欢迎访问爱发表,线上期刊服务咨询

电力电子技术应用8篇

时间:2023-12-19 10:27:03

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇电力电子技术应用,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

电力电子技术应用

篇1

关键词:电力电子技术应用;自动化;智能化

中图分类号:G718文献标识码:B文章编号:1672-1578(2013)10-0002-01

1.电力电子技术的发展

1.1电力电子技术的发展阶段。电力电子器件的发展分为两个阶段,一是传统电力电子器件,它是以电力二极管和晶闸管(SCR)为代表的第一代电力电子器件,自 1957 年生产第一只晶闸管以来,它以其体积小、功率低等优势首先在大功率整流电路中迅速取代了老式的汞弧整流器,并衍生出快速晶闸管、逆导晶闸管、双向晶闸管、不对称晶闸管等多种品种。它立足于分立元件结构,工作频率难以提高,大大限制了它的应用范围,但是因为它价格低廉,所以在大电流、高电压的发展空间依旧很多,目前以晶闸管为核心的设备在许多场合仍然被广泛使用。二是现代电力电子器件,它是将微电子技术和电力电子技术相结合,研制出的一种全新的高频、全控型器件。现代电力电子器件的主要产品有功率晶闸管、可关断晶闸管、功率场控晶体管、绝缘栅双极晶体管、MOS 门极晶闸管等。这些产品当中,由于绝缘栅双极晶体管和 MOS 门极晶闸管两个为场控复合器件,所以也成为了最有发展前途的两种[2]。

1.2电力电子技术的发展方向。未来电力电子器件可能在以下几个方面发展 :(1)大容量化。利用微电子技术,提高单个器件的电压、电流容量,从而达到满足高压大电流的需要 ;(2)易驱动。由电流驱动发展为电压驱动,大力发展复合器件,还可专门研制专用集成模块,以便更适合中小功率的控制 ;(3)模块化。采用新技术和新工艺,将几个电力电子器件集中到一起,不仅缩小其体积减少连线,同时还可减低企业的生产成本 ;(4)功率集成化。充分利用集成电路工艺,将集成电路的功能与电力电子器件集成于一块芯片,实现集成电路功率化和功率器件集成化,并逐步向智能化方向发展 ;(5)降低导通压降。研制出比二极管压降还低的器件来提高交流效率、节省电能。

2.电力电子技术的应用

2.1工业领域中的应用。工业领域中,交直流电动机的应用十分普遍,如大型鼓风机、数控机床伺服电机等。当前,在大量冶金工业中,电力电子技术也被广泛应用于直流电弧炉电源、淬火电源、中高频感应加热电源中。同时,在水电厂的蓄能机组中,应用现代电力电子技术科对大型机组工作状态、调速作出改变。此外,工业领域的有很多高温场合,而在高温环境下,电力电子装置的应用有着十分严格的散热要求。然而随着电力电子器件频率不断提高、容量不断增加,器件发热问题就凸显出来,尤其是在一些高温应用场合,如散热措施不适当,就很有可能造成器件温度超过所允许的最高温[1]。结合高工作温度、大容量的应用场合,提出了液态冷却,其相比于气体冷却和油冷,可提高两个数量级的导热系数。通过实践表明,该水冷装置的故障率很低,且具有体积小、冷却效率高、无污染等显著优势。可以说,该装置在工业领域的应用推广,为电力电子技术的应用提供了基础保障,从而使器件潜力得到充分发挥。

2.2电力电子技术在电力系统中的应用。电力电子技术在电力系统通向现代化进程的道路上有着不可磨灭的功劳,我们都知道,在高电压输电的工程中,由电厂发出电之后,把电流通过变压器进行变电之后再输送,这样做的目的是因为在电流一定的情况下,电压越高电流也就越小,在输送的过程中损耗也就越小,可以节省大量的电流,因为电力电子技术的变流特性,尤其是在特高压的输送技术发展中,利用电力电子技术,将直流输送电端的整流和受端电流都应用了晶闸管变流装置,这就在一定程度上解决了长距离、大容量的输送电流导致的电流损耗过大的问题,这一举措为中国的电力行业做出了极大的贡献,使中国电力系统迈出了至关重要的一步。同时在同步发电机励磁系统和交流电动机的变频调速以及新能源发电和智能电网的应用等方面也得到了广泛应用。

2.3电气节能的应用。节能已经成为了当前社会发展的必然趋势,因为电在人们日常生活中的重要作用,因此电气节能也就显得尤为重要。电气节能目前主要包括变频节能、电能质量控制、有源滤波等三个方面,在当前阶段,变频节能在这三个方面中又是重要的一点,人们所熟知的变频冰箱、变频空调等,它们已经开始为人们的生活提供服务。在未来的发展时期中,电机变频调速行业还要进行快速的发展,这主要是因为它的以下三个重要发展因素 :一是因为变频器产品越来越成熟,而且应用广泛,现代电器产品都开始进入变频时代,又由于它的技术越来越新,企业投资产品的成本也越来越低,这就更为变频器产品的发展和应用提供了绝好的机会。二是因为变频调速节能非常明显的效果,为社会提供了广泛的效益,也为企业提供了较高的利益,所以越来越多的企业对变频调速节能产生了兴趣。三是国家也开始在这方面出台一些措施,对重点耗能企业进行严格控制,鼓励督促他们发展电气节能,不仅可以降低企业能源的消耗,同时也减少了资源浪费,为社会创造了巨大财富。

