时间:2023-11-09 16:30:22
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇统计学的数据分析,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
近年来计算机和网络技术快速发展,教学管理信息化水平已成为衡量一所院校信息化建设的重要指标,而学员成绩管理又是院校教学管理工作中的重要环节,反映了院校的教学质量水平。基于的学员成绩管理系统采用B/S模式,基于三层架构(表示层、业务层和数据层),开发环境是Windows Server 2003,开发工具为Visual Studio 2005,利用 2.0技术,使用C#语言编程,数据库为SQL Server 2000。
二、系统实现
(一)权限管理
权限管理包括权限设置和密码查询。系统分为教务参谋、考务中心、考试成绩录入员、系统管理员等四级权限。系统管理员可以设置教务参谋和考务中心,还可以查询帐号初始密码。考务中心将教员设置成考试成绩录入员后,教员才有录入成绩权限。
(二)数据维护
数据维护包括录入、修改考试(补考)成绩、生成补考计划、修正考试成绩、填写考试分析报告等。录入成绩前要录入考试信息(课程名称、考核科目、考试性质、权重、考试日期等信息),首先在单位树里选择教学班(如果该教学班没有学员或学员还没有编排学号不能录入考试信息)系统自动带入该教学班对应的专业类型并在下拉列表中列出已安排考试的课程,选择课程后系统自动带入课程名称、考核科目、考试性质(毕业考试、考试和考查)、学时、学期、考试日期、授课单位等信息,权重默认为1(1表示100%,如输入0.5表示50%)当一门课程包含多个考核科目时需要录入相应权重,考试信息保存后,学员下拉列表中列出了该教学班该课程所有未录入成绩的学员,成绩可以录入分数,也可以设置缓考、缺考状态,保存学员成绩后下拉列表中同时移出该学员(修改考试信息和成绩,同录入相似,不再详述),录入完该课程所有学员的成绩后,将成绩上报到考务中心审核成绩,上报成绩后不能修改和删除考试成绩。教务参谋可以安排不及格、缓考、缺考的学员参加补考,系统根据时间段自动生成补考计划,补考计划分为学期补考和毕业补考,补考的组考单位录入补考成绩,流程参照考试成绩录入。公布成绩后学员对成绩有异议,复查后确认有误,经批准由教务参谋对该考试成绩进行修正。教员根据考试成绩录入考试分析报告,考试分析报告包括:基本情况、综合分析、意见建议、评价结论等内容。
(三)数据审核
数据审核包括审核考试(补考)成绩、审核考试分析报告。考试成绩审核分为考务中心审核和教务科审核两级审核,教务科审核通过后,教员和学员才可以查询成绩。考务中心审核成绩时,选择要审核的课程系统弹出此课程考试的详细信息,并列出所有学员的考试成绩,同时统计出优秀,良好,中等,合格,不合格的人数。点击“通过”后,交由教务参谋审核。点击“不通过”,则将此信息打回录入人处。教务参谋审核过程与考务中心审核类似,不再叙述。
(四)查询统计
查询统计包括考试信息查询、考试成绩查询、学员队(学员)平均分统计、合格率统计、实考人数统计等。根据不同登录用户控制查询范围,如:学员查看本人成绩,学员队干部查看本队成绩、教员查看担负课程成绩,教务参谋查看全部成绩等,只有教务参谋才有统计功能。
(五)导出打印
导出打印包括:打印考试成绩表、打印考试分析报告。系统可以直接打印成绩,也可以导出word、excel、PDF等格式。
三、数据挖掘应用
(一)概述
数据挖掘是解决数据丰富而信息贫乏的有效途径,其实质是从大量数据中提取隐含的、未知的和潜在有用信息的过程。其在分析大量数据中具有明显优势,并已成功地应用到了多个研究领域,但在教育领域中应用还不够深入,将之用于军队院校管理尤其是成绩管理中至今还不多见。
