欢迎访问爱发表,线上期刊服务咨询

生物材料的前景8篇

时间:2023-12-09 17:27:14

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇生物材料的前景,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

生物材料的前景

篇1

      碳纳米材料是近年来的研究热点,随着人们对碳纳米材料研究的深入,其在生物医学领域的应用也在拓展,本书综述了在碳纳米材料在生物医学中的应用前景、研究进展以及面临的主要挑战。 

第1部分 介绍了碳纳米材料在生物医学中的应用,含第1-11章:1.碳纳米材料在生物医药中的应用前景,基于纳米柱、纳米金刚石以及纳米炸弹的物理化学性质,2.作为药物载体的碳纳米材料;3.功能性碳纳米材料在光热疗法、细胞毒性以及药物传递中的应用;4.具有特殊结构的碳纳米管在生物医药中的应用;5.水溶性的阳离子型富勒烯衍生物的光动力治疗;6.基于碳纳米管场发射X射线的微焦点计算机断层扫描技术在医学成像中的应用;7.义齿基托材料:纳米管/聚合丙烯酸甲酯复合树脂;8.石墨烯在生物医学中的应用;9.仿生石墨烯纳米传感器;10.功能性碳纳米点在生物医学中的应用;11.纳米金刚石材料在生物医学中的应用。第2部分 介绍了纳米科技在生物医药方面的应用:从碳纳米材料到仿生体系,含第12-18章:12.三维碳纳米結构的仿生工程;13.Janus纳米结构在生物医药中的应用;14.蛋白质纳米图案构筑;15.水溶胶粘合剂的仿生设计:从化学到应用,16.利用仿生膜测量脂质双分子层的渗透率;17.用于药物检测的荧光纳米传感器;18.仿生表面细胞工程。 

本书的第一作者Mei Zhang是美国Case Western Reserve University的研究人员,主要从事碳纳米材料方面的研究,在Science等国际顶级期刊发表过多篇论文。本书可作为生物医药工程以及材料科学与工程等相关专业研究人员的参考书。 

王兆刚,博士研究生 

(中国科学院半导体研究所)

篇2

【关键词】智能高分子材料;智能给药系统;应用;发展前景

中图分类号:TB381文献标识码:A文章编号:1006-0278(2012)02-106-01

智能高分子材料是一种新型的现代高分子材料,又名智能聚合物、环境敏感性化和物等,它随着外界环境等影响因素的变化而发生自身性能的改变,比如在温度、压力、磁场等不同因素影响下,其外在形状、电场、面积大小等随之做出相应改变,来适应不同环境的变化,,是一种新型的现代化的智能应用材料。随着科技的发展,智能高分子材料的应用领域越来越广,不但在建筑工程、化工、高科技领域得到充分发展体现,近年来,智能高分子材料被越来越多地应用到医学领域,特别体现智能给药系统的应用上,预示着良好的发展前景。智能高分子材料具体可分为合成智能高分子材料、半合成智能高分子材料、天然智能高分子材料,下面,我们具体对三种不同类型的高分子材料在智能给药系统中的应用进行分析探究。

一、合成智能高分子材料

合成高分子材料之一是智能高分子凝胶,它是由三维交联网络结构的聚合物和低分子介质组成的多元体系结构的一直合成智能高分子,随着外界环境因素的变化而变化,体现在体积大小上的收缩、持续或间断的变化,具有良好的收缩和溶胀的性能。因此在智能给药系统中,发挥其自我调节和反馈的功能,智能高分子凝胶粒具有感应温度、血糖、磁场等性能,并在身体状态良好的情况下保持收缩状态,当其收到病情信号时,体积膨胀从而扩散到身体病变部位,扩散药物以便达到良好的治疗功效,对智能给药系统具有良好的调节和促进作用;此外,可生物降解的聚酯类是合成智能高分子材料的另一种重要应用,同样在医学等各个领域都得到了广泛应用。同时,在智能给药系统中,由于可生物降解的聚酯类具有可生物降解、化学稳定性高、无毒无害等优点,大量被用于注射给药系统中,并且在肿瘤药物治疗中,可生物降解的聚酯类相对于其它游离药物具有减缓肿瘤生长等功效,有效地解决了医学领域许多棘手的难题,在智能给药系统中更是得到了充分体现和发展。

二、半合成智能高分子材料

半合成智能高分子材料作为智能高分子材料的一个重要组成部分,具有毒性小、粘度大、溶解度高等优点,可以有效地控制药物在人体的释放速度,增加药物吸收程度、降低了药物毒副作用提高药效等,对治疗各种疾病起到良好的促进作用,因而被广泛地应用到缓释药物制剂的研发和利用中,发挥了其在智能给药系统中的重要作用。比如,在智能给药系统中,蛋白质或肽类药物既可以在保持其生物活性的同时,又提高了载药量,是一种适合在肠道定向给药的特殊蛋白质药物递送系统,最大限度的降低了药物降解,起到了提高药效等作用。此外,对于心脏病等疾病,利用半合成智能高分子材料设计一种时控型的药物释放系统,按照药理学和患者病情定量给药,从而发挥其药效和并起到良好的预防作用。

