时间:2023-12-10 16:44:26
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇生物质燃料的优势,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
文章编号:1005-6629(2008)10-0043-02中图分类号:O623.411文献标识码:E
生物质包括各种速生的能源植物、农业废弃物、林业废弃物、水生植物以及各种有机垃圾等[1]。生物质能源的开发利用不受地理条件限制,利用形态和传统能源的利用形态相似,将现有机器设备稍加改造即可使用,推广价值巨大。各国对发展生物质能源有不同的考虑,但能源替代和环境保护两个主要的原因相同。中国发展生物质能源相对滞后,但在国家政策的扶持下,大力发展燃料乙醇及生物柴油等生物质能源作为实施替代能源[2]。特别是2008年奥运会在北京召开,其倡导的“绿色奥运、科技奥运、人文奥运”的理念将促进中国生物质能源的全面发展。
1 生物质燃料乙醇的应用和效益
生物质燃料乙醇是目前世界上生产规模最大的生物质能源,联合国工业发展组织曾在维也纳乙醇专题讨论会上提出:“乙醇应该被当作燃料和化工原料永久的和可供选择的来源”[3]。据清洁发展机制(CDM)项目咨询机构测算,每吨生物燃料乙醇能够产生2吨的二氧化碳减排量。因此,许多国家将发展生物燃料乙醇列为实现温室气体减排的重要途径。我国已成为仅次于巴西、美国的第三大燃料乙醇生产和使用国。燃料乙醇是通过对乙醇进一步脱水,再加上适量变性剂制成。目前,中国试点推广的E10乙醇汽油是在汽油中掺入10%纯度达99.9%以上的乙醇制成[4]。乙醇燃烧值仅为汽油的三分之二,但其分子中含氧,抗爆性能好,取代传统MTBE为汽油抗爆、增氧添加剂,避免了其毒害性(致癌,地下水污染),具有优良能源、环保效益。如汽油中乙醇添加量≤l5%时,对机动车行驶性能无明显影响而尾气中温室气体的含量可降低30%-50%。添加10%,其辛烷值可提高2-3倍,还可清洁机动车引擎,减少机油替换并使其动力性能增加[3]。
与其他可再生能源和石油替代能源相比,燃料乙醇在中国发展最早,并经过系统有序的试点,市场规模较大,在政策法规、组织管理、生产供应、市场销售以及技术服务等方面都取得了宝贵的经验,而且在能源替代、环境保护和振兴农业三方面都具有突出作用。 既有现实基础,又具有综合发展价值,燃料乙醇得到了国务院能源领导小组的高度认可,并最终确定为中国中长期新能源战略中的重点发展方向[5]。根据我国《生物燃料乙醇及车用乙醇汽油“十一五”发展专项规划》,“十一五”期间,我国将生产600万吨生物液态燃料,其中燃料乙醇500万吨,生物柴油100万吨;到2020年,生产2000万吨生物液态燃料,其中燃料乙醇1500万吨。
2 生物质燃料乙醇的代价和制约
原料保证是生物质燃料乙醇的关键限制,它影响成本和规模生产的可行性。生产1吨燃料乙醇,耗水30m3左右,耗电200kwh左右,约耗标准煤0.6吨左右。大约需要3.3吨玉米或7吨木薯、10吨红薯、15-16吨甜高粱[6]。
中国人均耕地面积已降至1.39亩,不足世界平均水平的40%。粮食安全至关重要。发展生物质燃料乙醇一定要在确保国家粮食安全基础上稳步推进。生物质能源的发展不能依靠对粮食的占有和生产面积的挤压来实现, 也不能以破坏自然生态环境为代价[7]。2007年6月,国家发改委全面叫停粮食乙醇的开发,要求今后生物燃料的发展必须满足不占用耕地、不消耗粮食和不破坏生态环境为前提。中国生物质能源的发展结束了以玉米等粮食为原料的时代,开创了以木薯等非粮生物质能源产业的新时代,非粮生物质能源产业的优势日益凸显。
3 木薯酒精的优势
实践证明我国过去以粮食为原料生产燃料乙醇,不符合国情,利用木薯作为燃料乙醇生产原料,符合国家“非粮替代”的要求。木薯属非粮食农产品,是中国主要的热带作物之一,它对土质的要求低,耐旱、耐瘠薄,符合“不争粮,不争(食)油,不争糖,充分利用边际性土地(指基本不适合种植粮、棉、油等作物的土地)”的国家粮食发展战略,同时发展燃料乙醇也很符合当前国家生物质能源发展战略,有利于保障国家粮食安全和能源安全。种植木薯还有利于拉动农业,改善农村贫困人口的生产生活状况,可形成农业产业化和生态经济、循环经济的模式,促进区域经济的发展。
根据全国土地资源调查办公室统计,我国有荒草地7.39亿亩、盐碱地1.53亿亩,总量占耕地面积的一半。利用这些土地种植耐干旱、耐贫瘠的薯类、高粱、秸秆作物等,对发展非粮燃料的乙醇生产,潜力巨大。木薯是可再生资源,通过推广良种,木薯产量已由过去的亩产1.3吨提高到现在的亩产2~3吨,最高还可以达到5~7吨。
4 木薯酒精的生产及前景
到“十一五”末期,乙醇汽油将占我国汽油消费量的一半以上,形成以“非粮”原料为主、以技术进步为动力、经济效益为中心、缓解能源供应紧张压力和保护环境为目的的生物液体燃料产业链。 作为我国第一个非粮燃料乙醇试点项目,广西中粮生物质能源有限公司年产20万吨木薯燃料乙醇。主要采取生物法:纤维素、半纤维素,酸解或酶解或发酵单糖(五碳、六碳糖), 化学、 酶催化及微生物发酵乙醇。生物法具有选择性高、活性好、反应条件温和等优点,但原料利用率低、反应时间长、产物浓度低及酶、微生物活性易受影响且纤维素降解和单糖转化所需酶、微生物适于不同反应条件,不能很好耦合。其制约因素是成本和寻找高效、廉价的催化剂、酶和合适微生物的开发等关键技术。
随着大力发展生物质能源,木薯作为燃料乙醇的最佳原料,需求量将会不断扩大。木薯酒精生产面临着原料市场不稳定的困难,还存在着木薯种植缺乏组织性,种植粗放,且品种单一、单产低等困难。木薯生产企业的核心竞争力和发展动力在于搞好木薯产业资源的循环利用,充分利用厌氧发酵技术,实现资源的循环利用,走循环经济发展之路。用鲜木薯生产1吨酒精约生成11m3的酒糟醪液,约含660的COD;经厌氧发酵处理可生成约350m3沼气;350m3沼气约等于0.54吨煤。经厌氧后的酒糟废水其COD指标可以达标用于直接农灌,废渣可作有机肥料还田或作食用菌的培养基生产食用菌。合浦当地的农民用木薯渣与鸡粪混合再发酵后作蛋白合成饲料喂猪,已取得良好的经济效益。
5结语
燃料乙醇直接打通了第一产业和第二产业。农民成了“新能源”提供者,这为几千年来以农为本的中国提供了一个新能源由梦想成为现实的可能。以木薯为原料生产燃料乙醇是一条资源消耗低、综合利用率高、环境污染少、经济效益好的可持续健康发展道路,在促进农业和农村发展,提高农民收入方面具有显著的社会效益。
参考文献:
[1]朱锡锋. 生物质热解原理与技术[J]. 合肥:中国科学技术大学出版社,2006:23.
[2]石元春. 一个年产亿吨的生物质油田设想[J].科学中国人,2007,(4):35-37.
[3]雷国光. 用纤维质原料生产燃料乙醇是我国再生能源发展的方向 [J]. 四川食品与发酵, 2007, 43 (135): 39-42.
[4]任波. 乙醇汽油转折 [J]. 财经, 2007, (178): 100-102.
[5]张远欣. 燃料乙醇的发展状况 [J].甘肃科技, 2005, (4):127-128.
关键词 生物质固体燃料;烟叶;烘烤;现状;前景;云南景谷
中图分类号 S572;S216 文献标识码 A 文章编号 1007-5739(2017)05-0243-02
Abstract The biomass solid fuel is a new high efficience and clean fuel.Its utilization status in tobacco flue-curing of Jinggu County was introduced.The application prospect of biomass solid fuel was analyzed,and in view of the existing problems,countermeasures were proposed for further development.
Key words biomass solid fuel;tobacco leaf;curing;status;prospect;Jinggu Yunnan
生物质固化燃料是将作物秸秆、稻壳、木屑等农林废弃物粉碎后送入成型器械中,在外力作用下压缩成需要的形状,然后作为燃料直接燃烧,也可进一步加工形成生物炭[1]。生物质固体燃料的主要形状有块状、棒状或者颗粒状等[2]。生物质固体燃料具有体积小、容重大、贮运方便,易于实现产业化生产和大规模使用;热效率高;使用方便,对现有燃烧设备包括锅炉、炉灶等经简单改造即可使用;容易点火;燃烧时无有害气体,不污染环境;工艺和设备简单,易于加工和销售;属可再生能源,原料取之不尽,用之不竭等特点[1,3]。
1 景谷县烟叶烘烤燃料使用情况
景谷县位于云南省普洱市中部偏西,地处东经100°02′~101°07′、北纬22°49′~23°52′,总面积7 550 km2,人均占有土地2.67 hm2,人口密度38人/km2。有热区面积48.8万hm2,占总面积的64.6%,北回归线从县城附近通过,总地势由北向南倾斜,最高海拔2 920 m,最低海拔600 m,典型的南亚热带地区。由于生态环境良好、土地资源丰富、光热水气条件优越,适合烤烟种植,烟叶清香型风格特征较明显,具有香气绵长、透发、明快,留香时间较长,饱满丰富感较好,烟气较为柔和等特点,具有较高的使用价值,深受省内外卷烟工业企业的喜爱。目前,烤烟已成为景谷县重要的农业经济作物之一,成为财政收入的重要来源和烟农脱贫致富的重要途径。2016年景谷县烟叶种植面积4 546.67 hm2,收购烟叶1.075万t,全县烟叶烘烤燃料以煤炭为主,按照1 kg干烟叶耗煤量1.5~2.0 kg[4]计算,景谷县2016年的烟叶烘烤用煤达到16 125~21 500 t,在烟叶烘烤中大量使用燃烧煤炭释放出的烟尘、SO2、NOX、Hg、F等对大气环境造成污染[5]。
2 生物质固体燃料应用现状
2.1 生物质固化成型设备研发现状
生物质固化成型技术根据不同加工工艺可以分为热成型工艺、常温成型工艺、碳化成型工艺等几种类型;根据成型压缩机工作原理不同,可将固化成型技术分为螺旋挤压成型、活塞冲压成型和环模滚压技术[6]。我国在生物质固化成型设备上也进行了较多的研究,王青宇等[7]O计了斜盘柱塞式生物质燃料成型机,可以完成连续出料,为生物质颗粒成型提供了一种新思路。张喜瑞等[8]设计了星轮式内外锥辊固体燃料平模成型机,整机工作过程中噪音低,经济效益与生态效益明显,为热带地区固体燃料成型机的发展与推广提供了参考。目前,我国生物质固体成型设备的生产和应用已实现商业化,可以满足生物质燃料固化成型加工需求。
2.2 生物质固体燃料在烟叶烘烤中的应用现状
20世纪90年代,叶经纬等[9]在烟叶烘烤上研制了生物质气化燃烧炉,使用这种生物质气化燃烧炉能源利用率提高了50%以上,同时优质烟叶的比例也有所提高。张聪辉等[10]研究表明,使用烟杆压块的生物质燃料部分代替煤炭,可以满足烟叶烘烤的需求,并且烘烤成本比使用煤炭更低。徐成龙等[11]通过对比不同能源类型密集烤房在烘烤成本、经济效益及烤房温度控制方面的烘烤效果,认为使用生物质燃料的燃烧机烤房改造方便、空气污染小、节能环保,是最具推广价值的烤房。
3 应用前景分析
景谷县为云南省第二大林业县,全县林地总面积为595 862.4 hm2,活立木蓄积48 324 350.0 m3,每年森林采伐量约1 537 300.0 m3;全县农作物平均种植面积40 385.9 hm2,粮食平均产量为467 425.2 t,具备开发生物质燃料的潜力。路 飞等[12]研究表明,景谷县生物质理论资源量高达1 355 647.3 t,资源优势较为明显,可以加工成生物质固体燃料,满足全县烟叶烘烤需要。2014年,普洱市申报的国家绿色经济实验示范区获得国家发改委批复,为普洱市的发展提供了巨大的机遇,目前全市已开展多个生物质能源项目[13]。景谷县在烟叶烘烤中,创新烟叶烘烤模式,推广使用生物质固体燃料,降低烟叶烘烤能耗,减少主要污染物的排放,改善环境质量,符合普洱“生态立市,绿色发展”的发展需求。
4 存在的问题
4.1 认识不到位
目前,烟叶烘烤主要以燃煤作为原料,烘烤设备较为成熟且烘烤工艺较为完善;使用生物质固体燃料,可降低烟叶烘烤污染、维护农村生态环境、促进烟叶烘烤可持续发展等优势,但尚未引起广泛关注。
4.2 配套不完善,投入成本高
开发生物质固体燃料前期投入高,不确定因素较多,风险较大,收益难以控制。目前,景谷县尚无生物质固体燃料加工企业,生物质固体燃料产业配套不完善,燃料使用成本高。将传统烤房改造成生物质燃料烤房需对原有设备进行改造更换,短期内难以大量推广。
4.3 缺乏政策支持
生物质固体燃料在烟叶烘烤中具有良好的社会效益,但政府、烟草行业对生物质固体燃料的生产、传统烤房的改造等未制定明确的扶持措施和奖励办法,没有形成加工使用生物质固体燃料的长效机制。
5 对策
5.1 加强宣传力度,树立可持续发展理念
大力宣传使用生物质固体燃料在节能减排、农林废弃物循环利用、减工降本、提质增效方面的积极作用,让全社会都充分认识到使用生物质固体燃料所具有的良好的经济效益、社会效益和生态效益,为全面推进使用生物质固体燃料营造良好的舆论氛围。
5.2 开发利用生物质固体燃料,提高绿色生态烘烤能力
景谷县林产工业较为发达,农林废弃物资源丰富,目前国内生物质固体成型燃料技术和设备已较为成熟,可就地规划建设生物质固体燃料生产基地,就地消化农林废弃物,保护环境卫生,实现绿色烘烤。
5.3 加大政策和Y金扶持,调动参与积极性
在生物质固体燃料生产、废弃物回收、烤房设备改造利用等方面出台相应的扶持和补贴政策,提高社会和烟农参与使用生物质固体燃料的积极性和主动性。
6 参考文献
[1] 王庆和,孙勇.我国生物质燃料固化成型设备研究现状[J].农机化研究,2011(3):211-214.