目前最常用的几种数据挖掘方法有决策树、神经网络、遗传算法、概率论和数理统计、关联规则以及粗糙集和模糊处理技术等。
(二)决策树算法
顾名思义,决策树就像一棵树,它利用树的结构将记录数据进行分类,树的一个节点就代表某一个条件下的一个记录集,根据记录字段的不同取值建立树的分枝;在每个分支子集中建立下层节点和分支,就形成一个决策树。采用决策树,可以将数据规则可视化,也不需要长时间的构造过程,而且每一条从根结点到叶节点的路径的含义是可理解的,精度较高。这种可理解性是它的一个显著有点。
决策树构建以后就可以依据决策树的规则对数据进行判定。决策树可以分为分类树和回归树两种。分类树对离散变量做决策树,回归树对连续变量做决策树,一般的数据挖掘工具允许选择分裂条件和修剪规则,以及控制参数来限制决策树,决策树主要应用于分类。
决策树方法的起源是概念学习系统CLS,然后发展到ID3 算法,最后又演化为能处理连续属性的C4.5算法。
(三)数据挖掘过程
1.确定数据对象,收集数据以及数据预处理
定义清晰的挖掘对象,认清数据挖掘的目标是数据挖掘的第一步。数据挖掘的最后结果往往是不可预测的,但是要解决的问题应该是有预见性的、有目标的。本文将挖掘的对象定义为同一专业三种不同类型学员的“步兵分队战术”课程中的“科目1”、“科目2”、“科目3”三个考核科目成绩信息,确定了数据对象后,从考试信息表和考试成绩表中选择出适用于数据挖掘应用的数据进行数据集成。数据集成好以后,就需要对数据进行预处理。数据预处理包括:去除错误数据和数据转换。错误数据,在统计学中称为异常值,应该在此阶段发现并且删除,否则,它们将导致产生错误的挖掘结果,同时,需要将数据转换成合适的格式。本例中首先要把原始成绩选取出来,去掉补考成绩,然后把原始成绩为缓考和缺考的数据删除,接下来进行数据转换,采取数据概化,定义90
2.构建决策树
数据预处理后,使用数据预处理得到的训练集,采用C4.5算法构建决策树。本例中,样本数据为2008-2011级A类、B类学员,2007-2010级C类学员,总数为2109名,随机抽取大约70%作训练集,其余30%作测试集,通过SQL Server 2000中的Analysis Service(数据分析服务)工具生成决策树。
3.规则提取
决策树生成以后,遍历决策树,也就是从根到叶发现若干条路径,每一条路径对应一条规律,整棵树就形成一组规则,然后通过分析规则发现最有用的子集,形成规则集。
4.结果分析
通过数据挖掘结果发现C类学员基本技能最好,但是理论知识掌握欠缺,综合实践能力较好;A类学员基本技能较好,理论知识掌握好,综合实践能力好;B类学员基本技能较差,理论知识掌握较好,综合实践能力有待提高。根据分析结果,可以对不同类型学员有针对性地改进教学重点,做到固强补弱,提高学员能力。
四、结语
应用数据挖掘技术来提高成绩的分析水平,通过对成绩深入、科学的分析,提取隐藏的数据信息,为院校管理部门决策提供依据,进一步提高教学质量水平是有很重要的实际意义。
参考文献
[1] 赵辉.数据挖掘技术在学生成绩分析中的研究及应用[D].大连海事大学,2007.
[2] 李文峰.数据仓库、OLAP和数据挖掘技术在国防生管理决策中的应用[D].重庆大学,2007.
[3] 黄杰.数据挖掘在军队人才培养上的应用研究[D].重庆大学,2005.
[4] Han Qingtian,Gao Xiaoyan.Research of Decision support system based on data warehouse techniques[c]//Second International Workshop knowledge Discoverty and Data Mining(WKDD),2009: 215-218.
