teacher,2001,63(6):397-403.

[2]郭丽,赵杨,娄冬华,等.生物信息学实践课教学改革探索[J].南京医科大学学报(社会科学版),2014,(2):165-167.

[3]张林,柴惠.现代教学手段在生物信息学教学中的应用[J].新课程研究,2011,(219):156-157.

篇7

关键词:B细胞表位;服务器;研究

中图分类号:R392

表位是抗原分子中被相应抗体或抗原受体识别的特定部位。B细胞表位[1]是抗原中可被B细胞抗原受体(BCR)或抗体特异性识别并结合的线性片段或空间构象性结构,其刺激机体产生B细胞介导的体液免疫应答,并产生效应分子(抗体)和效应细胞。线性B细胞表位是由抗原分子表面肽链上连续的氨基酸残基构成的序列。B细胞表位预测研究主要还是以线性B细胞表位预测为主,目前已有较多关于线性B细胞表位的数据库和预测算法、软件。

1 抗原表位

抗原表位[2],又称抗原决定簇(antigenic determinant,AD)指抗原分子中决定抗原特异性的特殊化学基团。抗原通过抗原表位与相应的淋巴细胞表面的抗原受体结合,从而激活淋巴细胞,引起免疫应答;抗原也借表位与相应抗体或致敏淋巴细胞发生特异性结合而发挥免疫效应。抗原表位的性质、数目和空间构型决定抗原的特异性。抗原表位是免疫原抗原性的物质基础,开展对抗原表位的研究将对病原的诊断以及分子疫苗的设计等具有重要的意义。

2 线性B细胞表位筛选方法

B细胞表位[3]是抗原中可被B细胞抗原受体(BCR)或抗体特异性识别并结合的线性片段或空间构象性结构,其刺激机体产生B细胞介导的体液免疫应答,并产生效应分子(抗体)和效应细胞。在免疫学中认为,表位才是抗原刺激机体免疫系统产生特异性免疫应答的真正部位。B细胞表位预测是表位预测的一个重要组成部分,大多数的研究是针对线性B细胞表位预测,通过组合抗原蛋白物理化学性质、结构性质、统计显著性度量等特征属性进行表位预测,并取得一定的研究成果。

2.1 基于递归神经网络的线性B细胞表位预测服务器[4]

在多肽疫苗的开发中B细胞表位起到了至关重要的作用,在疾病的诊断中,也可用于过敏研究。标准的前馈(FNN)和递归神经网络(RNN)有被用在本研究中,用于预测抗原序列中的B细胞表位。网络已经被训练和测试,在一个完整的数据集中,由700个非冗余的B细胞表位来自于Bcipep数据库和同等数量的非表位来自于SWISS-PROT数据库。该网络已经训练和测试在不同的输入窗口长度和隐结点中。最大精度已使用递归神经网络具有单隐层的35个隐藏的单位窗口长度为16。当测试在五倍折交叉验证时,最终的网络产生准确度为65.93%。相应的敏感性,特异性和阳性预测值为67.14,64.71,和65.61%。在以往的研究中RNN比FNN在B细胞表位的预测中效果更好。该肽的长度也是重要的在预用词从抗原序列的B细胞表位。

2.2 基于氨基酸对抗原规模的线性B细胞表位预测[5]

在生物信息学中蛋白抗原位点的鉴定是至关重要的,开发的合成肽疫苗,免疫诊断测试的距离和抗体的产生。目前,大多数的预测算法倾向于使用氨基酸滑动窗口方法。这些方法过于简单,并在实践中产生不良的预测结果。提出了一种新颖的规模,称为氨基酸对抗原(AAP)规模,基于这一发现,更加有利于B细胞表位预测。它表明,使用SVM(支持向量机)分类,AAP抗原尺度方法具有更好的性能比现有单个氨基酸倾向尺度。AAP抗原规模可以反映一些特殊的序列在B细胞表位特征中,它的本质是为什么新的方法是优于现有的。可以预料与已知的抗原表位的数据,氨基酸对抗原规模的做法将进一步增强。