三、天然智能高分子材料

相对于合成和半合成高分子材料,天然智能高分子材料特别具有良好的生物溶解性、天然无毒性等优点,是医学领域特别是智能给药系统中应用广泛和发展前景宽广的一种智能高分子材料。具体表现为壳聚糖、海藻酸盐、明胶三种类别。壳聚糖具有良好的生物降解性和溶解性、生物活性、粘附性等多种优点,被广泛地应用到结肠定位系统、缓控释、蛋白多肽等给药系统中,并且壳聚糖可进行交联。酯化等多种化学改性,从而研究制成具有不同特性的壳聚糖衍生物,并通过各种研发,研制了各种壳聚糖凝胶给药系统,提升了其在智能给药系统中的地位,大大扩展了其在医学领域的应用范围,具有良好的发展前景;其次,海藻酸盐在智能给药系统中的运用主要体现在与蛋白药物领域的结合,通过各种化学反应的作用,提高蛋白物的活性,制成各种蛋白质药物给要系统,提高了蛋白质药物的生物利用度,更加有利于患者治疗;再次,利用明胶和葡聚糖半互穿网络结构研制成的脂质微球,是一种双重刺激响应的半互穿网络系统,这种系统对于治疗多种复杂疾病具有良好的功效,在控制明胶相变温度变化的前提下,研制的半互穿网络结构水凝胶,具有特殊的控制脂质微球降解的功效,此外,脂质微球从凝胶中释放的基础是A-糜蛋白酶和葡聚糖酶同时存在的情况下,因此这种可生物降解的水凝胶构成的半互穿网络系统,在医学领域很有发展潜力, 不但阻止了单一酶存在导致的药物快速降解负面影响, 而且当在两种酶同时存在时, 药物才能从脂质微球中释放出来, 从而起到了药物缓控释释放的效果,从而实现智能给药系统对于疾病的综合治理,在医学领域展现了良好的发展前景。

四、结语

伴随着现代社会高科技的迅猛发展,智能高分子材料作为一种新型的、发展前景巨大的应用材料,已经普及到社会发展的各个领域和发展事业,不仅体现在国外的良好的发展前景,目前,在我国,智能高分子作为一种高科技研发、具有多样性和复杂性的智能材料在医学领域更是得到了长足和充分体现,对于在治疗各种疾病,制备多种给药系统的应用上发挥了重要作用。随着智能高分子材料研究的不断深入,并且通过各个领域的合作交流,智能高分子材料越发朝着信息化、智能化、自动化的方向发展,更加智能化的透析病理生理,制备兼具多种功能的智能释放药物系统,在我国医学领域必将得到充分、长足的发展运用。

参考文献:

[1]张胜兰,杨庆等.智能材料的现状及发展趋势[J].中国纺织大学学报,2000(03).

[2]陶宝祺.智能材料结构[M].北京:国际工业出版社,2009(07).

篇3

【关键词】生物材料 玻璃陶瓷 应用

一、生物材料

生物材料又可以叫做生物技术。它是运用生物学和工程学的原理,根据生物的材料、生物所持有的特有功能组建成具有特定性状的生物新品种,生物材料是在分子生物学、细胞生物学等基础上发展起来的,不仅仅包括基因工程、细胞工程、还有发酵工程,他们之间互相联系,其中最主要的是以基因工程为基础的。我们只有投入到生物材料的研究,才能让给我们做出更大的贡献。

二、生物材料玻璃陶瓷的分类和特点

(一)生物材料的分类。在医学中最早出现的生物材料是医用的金属材料,随着人类社会的进步,生物材料的不断发展,现在生物材料的应用越来越广泛。其中生物材料主要包括医用金属材料、医用高分子材料和医用生物玻璃陶瓷这三方面。特别对于生物玻璃陶瓷,由于生物玻璃陶瓷具有良好的生物相容性和很好的力学性能而受到人们的喜爱。而且它的光泽与人类骨骼的有很高的相似度,所以不易发生脏化的现象,十分适合于填补人体的空洞,填补缺失的牙冠和遮盖的牙面等。

(二)生物玻璃陶瓷的分类和特点。生物玻璃陶瓷现在可以主要分为三类:惰性玻璃陶瓷、可降解陶瓷、生物活性陶瓷。在这三类的应用中惰性玻璃陶瓷这种材料在植入到人体后不容易引起周围组织和全身明显的化学和生物反应。一般来说它具有良好的力学性能,持久的的抗腐蚀性和耐磨性。但是由于它的弹性模量较骨非常高,所以他的生物力学的相容性差,而且容易出现脆性断裂。

第二种是生物可降解陶瓷,这种玻璃陶瓷在植入人体的组织后不引起任何不良的组织反应,能够很好地被新生的组织所取代。但是该种生物材料的玻璃陶瓷强度低而且比较脆,因此在使用的时候不适合用于支撑比较重的部位,因为这些比较重的部位的弯曲力、扭转应力传递到植入体以后会导致植入体的断裂。第三种是生物活性陶瓷,这种生物材料在植入到体内后会与周围的组织发生生物和化学反应,从而能够很好地使得植入体与组织间形成生物的结合。这种生物材料的陶瓷玻璃不仅对人体无害,而且与骨组织的亲和性好,还能与周围的骨组织牢固结合。

三、生物玻璃陶瓷应用方面的优点

(一)生物玻璃陶瓷的独特属性。生物玻璃陶瓷要比普通窗玻璃含有较多的钙和磷,正是基于此能与骨自然牢固地发生化学的结合,而且它具有独特的属性,能在植入的部位迅速而且稳定的发生一系列的表面反应,导致含碳酸盐基磷灰石层的最终形成。此外,生物玻璃陶瓷的生物相容性很好,这些材料在植入体后,不会发生较多的不良反应。

(二)生物材料玻璃陶瓷最合适的运用部位。在人体发生无排斥的炎性及组织坏死等反应并能与骨形成骨性的结合,而且骨结合的强度大,界面结合能力非常好,并且相对来说成骨快。因此目前这种生物材料的玻璃陶瓷适合用于耳小骨的修复,同时对恢复听力也具有良好得效果,但是由于这种生物材料的玻璃强度低,所以只能用于对人体来说受力不大的部位。不管怎么样生物活性玻璃的多孔材料在用作骨组织工程支架方面具有很好的发展前景。