[2] 李泉临,秦大东.秸秆固化成型燃料开发利用初探[J].可再生能源,2008(5):116-118.
[3] 邱凌,甘雪峰.生物质能利用现状与固化技术应用前景[J].实用能源,1990(3):21-23.
[4] 王卫锋,陈江华,宋朝鹏,等.密集烤房研究进展[J].中国烟草科学,2005,26(3):12-14.
[5] 严金英,郑重,于国峰,等.燃煤烟气多污染物一体化控制技术研究进展[J].热力发电,2011,29(8):9-13.
[6] 周冯,罗向东,秦国辉,等.浅谈生物质燃料因化成型技术[J].应用能源技术,2016(8):54-55.
[7] 王青宇,蓝保桢,俞洋,等.斜盘柱塞式生物质燃料成型机的设计[J].木材加工机械,2014(3):48-50.
[8] 张喜瑞,甘声豹,李粤,等.星轮式内外锥辊固体燃料平模成型机研制与实验[J].农业工程学报,2014,30(22):11-19.
[9] 叶经纬,江淑琴,高大勇.生物质能在烤烟生产中的应用技术[J].新能源,1991,13(6):35-39.
[10] 张聪辉,赵宇,苏家恩,等.清洁能源部分代替煤炭在密集烤房中应用技术研究[J].安徽农业科学,2015,43(4):304-305.
[11] 徐成龙,苏家恩,张聪辉,等.不同能源类型密集烤房烘烤效果对比研究[J].安徽农业学,2015,43(2):264-266.
关键词:生物质成型燃料 锅炉设计 双层炉排 动态评价 技术经济
中图分类号:TK229 文献标识码:A 文章编号:1674-098X(2013)03(b)-00-01
1 双层炉排的设计依据
我国在生物质成型燃料燃烧上进行的理论与应用研究较少,然而它的确是能有效解决生物质高效、洁净化利用的一个有效途径。目前来说,没有弄清楚生物质成型燃料理论,需要将原有燃煤锅炉进行一定程度的改造升级,但是炉膛的容积、形状、过剩空气系数等和生物质成型燃烧是不匹配的,也因此导致了锅炉燃烧效率和热效率很低,污染物排放超标。所以,根据生物质成型燃料理论科学来进行设计研究专用的锅炉是目前急需解决的重要问题。
1.1 燃烧特性
以稻草,玉米秆,高粱秆,木屑为例子,对比它们的工业分析、元素分析、以及发热量的数值,我们可以得出结论:生物质成型燃料的挥发分远远高于煤,含碳量和灰分也比煤小很多,热值比煤要小。(1)原生物质燃烧特性,原生物质尤其是秸秆类的生物质密度较小,体积大,挥发分在60%~70%之间,易燃。热分解时的温度低,一般来说,350C就能释放80%的挥发分,燃烧速度很快。需氧量也远大于外界扩散所提供的氧量,导致供养不足,从而形成CO等的有害物质。(2)生物质成型燃料特性,生物质成型燃料密度远大于原生物质,因为其经过高压才能形成,为块状物,结构和组织的特征使得其挥发分逸出速度和传热速度大幅度降低,而其点火温度升高,性能差,但比煤的性能要强。燃烧开始的时候挥发分是慢速分解的,在动力区燃烧,速度也中等,逐渐过度到扩散区和过渡区,让挥发分所发出热量能及时到达受热面,因而降低了排烟的热损失。在其挥发分燃烧后,焦炭骨架结构变得紧密,运动气流无法让其解体悬浮,因而骨架炭能够保持住它的层状燃烧,形成燃烧核心。它需要的氧气和静态渗透扩散的一样,燃烧时候很稳定并且温度很高,也因而降低排烟的热损失。
所以说,生物质成型燃烧相比之下优点更明显,燃烧速度均匀适中,需氧量和扩散的氧量能很好匹配,燃烧的波浪比较小,更稳定。
1.2 设计生物质成型燃料锅炉的主要要求
(1)结构布置,采用了双层炉排的设计结构,也就是手烧炉排,并且在一定高度加上一道水冷却的钢管式炉排。其组成包括了:上炉门、中炉门、下炉门、上炉排、下炉排、辐射受热面、风室、燃烬室、炉膛、炉墙、对流受热面、排气管、烟道和烟囱等。上炉门是常开设计的,用作投燃料和供给空气。中炉门则可以调整下炉排上燃料的燃烧,并可以清理残渣,只打开于点火和清理的时候。下炉门用来排灰,提供少量空气,在运行时微微打开,看下炉排上的燃烧情况再决定是否开度。上炉排以上的地方是风室,上下炉排间是炉膛,墙上则设计有排烟口,不能过高,不然烟气会短路。但过低也不行,否则下炉排的灰渣厚度达不到。设计的工作原理,让一定的粒径生物质成型燃料通过上炉门燃烧,上炉排产生的生物质屑和灰渣可以在下炉排继续燃烧。经过上炉排的燃烧,生成的烟气与部分可燃气体通过燃料层然后是灰渣层而进到炉膛内,继续燃烧,并且和下炉排上燃料所生成的烟气混合,然后通过出烟口通向燃烬室,再到后面的对流受热面。下炉排可以采取低、中、高这样三个活动炉排,因为燃料粒径和热负荷的大小不同。这样就达到了让生物质成型燃料分布燃烧的目的,能够缓解其燃烧的速度,还能匹配需氧量。完全燃烧率得到提升,消除烟尘也更有效化了。锅炉受热面设计,换热面以辐射换热为主的形式叫作辐射换热面,又称作水冷壁。由计算得出其受热面的大小,为保持锅炉内的炉温和生物质燃料的燃烧,要把上炉排布置成辐射的受热面。而形式是对流的换热面则是对流受热面,也叫作对流管束,其大小能由公式计算得到。引风机选型,引风机是用来克服风道阻力以及烟道的。选择风机的时候必须考虑其储备问题,否则会造成计算带来的误差。风量和风压能由计算来确定,选择型号要依据制造厂的产品目录。
2 对双层炉排生物质成型燃料锅炉的前景分析
生产与利用实际上就是一个把生产目的、手段还有投入人力物力财力之间进行合适的结合的过程。这不是简单的经济过程,是技术与经济相互结合的过程。技术因素和经济因素要协调,才能使这项技术得到更好的推广和发展。
2.1 技术分析
双层炉排生物质成型燃料锅炉设计的热负荷是87千瓦,热水温度95摄氏度,进水的温度是20摄氏度,热效率也能高达70%,其排烟温度200摄氏度。它在技术的性能上十分占优势,有很高的热效率和燃烧效率,也减少了有害气体和烟尘的排放量,符合我国的标准,对环境带来的损害小,所以可以考虑广泛应用于各种活动生产中来。
2.2 经济分析
在经济效益方面,因为该锅炉的燃烧效率较高,所以能很大程度燃烧燃料,因此制造的热能量等损失小,节省了不少燃料费用。对比燃煤锅炉,更为经济适用。另外,成本费里包括了固定资产的投入与运行费用。而固定资产投入费包含了设备与建设费,该锅炉的成本为一万元,安装和土建费则是五千元,运行费也含有电费、原料费、人工费以及设备维修费。而优点是简单的设备能节省人工费。如果对成型技术还有设备做进一步的研究,可以在原有成本上再降低,因此也是可取的,适合经济发展的。
3 结语
(1)在技术上,双层炉排是一个很大的进步,能很好的提高效率,而且控制了污染物的排放量,也达到了工质参数的设计要求,随着燃料能源的价格上涨,还有科研人员加强对生物质成型技术的深入研究,这种锅炉一定能占有不错的市场。(2)用技术经济学来分析锅炉,能得出一个大致结果就是,该锅炉投资较大,但是长期看来,是经济可行的,其效益也是符合投资要求的。只是和燃煤锅炉比较起来,燃煤的价格占有优势,但如果化石能源的价格上涨,并且环保力度加大,双层炉排生物质成型燃料锅炉会越来越占据优势的一面。
参考文献
[1] 刘雅琴.大力开发工业锅炉生物质燃烧技术前景分析[M].工业锅炉,1999.
[2] 林宗虎,徐通模.应用锅炉手册[J].化学工业出版社,1996(6).