2.4交通运输中的应用。电力电子技术在电气化铁道中有着广泛应用,整流装置被应用于直流机车中,交流机中应用变频装置。同时,铁道车辆中,直流斩波器的应用也十分广泛,在磁悬浮列车的未来发展中,电力电子技术扮演者重要角色。除电机的牵引转动外,各种车辆辅助电源同电力电子技术也密不可分,电动汽车电机的驱动与交换就是凭借电力电子装置来实现的,且在蓄电池充电过程,也需要电力电子装置的参与来完成。船舶、飞机均需要很多电源,且有着不同要求,故它们同电力电子技术难以分割。而如果将电梯也视作交通运输的话,且也需要电力电子技术的参与,以往,直流调速系统在电梯中普遍应用,而近年来,电梯中应用方式也主要集中在交流变频调速[3]。

2.5电力电子技术在家用电器中的应用。电力电子技术在家用电器中的应用我们都深有感触,如日常生活中应用到的"节能灯",就是电力电子技术发展的直接产物,它以其体积小、发光率高等的绝对优势已经取代传统的白炽灯和日光灯。同时变频空调、变频冰箱、电视机、音响设备、计算机等电子设备也是利用电力电子产品,它们已经进入到了我们的日常生活中,并为我们生活质量的提高做出了巨大的贡献。

3.总结

电力电子器件从开始的单一功率整流管与晶闸管发展到现今的现代电力电子器件,尤其是绝缘栅双极晶体管(IGBI)与 MOS 门极晶闸管(MCT)的出现,摆脱了传统电力电子器件的一些弊端,使电力电子技术进入了一个全新的发展时代,在未来的发展过程中,人们对电子产品要求越来越高的明天,电力电子器件还会得到进一步的发展,电力电子技术也将会给人们的生活带来越来越无法想象的精彩。且我们有理由相信,在不远的将来,电力电子技术必将取得更好地发展和应用,促使电源技术更加实用、经济、成熟,从而实现高品质、高效率的用电。

参考文献

[1]刘永军。 浅谈电力电子技术在电力系统中的应用[J]。 黑龙江科技信息,2013,(16)。

篇2

 

引言:现代电力电子技术是以高新技术知识为基础的一种知识密集型技术综合,是强弱电相结合的新学科,一方面它是电子学在高电压、大电流等强电或电工领域的一个分支,另一方面它也是电工学在低电压、大电流等电流弱电或电子领域的一个分支。当前,电力电子技术与微电子技术的结合已成为当今技术发展的主流电力电子技术的应用,贯穿在电能的获取、传输、变换和利用的几乎每个环节,使用电效率、节能效益、供电质量大大提高。电力电子技术的应用在电气自动化中发挥越来越重要的作用,为电能的产生和利用搭起了桥梁,为电能的输出、应用提供了更好的方式和平台,从根本上提高了电能的应用效率。

 

一、电力电子技术的特点

 

电力电子技术是以功率和变换为主要对象的现代工业电子技术,当代工、农业等各个领域都离不开电能,离不开表征电能的电压、电流、频率、波形和相位等基本参 数的控制和转换,而电力电子技术可以对这些参数进行精确的控制和高效的处理,所以电子技术是实现电气工程现代化的重要基础。电力电子技术应用范围十分广泛,国防、工业、交通运输、能源、通信系统、电力系统、计算机系统、新能源系统以及家用电器等无不渗透着电力电子技术的成果。因而,电力电子技术的发展是以电力电子器件为核心,并伴随着变换技术和控制技术的发展而发展的。

 

二、电力电子技术的发展

 

现代电力应用电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。

 

1、整流器时代

 

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,大功率硅整流管和晶闸管的开发与应用得以很大发展。

 

2、逆变器时代

 

变频调速的关键技术是将直流电逆变为0~100Hz的交流电。随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

 

3、变频器时代

 

当前,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率 M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

 

三、电力电子技术的应用

 

1、电力电子技术在电力系统中的应用

 

将电力电子技术引人电力系统并获得广泛应用的领域,首推应是同步发电机励磁系统,这种励磁系统由于动作迅速,容易设计出高顶值电压,并且控制功率小,另一领域是交流电动机的变频调速,它的应用,节约了可观的电能 近年来,国外还研究将电力电子技术引入抽水蓄能电站,以提高水泵水轮机的效率。并已取得成果在电力系统的发电、输电和配电环节中都离不开电力电子器件和电力电子技术。电力系统的发电环节涉及发电机组的多种设备,电力电子技术的应用极大地改善这些设备的运行特性。

 

2、电力电子技术在工业中的应用

 

在工业中大量应用交直流电动机进行电力拖动,直流电动机有良好的调速性能,给其供电的可控整流电源或直流斩波电源都是电力电子装置。近年来电力电子变频技术的迅速发展,使交流电机的调速性能可与直流电机媲美,交流调速技术大量应用并占据主导地位。电化学工业大量使用直流电源,电解铝、电解食盐水等都需要大容量整流电源。电力电子技术还大量用于冶金工业中的高频或中频感应加热电源、淬火电源及直流电弧炉电源等场合。

 

3、在交通运输上的应用

 