【摘要】本文基于高中生个性化学习,我们认为,链源:“数据收集”链宿:“数据分析”,链节为“数据描述”的“内容数据链”,通过各种形式的数据联动,使统计内容数据链外化为“统计能力链”,内化为“统计知识链”,发展为“统计素养”链,成为对高中生有重大影响的“统计思想链”。
【关键词】大数据 高中统计 数据分析 内容数据链
大数据的价值性,快速性,大量性,多样性,和预测功为教育提供了一种可能目前教育的形式多种多样,慕课、微课、网络公开课等等。大数据时代下的教育是怎样的呢?是基于个性化学习,是量化的,自我组织学习内容的教育,不仅要了解学生“心声”,认知水平和学习兴趣,而且要师生互动、合作探讨学习内容,将传统课程、教学、教材的内容数据化,利用可视化技术,提高学习兴趣。提升内容吸引力。高中统计内容必须系统化、过程方法直观化,这对高中的统计内容提出了挑战。使专题块和课程案例集以数据知识链为核心,使教育在大数据时代下的“量化”。
一、高中统计内容的新契机是大数据
使教育由数字支撑变化到数据支撑。高中统计教学场景布置,统计内容设计,学习场景的变革等等过去靠“敲脑袋”或者“理念灵感加经验”的东西,在背景为物联网、云计算、大数据下,变成一种由数据支撑的“行为科学”.用数据分析的方法对高中统计内容进行分析、挖掘,利用大数据更改高中统计内容,建立主线为“统计知识链”、目标为培养“数据分析能力”首尾呼应内容数据链,使高中统计内容的系统更加优化。
由于各种原因使高中统计内容,没有得到较好的发展.直到国家教育部颁布了各种政策,统计才得以发展.然而各种问题的存在仍然困扰着我国统计教学发展。大数据关注每一位学生的个性化需求与发展,关注学生的自我意识,分析群体心理,让教师关注学生的兴趣爱好,选择适合学生的方法,让学生自主的、创新的学习。
正如教育家张韫所说:“大数据时代的到来,让社会科学领域的发展和研究从宏观群体逐渐走向微观个体,让追踪每一个人的数据成为可能,从而让研究每一个个体成为可能.对于教育研究者来说,我们将比任何时候都更接近发现真正的学生。”大数据在充分了解学生各种需求,目前处于的状态的情况下合理运用各种统计内容,各种现代化的教学方式,不拘泥于传统化教学方式,利用各种资源形成螺旋式上升的统计内容数据链。使每一位学生都乐于学习,其个性化学习需求成为可能。
二、高中统计内容数据链在大数据视域下的内涵
数据高中统计内容的核心研究对象,数据分析是重点,统计学习是在初中的基础上,进一步学习数据统计方面的各种方法;用各种操作培养学生的归纳推断能力、统计思维、数据分析素养,提升学生在数据分析方面的能力,统计内容数据链为学生统计能力的提升提供了研究平台。把课程目标,学生需求、与大数据算法,数据链式结构有机结合起来是大数据视域下的统计内容数据链核心思想,利用大数据,将统计内容数据化,增强内容的可读性,衔接性、合理性、连贯性,织成统计知识,形成统计内容数据链。例如:具体环节为:链宿是“样本估计总体、”等数据分析方法,链源是“系统抽样,等距抽样、分层抽样”,链节是的数据描述、统计图形.通过统计知识的实际应用使“统计知识链”为统计内容数据链的内化,“统计能力链”为其外化,“统计能力链”,“统计素养链”为其发展,成为对学生产生重大影响的“统计思想链”所以,利用大数据的科学方法可使统计内容体系最终形成的统计思想体系;数据结构的链式模型,将促进学生创新思维,增强学生的参与积极性,使高中统计集“知识链、能力链、素养链、思想链”于一体。
三、高中统计内容大数据视域下下的数据链设计
(一)高中数学统计内容知识结构