河南省建设生物质能化产业的重要性和紧迫性
全球每年生物质的总量大约在1.7×1011 吨,估计现在只有6.0×109 吨生物质(约占总量的3.5%)被人类利用。按照能源当量计算,生物质能仅次于煤炭、石油、天然气,位列第四,占世界一次能源消耗的14%,是国际社会公认的能够缓解能源危机的有效资源和最佳替代方式,是最具发展潜力的可再生能源。目前,生物质能化利用的主要方向包括:生物液体燃料、生物燃气、生物质成型燃料、生物质发电、生物质化工等方向。生物质能产品既有热与电,又有固、液、气三态的多种能源产品,以及生物化工原料等众多的生物基产品,这些特质与功能是其他所有物理态清洁能源所不具备的。
据国际能源署统计,在所有可再生能源中,生物质能源的比例已经占到了77%,其中生物质发电、液体生物燃料和沼气分别占生物质能源利用总量35%、31%和31%。
很多国家成立专门的生物质能管理机构,主要负责相关政策的制定以及部门的协调事宜,如巴西“生物质能委员会”,印度“国家生物燃料发展委员会”,美国“生物质能管理办公室”等。
很多国家都制定了关于生物质能发展的长期规划,确定了具体的发展目标,如美国“能源农场计划”,巴西燃料乙醇和生物柴油计划,法国生物质发展计划,日本“新阳光计划”,印度“绿色能源”工程等。各国都采取了积极务实的生物质能源发展政策与措施,如欧盟主要采取了高价收购、投资补贴、减免税费以及配额制度等。美国主要采取了担保贷款、补助资金和减免税费等。
2011年,最具代表性的生物燃料――燃料乙醇全球产量达到了7 000万吨,美国燃料乙醇产量达到4 170万吨。近期美国已把生物质能的重点转向第二代先进生物燃料,《能源独立与安全法》(EISA)强制要求2022年生物燃料用量达到1.1亿吨,其中先进生物燃料为6 358.8万吨。第二代生物燃料指“寿命周期内温室气体排放比参考基准减少50%以上的、玉米乙醇以外的可再生燃料”,主要包括纤维乙醇、沼气、微藻生物柴油等。为实现此目标,美国政府采用了投资补助和运行补贴(每加仑1.01美元,约合2 123元/吨,按汇率6.3计算)等方式大力鼓励先进生物燃料相关的研发、中试、示范和商业化项目建设,已建试验、示范装置45套,预计2~3年内可以实现商业化规模生产。
生物质成型燃料方面,欧美的发展最为发达,其主要以木质生物质为原料生产颗粒燃料,其成型燃料技术及设备的研发已经基本成熟,相关标准体系也比较完善,形成了从原料收集、储藏、预处理到成型燃料生产、配送和应用的整个产业链。截至2010年,德国、瑞典、加拿大、美国、奥地利、芬兰、意大利、波兰、丹麦和俄罗斯等欧美国家的生物质成型燃料生产量达到了1 000万吨以上。
美国POET公司、美国杜邦公司、意大利M&G公司、西班牙Abengoa公司等将于2014年前运行5万吨以上规模的纤维乙醇厂。
生物质精细化工产品目前已达1 100多种,如乙二醇、乳酸、丁二酸、丁醇、2,3-丁二醇、乙酰丙酸、木糖醇、柠檬酸、山梨醇等。据分析,从生物质制取的化学品现已占化学品总销售额10%以上,并以每年7%~8%的速率增长。美国国家研究委员会预测,到2020年,将有50%的有机化学品和材料产自生物质原料。壳牌公司认为,世界植物生物质的应用规模在2060年将超过石油。
随着技术的进步,未来生物质能化开发利用将向原料多元化、产品多样化、利用高值化、生产清洁化方向转变,纤维乙醇生产成本进一步下降,与粮食乙醇相比将具竞争优势,成为液体生物燃料的主流产品;大中型沼气是极具潜力的新兴生物能源方向;以纤维素糖为平台的生物化工产业的兴起,将减少对化石资源的依赖,促进绿色发展。远期生物质快速热解制生物燃料和微藻生物燃料也将有较大的发展空间。
总体上看,我国以燃料乙醇为代表的生物质能化产业发展基本达到世界先进水平,推广使用技术成熟可靠、安全可行。在法律、政策、规划、试点等方面开展了创造性的工作,为今后的工作打下了基础。
河南生物质能化产业发展基础
作为农业大省,河南生物质资源非常丰富。仅农业剩余物的干重量每年为7 000万吨,占全国1/10。林业剩余物资源量每年为2 000多万吨,其中生态能源林近期规划500多万亩,远景规划1 200万亩。
河南省生物质能化开发利用起步较早,2004年即在全国率先实现了乙醇汽油全覆盖,成功创造了乙醇汽油推广的“河南模式”。目前,河南省生物质能化利用主要涵盖了生物质成型燃料、液体燃料、气体燃料和发电等方向,涉及燃料乙醇、纤维乙醇、沼气、成型燃料、生物柴油、生物质发电、乙二醇、乳酸等产品,2010年生物质能利用折标煤420万吨。
液体生物燃料产品产量超过70万吨居全国第一,其中燃料乙醇产量超过60万吨,约占全国的30%,燃料乙醇消费量超过30万吨。2009年底,河南天冠建成投产了全球第一条万吨级秸秆纤维乙醇生产装置,实现连续规模化生产,建立了完整的工艺路线,掌握了多项具有自主知识产权的关键技术,部分指标接近或超过国外先进水平,已经通过了国家验收,具备了进一步产业化放大和推广的条件。全省能源林面积超过300万亩,开展了生物柴油的实验生产,具备了规模化生产的技术能力。
建成了国内最早的工业化沼气项目并获得了广泛推广和应用,拥有全球最大的1.5亿立方米/年工业化沼气装置,配套3.6万千瓦沼气发电项目已经并网发电,同时供40万户居民生活、2 500辆公交和出租车使用。农村户用沼气达到361万户,普及率18%,大中型沼气达到2 360处。
生物质发电总装机45万千瓦居全国前列,年发电量约10.6亿千瓦时。
目前,河南省生物质成型燃料产品产能已超过30万,年产量20多万吨,居华中地区首位,其中建立位于河南省汝州市的生物质压块燃料生产工程,目前年产生物质成型燃料3万吨,正在形成年产10万吨的生产基地,通过示范建设,建立了压块成型燃料生产厂原料最佳收集模式、清洁生产模式、成型燃料产业发展模式,生产电耗为40kW・h/t~50kW・h/t,实现了压块成型燃料的产业化生产。建立在洛阳偃师市和河南汝州市的成型燃料设备生产基地,目前正在形成年产300台套的生产能力。
生物制氢方面国内还没有产业化,近几年,国内少数学者主要围绕提高光合细菌的光转化效率等方面,着手对光合细菌制氢进行了实验研究,并取得了一些重要进展。河南农业大学在国家自然科学基金、863计划等项目支持下,正在按照生产性工艺条件进行太阳能光合生物制氢技术及相关机理的研究,并且已经取得了一定的突破,成为河南省重要的制氢技术储备。
生物质化工产品总产量超过10万吨。河南财鑫集团2010年建成纤维乙二醇中试装置,形成了整套工艺技术,达到国内先进水平,正在进行万吨级产业化示范;河南宏业生化2011年建成全球首套生物质清洁生产2万吨/年糠醛联产乙酸装置,已实现连续规模化生产,达到国际先进水平。
河南农业大学、郑州大学、河南能源研究所等一批科研机构有较强的生物质能源研发实力。
河南省从事生物质能研发和产业推广的单位上百家。
2013年,生物质能化产品总产值超过100亿元。
总体来说,河南省生物质能开发利用起步较早,达到国内先进水平,其中燃料乙醇、沼气和秸秆成型燃料等技术和装备居国内领先地位。
河南省发展生物质能化产业的总体要求
坚持资源开发与生态保护相结合,以不牺牲农业和粮食、生态和环境为出发点,科学开发盐碱地、“三荒”地等宜能非耕地,规模化种植新型非粮能源作物与生态能源林,加强农林牧剩余物资源、城市生活垃圾与工业有机废水、废渣管理,坚持梯级利用、吃干榨净,建立标准化生物质能化原料收储运供应体系,推动生物质能化产业绿色低碳循环发展。
坚持顶层设计与先行先试相结合,把握世界生物质能化产业发展方向,统筹谋划国家生物质能化发展的新模式、新途径,破解关键制约瓶颈和体制机制障碍,以资源、技术、市场发展现状为前提,在河南先行先试,以点带面,积极推进,努力探索具有示范带动意义的生物质能化全产业链发展模式。
坚持自主创新与开放合作相结合,立足现有产业基础,整合聚集国内研发力量和专有技术,强力推进生物质能化核心技术开发,加快关键装备集成,占领世界生物质能化产业发展新高地。开展国际交流与合作,合理引进国际先进技术、装备与人才,带动生物质能化产业全面发展。
坚持重点突破与整体推进相结合,以纤维乙醇产业化为突破重点,推进沼气高值化利用、生物化工和生物质能化装备规模化生产,加快纤维丁醇、航空生物燃料、微藻生物柴油、生物质快速热解制生物燃料等先进产品与工艺研发步伐,整体推进生物质能化高起点产业化开发利用,培育规模大水平高的战略性新兴产业。
坚持政府推动与市场运作相结合,发挥政府主导作用,制定积极的产业政策,引导多种经济主体投入,扶持生物质能化企业规模化发展。建立有效的市场激励机制,营造良好发展环境,发挥市场配置基础作用,以市场开拓带动生物质能化产业持续健康发展。
在发展目标上,充分发挥河南生物质能化开发利用的资源、技术和实践优势,集聚优势企业和科研机构,吸引国内外生物质能化领域领军人才,开展生物质能化资源梯级循环利用,做大做强生物能源装备制造业,在全国率先建成规模最大、实力最强、技术最先进的生物质能化示范区,全面发挥示范区的示范、辐射和带动作用,打造全国的生物质能化源科研、装备制造和推广应用基地,占领世界可再生能源领域新高地。
近期目标(2014-2015年):规划投资200亿元以上,新增工业产值188亿元以上。重点推进纤维乙醇产业化,稳定粮食乙醇产量,纤维乙醇生产能力达到50万吨/年,纤维乙二醇等多元醇生产能力达到10万吨/年,联产糠醛达到5万吨/年,新增大中型沼气生产能力16.5亿立方米。生物柴油总生产能力达到50万吨/年,其中高品质航空燃油占10%以上。新增年产5~10万吨的成型燃料生产基地2个,生物质成型燃料生产能力达100万吨;初步奠定生物质能化示范省产业基础,确立生物质能化发展基本模式。
中期目标(2016-2020年):规划投资1 000亿元以上,新增工业产值1 600亿元以上,其中装备制造700亿元。纤维乙醇生产能力达到300万吨/年,纤维乙二醇等多元醇生产能力达到50万吨/年,联产糠醛达到50万吨/年,新增大中型沼气生产能力62亿立方米。生物柴油总生产能力达到400万吨/年,其中高品质航空燃油占30%以上。建成500个左右的生物质成型燃料加工点,形成约250万吨的生产能力。带动生物质能化技术升级,基本建成国家生物质能化示范省。
河南省生物质能化产业创新的重点任务
重点发展纤维乙醇、纤维乙二醇、纤维柴油、糠醛、沼气,实施醇电、醇气、醇肥、醇化多形式联产,着力提升农林剩余物的资源化利用水平;积极建设工业、畜牧业、农村大中型沼气工程,提高城乡有机垃圾资源化利用水平,加快构建新型农村社区配套的分布式生物能源体系;积极拓展生物质化工,初步形成规模化的生物化工产业链;完善生物质成型燃料体系的原料收集、储存、预处理到成型燃料生产、配送和应用的整个产业链,积极推进生物质成型燃料的产业化、规模化生产及应用模式,开拓生物质成型燃料应用新途径,大规模进行燃油、燃气替代应用,与煤炭形成相当竞争力;大力推进生物质能化装备产业;积极探索开展航空生物燃料、微藻生物柴油、快速热解制生物燃料等先进生物燃料技术示范。
(一)纤维乙醇产业化