电气化铁道中广泛采用电力电子技术。电气机车中的直流机车中采用整流装置,交流机车采用变频装置。直流斩波器也广泛用于铁道车辆。在未来的磁悬浮列车中,电力电子技术更是一项关键技术。除牵引电机传动外,车辆中的各种辅助电源也都离不开电力电子技术。电动汽车的电机靠电力电子装置进行电力变换和驱动控制,其蓄电池的充电也离不开电力电子装置。一台高级汽车中需要许多控制电机,它们也要靠变频器和斩波器驱动并控制。飞机、船舶需要很多不同要求的电源,因此航空和航海都离不开电力电子技术。如果把电梯也算做交通运输,那么它也需要电力电子技术。以前的电梯大都采用直流调速系统,而近年来交流变频调速已成为主流。

 

4、电力电子技术在家用电器中的应用

 

照明在家用电器中有十分突出的地位。由于电力电子照明电源体积小、发光效率高、可节省大量能源,通常被称为“节能灯”,正逐步取代传统的白炽灯和日光灯变频空调器是家用电器中应用电力电子技术的典型例子之一。电视机、音响设备、家用计算机等电子设备的电源部分也都需要电力电子技术。此外,有些洗衣机、电冰箱、微波炉等电器也应用了电力电子技术。电力电子技术广泛用于家用电器使得它和我们的生活变得十分贴近。

 

5、电子装置用电源

 

各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。

 

结语

 

电力电子技术正在不断发展,新材料、新结构器件的陆续诞生,计算机技术的进步为现代控制技术的实际应用提供了有力的支持,在各行各业中的应用越来越广泛,从人类对宇宙和大自然的探索,到同民经济的各个领域,再到我们的衣食住行,到处都能感受到电力电子技术的存在和巨大魅力。

篇3

【关键词】电力系统 开关电源 不间断电源

一、电力电子技术的发展

1957年美国通用电气公司研制出了第一个晶闸管,标志着电力电子技术的诞生。而1958年以集成电路的诞生为标志的微电子技术带动了一系列高新技术产业的发展,标志着第一次电子技术革命的开始。现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子器件按照能被控制电路信号所控制的程度分为不可控器件、半控型器件和全控型器件。不可控器件主要指电力二极管、该二极管虽不可控,可因为结构简单,使用方便成本低,仍被广泛应用。半控型器件主要指晶闸管,由它所组成的电路灵活成熟、开关损耗小、开关时间短,在电源、通用逆变器、电机控制等电路中应用广泛。但驱动电流大、耐浪涌电流能力差、容易受二次击穿。以电子技术和微电子技术的发展为背景,全控型器件是在八十年代末期和九十年代初期发展起来了,主要有电力晶体管(GTR)、电力场效应晶体管(电力MOSFET)、绝缘栅双极晶体管(IGBT)。其特点是集高频、高压和大电流于一身,是大型的功率半导体复合器件,全控型器件的诞生表明传统电力电子技术已经进入现代电力电子时代。

二、现代电力电子的应用领域

(一)电力系统及节能方面

电力电子技术在电力系统领域中的应用着非常广泛和重要,在发电通过改变设备的运行特性为主要目的;而电子技术在高压输电领域的应用,极大的提高了电网运行的稳定性,被称为“硅片引起的第”;在配电领域,则通过电力电子装置来防止电网瞬间停电、瞬间电压跌落、闪变等,以进行电能质量控制,加强供电可靠性,改善供电质量。同时还通过减少无功损耗,提高功率指数,来达到节能的目的。在发达国家有60%以上的电能至少经过一次以上的电力电子变流装置进行处理。通过这种处理可以节约能源和提高用电设备的性能。直流输电在长距离、大容量输电中有很大的优势,其送电端的整流阀和受电端的逆变阀都使用晶闸管变流装置。

(二)交通运输

电子技术在铁路运输、船舶、航天、电动汽车等行业都有广泛的应用,称为新兴产业不可缺少的重要技术。新型环保绿色电动汽车与混合动力电动汽车都正在积极的发展中。汽车是靠汽油引擎的运行发展起来的一种机械,它排出大量的二氧化碳与其他废气,严重污染了环境。而绿色电动汽车的电机用蓄电池为能源,靠电力电子装置来进行电力变换与驱动控制,其蓄电池的充电也是离不开电力电子技术的。显然,未来电动汽车大有可能取代燃油汽车。。而在电气机车中的直流机车就是采用整流装置来供电的,而交流机车则采用变频装置来供电,都离不开电子技术的应用,直流折波器和铁道车辆、磁悬浮列车中的电力电子技术更是关键技术的应用实例。船舶、飞机也需要各种不同要求的电源,所以航海、航空都离不开电力电子技术。

(三)开关电源

首先高速发展的计算机技术在带领人类进入了信息社会的同时,也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进入了电子、电器设备领域。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源。随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广泛的发展空间。高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。开关电源的发展方向是高频、高可靠、低耗、低噪声、抗干扰和模块化,关键技术是高频化。由于开关电源轻、小、薄的特点,其应用日益广泛。现在开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防监控,LED灯袋,电脑机箱,数码产品和仪器类等领域。

(四)不间断电源(UPS)

电子技术带给计算机领域的还有不间断电源技术。所谓不间断电源(UPS)是指计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

三、总结

90年代以后,电子技术朝着大功率化、模块化、变频化和智能化发展。电化学专业、铁道电气车、钢铁工业、电力工业的迅速发展给电力电子器件提供了用武之地。通过电子技术和微电子技术的结合,促成了功率集成电路的诞生,最终促使了大量新结构、新材料器件等电子器件的诞生和发展,给工业、航天等带来了极大的帮助和便利,对节约能源、改造传统产业、发展新型产业作出了巨大的贡献。总而言之,电力电子因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。

参考文献:

[1]周明宝.电力电子技术[M].北京:机制工业出版社,1985.