各种版本的高中数学统计内容都介绍了基本的获取样本数据的获取,提取方法,就是我们常说的用样本推断总体,部分推断整体.统计知识注重培B学生数据分析的能力,利用实例讲解数据的各种思想,方法结合在一起,提高学生的综合能力。例如:结合具体问题情境,学习如何进行数据收集,分析,如何思维理解其含义。
(二)高中数学统计内容的教学要求
课标充分重视高中数学统计内容,并采取了有效的改进和创新措施。教学过程中,注重学生自我特长的发展,创新教学方式,不拘泥于传统的书本知识,强调以人为本,面向未来,让学生有数据意识,学会用数据说话,将统计知识运用于实践。
(三)高中统计内容在大数据视域下数据链设计
量化教育是大数据时代的可行教育,通过数据了解学生的个性化需求,促进学生的个性发展,注重创新式培养。结合教材利用现代化信息技术设计出学生乐于接受的教学方式。从“数据读心”,到“抓心入心”,再到“知心交心”,最终形成“数据育心”的培养链是统计内容数据链的设计原则。例如:分层抽样内容数据链的设计.首先,将分层抽样知识系统化。其次,将分层抽样的过程方法直观化。最后,依据统计内容数据链的设计原则和学生个性化学习需求,动态生成分层抽样内容数据链。把具体问题数据化。使分层抽样内容数据链成为满足自我发展需要的“知识链、方法链、素材链”。
四、结语
综上所述,对统计内容数据我们应该就地取材,因地制宜,开创多种方式的教学方式,注重学生的个性化需求,不要拘泥于传统的教材,注重培养学生的创新思维和自主参与能力,要让学生发挥主观能动性,积极主动的自己去思索,发展自己的特长,学会将具体的事情数据化不用数据的思想去思考问题,去看世界,老师也要探索更好的教学方法。将现代化的科学技术与传统枯燥的教材相结合创造出一种能够发挥学生潜能,特长的教学方式,要循循善诱,引导学生。总之,统计内容数据链能更好地使学生不断提升自己的数据分析“能力链”使学生学会用统计思想、统计方法、统计思维、统计观念、统计意识来认识世界,改造世界。
参考文献:
[1]魏忠,何立友.大数据时代的教育革命[J].考试:理论与实践,2014,(4).
一、激发学生兴趣
美国教育学家布卢姆曾提出:“学习的最大动力,是对学习材料的兴趣。”由于小学生年龄特征和性格爱好的特点,他们会对自己感兴趣的内容拥有极大的研究和学习动力,并且能够在这种动力的驱使下促进自己的能力提升。因此,教师必须抓住小学生的这种特点,充分结合小学生喜闻乐见的生活内容进行课程的导入、设计和教学,使得他们能够在兴趣的激励下实现深入的学习,实现知识的有效掌握。
举例而言,在引入“统计”的课程时,教师可以询问学生:“假期就要到了,电视台打算在这个阶段播一部大家都喜欢看的电视剧,但是因为时间限制,只能从《西游记》《还珠格格》和《武林外传》中选一部播出。大家认为电视台怎样就知道大家喜欢哪部电视剧了呢?”这样的话题可以立即激发小学生的兴趣,并帮助电视台出谋划策。在这个过程中,教师可以适时引入统计的概念,让学生了解统计对于生活的重要性,拥有学习和研究的热情,从而提高学生的学习效率。
二、借助生活经验
由于统计与数据分析的知识在小学数学教学中占据的内容相较于代数、几何而言较少,并且可以利用的素材也不像其他知识那样广泛。因此教师应当积极挖掘相关知识在现实生活中的资源,让学生能够根据自己的生活经验解决问题,实现学习,并发现统计与数据分析在生活中的应用价值。