四、生物玻璃材料在应用中的改进

我们都知道生物玻璃陶瓷在生物医用领域具有极大的优越性,但是,它在力学性能方面还存在一定不足,尤其是陶瓷本身的脆性较大,疲劳强度和断裂韧性较低,鉴于这种情况不能应用于复杂的应力承载的环境中。所以为了获得能够更加满足要求的生物玻璃陶瓷材料,我们必须开发增加韧性和强度的方法,使得更适合人类的使用和发展。当前增韧增强的方法主要有粒子增韧、纤维增韧、层状复合增韧、生物性玻璃陶瓷涂层等。

(一)粒子增韧。玻璃陶瓷的粒子增韧是利用生物玻璃陶瓷和其它颗粒的复合方法来提高强度,这种方法应用最广,因为其工艺的过程比较简单。我们通常通过在玻璃陶瓷中添加纳米颗粒来提高材料的强度和韧性。

(二)纤维增韧。纤维增强增韧陶瓷复合材料是在陶瓷材料中添加纤维类材料来提高强度,其增韧机理主要是因模量的不同引起载荷的转移、微裂纹的增韧、裂纹的偏转、纤维的脱粘和纤维的拔出等情况。在轴向的应力作用下,纤维增强陶瓷基体复合材料的断裂包括基体的开裂、基体的裂纹逐渐向纤维和基体间的界面不断扩散、纤维脱粘、纤维的断裂和纤维的拔出等复杂的过程。

(三)层状复合增韧。玻璃陶瓷的层状复合增韧主要是从自然界中的珍珠类材料获得的启示。因为珍珠类的材料钙所占的比重大,所以鉴于此可以克服陶瓷材料的脆性,采用层状的结构,然后加入延性材料,从而制得层状复合材料。

(四)生物活性玻璃陶瓷的涂层增韧。这种增韧方法是把生物的活性材料涂覆在金属基体上,这样得到的复合材料不仅仅具有基体金属的强度和韧性,而且又具有生物活性材料优良的生物活性和生物相容性,这种生物材料的玻璃陶瓷在植入到人体后,可以在短期内与人体的组织形成良好的生物结合。这种增韧方式的金属基体主要包括不锈钢、钛合金等等。

五、结束语

生物材料玻璃陶瓷应用的广阔前景是我们不断进行研究的动力,随着科技的不断发展,我们的医学水平亟待提高,而且我们要向着更加人性化,符合人类的人体方向不断发展,让更加适应人的水平,以人性化为准则,发展更新的生物玻璃陶瓷。

参考文献:

[1]张亚乎,高家诚,王勇.人工关节材料的研究与展望[J].世界莽}技研究与发展,2000、

[2]师昌绪.《材料大词典》[M].化学工业出版社,1994

[3]赫建原,邓先模.复合生物材料的研究进展[J].高分子通报:2002

[4]蒋淑文,齐民.生物医用多孔金属材料的研究进展[J]材料科学与工程,2002

[5]张国军,岳雪梅,金宗哲.颗粒增韧陶瓷裂纹扩展微观过程.硅酸盐学报,1995

[6]单小宏,生物玻璃陶瓷复合材料的研究[D].中南大学,2004

篇4

关键词:纳米材料;纳米技术;动物疾病防控

中图分类号:S858文献标识码:B文章编号:1007-273X(2018)04-0012-02

当前国际动物疫病现状呈现复杂化,形势不容乐观。新兴复合型科技研究产物应用于动物疾病的诊断、治疗预防等环节迫在眉睫。纳米材料及技术由于具有新颖的物理、化学和生物学特性,已被研究应用于生命科学领域。纳米材料具有其独特的功能和优势,越来越多研究人员将纳米技术引入到动物疾病防控领域,如致病菌的快速检测、疾病的诊治等方面,并己取得了一定的效果。

1纳米材料及纳米技术研究概况

1.1纳米材料特点

纳米材料主要表现为表面与界面效应、小尺寸效应和宏观量子隧道效应等。实际应用效果包括表面积大、表面活性高、催化效率高、安全性稳定、吸附能力优良、低毒性等特点。

1.2纳米材料研究进展

纳米材料是纳米科学发展的重要基础,也是纳米科技最为重要的研究对象。纳米材料在生物医学中检测诊断、药物治疗以及健康预防方面均取得了一定的发展。军事医学院邱志刚[1]试验发现,水中的纳米氧化铝可以促使耐药基因从大肠杆菌转入沙门氏菌的效率提高200倍。即使以往很难发生耐药基因转移的不同种类细菌,在氧化铝纳米粒子的作用下耐药基因也发生了转移。由此可见,应用氧化铝纳米粒子大大加快了细菌获取耐药基因的速度。

1.3纳米技术

纳米技术是在纳米尺度下对物质进行制备、研究。在药物研究领域,由于纳米材料和纳米产品性质的特异性和优越性,用该技术建立新的药物控释系统可起到提高药物在体内的吸收效果、改善药物的输送、替代病毒载体、催化药物化学反应的作用。研究引入了微型领域,为寻找和开发新兽药、结合转基因技术用于动物试验研究[2],研制合成理想的药物提供强有力的技术支撑。