[2]陈国呈,周勤利.变频技术研究[J].上海大学自动化学院学报,1995(6):23-26.

[3]王正元.面向新世纪的电力电子技术电源技术应用,2001

篇4

1.1电力电子技术在发电过程的应用

在我国发电厂中,发电多是静止励磁系统。使用过程中,励磁机繁重且耗能巨大,电力电子技术的发展便可大大缓解这个问题,可以代替励磁机中的励磁环节,使发电过程变得更便捷且耗能少,易操作,方便控制。同时,电力电子技术在变频控制上同样起到很大作用。发电厂中发出的电能频率多为波动的,而民用的交流电频率要在220V为峰值进行使用,传统的变压方式多为变电站的中转,而电力电子技术可以简化这个环节,使电流更适合民用电的使用。电力电子技术在发电过程中的优势对一些新能源发电同样适用,如广泛使用的风力发电、水利发电等,都离不开电力电子技术来正常运行。

1.2电力电子技术在电力传输过程中的应用

电力电子技术在传输线路上的应用有很多,其中主要以柔流电技术、高压直流电技术以及静止无功补偿器技术上,以线路传输过程中的高压直流电技术为例,说明在电力传输过程中电力电子技术的重要作用。在没有这种技术的时候,对于高压直流电的传送,在传送过程中需加有若干变压器来完成,这不仅增加了传送电过程中的成本,还使工作的程序变得复杂,而电力电子技术的广泛使用,尤其是晶管换流阀在高压直流电传送过程中的使用,使电压变得可以自动化控制,节约成本,减少了传送过程中的工序,而且准确性、安全性和可控性都比传统的传送方法高得多。

1.3电力电子技术在电力使用过程中的应用

电力电子技术不仅能在电力产生、传送过程中有广泛的应用,还能保证在使用过程中带给使用者的便捷。回想我们家中的电力配备,保证安全的是一个全自动的电表,其实在这其中便应用到电力电子技术,它可以增强对电流、电压的可控性,自动感应到电力的强度,进行调控,保证了家庭用电的安全性。同时,在一些大型工厂、单位等,用电量较大,对电力的稳定性要求很高,配有电力电子技术可以使在配电过程中,电流变得更加稳定,避免各种不稳定的波动带来的不良影响。

2电力电子技术对于电力系统的其他应用

2.1节约能源

通过电力电子技术的应用,可以对电能进行综合处理,使电能能够最大限度的发挥出来,并且能够应用得更加合理、高效,真正做到节约能源。例如,在一些造纸厂、冶炼厂等,可以根据工厂的性质和对电能的具体需求,利用电力电子技术,能够将电能自动化的进行合理的分配,使耗电量大、功率大的场所能够达到要求,而对于一些对电量要求不大的地方可以适当的进行节省。据调查显示,2000年的大型工厂的节电量相当于1990年发电的15%,截止到今年,全国又将14个项目列入节电推广项目中,可见,电力电子技术在资源的节约中起到了很大的作用。

2.2改善传统机械设备

篇5

摘要:随着经济的快速发展和社会的全面进步,我国的能源供应和环境污染越来越突出。一般估计,地球上的石油还可供人类开采40年~50年 ,煤炭约200年。我国的石油剩余开采量仅有全球人均的1/10,煤炭仅有1/2。火力发电,燃烧大量煤炭,排放SO2和CO2,汽车尾气也是城市空气污染的首要因素。新能源的开发与利用迫在眉睫,而在新能源的利用中,电力电子技术扮演者重要的角色。

关键词:电力电子技术;新能源;开发;利用

一、风力发电

风能是洁净的,可再生的,储量很大的低碳能源,为了缓解能源危机和供电压力,改善生存环境,在20世纪70年代中叶以后受到重视和开发利用。风力发电是可再生能源领域中除水能外,技术最成熟、最具规模开发条件和商业化发展前景的发电方式之一。目前我国主要的能源是火力发电、水力发电、核能,风力发电的成本比核电要低。风力发电相对于太阳能、生物质能等其它可再生能源技术更为成熟、成本更低、对环境破坏更小。在过去20多年里, 风力发电技术不断取得突破, 规模经济性日益明显。随着风力发电技术的改进, 风力发电机组将越来越便宜和高效。增大风力发电机组的单机容量就减少基础设施的投入费用, 而且同样的装机容量需要更少数目的机组, 这也节约了成本。随着融成本的降低和开发商的经验丰富, 项目开发的成本也相应得到降低。风力发电机组可靠性的改进也减少了运行维护的平均成本。

国际能源专家预言: 21世纪是风力发电的世纪。可以说,绿色能源———风力发电将为人类最终解决能源问题带来新的希望。目前风力发电通常有三种运行方式:1.独立运行2.联合供电方式3.并网型风力发电运行方式,这是风力发电的主要运行方式。

风力发电系统示意图

大部分可再生能源和其他分布式发电系统产生的电能通常都是不稳定的,如果不加控制和调节,就会对电网造成严重的冲击,同时为了保证将尽可能多的有功能量送人电网,风力发电系统还必须有储能环节,并需解决存储能量再次转化的问题。上述这些过程都需要利用电力电子技术对其进行控制。