在纤维乙醇产业化方面,围绕纤维乙醇生产,着力提升纤维乙醇生产和综合利用技术水平、装备和自动化水平,能源利用转化效率和经济性指标达到国际领先水平。形成包括科技研发、装备制造、工程设计建设、生产运营、人才培养和队伍建设在内的完整产业体系;形成秸杆采集、储存、调运、纤维素酶生产和配送、纤维乙醇生产与集中脱水加工等较为完备的生产经营管理模式,实现纤维乙醇产业化重大突破。
1.纤维乙醇产业化步骤
发挥天冠、中石化、中石油等能源骨干企业人才、技术、资金、管理和市场优势,不断提高生物质资源能源化转化效率,实现不同原料、不同规模、不同产品梯级开发产业化发展。因地制宜,结合城镇化和新农村建设,以产业集聚区为依托,采取不同产品结构模式,设计建设3~10万吨不同规模纤维乙醇厂。实施沼渣和炉灰还田,保持土地资源和粮食生产可持续发展。
――采取“醇―气”模式建设纤维乙醇工厂,实现木质纤维素分类利用,纤维素生产乙醇,半纤维素生产沼气联产,木质素残渣发电供热。
――结合现有秸秆电厂,采取“醇―电”联产模式,首先利用秸秆中的纤维素生产乙醇,剩余木质素废渣作为电厂燃料和半纤维素等产生的沼气联产发电,重点解决醇、气、电一体化技术和装备系统集成。
――在糠醛和木糖(醇)生产集中地区,整合糠醛、木糖(醇)生产规模,以玉米芯为原料,首先用半纤维素生产糠醛或木糖(醇),剩余糠醛或木糖渣中纤维素生产乙醇,剩余木质素作为燃料发电,实现纤维乙醇、糠醛(木糖)和发电联产,提升原料资源利用效率,解决生产环节污染问题,实现“醇―化―电”一体化发展新模式。
2.实施关键技术创新工程
――开展纤维素酶生产技术提升研究,不断提高菌种产酶效率,提升自控水平,进一步降低纤维素酶生产和使用成本,建设配套生产和供应基地。
实施关键技术创新工程,重点开展纤维素酶生产、原料预处理、酶解发酵三大关键步骤技术攻关,进一步提高纤维乙醇的技术经济性。
――加大能源植物优选培育和能源作物基地建设力度,利用河南省未开发荒地,种植能源作物,提高原料亩产和纤维素含量,开展规模化能源作物种植。
――依托车用生物燃料技术国家重点实验室,整合高校基础研究资源,重点解决纤维素酶、木聚糖酶等多酶系生产菌种构建,筛选优化高效、耐逆菌株,提高纤维素酶生产效率和发酵酶活,提高多酶系酶解效率,实现纤维素酶生产和使用成本大幅降低。
――构建高效、长寿命、高耐受性代谢工程菌株,选育驯化适合工业化生产的混合糖发酵菌株,实现纤维素、半纤维素共同发酵生产乙醇,提高原料转化乙醇效率,建设万吨级技术示范工程。
――开发连续高效低能耗预处理技术和设备、提升同步糖化发酵、蒸馏浓缩耦合等工艺技术水平,形成3~10万吨工艺技术包。
(二)沼气利用与农村新能源体系建设
1.工业大中型沼气与高值化利用
实施纤维乙醇-沼气联产,提升食品、轻工、化工、生物医药等行业的废渣、废液联产沼气水平,重点建设日产5万m3、10万m3以上的大规模工业化沼气工程,通过高温全混厌氧发酵、中温上流式厌氧污泥床、膨胀颗粒污泥床相结合的工艺提高厌氧发酵COD去除率、扩大沼气消化液资源化利用规模,降低有机废水好氧处理的负荷。开展以沼气综合利用为核心的企业泛能网示范,提高能源利用效率,减少污染物排放。鼓励沼气规模化生产生物天然气入站入网,压缩生物天然气(CBNG)用作车用燃气、居民用气及发电。
工业大中型沼气主要围绕纤维乙醇、生物化工、食品等高浓度有机废水、废渣排放企业,按照集中就近原则,合理布局,优先配套建设分布式能源供应系统。
2.农村大中型沼气和农村新能源体系建设
按照坚持走集约、智能、绿色、低碳的新型城镇化道路的要求,将生态文明理念和原则全面融入新型农村社区,构建农村新能源体系。以大中型沼气建设为核心,加快农村能源消费升级,为新农村建设提供高品位的清洁能源,提高农村居民生活质量,改善居住环境,推进生物能源镇(社区)示范,推动绿色、健康、生态文明的新型农村社区建设。依托大型养殖企业或利用秸秆建设大型沼气集中供气工程,并在条件具备的社区试点沼气分布式能源,实现气、电、热联供。开展农村微电网示范,探索可持续的运营模式。开展太阳能热水系统和地热能采暖并提供生活热水示范项目建设。根据各地资源条件,开展沼气、小水电、太阳能、地热能、风能等多种能源组合的用能方式示范,探索适宜中部地区的农村能源发展模式,推动农村新能源体系建设。
3.城市生活垃圾沼气
在省辖市或地区性中心城市,结合城市污水和有机垃圾收集,建设大型或超大型工业沼气工程。对生活垃圾进行二次集中分类处理,构建“有机废弃物―厌氧发酵―沼气发电―沼液沼渣制肥”等循环经济链条。在建或新建垃圾填埋场配套建设填埋气回收装置生产沼气,鼓励大中型垃圾填埋场建设沼气发电机组。
4.生物质热解气化
以城市废弃物和农村生物质废弃物为对象,结合工业园区的能源需求,建立热电气联供的生物质燃气输配系统示范工程。大力推行区域集中处理模式和循环经济园、工业园等园区模式,选取已经启动基础设施建设程序的项目作为示范工程,真正做到科技与需求相结合、技术与产业相结合。提高生物质气化技术水平,限制生物质气化产业发展的一个主要原因是技术仍处于较低水平,未来的发展首先要解决技术问题,包括加强生物质气化基础理论研究,提高气化炉工作效率、燃气净化效率,提高装备系统稳定性,增强系统自动化程度,完善产业链各项关键技术,打造生物质气化技术流水线生产。扩展气化技术应用领域,不但要将生物质气化技术应用于木质生物质原料,还需根据生物质原料来源及单位用途,发展适于工业生物质、农业生物质、城市生活垃圾等多元生物质气化技术,并根据用途发展高品质燃气技术、气化供热、发电、制冷等多联产技术。实现生物质气化技术产业装备生产的规模化,提高装备的设计水平,扩大装备的生产规模,实现设备的系列化、标准化、大型化,并完善上下游相关企业单位,实现装备技术的自主化设计制造,取得自主知识产权,构建完整的生物质气化技术装备设计与制造产业链。
5.生物质制氢
河南省乃至我国的生物制氢技术尚未完全成熟,在大规模应用之前尚需深入研究。目前需要解决的问题还很多,如高效产氢菌种的筛选,产氢酶活性的提高,产氢反应器的优化设计,最佳反应条件的选择等。生物制氢技术利用可再生资源,特别是利用有机废水废物为原料来生产氢气,既保护了环境,又生产了清洁能源,随着新技术的不断开发,生物制氢技术将逐步中试和投产,成为解决能源和环境问题的关键技术产业之一。
(三)成型燃料产业化
在成型燃料产业化方面,发挥河南省科学院能源研究所有限公司、农业部可再生能源重点开放实验室、河南省生物质能源重点实验室、河南省秸秆能源化利用工程技术研究中心等科研院所的人才和技术优势,依托河南省秋实新能源有限公司、河南奥科新能源发展有限公司、河南偃师新峰机械有限公司等企业,加大生物质成型燃料的关键技术突破和产业化推广。完善生物质成型燃料原料、工艺、产品、应用等环节,建设原料收储运模式,优化组合工艺生产线、降低能耗、提高自动化控制程度,加大推广力度和规模。
1.成型燃料产业化步骤
――根据河南省不同地域的生物质原料分布产出规律,结合生物质成型燃料生产模式及生产企业生产实际情况,开展收储运的理论研究和试验示范,建立生物质原料的收储运模式,解决农林生物质原料收储运成本费用问题。建立健全农林生物质原料收储运服务体系,建立适宜不同区域、不同规模、不同生产方式的农林生物质原料收储运体系。在河南省有代表性的区域,建成规模不小于5万吨/年的成型燃料收储运生产示范体系。
――研究生物质物料特性参数、生物质成型过程特性参数以及成型产品特性参数在线式数据采集与控制系统,保证生物质成型燃料全生产系统的智能化控制,保证成型系统稳定持续运行。将生产系统稳定生产时间提高到5 000小时/年,实现工业化连续生产。
――根据河南省不同地域原料特性,开发出以木本原料为主的高产能、低能耗的颗粒燃料成型机组,单机生产规模达到3-5吨/小时,成型燃料生产电耗达到60kW・h以下;配套设备完整匹配,形成一体化连续生产能力,示范生产线规模达到1万吨/年;选择代表性区域,建成年产2万吨以上颗粒燃料示范生产基地。
――根据河南省不同地域原料特性,开发出以草本原料为主的高产能、低能耗的块状成型燃料成型机组,单机生产规模达到3-5吨/h,成型燃料生产电耗达到40kW・h以下;配套设备完整匹配,形成一体化连续生产能力,示范生产线规模达到3万吨/年;选择代表性区域,建成年产5万吨以上颗粒燃料示范生产基地。
2.成型燃料规模化替代化石能源关键技术与工程示范
针对目前生物质成型燃料在燃料利用环节存在能源转化效率不高、应用规模小,高效综合利用及清洁燃烧技术水平不高等问题,开展成型燃料气化清洁燃烧关键技术设备研发和推广,从而实现生物质成型燃料的高效清洁燃烧利用,规模化替代燃油、燃气等清洁燃料。
――研发成型燃料高效气化及清洁燃烧关键技术,开发生物质成型燃料沸腾气化燃烧炉、大型高效气化炉,研制低热值燃气高效燃烧及污染控制技术,取得生物质气化系统与工业窑炉耦合调控技术。燃烧设备规模达到MW级,能源转换效率达到75%,各项环保指标达到燃油或燃气炉窑排放指标。建设年消耗千吨的生物质成型燃料的气化燃烧替代工业窑炉燃料的示范工程,实现生物质能源在工业窑炉上应用的突破。
(四)开发相关生物化工及综合利用产品
积极推进生物化工产品技术研究和产业化示范,实现对石油、天然气、煤炭等化石资源的替代。围绕纤维乙醇的副产物如二氧化碳、木质素等开展综合利用,提高产品的附加值;开展纤维质原料制取乙二醇项目产业化示范;拓展生物乙烯及下游产品产业链,开拓乙醇深加工新产业链;开发生物丁醇和生物柴油相关生物化工品。
1.二氧化碳基生物降解材料和化学品
加强高活性、安全、低成本催化体系研究,突破反应条件温和、环境友好的聚合工艺和非溶剂法提取技术,开展二氧化碳基生物降解材料及下游制品的产业化示范。积极研发二氧化碳与甲醇一步法合成碳酸二甲酯等关键技术,重点发展聚碳酸亚丙酯树脂、碳酸二甲酯、聚碳酸酯、发泡材料和阻隔材料等深加工产品。
2.纤维乙二醇、丙二醇、丁醇、糠醛下游产品产业化
依托天冠、财鑫等在生物化工技术研发方面具有优势的大型企业集团,开展纤维质糖平台为基础的生物化工醇技术攻关和产业化示范,重点发展纤维乙二醇、丁醇等高附加值产品产业化示范。依托宏业生化发展糠醛下游深加工产业链包括乙酰丙酸、糠醇、二甲基呋喃、四氢呋喃、呋喃树脂等。
开展纤维乙二醇等多元醇生产技术优化改进和产业化示范,提高生产效率和产品收率、质量,正在建设万吨级产业化示范装置,到2015年完成10万吨级乙二醇、丙二醇生产装置,到2020年形成50万吨生产能力。
开展纤维素水解物生产丁醇菌种的选育(葡萄糖木糖共利用),推进细胞表面固定化技术及其反应器的开发,采用反应-吸附耦合的过程集成研究,缩短发酵周期,提高产物浓度和分离效率,2015年完成2万吨级纤维丁醇示范,2020年形成10万吨/年纤维丁醇生产能力。
开展以糠醛为原料的乙酰丙酸、糠醇、二甲基呋喃、四氢呋喃、呋喃树脂等产品的深度开发,2015年建成连续化和规模化生产基地,2020年形成年加工50万吨糠醛生产规模。
3.生物乙烯及下游产品
开展乙醇高效催化制乙烯产业化示范。着力突破乙醇脱水制备乙烯催化剂关键技术,提高催化剂的选择性、寿命和催化效率,实现生物乙醇生产乙烯工艺的长周期、低成本、稳定运行。完善提升乙烯-聚乙烯-塑料制品和乙烯-环氧丙烷-乙二醇-聚对苯二甲酸乙二醇酯(PET)两条产业链,大力发展塑料制品、包装材料和高端服装面料。