2纳米材料在动物疾病防治中的应用

随着生命科学、生物信息学等新兴复合型学科的迅速发展,纳米材料借助其特殊的结构效应在动物疾病防治领域展示出广阔的应用前景。医学起源于疾病诊断,对动物疾病没有很好的诊断就不可能有很好的预防和治疗。目前随着科技的发展,动物疾病诊断技术得到了前所未有的发展,各种检验诊断手段、仪器已是各式各样。利用纳米材料的特性去化验检测样品材料,可借助纳米材料极高的传感灵敏效应对疾病进行早期诊断,便于疾病防治。

2.1纳米分子信息成像和诊断

分子信息影像是生物医学和分子诊断学中的一门重要学科,可用于检测,考察机体内外组织中的分子细胞形态结构变化[3,4]。而纳米探针由于具有高亮、光学稳定、光谱吸收范围广等特点,可用于定量准确监测生物机体内部分子的理想工具,连接于小分子的肽、抗体以及核酸分子来进行疾病检测,靶向定位于目标细胞分子内部。Wu等[5]研究发现,基于量子点的肿瘤标记Her2的免疫荧光标记,比常规荧光染料标记不同的靶细胞表面受体、细胞骨架、核抗原和其他细胞器更有效。同时也发现了生物结合的胶体量子点在细胞标记、细胞示踪、DNA检测和体内成像方面很有价值。Gao等[6]进行了体内量子点成像和肿瘤定位的动物研究,观察到量子点在肝、脾、脑、心、肾和肺中的吸收、滞留和分布有逐渐减少的规律,在裸鼠前列腺癌异种移植瘤的研究中,量子点在瘤组织内特异性蓄积呈现出亮红色。

2.2纳米金及其检测技术

纳米金即指金的微小颗粒。其直径在1~100nm,具有高电子密度介电特性和催化作用。可与多种生物大分子结合,且不影响其生物活性。新型的纳米抗菌复合材料具有作为新的抗菌剂或者是抗菌包装材料的高效伤口敷料的可行性[7],可以用作高效的抗微生物制剂在生物应用中具有广阔的发展前景。纳米金PCR是基于常规PCR基础上,结合纳米技术而发展起的新型检测技术。刘阳等[8]根据副溶血弧菌(VP)的toxR基因序列,设计一对特异性引物,建立纳米金PCR检测方法,结果表明能扩增得到与试验设计相符的208bp(VP)的特异性条带,且与其他细菌无交叉反应。与普通PCR法进行比较,该方法检测灵敏度比普通PCR高10倍。而与传统的细菌分离鉴定法相比,纳米金PCR检测大大提高检测效率且具有灵敏度高、特异性强等优点。

2.3作为药物运输载体

和传统的注射或口服给药途径不同,运用纳米材料可定点靶向进行药物运输,对于药物剂量控制和疾病的预防及治疗具有重要意义。使用纳米材料运输药物可有效提升药物运输效率,降低毒性反应。越来越多的科研人员开始关注并构建用于药物输送的纳米载体,这些药物载体在肿瘤疾病的诊断治疗中具有广阔的前景。如Chen等[9]将pH敏感材料环糊精和低分子量的聚乙烯亚胺整合成纳米载体,并负载寡聚核酸,该载体可以有效地转染肺腺癌细胞,并对肿瘤生长有良好的抑制作用[10]。

3展望

篇5

组织工程

组织工程技术提供了一种崭新的修复组织和制造器官的手段,发展具有生物相容性和生物活性的生物支架材料是组织工程与骨修复技术需要解决的重要课题之一。以聚吡咯、聚苯胺为代表的导电高分子材料具有电刺激响应性,不但可以存储信息和能量,而且可调控细胞增值和分化,表现出多种智能功能,因此在神经和心肌组织工程中具有潜在的应用前景。目前聚吡咯在组织工程领域已经取得了较好的成果,而针对聚苯胺的研究工作则相对进展较慢,主要原因在于单纯的聚苯胺材料不可降解,长期存在体内会造成炎症反应。因此聚苯胺在体内的生物相容性是组织工程中研究的重点。Li用明胶改性聚苯胺以增强其生物相容性,并在复合材料表面培养小鼠心肌细胞H9c2,发现改性后的复合材料有利于细胞的黏附和增值。Molamma等利用电纺丝技术合成聚苯胺/聚乳酸纳米纤维,用于培养神经干细胞,结果显示该复合材料具有神经轴突生长活性,从而定向诱导组织器官的再生修复。Fryczkowski等采用同样的方法合成了聚苯胺/聚羟基丁酸盐纳米纤维,该材料在组织工程中也具有潜在的应用价值。在国内,陈学思课题组利用苯胺五聚体与生物可降解材料制备嵌段共聚物,在无需外加电刺激的条件下能显著促进神经细胞的生长和分化,极大地提高了材料的生物相容性。而且引入的苯胺低聚体在材料中的可降解部分消失之后,通过肾脏排出体外,真正达到达了可吸收生物材料的要求。目前,聚苯胺在电刺激响应性细胞培养和电活性组织工程支架应用方面已经显示出很好的应用前景,这对于未来生物医学技术的发展具有重要的科学意义。

药物释放

篇6

关键词 纳米点 应用

近几年,射频磁控溅射制备金属纳米颗粒复合膜是许多方法中最好方法之一,可以在可控条件下和低温环境中获得均匀的覆盖薄膜,可以将金属颗粒均匀分散到半导体衬底中,这样就比其它方法更能有效的控制金属含量,而使复合膜中的金属量达到很高的值。也可以用生长的Au/SiO2一维纳米材料作为模板,基于VLS生长机制催化生成理想的纳米点或者纳米线。这种用模板催化方式生长纳米线或者纳米点的工艺较其它方法更简单。利用模板合成纳米结构的方法给我们创造了更好的条件来控制复合纳米的性质,进而在纳米机械器件和纳米电子制备方面有重要意义。本文浅述了纳米点的可能的发展应用前景并初探了自组装生成Au纳米点工艺。