风能取之不竭,耗之不尽。合理利用风能,既可减少环境污染,又可减轻越来越大的能源短缺所造成的压力。发展风电有利于调整能源结构:电源结构中75%是燃煤火电,增加风电等洁电源。尤其在减少C02等温室气体排放,缓解全球气候变暖方面,风电是有效措施之一。发展风电是解决我国能源供应不足的有效途径之一。就社会效益来讲,开展风力发电技术的研究有助于解决我国乃至全世界范围内的能源短缺的问题。

二、太阳能发电

太阳能是取之不尽,用之不竭的能源。太阳能作为清洁的可再生能源,越来越受到人们的重视,应用领域也越来越广泛。中国的太阳能资源至少是风能资源的100倍,每年接收的太阳能是总消耗一次能源的600倍,据统计,我国2/3以上国土面积的年日照时间在2200h以上,年辐射总量在502万kJ/m2以上,为太阳能的利用创造了丰富的资源和有利条件。

目前太阳能在利用中,主要采用了三种技术:太阳能光电技术、太阳能光热技术和太阳能光伏发电技术。

太阳能光电技术是指利用太阳能电池将白天的太阳能转化为电能由蓄电池储存上在放电控制器的控制下释放出来,供室内照明和其他需要。目前占主流的太阳电池是硅太阳电池,它又分单晶硅太阳电池、多晶硅太阳电池(总称晶体硅太阳电池)和非晶硅太阳电池。整个光伏系统由太阳能电池、蓄电池、负载和控制器组成。

太阳能热发电技术就是利用光学系统聚集太阳辐射能,用以加热工质,生产高温蒸汽。驱动汽轮机组发电,简称光热发电技术。他与光伏发电相比,具有效率高、结构紧凑、运行成本低等优点。目前技术比较成熟且应用比较广泛的是蔬菜温室大棚、中药材和果脯干燥及太阳能热水器等。

将光能直接转换成电能的过程确切地说应叫光伏效应。不需要借助其它任何机械部件,光线中的能量被半导体器件的电子获得,于是就产生了电能。这种把光能转换成为电能的能量转换器,就是太阳能电池。太阳能电池也同晶体管一样,是由半导体组成的。它的主要材料是硅,也有一些其他合金。光伏发电系统分为独立光伏发电系统和并网光伏发电系统。完全依靠太阳电池供电的光伏系统,系统中太阳电池方阵受光照时发出的电力是唯一的能量来源。首先最简单的独立光伏系统是直联系统,发出的直流电力直接供给负载使用,中间没有储能设备,负载只在有光照时才能工作。这种系统有太阳能水泵、太阳能风帽、太阳能路灯等。并网光伏发电系统:太阳电池方阵发出的直流电力经过逆变器变换成交流电,且与电网并联并向电网输送电力的光伏发电系统。这类光伏系统发展很快,在20世纪末,并网光伏系统的用量就超过了独立光伏系统。并网光伏发电系统可分为两大类:光伏电站和户用并网光伏系统。

在光伏系统中太阳能电池、蓄电池、控制器,都离不开电力电子技术,在太阳能到电能的转换中,电力电子技术发挥着重要的作用。

篇6

关键词:电力电子技术;电力系统;应用研究

电对保障居民生活及工业生产具有重要作用,而基于实际情况,目前我国电力系统还存在一定不足,供电设施设备容易出现故障,不易维修,且出现故障后诊断存在一定困难,影响电力的有效供应。电力电子技术对电力系统的发展具有极大的保证作用。对于此,充分利用电力电子技术,加大其在电力系统中的应用对保证电力系统供电正常具有促进作用。

1当前电力系统运行所存在问题分析

电力系统的有效运行对保证居民生活及工业生产具有较大的作用,而基于目前实际情况,在现有工业化生产及居民用电中,常由于供电异常问题导致巨大的损失,影响颇为严重。具体来讲,目前电力系统供应中所主要存在的问题集中于以下几个方面:

1.1电力管理运行用电缺乏安全管理

电力作业属于运行用电作业属于特种作业,必须具有相关资质的人员上岗作业,并实施监护。但目前电力系统管理中,由于缺乏专业电气人员,电力工作人员由于缺乏专业水平,贸然作业必然引起违章作业,临时用电造成极大隐患。另,电力系统在运行管理中,对于出现的异常问题,相关人员不能及时对其处理并采取有效措施应对是主要问题,常导致引起较大的损失。

1.2接零保护重视度不足

目前,企业为减低成本及提高工作效率,对电力系统用电装置大多均未配置TN-S系统;且大多施工人员对用电安全认知程度不足,缺乏对接零保护的认识,常导致用电安全事故的发生。对于该类故障,其主要原因在于相关单位对电气安全保护不到位及缺乏有效防护措施的投资使用造成,实际应用中应引起主要及重视。

1.3不重视电气设备材料选型及质量

电力系统管理中不重视电气设备材料选型及质量,如各类电气元件选型不恰当及质量不合格,比如各类企业为节约成本及提高企业利润,忽视质量要求,对于部分产品,恶意降低规格及标准,常导致施工质量无法达标,无法满足实际使用要求。在这种情况下,一单生产过程中电流、电压及功率出现过载情况,容易导致电路发热等情况,激发电火花等,引发电气故障发生,造成生命及财产安全。