4.木质素高值化开发利用产品
提高木质素综合利用水平,重点开发胶粘剂、有机缓释肥料、木质素复合材料、水泥保湿剂、高值燃料等产品,拓展其在化工、农林、建筑等领域的应用范围。
(五)微生物柴油产业化
根据国内外现有研究成果,结合绿色化和生物精炼概念的理念,实现微生物柴油的产业化。微藻等微生物养殖和生产生物柴油技术实现重大突破,开展万吨级工业化示范。集合微藻等微生物优良品种选育、高效转化、规模化养殖、油脂提取精炼等核心技术,开展工业化养殖、生产示范,实现微生物柴油和副产品的多联产。
1.木质纤维素生物质的综合处理技术
木质纤维素生物质主要成分为纤维素、半纤维素和木质素,经过一定的物理/化学处理,木质纤维素糖化,用于微生物的培养。副产物中的糠醛等物质会影响微生物的生长和代谢,综合的处理技术目标是将这些副产物控制在最低的水平,同时达到最高的降解效率。酸碱和离子液等化学处理要配合温度、压力,适度的破碎要配合微波、超声、蒸汽爆破技术,从而达到能量消耗最小,水解产物变性最少的效果。这些处理技术综合起来需要针对不同物料有序实施。
2.产油微生物脂类代谢的遗传调控
对于产油微生物油脂过量积累的机制当前还停留在生化水平上。利用基因组学、蛋白组学和转录组学技术,研究产油微生物脂肪代谢的基因调控机制,通过对某些关键基因实施遗传修饰,使其朝着人为设定的代谢流方向发展,最大限度的发挥转化作用。理解脂肪代谢的基因调控原理还有利于通过不同发酵模式调控油脂积累,有利于更好的利用工业废弃物生产油脂,有利于通过培养基营养限制调控脂肪的积累,有利于利用小分子诱导物调控细胞的繁殖和脂肪积累。
3.微生物柴油原位转酯技术
传统的微生物柴油生产周期长、成本高,而且打破微生物坚实细胞壁的操作很难实施。基于微藻等微生物生物柴油生产的周期分析显示,90%的能耗是用在微藻的油的提取工序上,表明油的提取工艺的进步将大大影响生产成本,决定着生物柴油加工产业的经济效益。近期“原位”转酯方法用于藻类生物产油生产受到密切关注,这种在细胞内酯类与醇类接触直接发生转酯反应,而不需要将脂类提取出来再与其发生反应。这种直接转酯技术,不仅能够用于微生物的纯培养物,同时有效适用混合培养产物的生物柴油生产。研究显示,原位转酯技术能够降低样品中的磷脂的量,甚至达到不能检出的水平。生物质的含水量会极大的影响油脂的提取率,而小球藻原位转酯研究发现,适当增加转酯反应底物醇的比例能够从含水量较大的生物质中获得较高产率的生物柴油,将大大减少微生物生物柴油的能量消耗和设备投入,明显降低生产成本。
4.生物精炼概念下的微生物柴油生产技术体系
木质纤维素物质来源广泛,如果在处理过程中将某些附加值较高的化学提取出来将会大大提高收益。同时,将微生物菌体所含的营养物质充分利用也会大大节省原料成本,例如将酵母菌提油后的残渣经过加工脱除抗营养因子后再用到微生物培养基的配制,可以节省大量含氮营养添加物。转酯反应的副产物甘油可以提纯后加工成丙二醇,后者是一种附加值更高的化学原料,甚至粗甘油用于培养基添加会提高微生物油脂的积累。废水处理可以用厌氧发酵生产甲烷或氢气,也可以通过微藻培养回用有机营养物。
5.生物柴油相关生物化工品
积极利用生物柴油副产品甘油,采用高活性、高选择性的催化剂,突破反应热移除、微生物法二羟基丙酮等关键技术,重点开发环氧氯丙烷、乙二醇、丙二醇、十六碳酸甲酯、二羟基丙酮(DHA)等高附加值精细化工产品,拓展其在医药、化工、食品等领域应用范围,实现资源高效综合利用。
6.生物质乙酰丙酸平台化合物
完成以玉米秸秆为原料水解生产乙酰丙酸工艺的优化设计与中试,解决生产过程设备腐蚀问题,完成乙酰丙酸的分离纯化工艺,完成乙酰丙酸的衍生物乙酰丙酸乙酯的生产工艺设计,将生物质高效转变为乙酰丙酸等平台化合物。完成千吨级的生物质水解生产乙酰丙酸联产糠醛工艺、乙酰丙酸酯化工艺中试装置的建设及运,完成放大级的生物质水解的生产乙酰丙酸工艺包的开发设计。
7.生物质间接液体燃料
开展生物质间接液化技术及产品开发,利用生物质先气化成合成气(由CO和H2组成的混合气体)、然后再将合成气液化得到的产品,如甲醇、二甲醚、费托汽柴油等,逐步建立中试及示范工程。
8.生物质纳米材料
以生物质作为原料合成碳基纳米材料、多孔碳材料及复合材料,所制备的纳米材料具有优异的固碳效率、催化性质和电化学性质,使其在催化剂载体、固碳、吸附、储气、电极、燃料电池和药物传递等领域潜在重要应用,使其成为合成技术研究的热点。
(六)强化生物质能化装备产业化与基地建设
围绕生物质能化产品规模化开发利用,依托特色产业集聚区,发挥骨干装备制造企业的产业基础和技术优势,加强与国内外优势生物质能化装备企业和专业科研院所合作,整合上下游企业,完善特色生物质能化装备产业链。突出集成设计、智能控制、绿色制造和关键总成技术突破,培育一批具有系统成套、工程承包、维修改造、备件供应、设备租赁、再制造等总承包能力的生物质能化装备大型企业集团,建设一批特色鲜明、技术先进、在全国有重要影响的生物质能化装备基地。
1.农林原料收储运装备
以洛阳、许昌等农机产业集聚区为重点,集合国内先进农林机械制造企业,引进国外先进制造技术,骨干企业,重点突破秸秆剪切、拉伸、压缩成型等基础共性技术,大力发展稻麦捡拾大中型打捆机、玉米秸秆收割调质铺条机、棉秆联合收割机、能源林木收获机械、高效粉碎机械与成型机等重大整机产品,带动相关零部件产业配套发展,切实提高生物质收集、装载、运输、储藏的高效性和通用性。
2.纤维乙醇成套装备
以南阳新能源产业集聚区为重点,依托天冠集团现有纤维乙醇成套装备,集成国内外先进技术,加大设计研发力度,加快推进具有自主知识产权的纤维乙醇成套装备技术提升,打造世界领先的纤维乙醇成套装备制造基地。重点开发原料预处理低温低压、大型连续汽爆技术和装备,纤维素酶大型、高效生产技术和装备,大型高效连续酶解发酵技术和装备,高抗堵蒸馏及热耦合干燥成套装备,木质素燃烧高效能量转化装备。2015年前形成年总装10套3~10万吨级纤维乙醇成套装备能力。2020年形成年总装300万吨纤维乙醇成套装备能力。
3.沼气生产及沼气发电成套装备
以南阳新能源、郑州经济技术、安阳高新技术和长葛市等产业集聚区为重点,依托天冠集团、森源集团等骨干企业,加快发展有机废弃物高效率厌氧消化及沼气生产、沼气制取生物天然气、民用沼气加压输送、撬装式CNG加气站以及生物天然气分布式能源集成等成套装备。加强与美国通用、德国西门子和日本三菱等国外优势企业合资合作,大力发展2 000千瓦以上大型沼气发电技术和装备。在南阳形成大型工业沼气成套装备基地,在许昌和周口形成农村大中型沼气成套装备基地,在郑州形成生物天然气分布式能源与CNG加气成套装备基地,在安阳形成城市有机垃圾沼气成套装备基地。
4.生物质成型燃料及其高效利用成套装备
依托河南省科学院能源研究所有限公司、河南秋实新能源有限公司等,建成成型燃料成套生产设备和生物质热解气化、高效燃烧及生物质成型燃料气炭油联产设备加工生产基地。
5.生物柴油和生物热解技术装备
依托中石化、中石油集团先进生物柴油和航空生物燃料技术,发挥洛阳、商丘装备制造业优势,加快发展水力空化、临界态甲醇酯化等新型生物柴油装备,形成成套生产能力。加快开发生物质快速热解、生物油催化加氢生产车用燃料技术和装备。
6.生物化工产品关键装备
依托河南财鑫集团、华东理工大学、天津大学,设计研发优化改进秸秆制乙二醇等多元醇高效预处理、糖化、连续氢化裂解反应器和节能精馏分离等关键设备。
依托河南天冠集团、郑州大学、清华大学、浙江大学、中山大学、中科院上海生命科学研究院等,设计研发优化二氧化碳降解塑料反应釜、脱挥挤出造粒、产品改性等关键设备,生物柴油副产物甘油制1,3-丙二醇反应自控流加、膜法分离、脱盐、浓缩、真空精馏等关键设备,纤维丁醇发酵分离耦合反应器、离交树脂产物分离等关键设备。
依托宏业生化、河南省科学院能源研究所、中科院广州能源所、山东省科学院,设计低温低压精馏塔、液相管式推流反应器、高效多级蒸发等关键设备;改进废液无公害化处理、高效分散造粒、低分子量差分离等关键装备。
7.生物柴油和生物热解技术装备
依托中石化、中石油集团先进生物柴油和航空生物燃料技术,发挥洛阳装备制造业优势,加快发展水力空化、临界态甲醇酯化等新型生物柴油装备,形成成套生产能力。加快开发生物质快速热解、生物油催化加氢生产车用燃料技术和装备。
8.高比例灵活燃料汽车和双燃料汽车
与国内外知名汽车发动机制造企业合作,依托郑州日产、海马和宇通开发乙醇/汽油灵活燃料汽车和汽油/天然气、柴油/天然气双燃料汽车。前期开发专用发动机、燃料供给及控制系统、氧传感器等,2015年后形成批量生产能力,配套建设相应的燃料(E85、车用生物天然气)输、供、储设施。2020年灵活燃料汽车产能达到20万辆以上,双燃料汽车产能达到10万辆以上。
(七)其它先进生物燃料技术创新和示范
加大科技研发投入和攻关力度,加快推进生物柴油、航空生物燃料、生物质快速热解制生物燃料等其他先进生物燃料技术取得重大突破。2015年前开展废弃油脂生产生物柴油和万吨级纤维丁醇等示范工程建设,2020年前推动含油林果生产航空生物燃料和高级油产业化发展,微藻养殖和生产生物柴油技术实现重大突破,开展万吨级工业化示范。
1.生物柴油
在郑州、洛阳、开封、商丘、安阳、周口、漯河、焦作等餐饮废弃油脂和工业废弃油脂富集的地区,加快建立工业废弃动植物油脂回收体系、餐厨垃圾油脂回收体系,以餐厨垃圾油脂和工业废弃动植物油脂为主生产车用生物柴油。到2015年形成20万吨/年产能,2020年前在全省推广,形成30万吨规模。
集合微藻优良藻种选育、高效转化、规模化养殖、油脂提取精炼等核心技术,开展工业化养殖、生产示范,实现生物柴油和副产品的多联产。
2.航空生物燃料
在南阳、洛阳、三门峡、安阳等山地丘陵区推进规模化的含油林果原料基地建设和采集体系建立,到2020年实现以含油林果为主要原料生产航空涡轮生物燃料和高级油,规模达到25万吨/年。
3.生物质快速热解生产车用生物燃料
围绕生物质快速热解生产生物油、生物油催化加氢生产车用生物燃料,开展关键技术与工程示范研究。2015年完成千吨级中试。2020年建成5万吨级的生物油催化加氢生产车用燃料示范工程。
关键词:生物质能源;产业现状;存在问题;对策措施;贵州
中图分类号:F127文献标志码:A文章编号:1673-291X(2010)28-0128-03
生物质能是植物通过光合作用将太阳能转换为化学能而固定下来并储存于生物质中的能量。主要包括植物、农林废弃物、有机废水和畜禽粪便等 [1]。现代生物质能源的研究与利用主要指借助热化学、生物化学等手段通过先进的转换技术,生产出不同需求的固体、液体、气体等高品位的新能源来替代日期枯竭的化石能源。生物质能源目前已占世界能源消费的14%左右,排在化石能源煤、油、气之后而位居第四[1~2]。 贵州是一个富煤缺油缺气的山区省份,长期欠开发、欠发达,充分利用优越的自然气候资源、丰富的生物资源,积极开发利用生物质能源,缓解能源短缺压力,是事关国家能源安全、生态安全,确保国民经济可持续发展和社会进步的重大研究课题,是国家能源发展战略的必然选择。发展生物质能源有利于探索能源替代新途径,缓解能源压力;有利于贵州喀斯特山区的石漠化治理,改善生态环境;有利于拓展农业生产功能,增加农民经济收入。有鉴于此,拟通过对贵州主要自然气候资源、能源植物资源及产业技术现状、存在问题和发展对策进行分析探讨,以期促进贵州生物质能源产业持续稳步发展。