一、复合材料纳米点的发展应用前景

纳米点,也称半导体量子点(纳米微晶),是一种比较小的纳米微粒。纳米微晶的基本性质基于本身量子点的量子效应,当微粒尺寸进入到纳米级别时,将会引起宏观量子隧道效应、尺寸效应和表面效应,进而展现出许许多多不同于宏观材料的物理化学性质,在生命科学、量子器件、医药等方面具有非常好的应用前景,同时将对电子信息技术、生命科学的发展产生深远的影响。

(一)在生命科学中的应用

在生命科学领域纳米微晶的主要应用前景就是在生物科学中作荧光探针,传统的荧光探针激光光谱窄,且不连续,而纳米微晶的激光光谱宽且连续,颜色可调,而且量子点的光化学稳定性高,不易分解。同时纳米点很有可能使筛选药物成为可能。将不同光谱的纳米点与不同靶分子的药物相结合,就可以一次性检测药物分子。纳米点还可以应用在医学成像方面。因为可见光只能穿透厚度为毫米级的组织,而红外光线则可以穿透厚度为厘米级的组织,因此我们可将在红外区发光的纳米点标记到要检测组织的组分上,同时用红外光激发,通过成像的方法来检测组织内部的情况,从而达到诊断的目的。纳米点在生物芯片发展历程中也可以大显身手。例如在研究蛋白质与蛋白质相互作用的生物芯片中,尽管生物芯片上有非常非常多的蛋白质,可是由于受传统荧光探针性能的限制,通常一次只能将一种或几种标记了荧光探针的蛋白质与生物芯片相作用,从而进行检测。要研究多个蛋白质就必须重复操作,降低了效率。如果我们在芯片的应用中引入了纳米点情况则可能不同,基本可以做到“很多”对“很多”。纳米微晶还可以应用于溶液矩阵,即将不同的纳米点或纳米点微粒标记在每一种生物分子上,并置于溶液中,形成所谓溶液矩阵。进行标记了的生物分子在溶液状态下很容易保持生物分子的正常三维构象,从而具备了正常的生物功能,这是其优于平面芯片的地方。

(二)半导体纳米点的器件应用

纳米点的生长工艺及其性质成为当今纳米材料的研究热点,目前最常用的制备纳米点的方法是自组织生长方式。纳米点中较低的态密度和能级的尖锐化,导致了纳米点的结构对其中的载流子产生三维量子限制效应,从而使其光学性能和电学性能发生了变化,而纳米点在正入射情况下才能发生明显的带内跃迁。这些性质都使纳米点在各种光电器件、单电子器件以及其他器件方面具有极为广阔的应用前景。

纳米点复合材料及纳米点激光器是半导体技术领域中的一个前沿性课题。纳米点复合材料基于它的量子隧穿、尺寸效应、以及非线性光学效应等是新一代固态量子器件的基础,在未来的光电子学、新一代超大规模集成电路和纳米电子学等方面有着极其重要的应用前景。我们采用自组装方法直接生长纳米点复合材料,可将纳米点的横向尺寸缩小到几十纳米之内,接近纵向尺寸,并可获得无位借、无损伤的纳米点,现己成为纳米点复合材料制备技术的重要手段之一,缺点就是纳米点的均匀性不好控制。以纳米点结构为有源区的纳米点激光器理论上具有更高的光增益、更宽的调制带宽、更高的特征温度和更低的阂值电流密度等优点,将使激光器件的性能有一个质的飞跃,对未来半导体激光器件市场的发展方向产生巨大的影响。近几年来,日本、欧洲、美国等国家都开展了自组装纳米点材料和纳米点激光器件的研究,取得了很大进展。

当然在除了采用面发射激光器、纳米点材料研制边发射外,在其他的光电子器件上纳米点也得到了非常非常广泛的应用。

二、自组装法生长Au纳米点工艺

篇7

1、产品市场占有率高;

2、原创技术和研发优势突出;

3、近期主打品种的快速增长,长期看原创技术带来的产品储备系列化。

即将登陆创业板的广东冠昊生物科技股份有限公司(下称“冠昊生物”,代码300238)是一家专业从事再生医学材料及再生型医用植入器械研发、生产及销售的高科技企业。公司拥有自主研发新型再生医学材料,主营产品为生物型硬脑(脊)膜补片,2009年达到43%的市场占有率,加之市场整体增速接近40%。

冠昊生物创新能力强,技术优势明显,2008年-2010年公司营业收入、净利润复合增长率分别达到70.8%、113.6%。近3年毛利率一直维持在90%以上。生物型硬脑(脊)膜补片的持续增长是冠昊生物收入和利润的稳定来源,未来公司的快速增长有赖于胸普外科修补膜和无菌生物护创膜的市场开拓。

硬脑膜补片推动高成长

冠昊生物是致力于再生医学材料及再生型医用植入器械的生产销售,目前拥有生物型硬脑(脊)膜补片、胸普外科修补膜和无菌生物护创膜三个细分市场品种。生物型硬脑(脊)膜补片是公司的主打品种,收入、利润分别占整体比重在85%以上,是近几年业绩的主要驱动因素。公司生物型硬脑(脊)膜补片自2006年6月上市以来,凭借优越的材料性能,打破了进口产品的垄断局面,市场份额逐年提升,在短短三年时间里成为国内脑膜市场的第一品牌,市场份额达到40%以上,市场占有率第一。