1.4临时用电管理不规范,存在任意搭接情况,存在安全隐患

在一些企业在实际生产中,临时搭接用电,不规范用电,常导致用电过程容易对电路造成过载等危险,影响电路系统运行正常及对企业造成由于电气故障所导致的经济损失。

2电力电子技术发展趋势分析

我国电力电子技术在这些年取得了较好的发展,且技术也有了显著提升。而对于其发展趋势,首先来讲,模块化及集成化是主要趋势,如对于电力电子技术,电源单元及功率器是主要组成部分,也是其核心所在,模块化及集成化的发展使得电气元件更加的紧凑,体积更小及能够与不同功能的器件实现有效配合,为电力系统的发展起到乐极大的技术支持。同时,现代电子电力技术朝低频向高频发展是必然趋势,以变压器来讲,其供应频率与变压器的容积、电感反应具有反比关系,而在电力器件体积逐渐减小的情况下,加速有低频向高频发展是必然的趋势,如可控制关断型电力电子器件的出现很好的反应了现代电子技术发展的趋势,也是主要方向。另外,电力电子技术朝全控化及数字化发展。如目前应用的关断型电器使用还存在一些风险,但电力电气技术的发展对该电器设备进行了有效改革,如自关断的全控性器件使用,有效弥补和避免了危险的发生,使得电力电子技术变革得以很好体现,表示这电力技术发展逐渐智能化及数字化,为该行业的发展带来了极大的前景。此外,电力电子技术的发展朝绿色化转变是主要趋势,如节能一直是我国所倡导并要求在实际生产中必须使用的技术,同时,也能为各使用单位带来显著的经济效益。而一直以来,电子设备以严重高次谐波额形式流入电网中,对电网造成了极大的污染,其结果将导致电网功率严重下降。而这些年,各电网滤波器等各电器元件的使用为电网有效运行带来了可能,极大推动了电网的有效运行。

3电力电子技术在电力系统中的应用分析

对于电力电子技术在电力系统中的应用,具体内容如下:电力电子技术在电源方面具有一定的应用价值。分别对一般电源及专用电源分别说明;一般电源在电力电子技术的应用下取得了一定的效果。如通过整流器转变,可使交流电转化为直流电。如现在电力技术中,利用电气电力元件,能够通过蓄电池作为备用电源对负载实现供能,不仅具有较好的降噪性,同时也使得电源有效性及可靠性得以充分保证。对于专用电源,高频逆变器的使用满足了高性能、大容量的要求,具有广阔的使用前景。现代电力电子技术在我们日常生活中应用也较为广泛,当前家用电器普遍应用现代电力电子技术,给我们的日常生活带来了较大的便利。许多电器都只需要按下按钮就能进行工作,而不需要人们亲自动手。同时,利用电子电力技术,结合数字化计算机技术,能够有效实现预约与在线监测的功能,对于提高用户使用质量具有促进效果。

4结束语

综上所述,电力系统安全有效运行关系企业的发展与生存,是企业高度重视及思考的话题,也是企业在日常利用中重点把控及解决的主要问题,加强用电安全管理及做好设备的运行与维护,对于保证电力企业利用安全具有重要的意义。对于电力系统运行来讲,电力电子技术的应用对保证电力设备供电正常具有积极促进作用。笔者结合实际情况,就电力系统中电力电子技术的应用情况进行了说明,以供参考。

参考文献

[1]席李岩.变频调速在工业电气自动化控制中的运行思路探究[J].江西建材,2014(20).

[2]张帅.变频调速技术在工业电气自动化控制中的运用探究[J].建筑工程技术与设计,2015(22).

[3]杨渭建.变频调速技术及其在工业电气自动化控制中的应用探析[J].科技风,2014(05).

[4]刘永强.浅谈我国电气自动化的现状及发展前景[J].黑龙江科技信息,2011(02).

[5]付明鑫.电气自动化在工业生产中的重要性与发展方向的研究[J].电子技术与软件工程,2014(03).

篇7

关键词:电力电子技术;电力系统;控制

1 前言

当代在电力系统中,电力半导体器件和组合装置运用很多,大到在高低压直流输电中用到的换流器,小到家用电器产品电视机中的开关电源、手机电池充电器,当然还有在工业中应用广泛的调压调速变频器、大功率整流器、调压和调功器等,其应用广泛到了电力系统各个器件和各个不同的电压等级中。该技术的特点较多,包括控制灵活、反应快速、控制准确、运行可靠等。将电力电子技术运用到电力系统中不仅可以改善电能控制质量、提高输电运行能力、改善和提高电网运行的可靠性、稳定性和控制的灵活性还可以降低输电线路电能损耗。

2 电力电子结束的应用状况

目前,对超大容量超远距离的电能输送来说,高压直流输电技术显得是更加经济,而且还有交流输送电能所没有的优越性。在新一代超高压直流输电技术中,大量使用了GTO、IGBT等电力电子可关断器件,还广泛的使用了电力电子技术中最具代表性的脉宽调制技术。

在我国的输电系统中,虽然已有一些变电站使用了SVC,而且容量都比较大,但是所用的均为进口,型式为TCR与TSC的组合器件或单独的开关投切电容器组。在国内工业中应用 的TCR装置有很多,其中绝大部分容量都在10MVAR,然而让人想不到的是这其中国产的还不到一半。低压的380V供电系统中,有不少各类国产的TCR无功补偿装置在投入运行。但是至今仍然没有一套我国自主研发的SVC投入到我国的高压输电和变电系统中运行。考虑到SVC在电力系统中的重要性,预计在最近几年时间里,国内的SVC研制并将其投入到输电领域、配电领域以及工业的运用都将会遇到前所未有的发展。