例如,教师可以引导学生调查平时最喜欢吃的零食和水果,从而确定在新年联欢会之前采购怎样的食物。学生可以根据自己的经验进行调查表的制作,并在调查后进行数据的整理和总结,最终确定采购的食物,这样不仅可以让学生利用统计的结果进行决策的制定,还可以解决身边的现实问题,发现知识的价值,提高学习的热情和效率。
三、创设教学情境
统计与数据分析的知识源于生活,在学习和使用的过程中也要回归生活。然而在学习的过程中,师生不可能将所有的教学活动都放在实际的生活中,这就要求教师创设相应的教学情境。对此,教师可以在应用题和例题的讲解以及知识的传授中充分创设教学情境,让学生在真实的情境中让抽象的知识变得具体、生动,从而降低知识的学习难度,实现学习效率的提升。
比如,在讲解关于“概率”的知识时,教师可以创设这样的情境:购物中心进行有奖活动,买够500元的顾客可以抽奖一次,每天设置一等奖1名、二等奖3名、三等奖6名、纪念奖30名。已知每天满足抽奖条件的顾客为200人,那么每个顾客抽中一等奖的概率是多少,能够中奖的概率是多少。这样的情境让知识变得更加形象、具体,学生在学习的过程中也更容易接受,教师的教学效率能够有效提升。
四、开展多样活动
关键词:学情;教学改革;课程;生源
中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2017)01-0107-03
生源是学校的生命线,是制约高职院校发展的主要因素,这两年高职生源的变化,特别是生源的多样化,已成为影响高职院校教育教学工作的重要因素。以前学生生源来自高考普招,成绩基础好,学习的主动性和积极性高,有一定的求知欲,开展课程教学比较容易,课程教学的效果好。现在的生源多样化,导致学生的学习态度、主动性和积极性下降,对课程教学造成很大的影响,课程教学实施困难。目前需要研究好学生的学情,采取相应的对策。
1 学生学情分析
对于学生的学情,生源的多样化,导致学生分化较大,部分学生成绩优秀,动手能力强,能认真钻研专业技术,在国内各种竞赛中获奖,毕业后能在工作岗位中有很好的发展,但也有很多学生不爱学习,课堂不认真听讲,不喜欢动手操作,不喜欢实训,甚至对于专业不感兴趣。
1.1 学生的生源状况
最近两年生源状况如表1所示,数据通信课程教学针对2015级大二学生。
从表中可以看出生源的多样化:生源混编、自主单招和专业混编。学生的基础不同,这就给数据通信课程教带来了困难。
1.2 学生的课程安排状况
从表2中可以看出,学生课时较多,课表安排很满,每周28节课,学生任务重,学生没有自由的时间学习自己喜欢的课程和技能。只能被动的学习课程,长时间会导致学生学习疲劳,对于上课变得麻木,缺少主动参与课程教学活动。同时对于专业课程,方向较多,学生每个方向都学,导致广而不精。
1.3 调查问卷和访谈结果分析
针对学生的学习态度、兴趣、学习方法习惯和将来就业意向,进行调查问卷和分析。调查统计结果如图1、2、3、4所示。
从学情调查结果的分析中可以看出,学生的学习态度比较差,只有很少的学生有明确的学习目标,很多学生学习被动,甚至有旷课的,不想上课的。学习习惯比较差,不交作业或缺交作业,很多抄袭别人的作业,独立完成的很少。对于将来的就业意向,一半学生想良好就业,其他学生想创业或自主择业,还有部分学生没想好的。
2 数据通信课程教学改革
2.1 以职业认证为导向
以网络工程师的能力培养作为本课程改革教W的出发点,课程教学内容围绕网络工程师的考核内容,首先统计分析认证的重点知识,所占比例,制定课程的教学内容的重难点。
依据网络工程师的考核要点,对于网络技术课程的教学,实施改革,通过修改大纲和授课计划,注重认证的考核内容,提高实践教学的比例,注重学生的实践操作能力,增强学生的学习兴趣。如表3所示。