一、贵州发展生物质能源的优势及条件
“十五”计划以来,随着中国《可再生能源法》的正式实施,生物质能源发展日益受到各级政府和全社会的密切关注。国家先后颁布了《中华人民共和国可再生能源法》,制定了《可再生能源中长期发展规划》、《可再生能源“十一五”规划》及《生物燃料和生物化工原料基地补贴办法》、《生物能源及生物化工非粮引导奖励资金管理暂行办法“财建[2007]282号” 》、《秸秆能源化利用补助资金管理暂行办法“财建[2008]735号” 》等相关政策及资金补助措施。根据中国经济社会发展需要和生物质能源利用技术状况,明确提出到2010年,增加非粮原料燃料乙醇年利用量200万t,生物柴油年利用量达到20万t;到2020年,生物燃料乙醇年利用量达到1 000万t,生物柴油年利用量达到200万t,总体实现年替代约1 000万t成品油的目标。农村沼气、燃料乙醇、生物柴油、致密成型固体燃料等广泛应用于生物质发电、汽车燃料、民用生活领域,能源植物筛选、高效节能技术一直被视为生物质能源研发的重点。贵州位于中国西南地区的东部,地处云贵高原向广西丘陵过度的斜坡地带,介于东经103°36′~109°35′、北纬24°37′~29°13′之间,平均海拔1 100m左右,属亚热带季风湿润气候区,大部分地区年平均气温在15℃左右,日照时数在1 200h~1 400h之间,年均降水量在1 100mm~1 300mm之间,年相对湿度高达82%,立体气候明显、温暖湿润,生物资源种类繁多、富有特色,是全国重要的动植物种源地之一。
根据贵州省(2006―2050)喀斯特石漠化和小流域综合防治规划,贵州省现有200万hm2宜林荒山荒地,在喀斯特地貌的山区种植小油桐、黄连木、光皮树、乌桕、续随子、油桐、蓖麻、甘蔗、木薯、甘薯、芭蕉芋等能源植物资源,对推动山区农村产业结构调整,实现能源农业、能源林业产业化,生物质能源及其他农业废弃物十分丰富,开发应用基础好。按照国家发展生物质能源应坚持不与人争粮、不与粮争地、不破坏生态环境的“三不”原则,贵州发展生物质能源的自然基础条件较其他平原地区优越。
贵州自21世纪开始,已经启动从优势能源植物筛选、利用评价、良种培育、基地建设到加工生产技术工艺等系列基础试验示范工作,基本建立了以小油桐、乌桕、光皮树、芭蕉芋为主的优质高产栽培和良种繁育技术体系,掌握了高转化率的加工工艺和技术,为生物质能源产业进一步发展奠定了一定的基础。
二、贵州生物质能源发展现状及存在问题
1.产业研究发现状
贵州省自2000年以来就开始关注并积极推动农村沼气、燃料乙醇、生物柴油等资源发掘及技术研发工作。在省委、省政府的重视支持下,相关部门先后从农村废弃物生产沼气,从芭蕉芋、马铃薯、甘薯、甘蔗、木薯制备燃料乙醇,从小油桐、光皮树、续随子、蓖麻、乌桕制备生物柴油等方面对贵州生物质能源产业发展进行了摸底调查和相关研究。已从资源评价、良种培育、配套栽培、加工工艺、综合利用及产业化技术等方面展开试验示范研究。2008年全省沼气用户超过149.6万户,实际利用141.5万户,年产气76 682.6m3,秸秆生物气化产气集中供气点达二十余处 [1~5]。在能源资源的调查及筛选评价中,已基本查清全省主要生物质能源植物资源种类、数量、分布区域及主要优势资源,完成30种贵州木本能源植物的种质资源迁地保育,繁育基地及5~10种主要造林树种轻基质容器育苗技术,特别在小油桐、芭蕉芋等的能源植物资源收集、新材料创制和良种繁育方面取得一定进展,已选育出并通过省级审定芭蕉芋品种两个。一是良种繁育技术体系基本建立。二是原料基地建设进展顺利。三是生产加工工艺比较成熟。特别是生物柴油化学生产技术已经形成比较完备的生产加工技术体系和方法,固体催化剂转化率达到99%,甲酯回收率大于95%,并获多项国家发明技术专利。
目前已建有小油桐产业示范基地1.6万hm2,芭蕉芋产业示范基地近1.5万hm2,甘薯产业示范基地近20万hm2,马铃薯产业示范基地50万hm2,甘蔗产业示范基地近2万hm2。油桐产业示范基地30万hm2,黄连木、光皮树、乌桕、蓖麻等还在研究积累初期 [4~6]。已有贵州中水能源股份有限公司、贵州江南航天生物能源科技有限公司、贵州金桐福生物柴油产业有限公司、黔西南康达生物能源科技有限公司均建成了年产1万~3万t的生物柴油加工示范生产线,并将生物柴油作为新产业,逐步建设年产10万t以上的生产能力。按亩产300kg原料计算,目前能源油料种植面积要在2.5万hm2以上。乙醇生产方面:糖厂有现成的乙醇加工设备和技术,年需求原料甘蔗面积也在1.5万hm2左右 [2~4]。贵州大学、贵州醇酒厂的淀粉干片发酵技术还在进一步研究中,不久也会有相应规模的生产线建成投产,加上其他产业的原料竞争,原料不足已导致企业3/4产能闲置,仅靠地沟油、泔水油生产生物柴油很难形成产业化。
虽然生物能源开发利用前景广阔,但生物质能源研发利用技术目前还没有实现关键性突破,在发展过程中还面临优势植物资源缺乏、生产成本高、原料供应不足、市场风险大、综合利用率低、产品标准不一、市场销售不畅等诸多问题。
2.存在问题
(1)对发展生物质能源产业的认识不足。从一个新兴产业的角度和自身发展规律来看,生物质能源产业仍然存在基础积累、市场发育、支撑体系、技术攻关等许多关键环节问题。许多企业或经营者首先想到的是抓基地、建厂房,争取国家的政策性补助。而在产业链的基础环节、市场培育和技术保障方面还存在一定的盲目性,产业体系未建立,导致许多基地经营水平低、示范效果差、农户持观望态度,对发展原料生产没有信心,原料供应严重不足。
(2)研究基础薄弱,原料成本较高。生物质能源产业是一项多学科联合的现代综合性产业,产业链较长,涉及多项技术工程,生物质液体燃料近期主要是生物柴油和燃料乙醇,未来主要技术是木质素和纤维素生产液体燃料。目前主要依赖于油料植物的产量和含油量,许多木本油料植物都呈野生或半野生状态,缺乏强有力的科技支撑是生物能源产业长期做不大的原因之一,产出率不高主要还是资源和技术的双重制约。由于研究时间短,技术基础薄弱,特别是专用原料植物的良种选育及配套生产技术还未真正破题,原料生产成本较高,据测算,13t甘蔗可生产1吨乙醇,需土地1 400m2左右,按蔗价280元/t计算,原料成本价为3 640元,7t木薯生产1吨乙醇,木薯原料成本价4 000元左右,加工成本需500元~800元;按2吨植物油生产1t生物柴油计算,仅原料成本也在4 000元~5 000元之间。目前燃料乙醇销售价为5 000元~6 000元/t,生物柴油销售价为6 000元~7 000元/t,企业利润空间不大,农户种植收入较低。就拿炙手可热的小油桐来说,经历了近五年的研究,虽有规模化种植面积1.6万hm2,但大面积产量低而不稳,平均累计产量不足100kg/667 m2 [2~6]。所以,目前主要都采用地沟油、泔水油生产生物柴油,原料供应严重不足。
(3)主攻方向不明确,优势植物突破性小。通过前期研究,在优势物种选择、良种选育方面尽管取得一些成果,但研究领域狭窄,技术积累不够,在解决品种抗逆性、高产优质和规模化经营方面突破性不大,产量低,成本高。目前大多数能源植物的研究尚处于收集、引种、筛选、评价及试种栽培的探索阶段,原料结构单一、应用范围小,规模化和产业化程度还比较低。糖料作物、淀粉作物产量高,但转化利用成本较高,油脂植物转化利用成本低,但种植产量较低,农户种植积极性不高。不管是糖料能源、油料能源、淀粉能源还是其他,究竟发展能源酒精好还是发展生物柴油好目前也还没有准确定论,基地建设、产品加工、市场销售脱节,直接造成生产成本和管理成本过高,企业出现严重亏损,有碍于经济效益目标的实现,极大地限制了贵州生物能源产业的持续稳定发展。
三、贵州生物质发展建议
1.科学制定发展规划
生物质能源研发的范围十分广泛,从用途上来说,有生物质直接燃烧或混合燃烧发电,生产沼气或制成致密型燃料作民用燃料,生产燃料乙醇、生产生物柴油作机械动力燃料,还能作生物制氢等。根据用途的不同,其技术工艺和所需原料差别也很大。我们要根据市场和贵州经济社会发展的实际需求,结合能源结构特点确定一定时期内的生物质能源产业在经济结构中的地位、发展方向和任务目标,要根据生物质能源产业发展的学科取向、价值取向对相关产业进行系统科学的评估和论证,特别要在开发中的工矿区、非粮产区选择重点领域和重点植物进行研发。
根据贵州山区的能源植物分布比较零星分散、收集运输困难等特点,结合加工工艺比较成熟的实际,能够容易形成产业优势的就是车用燃料乙醇和生物柴油。目前应以车用液体燃料为重点,稳定小油桐、甘蔗、芭蕉芋、红薯、马铃薯生产,探索光皮树、黄连木、乌桕、续随子、木薯、蓖麻及其他纤维植物在喀斯特山区的适应性及发展潜力。贵州省粮食自给虽基本平衡,但随着粮食加工转化利用量的逐年增加,粮食供需缺口将继续存在,推行燃料乙醇必须慎重。结合喀斯特石漠化治理和“两江”流域区的生态屏障建设,重点应选择适应性好、抗逆性强的多年生木本能源植物进行研发。
2.加强科技攻关,突破核心技术
鉴于发展贵州生物质能源产业的关键在于保障原料供应、降低生产成本、保护生态环境和增加农户收入,一是针对喀斯特山区的地理气候环境,强化自主创新,重点利用先进育种手段和生物技术手段,选育速生丰产、抗旱耐瘠、抗病虫害的专用能源植物品种。二是研究速生丰产栽培、病虫害防治、矮化密植及配方施肥等适用技术和省力化技术。三是加快科技成果的引进和新技术研发集成、应用与推广,加速科技成果转化,大幅度提高其产量和品质。四是加强小油桐、黄连木、乌桕、续随子、芭蕉芋、甘薯等副产品的综合利用和技术研发,降低生物质能源生产的综合成本,提高综合效益。
3.探索发展模式
发展生物质能源产业是一项产业化程度较高的系统工程,涉及政府、加工企业、科研单位、农户等诸多部门,目前没有现成的模式可循。市场是拉动生物质能源产业发展的前提,科学技术是确保该产业持续稳定发展的关键。特别在发展初期,由于中国能源生产还存在一定的行业垄断,没有稳定的市场,政府要加强领导和监管,切实调动社会各方面发展生物质能源的积极性,尽快建立起一定规模生物能源基地,组织协调好各方面的利益分配关系。建议有关部门应从国家能源发展战略和解决三农问题的高度出发,切实制定相应的扶持政策和措施,要将产品加工、原料种植、基地建设和退耕还林、生态工程、结构调整、石漠化治理、农民增收等结合起来,做好生物质能源作物种植规划和基地建设,以保证原料供给及降低原料成本。推广“公司+科研+基地+农户”的经营模式,明确各方的责、权、利,建设一定规模的产业化示范基地,共同争取国家的政策支持和资金补助,既满足了企业的原料供应,又保证了农民的经济收入,实现农户和企业之间利益共赢,确保此项工作的顺利开展。
参考文献:
[1]田春龙,郭斌,刘春朝.能源植物研究现状和展望[J].生物加工过程,2005,(1):2-4.