2.3 基于内核字符串线性B细胞表位预测[6]

B细胞表位的鉴定和表征在疫苗设计中扮演重要的角色,免疫诊断测试,并产生抗体。因此,可靠的计算工具预测线性B细胞表位是非常可取的。评估的支持向量机(SVM)利用五个不同的内核上五倍使用交叉验证的方法分类培训同源减少701线性B细胞表位,从Bcipep数据库中提取的数据,和701非抗原表位,随机抽取从SwissProt数据库序列。根据我们的结果计算实验中,我们提出BCPred,线性B细胞表位预测的新方法使用序列内核。我们表明,预测性能BCPred(AUC=0.758)优于11基于SVM分类器的开发和评估,以及在我们的实验中,我们执行的AAP(AUC=0.7),最近提出的一种方法,用于预测线性B细胞使用氨基酸对抗原的表位。此外,我们比较AAP和BCPred,ABCPred 独特的B细胞表位,使用递归神经网络的方法,该方法为使用两个数据集先前已用于评估ABCPred的。使用和分析的数据集的结果这个比较表明,不同的B细胞表位的相对性能的结论预测方法的基础上得出的实验中使用的数据集的独特的B细胞表位的可能产生的性能评估方法的估计过于乐观。这认为使用精心同源性减小数据集的B细胞表位的预测方法进行比较,以避免有关如何不同的方法的误导性的结论相互比较。同源精简数据组和BCPred实现以及APP的方法是公开的。

2.4 基于一种新系统的线性B细胞表位预测[7]

在几十年的研究中尽管具有挑战性的任务,B细胞抗原表位的准确的预测仍然是在计算免疫学中。只有10%的已知B细胞表位的估计是连续的,但他们往往却是目标预测,因为解决三级结构是必需的,它们是不可或缺的肽疫苗和治疗蛋白质工程的发展。在这篇文章中,提出COBEpro,新的两步预测连续B细胞系统抗原表位。COBEpro是能够分配表位pensity分数两个独立的肽片段抗原序列内的残留物。COBEpro首先使用支持向量机进行预测在查询抗原序列和肽片段,然后计算表位的倾向得分为每个基于片段的预测的残余物。次要结构和溶剂辅助功能信息(无论是预测或准确)可以被纳入到提高性能。COBEpro实现了交叉验证受试者工作特征曲线(AUC)下teristic高达0.829片段上抗原决定基的倾向得分任务的AUC为0.628残余物外延主题倾向得分任务。

3 用于线性B细胞表位预测工具建立与评价的数据库

免疫信息学[8]数据库是随着生物信息学和免疫基因组学的不断进步而逐渐发展起来的,是专门收录免疫学相关分子信息,实现数据存储、查询、分析,计算等功能的数据库。最初,与免疫相关的多肽序列、抗原分子等信息与其他生物数据一起,被收录在各类生物信息学数据库中,随着免疫学研究的发展,人们对免疫学相关分子信息的需求越来越迫切,需要单独对这些数据进行计算、分析和预测,一些研究机构开始尝试从生物信息学基础数据库中提取免疫相关的生物数据,开发集存储、查询、计算、预测以及绘图分析功能为一体的免疫学数据库。目前,网络上的免疫信息学数据库已达数十个,它们的规模大小不一,内容与侧重点也不尽相同,其中的大部分数据来源于GenBank、EBI、EMBL,供研究人员免费使用。

3.1 Bcipep:B细胞表位数据库

Bcipep[9]是各种免疫原性B细胞表位数据库,目前Bcipep数据库包含3031个条目,其中包括763免疫显性,1797免疫原性和471空的免疫原性的抗原表位,每条记录包含多肽序列、源蛋白、病原体、免疫原性、中和性、模式生物、实验方法、参考文献、抗原结构等信息,它涵盖范围广泛,如病毒、细菌、原生动物、真菌。该数据库提供了一组工具,用于分析和提取的数据,其中包括关键字搜索,肽谱分析和BLAST搜索。Bcipep称为一个完整B细胞表位数据库,已经开发了一个覆盖广泛的病原体的抗原决定簇的信息。该数据库有助于B细胞表位预测方法的研究、合成肽疫苗的设计和疾病的诊断。