现如今,我国国内的一些与之相关的规划局、科研院所、设备生产单位以及高校都已陆续开始对FACTS技术进行研发和生产。最引人瞩目的是国家电力科学研究院等电力研究单位和东北电力管理局合作开发和研究的500kv高压出线上安装的TCSC等技术

如今,变频调速SFC技术已经到了和传统的直流调速技术相媲美的阶段,在二者的竞争中,SFC技术大有取而代之的趋势。变频调速技术在电力系统中应用比较广泛,主要有两个方面:首先是将过去发电厂的风机、水泵的控制改为变频调速控制,节电效益明显增强;其次是将传统的抽水蓄能机组改用SFC技术控制,大幅减小机组启动过程中电压对电网的冲击。除此之外,当机组运行在低水头时,还可提高机组的发电效益。目前,我国的SFC技术发展缓慢,国内已经投入使用的高压变频器,几乎都是引进的国外的变频器设备和技术。

3电力电子技术在电力系统中应用的发展趋势

按照当前的形势来看,最具有可靠性的电子技术是电力电子技术在未来的发展中的新热点。电力电子技术采用了技术先进的表面贴装,将存流器件、触发器、主要电源等几种器件集成在一起,具有多重功能,大大的缩小了电力电子装置的重量和体积,同时也降低了损耗和成本,提高了工作的效率。而新型材料又是电力电子器件发展的基础,所以新型材料的发展也是电力电子技术发展的一个瓶颈。近些年来,出现了碳化硅等新型半导体材料。其中,用SIC制作的器件和理想元器件特别接近。还有,随着大、小功率集成电路等新型器件的大量涌现,智能的功率、高压等集成电路的制作工艺和制作技术必定是未来几年乃至几十年电力电子半导体技术的研究的热点。若是集成技术的突破和新型半导体材料的突破相互融合,必然会诞生更多性能更好的、功能更加强大的新器件,功率集成电路SMANPOWER HVIC就是一个明显的例子,他的出现极大地满足了现代工农业大力发展的需要。除了这两者之外,自动控制用的芯片的发展也很是神速。为了让社会更好的运用新器件的优良性能,为了满足诸如波形产生、驱动电路控制、电路实时保护等方面的要求,只有通过研制新材料,改进新工业技术,不断创造出快速性能更加完善、人工智能化程度更高、工业使用更加方便的新型高速控制芯片。

4 总结

电力电子技术的发展肯定是当前一段时间和未来重点研究的热点。电力电子器件的发展直接影响着电力电子技术的发展,电力电子技术的供电电源、电机调速、电力配电等几个方面获得了相当广泛的应用。无论是对于传统的工业,如电力、船舶、矿冶、机械、汽车等,还是一些高技术的技术产业比如通信、激光、航空航天等的发展都至关重要,电力电子技术是提高这些相关行业的水平技术的重要手段,同时也是经济发展迅速的前提。电力电子技术的快速增长、高速度的发展,使其成为了新时代最重要的高端技术之一。

参考文献:

[1] 曾岳南, 邓则名, 章云, 陈林康. 电力电子与电力传动实验教学[J]. 实验室研究与探索, 2005, (S1)

[2] 张选利, 蔡金锭, 刘庆珍. 人工智能在电力电子电路故障诊断中的应用[J]. 福州大学学报(自然科学版), 2003, (03)

篇8

[关键词] 电力电子技术 电力系统 应用

0.引言

电力电子技术经历了半个世纪的发展历程,目前已在众多领域得到广泛地运用,诸如民用产品、传统产业设备发行以及新能源开发等行业。它将现代控制技术、功率半导体器件、计算机技术和电路技术作为支撑依据已经在国民经济中发挥出不可替代的重要作用,其直接影响着未来输电系统的性能。HVDC――直流输电――是在电力系统中最为成功的电力电子技术。继上世纪八十年,提出了FACTS――柔流输电――的概念,从而电力系统中应用电力电子技术引起了众多学者的研究与关注,众多的阐述以及总结有关设备的基本原理层见迭出,相继又产生了各种设备。电力系统是电力电子技术得以充分应用的一个重要领域,因此,探讨电力电子技术在电力系统中的应用具有现实的意义。

1.电力电子技术在发电环节中的应用

在电力系统的发电环节中,将牵涉到众多种类的发电机组的设备,怎样提高和加强此些设备的运行特性是我们所要达到的目的,而电力电子技术在发电环节中的应用就能够很好的实现这种目的。

1.1 大型发电机的静止励磁控制

静止励磁的优点是具有较为简单的结构、较高的可靠性,并且造价也不高,其通过晶闸管整流自并励方式已在各大电力系统中普遍的使用。因为对中间惯性环节即励磁机的省去,使得它具备了特有的快速性调节,这样一来,为先进的控制规律提供提供了充分发挥作用,同时控制效果更加良好。

1.2 水力、风力发电机的变速恒频励磁

水力发电的有效功率主要取决于以下两点:水头压力以及流量。在具有相对大的水头变化幅度的情况下,抽水蓄能机组最佳转速也会随着水头的变化幅度而产生变化。风速的三次方同风力发电的有效功率呈正比,风车捕捉最大风能的转速会随着风速的变化产生变化。因此,机组变速运行,易言之,对转子励磁电流的频率进行调整,让它同转子转速叠加后具有相对恒定的定子频率,进而取得最大的有效功率,电力电子技术在在水力、风力发电机的运用当中,变频电源是技术核心。