胸普外科修补膜和无菌生物护创膜目前基数还较小,但增速较快。公司于2008年开始进入胸腹腔修复膜领域,2010年销售额接近500万元。公司于2009年6月推出无菌生物护创膜后,迅速得到市场认可。2010年实现收入872万元,同比增长223%。公司的快速增长有赖于这二者的市场开拓。

近几年我国植入医疗器械处于快速发展期,据行业协会估算,未来10年内我国植入医疗器械行业将达到每年1500亿元的市场规模,成为仅次于美国的世界第二大植入医疗器械市场,市场前景广阔。

打造核心技术体系平台

在十年的发展历程中,冠昊生物自主研发了一系列世界先进的核心技术,并在再生型植入医疗器械领域积累了丰富的产业化经验,打造了从“基础研究―产业化研究―产品临床―规模生产―市场推广”的完整产业化链条。

凭借原创的核心技术,冠昊生物以动物组织为原料成功的研制出一大类具有诱导再生功能的再生医学材料,并以此材料为平台,开发出一系列再生型医用植入器械产品。目前公司已有三个膜类产品上市,正在研发的产品包括整形植入系列材料、骨填充材料、人工食管、小口径血管、人工韧带、神经导管等十多个产品。未来三年,公司将重点研发市场前景广阔的医学整形美容、妇科盆底功能重建领域等新产品。

冠昊生物未来看点在于县级医院学术推广。公司以学术推广为核心,采用自主服务配送带动分销的组合销售模式。平台性技术可大量复制新产品,2009年冠昊生物新推出的胸普外科修补膜和无菌生物护创膜分别应用于腹腔手术和烧伤、外伤、难愈性创面,技术先进,有望复制脑(脊)膜补片的成功之路。

募投项目孕育利润增长点

篇8

一、生物医用高分子材料的特点

生物医用高分子材料是一种聚合物材料,主要用于制造人体内脏、体外器官、药物剂型及医疗器械。按照来源的不同,生物医用高分子材料可以分为天然生物高分子材料和合成生物高分子材料2种。前者是自然界形成的高分子材料,如纤维素、甲壳素、透明质酸、胶原蛋白、明胶及海藻酸钠等;后者主要通过化学合成的方法加以制备,常见的有合聚氨酯、硅橡胶、聚酯纤维、聚乙烯基吡咯烷酮、聚醚醚酮、聚甲基丙烯酸甲酯、聚乙烯醇、聚乳酸、聚乙烯等。按照材料的性质,生物医用高分子材料可以分为非降解材料和降解材料。前者主要包括聚乙烯、聚丙烯等聚烯烃,芳香聚酯、聚硅氧烷等;后者包括聚乙烯亚胺—聚氨基酸共聚物、聚乙烯亚胺—聚乙二醇—聚(β-胺酯)共聚物、聚乙烯亚胺—聚碳酸酯共聚物等。

生物医用高分子材料作为植入人体内的材料,必须满足人体内复杂的环境,因此对材料的性能有着严格的要求。首先,材料不能有毒性,不能造成畸形;其次,生物相容性比较好,不能与人体产生排异反应;第三,化学稳定性强,不容易分解;第四,具备一定的物理机械性能;第五,比较容易加工;最后,性价比适宜。其中最关键的性能是生物相容性。

根据国际标准化组织(InternationalStandardsOrganization,ISO)的解释,生物相容性是指非活性材料进入后,生命体组织对其产生反应的情况。当生物材料被植入人体后,生物材料和特定的生物组织环境相互产生影响和作用,这种作用会一直持续,直到达到平衡或者植入物被去除。生物相容性包括组织相容性、细胞相容性和血液相容性。

二、生物医用高分子材料的发展历史

人类对生物医用高分子材料的应用经过了漫长的阶段。根据记载,公元前3500年,古埃及人就用棉花纤维和马鬃缝合伤口,此后到19世纪中期,人类还主要停留在使用天然高分子材料的阶段;随后到20世纪20年代,人类开始学会对天然高分子材料进行改性,使之符合生物医学的要求;再后来人类开始尝试人工合成高分子材料;20世纪60年代以来,生物医用高分子材料得到了飞速发展和广泛的普及。1949年,美国就率先发表了研究论文,在文中第1次阐述了将有机玻璃作为人的头盖骨、关节和股骨,将聚酰胺纤维作为手术缝合线的临床应用情况,对医用高分子的应用前景进行了展望。这被认为是生物医用高分子材料的开端。

在20世纪50年代,人类发现有机硅聚合物功能多样,具有良好的生物相容性(无致敏性和无刺激性),之后有机硅聚合物被大量用于器官替代和整容领域。随着科技的发展,20世纪60年代,美国杜邦公司生产出了热塑性聚氨酯,这种材料的耐屈挠疲劳性优于硅橡胶,因此在植入生物体的医用装置及人工器官中得到了广泛应用。随后人工尿道、人工食道、人工心脏瓣膜、人工心肺等器官先后问世。生物医用高分子材料也从此走上快速发展的道路。

三、生物医用高分子材料的发展现状、前景和趋势

据相关研究调查显示,我国生物医用高分子材料研制和生产发展迅速。随着我国开始慢慢进入老龄化社会和经济发展水平的逐步提高,植入性医疗器械的需求日益增长,对生物医用高分子材料的需求也将日益旺盛。2015年1月28日,中国医药物资协会的《2014中国单体药店发展状况蓝皮书》显示,2014全年全国医疗器械销售规模约2556亿元,比2013年度的2120亿元增长了436亿元,增长率为20.06%。但是相比于医药市场总规模(预计为13326亿元)来说,医药和医疗消费比为1∶0.19还略低,因此业内普遍认为,医疗器械仍然还有较广阔的成长空间,生物医用高分子材料也将迎来良好的发展前景。