4 结束语

显而易见,线性B细胞表位预测现状与人们理想预期还存在很大的差距,利用软件预测线性B细胞表位并不完全准确,还需要实验的进一步验证。为了研发更准确的预测工具,需要建立高质量的训练数据集和检验数据集,数据集的质量高低与预测工具的预测能力密切联系;另外,统一评价体系也是目前急待解决的问题。评价体系的标准化,既有助于软件开发者采用最有效的算法创建更准确的工具,又方便了使用者对工具的筛选和评价。统一评价体系首先要面临的问题是所有数据格式的统一,有了一致的数据格式,才能进行比较。在表位预测领域尚缺乏高质量的标准数据集,针对标准的数据集开发自动评价工具将是未来的发展方向。相信随着生物信息学的快速发展,线性B细胞表位计算机预测技术将会越来越成熟。

参考文献:

[1]Peters B,Sidney J, Bourne P, et al.The design and implementation of the immune epitope database and analysis resource[J].Immunogenetics,2005,57(5):326-336.

[2]吴敏毓,刘恭植.医学免疫学:第四版[M].北京:中国科学技术大学出版社,2002:1-2.

[3]吕凤林,朱锡华.人C5aR(CD88)序列结构分析及其B细胞表位预测[J].免疫学杂志,1998,14(3):153-156.

[4]Saha S,Raghava GP (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins.65:40-48.

[5] Chen J,Liu H,Yang J,Chou KC (2007) Prediction of linear B-cell epitopes using amino acid pair antigenicity scale.Amino Acids 33:423-428.

[6]El-Manzalawy Y,Dobbs D, Honavar V (2008) Predicting linear B-cell epitopesusing string kernels.J Mol Recognit 21:243-255.

[7]Sweredoski MJ,Baldi P (2009) COBEpro: a novel system for predictingcontinuous B-cell epitopes.Protein Eng Des Sel 22:113-120.

[8]Walsh R, Locarnini S. Hepatitis B precore protein: pathogenic potential and therapeutic promise[J].Yonsei Med J,2012,53(5):875-85.

[9]Saha S, Bhasin M, Raghava GP (2005) Bcipep:a database of B-cell epitopes.BMC Genomics 6:79.

[10]Roseman AM, Berriman JA., Wynne SA., et al. A structural model for maturation of the hepatitis B virus core[J]. Proc Natl Acad Sci USA, 2005,102(44):15821-6.

[11]Yasser EL-Manzalawy, Vasant Honavar. Recent advances in B-cell epitope prediction methods[J]. Immunome Res,2010,6(Suppl 2):S2.

[12]Roggen EL. B-cell epitope engineering: A matter of recognizing protein features and motives[J].DDT:Technol,2008,5(2-3):e49-55.

[13]冯新港.免疫信息学原理及其应用[M].上海:上海科学技术出版社,2009,6:1-5.

[14]Alix,A. (1999) Vaccine,18,311-314 (314).

篇8

新医改以来,卫生信息化建设速度加快与人才储备不足的问题日益凸显,而长期以来,由于我国卫生信息化投入的不足和医院等卫生机构对处于边缘化的信息部门不够重视,更遏制了卫生信息化人才的培养和医学信息学学科的发展。人才短缺,已经成为全国横在医改面前的一道难题。

用人单位面对人才短缺的困惑与解决办法

其实无论是甲方还是乙方,也无论是基层医疗卫生机构还是各级卫生主管部门,都普遍存在医学信息学人才捉襟见肘的局面。远在经济落后的西部医院,近在一线城市中的三甲医院,医疗卫生信息化的发展还在严重依赖供应商。而作为医疗IT软件供应商的乙方,也同样存在招不到交叉型人才的困惑。