[2]吴创之,马隆龙,陈放,等.中国生物质能源产业发展报告(2009―2010)[R].
[3]九三学社贵州省委.关于发展我省生物质能源的建议[EB/OL].世界新能源―生物质能源网,2008-02-09.
[4]王亚萍,姚小华,王开良.燃料油植物资源研究现状与发展对策[J].中国油脂,2007,(5):7-10.
[5]王涛.中国主要生物质燃料油木本能源植物资源概况与展望[J].科技导报,2005,(5):12-14.
[6]邓伯龙,石杨文,陈波涛.贵州生物质能源树种资源的开发与利用[J].资源开发与市场,2006,(3):265-266.
[7]刘新建,王寒枝.生物质能源的现状及发展前景[J].科学对社会的影响,2008,(3):5-9.
关键词:生物质发电厂;燃料输送;设备选型;发电项目;输送机 文献标识码:A
中图分类号:TM621 文章编号:1009-2374(2016)32-0071-02 DOI:10.13535/ki.11-4406/n.2016.32.035
1 概述
如今,随着各类可再生能源技术的更新,可再生能源市场占有比例得到不断提高。可再生能源在减少资源消耗的同时,也降低了对环境的破坏。生物质能源为一种可再生能源,近年来得到广泛应用,本文以生物质发电厂为例,对生物质电厂燃料输送系统设备选型进行对比分析。当前较为常用的输送机主要有五种,分别为普通带式输送机、大倾角带式输送机、挡边带式输送机、链式输送机与管状带式输送机。在电厂生产过程中,燃料输送系统的安全稳定运行,对电力生产水平和效率有重要的影响,因此进行生物质发电厂设计时,必须重视输送设备的选型工作,根据燃料特征、电厂设备出力要求等情况,选取出最为适宜的设备类型,对保障发电厂生产运行和提高经济效益具有重要意义。
2 生物质燃料
生物质燃料为可再生资源,近年来受到国家的高度关注,相关部门出台了很多法规与政策,鼓励企业加大力度开发、运用这种资源。生物质发电技术就是充分利用生物质能源,将生物质能转化成电能。生物质发电的主要燃料为农业生产过程中的废料。我国生物质电厂常用的发电燃料主要有两种,其一为黄色秸秆,如稻草、甘蔗叶、稻谷以及花生壳等;其二为灰色秸秆,如树皮、林木肥料以及棉花秆等。由于生物质发电厂燃料,其具有松、杂和散等特征,所以需根据燃料的特征和输送设备的性能进行设备选型,为保证电能生产质量,充分发挥燃料作用和价值,需切实做好燃料的输送设备的选型工作。
3 生物质发电厂燃料输送设备选型
3.1 普通带式输送机
普通输送机是我国应用最为娴熟的技术之一,在燃煤发电厂中极为常见,用途也十分广泛。该输送机的成型商品较为可靠,现阶段已完全实现国产化,造价合理。输送燃料时,燃料不易封闭,防尘效果相对较差;在布置输送机的过程中,倾角不能太大,通常保持在16°以内,否则将造成打滑、脱落等现象。该输送机主要输送经过破碎处理以后的硬质秸秆,常见的有木片与棉花秆等。
目前,有许多生物质发电厂在普通输送机上运用花纹带。与常规输送带相比,花纹带具有更高的摩阻力,可避免物料发生打滑等现象,有效提升了输送能力,节省电厂土建投资,具有很高的经济效益。花纹带输送机通常用在破碎处理后的燃料输送环节中。
3.2 大倾角带式输送机
从结构上讲,大倾角带式输送机和普通带式输送机并无太大差别,只是前者将波状挡边输送带和后者进行了有效的结合。其中,波状挡边大倾角带式输送机主要由三大部分构成,分别为基带、挡边与隔板。横隔板为复合材质,具有较强的耐冲击与抗变形能力;基带两边是波状挡板,挡板与隔板采取冷硫化的方式固定于基带之上,而隔板和挡板之间互相拴结,可进行随时更换。对于这种输送带而言,它对抗拉强度与耐磨性能有很高的要求,针对留有一定空边的输送带,为满足角度更改需求,胶带必须具有良好的柔韧性与刚度。
通过对此类输送机的合理应用,可大幅提升输送角度,减少了不必要的转运点和占地面积,而且对于燃料也具有很强的适用性,很好地处理了滑料等实际问题。然而,我国自主产品还是以小出力和低高度为主,对于大出力和大高度还需从国外进口,而且这种设备的回程带还会产生较大的振动,容易产生粉尘,造成运行环境不佳。这种输送机适合输送具有较好流动性的燃料,常见的有稻谷、花生壳等,但要对输送量进行控制,单次输送量不宜过大。
3.3 挡边带式输送机
该输送机充分结合了特制挡边与普通带式输送机,并在传统平托输送机上加设固定挡板。这种输送机可有效提升输送过程中的截面积,输送效果良好,输送能力相对较强。由于输送机的挡边完全固定,所以可实现密封,具有极强的防尘能力,有利于运行环境的改善和保护。该输送机与普通带式输送机并无太大差别,使用范围较广,软质燃料和硬质燃料都适用。通过对国内使用现状的分析可知,对于这种输送机的实际应用,大多运用敞开的布置形式,为保证运行效果,需要增设防溢裙板或者是防护罩,以进一步增强其密封性,从而对防尘能力进行有效的改善。
3.4 链式输送机
链式输送机是丹麦技术,在我国主要由龙基电力公司进行生产,用于整包物料的运输,对于物料包尺寸、松紧程度有很高的要求,通过合理的设计与布置可很好地实现定量数量;在输送过程中不会产生大量粉尘,设备的运行环境相对较好;工艺布置可选方式较多,如高架、地面和地坑等,具有极强的灵活性。然而该输送机对物料包形式有极高的要求,只可以输送整包物料,无论是哪一种散料都不可以进行输送。除此之外,在输送时还有可能出现散包等现象,且占用相对较大的空间。就目前而言,该输送机已经在我国的鹿邑、辽源等地区中运用,技术应用水平正日益成熟。
3.5 管状带式输送机
该输送机是由呈六边形布置的辊子将输送带裹成边缘互相搭接的圆管状来输送物料的一种新型带式输送机,其结构如图1所示。和普通的带式输送机相比,此类输送机主要具备以下优势特点:支持长距离物料输送,可在复杂、多变的地形中使用;物料运输全程实现封闭性,不会产生灰尘,避免了对周围环境造成的污染和破坏;输送机本体带有走廊,可有效降低土建施工的工作量;支持大角度物料输送。由于给料与卸料段之间存在一定距离,所以该输送机不能在短距输送中使用,且维护量相对较大。通过使用现状分析得知,该输送机常用于具有较强流动性物料的输送,常见的有稻谷、花生壳等。
图1 管状带式输送机
除此之外,由于该输送机能在相对复杂的地形中输送多种散装物料,所以其能在很多领域中应用,除了生物质发电厂,还有矿山、码头、港口以及煤炭等行业。然而,从生物质发电角度讲,该输送方式并未得到广泛的普及,在技术方面还需进行更为深入的研究,以此推动此类输送机的应用与发展。
4 结语
通过上述分析可以看出,不同输送机各有所长,但从输送效果角度讲,花纹带普通带式传输机与挡边带式输送机具有相对较高的经济性与适用性;大倾角带式输送机虽然运行效率突出,但造价偏高、检修维护量大,常用于受地形因素影响严重的情况;链式输送机仅可以进行整包输送,输送形式单一;管状带式输送机可大幅节省占地面积,在密封性、易维护性等方面有显著的优势,但只能用于长距离输送中,所以目前管带机在生物质发电领域中的应用受限,还需对其进行有效的改善。
上述五类输送机,除了管状带式输送机,其他所有输送机都可以在生物质发电厂中有效应用。对于单一的燃料的类型,带式输送机可以很好地满足需求。但从实际情况来看,由于生物质电厂燃料具有一定多样性,所以电厂需要根据自身情况对输送系统进行适当的改造与升级,在条件允许的情况下还要结合多种输送机,实现联合输送,从而满足多样性的需求。
在实际的设备选型过程中,需根据具体发电项目具体状况与要求,从性能可靠、经济合理、便于维护等层面入手,整体分析不同输送机的特征和优势,进而选取出最为适宜的输送设备,为发电厂稳定、高效生产奠定良好基础。
参考文献
[1] 徐晓云.生物质电厂燃料运输、贮存及输送系统的设计研究[J].电力技术,2010,7(6).