根据evaluateMedTech公司基于全球300家顶尖医疗器械生产商的公开数据而得出的报告《2015-2020全球医疗器械市场》预测,2020年全球医疗器械市场将达到4775亿美元,2016-2020年间的复合年均增长率为4.1%。世界医疗器械格局的前6大领域包括:诊断、心血管、影像大型设备、骨科、眼科、内窥镜,其中生物医用高分子材料在其中都得到了广泛的应用。

以往的医学研究对组织和器官的修复,更多是选择一种替代品,实现原有组织和器官的部分功能。随着再生医学和干细胞技术的迅速发展,利用生物技术再生和重建器官、个性化治疗和精准医学已经成为趋势。因此传统的生物医药高分子材料已经不能满足现有的需求,需要模拟生物的结构,恢复和改进生物体组织与器官的功能,最终实现器官和组织的再生,这也是生物医用高分子材料未来的发展方向。

生物医用高分子材料在医疗器械领域中得到了非常广泛的应用,主要体现在人工器官、医用塑料和医用高分子材料3个领域。

1.人工器官

人工器官指的是能植入人体或能与生物组织或生物流体相接触的材料;或者说是具有天然器官组织或部件功能的材料,如人工心瓣膜、人工血管、人工肾、人工关节、人工骨、人工肌腱等,通常被认为是植入性医疗器械。人工器官主要分为机械性人工器官、半机械性半生物性人工器官、生物性人工器官3种。第1种是指用高分子材料仿造器官,通常不具有生物活性;第2种是指将电子技术和生物技术结合;第3种是指用干细胞等纯生物的方法,人为“制造”出器官。目前生物医用高分子材料主要应用在第1种人工器官中。

目前,植入性医疗器械中骨科占据约为38%的市场份额;随后是心血管领域的36%;伤口护理和整形外科分别为8%左右。人工重建骨骼在骨科产品市场中占据了超过31%的市场份额,主要产品是人工膝盖,人工髋关节以及骨骼生物活性材料等,主要应用的生物医用高分子材料有聚甲基丙烯酸甲酯、高密度聚乙烯、聚砜、聚左旋乳酸、乙醇酸共聚物、液晶自增强聚乳酸、自增强聚乙醇酸等。心血管产品市场中支架占据了一半以上的市场份额,此外还有周边血管导管移植、血管通路装置和心跳节律器等。

目前各国都认识到了人工器官的重要价值,加大了研发力度,取得了一些进展。2015年,美国康奈尔大学的研究人员开发出了一种轻量级的柔性材料,并准备将其用于创建一个人工心脏。在我国,3D打印人工髋关节产品获得国家食品药品监督管理总局(CFDA)注册批准,这也是我国首个3D打印人体植入物。

人工器官未来发展趋势是诱导被损坏的组织或器官再生的材料和植入器械。人工骨制备的发展趋势是将生物活性物质和基质物质组合到一起,促进生物活性物质的黏附、增殖和分化。血管生物支架的发展趋势是聚合物共混技术,如海藻酸钠/壳聚糖、胶原/壳聚糖、胶原/琼脂糖、壳聚糖/明胶、壳聚糖/聚己内酯、聚乳酸/聚乙二醇等体系。

2.医用塑料

医用塑料,主要用于输血输液用器具、注射器、心导管、中心静脉插管、腹膜透析管、膀胱造瘘管、医用粘合剂以及各种医用导管、医用膜、创伤包扎材料和各种手术、护理用品等。注塑产品是医用塑料制品当中产量最大的品种。与普通塑料相比,医用塑料要求比较高,严格限制了单体、低聚物、金属离子的残留,对于原材料的纯度要求很高,对加工设备的要求也非常严格,在加工和改性过程中避免使用有毒助剂,通常具有表面亲水、抗凝血等特殊功能。常用医用塑料包括聚氯乙烯(PVC)、聚乙烯(PE)、聚丙烯(PP)、聚四氟乙烯(PTFE)、热塑性聚氨酯(TPU)、聚碳酸酯(PC)、聚酯(PET)等。

目前医用塑料市场约占全球医疗器械市场的10%,并保持着每年7%~12%的年均增长率。统计数据显示,美国每人每年在医用塑料领域消费额为300美元,而我国只有30元,由此可见医用塑料在我国的发展潜力非常大。

我国医用塑料制品产业经过多年的发展,取得了长足的进步。中国医药保健品进出口商会统计数据显示,2015年上半年,纱布、绷带、医用导管、药棉、化纤制一次性或医用无纺布物服装、注射器等一次性耗材和中低端诊断治疗器械等成为我国医疗器械的出口大户。但是也必须清醒地认识到,我国的医用塑料发展水平还比较落后。医用塑料的原料门类不全、生产质量标准不规范、新技术和新产品的创新能力薄弱,导致一些高端原料导致国内所需的高端产品原料还主要靠进口。

目前各国都认识到了医用塑料的重要价值,加大了研发力度,取得了一些进展。2015年,英国伦敦克莱蒙特诊所率先开展了塑胶晶状体移植手术,不仅可以治疗远视眼或近视眼,还可以恢复患有白内障和散光者的视力;住友德马格公司推出一种聚甲醛(POM)齿轮微注塑设备,在新型白内障手术器械中具有重要作用;美国美利肯公司开发了一项技术,可使非处方药和保健品塑料瓶的抗湿性和抗氧化性提高30%;MHT模具与热流道技术公司开发出了PET血液试管,质量不足4g,优于玻璃试管;Rollprint公司与TOPAS先进高分子材料公司合作,采用环烯烃共聚物作为聚丙烯腈树脂的替代品,以满足苛刻的医疗标准;美国化合物生产商特诺尔爱佩斯推出了一款硬质PVC,以取代透明医疗零部件中用到的PC材料,如连接器、止回阀、Y接头、套管、鲁尔接口配件、过滤器、滴注器和盖子,以及样本容器。