在笔者采访过程中,记忆深刻的是一次走访医院,一位不愿透露姓名的部门主管向笔者“诉苦”:“说实话,以前的信息科就是领导随意安排岗位的部门。因为信息科在医院长期处于一个服务部门的地位,作为一个边缘化的部门,从来没有被重视过,仕途上也不吸引人。”正因为信息部门是一个辅助部门,而非战略管理和规划部门,即使现在的卫生信息化建设把信息部门的地位提升了起来,其还是处在上没有顶层设计、下没有人才引进的尴尬境地。

作为研发医疗信息产品的供应商,同样存在招不到合适员工的困惑。银江股份有限公司COO,医疗事业部总经理裘加林告诉记者,现在的厂商之所以将医疗软件做成一个工程,是因为医院业务和流程的复杂性与不可复制性。而厂商所拥有的人才大部分是计算机专业的IT人才,在对医院业务一点儿都不了解的情况下去做的产品,何谈标准!因此医疗IT厂商只能“八仙过海,各显神通”,有的聘用学习临床医学的本科或研究生;有的从医院高薪挖来专家教授;有的建立自己的培训机制,似乎只有这样才能弥补IT对医疗认识的不足,才能贴合医院的需求来生产产品。“一方面我们自己有很多做信息化做了很长时间的IT设计人员。第二,我们有很多医院顾问,他们是把握方向的人。就像是船长和水手的关系,懂行的人来把握方向,不懂行的人按照懂行人的建议来设计。”裘加林说,这也是企业中最常见的将医疗与IT结合的方式。

在基层医疗机构,人才不足的现象则更为严重。时任山西省安塞县副县长的赵燕曾经在采访时解答乡村卫生信息化人才的培养问题。当时,作为国际IT企业英特尔参与支持革命老区医疗信息化建设项目,并为基层医疗组织提供电脑操作、教程课件等方面的培训。赵副县长说:“我们自己要造血才是根本,不能光靠人家输血。先培训我们已有的部分员工,首先把我们这些员工培训得会管理了,会操作了,让我们这些人再下去培训村医,只能用这种办法。”确实如此,医疗卫生信息化是比较复杂的系统工程,需要比较专业的人才,作为第三方培训力量不可能长期为基层提供人才支持。但项目总要持续发展下去,这个时候,自身的“造血”功能便显得尤为重要了。

回归卫生信息化人才的话题,我们发现,当下最缺乏的是既了解医疗需求又掌握IT设计的复合型的交叉人才。从现在社会上存在的人才现状来看,可以说企业做出了不小的贡献,因为现在的医疗IT厂商变成了一个人才的大熔炉,不但提品,还培养人才。企业做了本该是教育来做的事情,这对我们的教育界来讲又是个不小的压力。

人才的培育不能离开教育

人才的培养必然不能离开教育,现在我国卫生信息化人才的短缺,很大一部分原因是由于教育没有配套造成的。在国外,医学信息学已经成为一个独立的学科,有30年的积淀,但它仍然在发展,每一个领域都有其主要的研究内容,内部已经有很严谨的知识体系。现在很明确的是,医学信息学的发展必将成为医疗卫生建设的重要组成部分,并为医疗改革提供实际的建议和指导。在我国,医学信息学的发展仍然面临很多问题。

1. 公众对医学信息学的理解仍然不够

现在,仍然有很多人不知道医学信息学到底是怎样的一门学科。有人认为它仅仅是一个工具,有人认为它是一项技术或是一个软件。“真正意义上的医学信息学是一门交叉学科,其分支学科临床信息学指信息技术在医院管理、医院临床包括信息管理中的应用。但在完整的学科体系里,医学信息学是涵盖生物信息学、图像信息学、临床信息学、公共卫生信息学这几个领域的。”北京大学医学信息学中心常务副主任雷健波说。

应用在临床诊疗、医院管理方面应该就叫做临床信息学;应用在设备、信号获取、信息处理及图像方面可以归到图像信息学;而生物方面、蛋白质翻译转录、通过计算机来模拟生物过程,通过信息学的方式来研究其规律,可以归结到生物信息学范畴。