1.3 发电厂风机水泵的变频调速

发电厂的厂用电率平均是8%,在火电设备总耗电量中,风机水泵耗电量大约占到65%,不但具有较大的耗电量,而且运行效率也不高,为了实现节能的目的,在使用高压(低压)变频器的时候能够使风机水泵变频调速,进而降低耗电量。从当前的状况而言,低压变频器技术的成熟性毋庸置疑,在国内乃至国外都有很多的生产厂家,仅是系列产品在一定程度上还不具有完整性。然而能够设计并生产高压大容量变频器的厂家还没有几个,这就需要通过校企合作的方式,进行联合开发,从而达到满足生产需求的目的。

2.电力电子技术在在输电环节中的应用

2.1高压直流输电技术。 20世纪70年代,在瑞典建成世界上第一项晶闸管换流阀实验工程,从而替代了以前的汞弧阀换流器,这是电力电子技术在直流输电中获得应用的一个里程碑时段。从此之后,在直流输电工程,都以使用晶闸管换流阀为主。近年来,随着科学技术的不断发展,新的直流输电技术通过使用诸如GTO等可关断器和脉宽调制技术,不必采用换流变压器,从而能够让整个换流站搬迁,在较短的输送距离中,这就加强了中型直流输电工程的竞争力。另外,由于使用了可关断的电力电子器件,避免了换流器换相的不成功,加之不存在要求受端系统的容量,所以,能够应用于海上石油平台等这些小系统的供电。将来还能够用于城市配电系统。这些年来,直流输电技术获得了进一步发展,IGBT等可关断电力电子器件组成的换流器被应用在轻型的直流输电器件上,通过脉宽调制技术进行无源逆变,使得直流输电向无交流电源的负荷点送电的难题得到解决,不仅在极大地简化了设备,而且减少了造价成本。

2.2柔流输电(FACTS)技术。柔性的交流输电技术产生于上世纪八十年代的后期,这些年取得迅速的发展。FACTS是指现代控制技术同电力电子技术相结合,达到连续调节、控制相位角、电压等的目的,进而在很大程度上加强输电线路的输送能力,提升电力系统的可靠性,减少输电过程的损耗量。因为传统的调节电力潮流的手段仅能达到调节局部稳态潮流的作用,加之机械开关的动作时间较长,没有较快的响应,根本不可以适应在暂态过程中快速柔性连续调节和阻尼系统振荡的需求,所以,电网发展的要求使得柔流输电(FACTS)技术获得良好的应用与发展,截止目前,柔流输电控制器有许多种,且均能对电力系统中变量,例如励磁电流、电压、阻抗以及功率等等进行控制,继而提高交流输电的运行性能。

3.电力电子技术在在配电环节中的应用

在配电环节,我们亟待解决的问题是加强供电的稳定性以及提高电能质量。应用用户电力技术(Custom Power)亦称DFACTS技术是配电环节应用电力电子技术的最为普遍的技术,它是现代控制技术同电力电子技术的有效结合,配电环节应用用户电力技术的主要手段是通过交流输出电系统,加强供电的稳定性,提高配电的输出能力,并且提升电能质量。此外,在配电环节被普遍运用的电力电子技术还有柔流输电即FACTS技术,而用户电力技术可以看做是FACTS设备的缩小版或者姊妹型新技术,其功能原理在前文已进行分析,在此不作赘述。当前,DFACTS技术和FACTS技术已经发展到融合为一体。

4.电力电子技术在节能环节的应用

4.1变负荷电动机调速运行

为了使电力电子技术在在节能环节有所作为,我们就需着手于以下两方面:①电动机自身方面的应用;②变负荷电动机的调速技术的应用。倘若能将两者有机的结合在一起,势必会使电动机的节能获得显著的效果。近年来,风机和水泵在国外大多数采用调速控制,鉴于在国内对其的应用还不够成熟,以及由于变负荷的风机和泵类等采用交流调速替代节流阀(或者挡风板)对水流量、风流量进行控制都能取得良好的效果,并且具有较高的效率和精度,以及较广的调速范围,加之能够连续无级调速,同时在调速过程中具有相对小的转差损耗,节电率能够达到百分之三十,然而采用调速控制虽然有上述优点,却也存在较高的成本以及产生高次谐波的缺点,但这并不会影响其在矿山和冶金等部门的推广。因此,我国对其应加强研究,并需要进一步推广,

4.2减少无功损耗,提高功率因数

交流异步电动机以及变压器在电气设备中均属于感性负载,其在运行的过程中对无功功率、有功功率都要消耗,所以,同有功电源一样,无功电源是确保电能质量的不可或缺的部分,要在电力系统中维持无功平衡,不然,将导致功率因数的降低,系统电压的下降以及设备的损坏,甚至致使大规模的停电事故的出现,为了杜绝此类事件的产生,我们要在电力网或电气设备无功容量不足时,增装无功补偿设备,提高设备功率因数。

5.结束语

综上所述,电力电子技术能够在电力系统的众多领域得到广泛地运用,随着现代计算机技术的不断发展,我们应加大电力电子技术的研究力度,使其应用性更加的完善,对电力系统的控制以及节能起到更大的作用,以及最大幅度地提高电力系统的稳定性,从而获得巨大效益。

推荐期刊