未来医用塑料的发展趋势是开发可耐多种消毒方式的医用塑料,改善现有医用塑料的血液相容性和组织相容性,开发新型的治疗、诊断、预防、保健用塑料制品等。

3.药用高分子材料,

药用高分子材料在现代药物制剂研发及生产中扮演了重要的角色,在改善药品质量和研发新型药物传输系统中发挥了重要作用。药用高分子材料的应用主要包括2个方面:用于药品剂型的改善以及缓释和靶向作用,此外还可以合成新的药物。

药物缓释技术是指将衣物表面包裹一层医用高分子材料,使得药物进入人体后短时间内不会被吸收,而是在流动到治疗区域后再溶解到血液中,这时药物就可以最大限度的发挥作用。药物缓释技术主要有贮库型(膜控制型)、骨架型(基质型)、新型缓控释制剂(口服渗透泵控释系统、脉冲释放型释药系统、pH敏感型定位释药系统、结肠定位给药系统等)。

贮库型制剂是指在药物外包裹一层高分子膜,分为微孔膜控释系统、致密膜控释系统、肠溶性膜控释系统等,常用的高分子材料有丙烯酸树脂、聚乙二醇、羟丙基纤维素、聚维酮、醋酸纤维素等。骨架型制剂是指向药物分散到高分子材料形成的骨架中,分为不溶性骨架缓控释系统、亲水凝胶骨架缓控释系统、溶蚀性骨架缓控释系统,常用的高分子材料有无毒聚氯乙烯、聚乙烯、聚氧硅烷、甲基纤维素、羟丙甲纤维素、海藻酸钠、甲壳素、蜂蜡、硬脂酸丁酯等。

我国的高分子基础研究处于世界一流,但是药用高分子的应用发展相对滞后,品种不够多、规格不完整、质量不稳定,导致制剂研发能力与国际产生差距。国内市场规模前10大种类分别为明胶胶囊、蔗糖、淀粉、薄膜包衣粉、1,2-丙二醇、PVP、羟丙基甲基纤维素(HPMC)、微晶纤维素、HPC、乳糖。高端药用高分子材料几乎全部依赖进口。专业药用高分子企业则存在规模小、品种少、技术水平低、研发投入少的问题。

目前,药物剂型逐步走向定时、定位、定量的精准给药系统,考虑到医用高分子材料所具备的优异性能,将会在这一发展过程中发挥关键性的作用。未来发展趋势是开发生物活性物质(疫苗、蛋白、基因等)靶向控释载体。

四、结语

虽然生物医用高分子材料的应用已经取得了一些进展,但是,随着临床应用的不断推广,也暴露出不少问题,主要表现出功能有局限、免疫性不好、有效时间不长等问题。如植入血管支架后,血管易出现再度狭窄的情况;人工关节有效期相对较短,之所以出现这些问题,主要原因是人体与生俱来的排异性。

生物医用高分子材料隶属于医疗器械产业,其发展备受政策支持。国务院于2015年5月印发的《中国制造2025》明确指出,大力发展生物医药及高性能医疗器械,重点发展全降解血管支架等高值医用耗材,以及可穿戴、远程诊疗等移动医疗产品。可以预见,在未来20~30年,生物医用高分子材料就会迎来新一轮的快速发展。

参考文献

[1]奚廷斐.生物医用材料现状和发展趋势[J].中国医疗器械信息,2006(5):1-4.

[2]张真,卢晓风.生物材料有效性和安全性评价的现状与趋势[J].生物医学工程学,2002,19(1):117-121.

[3]董亮,何星.生物医用复合材料研究现状及发展趋势[J].世界复合医学,2015(4):340-342.

[4]奚廷斐.我国生物医用材料现状和发展趋势[J].中国医疗器械信息,2013(8):1-5.

[5]中国组织工程研究与临床康复.中国生物医用材料研究领域的问题及对策[J].中国组织工程研究与临床康复,2011(34):186.

[6]胡帼颖,张志雄,温叶飞,等.组织工程技术的发展现状及趋势(三)——组织工程用生物材料的研究[J].透析与人工器官,2009(3):9-27.

[7]张镇,王本力.我国生物医用材料产业发展研究[J].新材料产业,2015(3):2-5.

[8]章俊,胡兴斌,李雄.生物医用高分子材料在医疗中的应用[J].中国医院建筑与装备,2008(1):30-35.

[9]梅建国,庄金秋,汤少伟,等.生物医用高分子材料的生物相容性及其表面改性技术[J].材料导报,2014,28(19):139-142.

[10]黄琼俭,徐益.生物医用高分子材料在药物控释系统中的应用[J].生物技术世界,2013(2):82-82.

[11]吴桐.浅谈几种生物医用高分子材料的应用[J].科技资讯,2011(29):52-52.

[12]王建营,朱治国,孙家跃,等.聚醚醚酮人造骨关节材料研究[J].化学世界,2004,45(1):53-54.

[13]高茜斐.生物塑料发展现状及前景[J].广东化工,2015,42(15):87-88.

[14]龙先鹏.浅析我国生物塑料前景[J].科技创新导报,2011(14):96-96.

[15]全球医药塑料产量及潜力巨大[J].国外塑料,2013(9):69-69.

推荐期刊