生物能源是什么
生物能源又称绿色能源,可再生,原材料遍布各地,蕴藏量极大。生物能源离我们并不遥远,它就在身边。垃圾、秸秆、沼气甚至包括 “地沟油”,这些看似无用的家伙经过加工处理都能变成可利用能源。通常包括:一是木材及森林工业废弃物;二是农业废弃物;三是水生植物;四是油料植物;五是城市和工业有机废弃物;六是动物粪便。
生物能源主要有沼气、生物制氢、生物柴油和燃料乙醇。沼气由微生物发酵秸秆、禽畜粪便等有机物产生,主要成分是甲烷;生物氢通过微生物发酵得到,由于燃烧生成水,是最洁净的能源;生物柴油是利用生物酶将植物油或其他油脂分解后得到的液体燃料,作为柴油替代品;燃料乙醇是植物发酵时产生的酒精,以一定比例掺入汽油,使排放的尾气更清洁。
生物能源的现状
新型原料培育、产品综合利用、技术高效低成本转化,是“十二五”生物能源技术三大趋势。原料从以废弃物为主向新型资源选育和规模化培育发展;高效、低成本转化技术与生物燃料产品高值利用是技术发展核心;生物质全链条实现绿色、高效利用。
我国现有生物质资源相当于4.5亿吨标准煤,利用技术被列为重点科技攻关项目,如户用沼气池、节柴炕灶、薪炭林、大中型沼气工程、生物质压块成型、气化与气化发电、生物质液体燃料等。
生物能源科技重点包括:微藻、油脂类、淀粉类、糖类、纤维类等能源植物的选育与种植,生物燃气高值化制备及综合利用,农业废弃物制备车用生物燃气示范,生物质液体燃料高效制备与生物炼制,规模化生物质热转化生产液体燃料及多联产技术,纤维素基液体燃料高效制备,生物柴油产业化关键技术研究,万吨级的成型燃料生产工艺及国产化装备,生物基材料及化学品的制备炼制技术等。已经开发出多种固定床和流化床气化炉,以秸秆、木屑、稻壳、树枝为原料生产燃气。
利用方式
1.气体燃料。包括沼气、生物质气化制气等。利用有机垃圾、生物质废料、残留物、废弃物等进行发酵等工艺,生产出沼气等可燃气体。这种利用方式受原材料供应限制,大中型沼气工程发展较慢。可燃气通常用于家庭,以及专用燃气交通工具,使用范围较窄。可燃气体发电同样受到原料供应的限制。
2.液体生物质燃料。包括燃料乙醇和生物柴油,是可再生能源开发利用的重要方向。
生物柴油的原料来源广泛:回收动植物油;含油量高的植物,如麻风树(学名小桐子)、黄连木、文冠果、续随子等。构建大规模生物柴油能源林是解决原料供应的根本。
燃料乙醇在经历了以粮食为原料生产的初级阶段后,逐渐向以木质纤维素等非粮食原料转向。目前已有若干实验试点企业运行投产。
3.固体生物质燃料。分为生物质直接燃烧、压缩成型燃料、生物质与煤混合燃烧为原料的燃料。热效率利用率较低,通过新型炉灶、锅炉提高热效率利用率,或者把生物质固化成型后采用略加改进后的传统设备燃用,但成型燃料的压缩成本较高。此外,生物质燃料发电也成为当前生物质能开发利用的重要方向。
美国、英国、瑞典等国家均有生物质能源发电站建设投产,我国在这方面也具有了一定的规模,南方地区的许多糖厂利用甘蔗渣发电。广东和广西两省共有小型发电机组300余台,云南也有一些甘蔗渣电厂。
在诸多的生物质利用技术中,生物质发电技术是最具发展潜力的利用技术之一。因为电的利用范围较广,而且可以充分利用现存电网。高效直燃发电是最简便可行的高效利用生物质资源的方式之一。
发展生物能源的8大优势
生物能源对环境污染小,属于可再生能源,其普遍、易取,便于运输,且具有以下优势:
1.生物燃料是唯一能大规模替代石油燃料的能源产品,而水能、风能、太阳能、核能及其他新能源只适用于发电和供热。
2.产品多样。液态:生物乙醇和柴油;固态:原型和成型燃料;气态:沼气等。既可以替代石油、煤炭和天然气,也可供热和发电。
3.原料多样。秸秆、林业加工剩余物、畜禽粪便、食品加工业的有机废水废渣、城市垃圾,还可利用低质土地种植各种能源植物。
4.生物燃料可以像石油和煤炭那样生产塑料、纤维等产品,形成生产体系。其他可再生能源和新能源不可能做到。
5.可循环性和环保性。生物燃料是在农林和城乡有机废弃物的无害化和资源化过程中生产出来的产品;生物燃料的全部物质均能进入生物循环。物质上永续,资源上可循环。
6.生物燃料的“带动性”。生物燃料可以拓展农业生产领域,带动农村经济发展,增加农民收入;还能促进制造业、建筑业、汽车业等行业发展。
7.生物燃料具有对原油价格的“抑制性”。生物燃料将使“原油”生产国从目前的20个增加到200个,通过自主生产燃料,抑制进口石油价格,并减少进口石油花费,使更多的资金能用于改善人民生活,从根本上解决粮食危机。
8.生物燃料可以创造就业机会和建立内需市场。联合国环境计划署的“绿色职业”报告中指出,“到2030年可再生能源产业将创造2040万个就业机会,其中生物燃料1200万个”。
相关政策
近几年,中国生物能源产业发展迅速,产品产出持续扩张,国家产业政策鼓励生物能源产业向高技术产品方向发展,中国企业新增生物能源投资项目逐渐增多。投资者对生物能源产业的关注越来越密切,生物能源已成“十二五”规划扶持重点。《可再生能源中长期发展规划》提出,未来15年内投资约1.5万亿用于发展可再生能源,到2020年发展燃料乙醇至1500万吨、生物柴油500万吨。2011年1月5日,总理主持召开国务院常务会议,决定实施新一轮农村电网改造升级工程。在“十二五”期间,使全国农村电网普遍得到改造,基本建成安全可靠、节能环保、技术先进、管理规范的新型农村电网。
存在问题
1.原料资源短缺。广西木薯燃料乙醇项目,被利用为燃料乙醇原材料的木薯的前后价格差别很大,这对供应体系是个挑战。考虑到与人畜食物相争,很多国家都限制玉米乙醇生产,生物柴油原料不足。同样的问题在生物质发电、成型燃料和生物柴油领域也普遍存在。制备生物柴油主要原材料――“地沟油”回收方面表现尤为突出。相比于“地沟油”制备食用油技术,生物柴油的成本高售价低,再加上相关部门监管力度不够,造成“地沟油”回流餐桌现象普遍,也直接导致生物柴油原料供应不足。
2.技术基础薄弱。以能源作物为原料生产燃料处于试验阶段,以废弃动植物油生产生物柴油的技术较为成熟,但潜力有限。后备资源潜力大的纤维素生物质燃料乙醇和生物合成柴油的生产技术还处于研究阶段,产业化程度低。
3.生物燃油产品市场竞争力弱。受原料来源、生产技术和产业组织等多方面因素的影响,燃料乙醇的生产成本较高。目前,国家每年对102万吨燃料乙醇的财政补贴约为15亿元,在目前的技术和市场条件下,扩大燃料乙醇生产需要大量的资金补贴。
4.销售市场建设滞后,下游企业对接缺失。主要体现在生物液体燃料方面。以生物柴油为例,国内企业几乎都没有自己的加油站,很难进入中石油、中石化的成品油零售市场,销售渠道更是匮乏单一。在生物柴油发展的黄金期,国内涉足企业数量一度达到了300多家,目前数量缩水三分之一。
中小投资者的机遇
原料加工:如绿野科技从菊芋块茎中提取菊粉;甜高粱产量高,秆渣是造纸的好原料,作为大规模的能源作物具备有利的特性,很有前途。
油料作物种植:如北京草业与环境研究发展中心的柳枝稷、芦竹和荻,已试种了3000亩;赤峰市翁牛特旗经济林场,文冠果基地全国最大;湖南林业科学院能源植物与生物燃料油研究中心,选育出大果、矮化、高产、高含油的光皮树无性系良种6个,营造光皮树油料林30万亩。
【关键词】二次能源;生物质能;开发战略
1 生物质能源的应用现状
目前,国内外对生物质能发展主要集中在寻找生物质资源、研发生物质转化技术、探讨生物质能的生态环境效益3个方面,生物能技术主要应用于生物乙醇燃料、生物质气体燃料、生物制氢、生物柴油四方面。
1.1 生物乙醇燃料
生物乙醇研究的重点主要集中于能源转化效率和温室气体排放两个方面。 以秸秆为原料生产燃料酒精的工艺中存在若干亟待解决的技术难题, 纤维素酶的生产是其中难点之一。目前提倡固体发醇, 但固体发酵不可能像液体发酵那样随着规模的扩大而大幅度下降成本。故从长远发展角度来看, 应选用液体发酵技术[1]。
1.2 生物质气体燃料
生物质气化技术是一种热化学处理技术,通过气化炉将固态生物质转换为使用方便而且清洁的可燃气体,用作燃料或生产动力。
德国沼气工程普遍采用产气率高专用的青贮玉米作为主要发酵原料,产气率是鸡粪的2.5倍,猪粪的3.4倍,牛粪4.5倍。[2]
我国生物燃料可持续发展的外部机遇较好,内部因素中环保指标及可再生性优势明显,所以要依靠内部优势抓住外部发展机遇在最优SWOT战略组合选择上,应侧重SO战略( 即增长型战略),同时兼顾ST战略( 即特色经营战略),突出生物燃料的特色,努力打造我国生物燃料种植生产和销售的产业集群。
1.3 生物制氢
生物制氢过程可以在常温常压下进行, 且不需要消耗很多能量。生物制氢过程不仅对环境友好, 而且开辟了一条利用可再生资源的新道路。此外, 生物制氢过程可以和废物回收利用过程耦合。
生物制氢过程可以分为 5 类:
1)利用藻类或者青蓝菌的生物光解水法;
2)有 机 化 合 物 的 光 合 细 菌 ( P SB ) 光 分解法;
3)有机化合物的发酵制氢;
4)光合细菌和发酵细菌的耦合法;
5)酶法制氢。[3]
1.4 生物柴油
所谓生物柴油,是指利用各类动植物油脂为原料,与甲醇或乙醇等醇类物质经过交脂化反应改性,使其最终变成可供内燃机使用的一种燃料。生物柴油来自于植物油 ( 玉米、棉籽、海甘蓝、花生、油菜籽、大豆、向日葵) 或动物脂肪。
生物柴油的主要优点在于其环境友好性, 大气污染小, 尤其是硫含量低, 是一种优良的清洁可再生燃料。
生物柴油的制造方法有以下 4 种:
(1)直接使用和混合;(2)微乳法;(3)热解;(4)酯交换。[4]
生物柴油的生产在技术上已经基本成熟, 主要生产工艺分为化学法、生物酶法和超临界法化。生物柴油生产的主要问题是成本高, 制备成本的 75 % 是原料成本。降低成本是生物柴油能否实用化的关键, 目前仍处于试验研究及小规模生产与应用阶段。
1.5 其他典型技术的例子
奶牛-沼气-牧草0循环型农业生产模式, 即: 奶牛场排出的粪水经沼气池发酵, 产生的沼气用于牧场锅炉燃烧, 沼液、 沼渣用于浇灌狼尾草草地, 收获的牧草为奶牛提供青饲料。以期通过该循环利用模式, 增强系统的自净化能力, 实现资源的高效、 持续利用[5]。
DPSIR模型是由欧洲环境局( EEA) 提出的,内容涵盖资源 环境与经济社会等多个领域,可以较为准确地描述系统的复杂性和相互之间的因果关系,广泛用于资源可持续利用评价 城市化与资源环境相互关系分析水资源承载力评价等研究中,其科学性、应用性已得到学术界普遍认可[6]。
在能值理论的这一特点,Brown和Ulgiati 提出了能值可持续指标ESI,将其定义为系统能值产出率与环境负载率之比[7]。
生物质直燃发电作为 CDM 项目, 引入发达国家资金和关键技术,不仅可有效增大系统的能值产出率,降低环境负荷,使生物质直燃发电系统更具有竞争力,还能使系统能值可持续指标提高,使之富有活力和发展潜力,可维持较长时间内的可持续发展[8]。
2 面向未来的生物能源开发战略
2.1 可持续发展
实行清洁生产, 实现综合利用、循环利用、尽量减少排放和能耗; 将能源开发与废物处理结合起来, 在整体、协调、再生、循环的前提下合理建设以生物能源为纽带的生态产业园, 如沼气工程。
2.2 因地制宜
开发生物能源一定要因地制宜, 不可盲目上马。除了上述的 3 种有前景的生物能源产品, 沼气、生物质气化技 术等都值得好好推广应用。
2.3 前瞻性
开发中国的生物能源需要做到以下的政策和软件支持:(1)加大宣传。有必要通过舆论宣传加强人们对生物能源的认识。(2)加大政府投资和扶持。在新的生物能源初始商业化阶段要进行减免税等优惠政策。(3)借鉴国外经验, 充分调动地方和工业界的积极性。(4)加强高校对于生物能源的教育及研究。[9]
2.4 以生物质能高效利用为核心构建农村循环经济系统
(1)对农林生物质能开发利用应充分考虑资源的有限性和利用方式的平衡。
(2)坚持以沼气为主以太阳能和风能等新能源综合利用系统构建能满足农村基本用能需求的供应体系。
(3)高度关注农村能源加大政策扶持力度。
(4)创新机制推动农村新能源市场发展。
(5)创建示范工程为生物质资源有效利用不断探索新的途径。[10]
3 结语
开发利用生物质能, 既是我国缓解能源供需矛盾的战略措施, 保证社会经济持续发展的重要任务。随着国际原油价格的持续攀升和资源的日渐趋紧, 石油供给压力增大, 生物能源产业、生物质材料产业的经济性和环保意义日渐显现, 生物质能源在不远的将来一定会得到大力推广。
【参考文献】
[1]王建楠,胡志超,彭宝良,王海鸥,曹士峰.我国生物质气化技术概况与发展[J].农机化研究,2010,1.
[2]刘瑾,邬建国.生物燃料的发展现状与前景[J].生态学报,2008,4,28(4).
[3-4].王建楠,胡志超,彭宝良,王海鸥,曹士峰.我国生物质气化技术概况与发展[J].农机化研究,2010,1(1).
[5]奶牛-沼气-牧草,循环型农业系统的能值分析[J].生态与农村环境学报,2 010,26(2):120-125.
[6]孙剑萍,汤兆平.基于DPSIR模型的生物燃料-可持续发展量化评价研究:以江西省为例[J].科技管理研究,2013(4).
[7]杨谨,陈彬,刘耕源.基于能值的沼气农业生态系统-可持续发展水平综合评价(以恭城县为例)[J].生态学报,2012,7,32(13).
[8]罗玉和,丁力行.生物质直燃发电 CDM 项目可持续性的能值评价[J].农业工程学报,2009,12.