其实,医学信息学就是一门交叉学科,不可以说它绝对属于或不属于某个领域。比如数字人体等研究,这项技术原属于解剖学,但经过数字化的三维重建,将一个传统的研究方式导入到信息技术中,那么这个学科就已经涵盖到医学信息学里面。计算机辅助手术,辅助治疗等技术,都是很典型的临床信息学研究的内容。

2. 学科没有独立,高度不够

为什么医学信息学要成为一门独立的学科呢?这是因为医学信息学所涵盖的这几个方面都是有内在联系的,它有很多的方法和技术是可以相互借鉴,很多IT技术可以相互促进,所以才整合成一个大的医学信息学,一门独立的学科。

我们可以看到,在近年来随着医疗卫生信息化的发展,很多卫生信息化人才的培养方式都在慢慢起步和发展。不同的是,高校、高职专科乃至社会培训机构所采用的方式不尽相同,尽管我们每个人都在做这件事,但鲜有人站在学科建设的高度去做这项事业。

现在很多高校的做法是将“医学信息学”挂靠在别的一级学科下,这就存在很多问题,一方面“医学信息学”专业尚属目录外专业, 设置该专业的院校屈指可数, 能否在教育部新一轮的专业论证和目录调整中确立应有的专业位置和学科归属还是一个未知数。另一方面,对专业的定义不同也会导致学生培养方向的不同,培养出来的人才是否符合社会需求还有待时间来考证。

在国外,都是先把医学信息学这个学科体系建立起来,然后在学科的高度下来做研究,这样才更有利于培养系统化、专业化的人才,才有利于进行更有价值的科研。

3. 师资力量不够

如果说学科建立是战略性的,那么医学信息学教师队伍不专业,专业教材不系统,专业培养模式等等则属于战术性的混乱。这也从很大的程度上造成了现阶段培养不力的尴尬局面。由于医学信息学教育在我国起步较晚,师资力量薄弱的问题不容忽视。现阶段应实实在在地建设和规划好教材体系,学科体系和教学体系,没有实实在在的知识把医学信息学的理论体系支撑起来,整个的学科构架就不能实现。

我们应该怎么去做

面对如此多的问题,想在朝夕之间得到解决问题的办法是不可能的。我们关注的不是一蹴而就的解决方式,而是一个水到渠成的,从思想上的转变。

1. 用三个标准衡量,培养专业化人才

中国医科大学计算机中心主任王世伟教授说:“我在给学生讲课的时候,也提到这个问题。我问同学们将来学什么?大家都说‘学医学,学技术’。其实这个标准已经不全面了。联合国对全世界的医学院校的学生有一个标准,来评价医学院学生的核心能力――一是信息技术处理能力,二是与人沟通的能力,三是批判性思维。这三个是一个核心,缺少任何一条都不行。”

可以看到,联合国这个标准的核心并不是我们一贯强调的医疗技术。怎么理解呢?在信息化社会,对学生的核心能力评价已经逐渐由过硬的技术转变为更灵活的信息处理能力。广东省在十一五期间做了一个医学院校的毕业生就业率调查,调查发现,具备了相当的IT知识和信息化处理能力的学生就业率最高。这说明信息化处理能力已经成为整个国家的共识。

王世伟认为,医生要有真正的批判性思维,才能当一个好医生。恰恰我们中国很多医学院的学生在这一点上很欠缺,我们学的知识很死,靠背,靠高分。医生不能完全凭经验,就算治好了100个病人,也不能用同样的治疗方法去对待第101个病人。所以医生要大胆得否定自己,同时要借助网络化的技术来共享经验。要记住――共享的不只是自己的经验,而是全国乃至全世界的经验。

2. 认清发展机遇

从我国的国情来说,新一轮的医改方案明确提出要建立高效统一、系统整合、互联互通和实用共享的医药卫生系统,这是新医改的重要支撑,为我国医学信息学的发展提供了历史性的机遇。

推荐期刊