2.2利用华为网院的网络资源
鼓励学生通过华为网院,在线自主学习专业知识,提高专业技能。同时为学生的考证提供方便,申请折扣号,减轻学生进行网络工程师认证的负担。在学生学完每个阶段,对于所学内容进行知识的测试,让学生明白自己的掌握情况,同时也让老师了解教学效果,进行教学方法的调整。
2.3 对于学生进行分类教学
对于学生在二年级可以分专业方向,把学习的专业更细化,让学生学习自己感兴趣的方向,同时能减少学生的课时,让学生有时间去思考,引导其去主动学习,防止把时间浪费在过多的专业课程上,使学生学有所长,在学校中能很好地掌握一门专业技能。
课程结束后,对全体学生组织技能竞赛,对于表现好的学生进行奖励,让学生感受课程学习的成就感,同时明白技能的重要。
3课程教学改革的建议
首先通过校园图书馆、互联网等媒介广泛搜集文献资料,查阅有关高等职业院校学生的学情,了解国内外相关理论,分析其成功经验和存在问题,为课程教学提供理论基础。
然后通过设计调查问卷,搜集相关信息,了解学生的学情,通过具体学生的访谈,分析学生的的特点、发展前景和存在问题,找到相应对策。
最后通过课程教学的开展,找到提高学生学习兴趣的途径,进行数据通信课程的教学改革,找到解决问题的策略,为人才培养提供依据和教育教学改革提供方向。
4 结束语
学生生源的多样化及生源质量的下降,给高职教学造成了很大的难度,高职教学应该分析学生的学情,了解学生的状况,开展课程教学改革。本论文具体改革的步骤通过问卷调查、访谈、数据统计分析学生的学情,然后基于数据通信课程具体教学改革探索,找到改进学生学习方法、提高专业兴趣和技能的建议策略,从而为后面学生的培养提供一定的理论参考和行动策略。
参考文献
[1] 吴玉章,方建群.从学情调查探析高教改革的若干细节问题[J].医学教育管理,2015.
[2] 卜舒慧.学情分析视角下的高职思政理论课教学方法改革的[J].职教研究,2014.
一、“数据”是说明问题的“证据”
1.要让学生感受需要用数据来说话。
统计教学与其他数学内容一样,首先要激发学习的需求:为什么要统计?与其他数学内容所不同的是,统计是用“数据来说话”。
在《复式折线统计图》教学中,结合生活实际以及折线统计图的特点,我们创设了“常州气温是否变暖”问题。通过师生谈话聊出“气候变暖”话题,提出问题:怎样说明常州气温是在变暖?在现实且有意义的问题驱动下,让学生充分感受“数据”是说明问题有力的“证据”,以此认识到数据分析的重要性。
情境只是载体,想到需用“数据”说明问题是活动目的。随着一次次经验的积累,学生也就逐渐体会到“数据”能说明问题,说明问题需要统计数据,统计能帮助人们了解事情并做出判断,也就逐渐建立了统计意识。
2.要让学生明白用怎样的数据来说话。
在《复式折线统计图》教学中,为使学生感受怎样的数据才能科学地说明常州气温变暖问题,师生间进行了如下对话:
师:你们觉得要收集怎样的数据呢?
生:收集今天的气温。
师:单单收集现在的气温能说明这个问题吗?
生:不能,要现在的和以前的,这样才可以对比。
师:对比,是一种好方法!只是,气温有最高气温,有最低气温,还有平均气温,你们觉得这里用哪个气温比较合适?为什么?
生:平均气温。因为平均气温在中间,既不是最高的也不是最低的,比较公平。
师:是啊,在新闻中经常会出现在哪一年或哪一个月出现极端气温。为了避免这种极端数据影响我们的判断,所以要用“平均气温”来比更合适。但气温的变化很微妙,如果用今年和去年气温比,很接近,很难发现问题。怎么办?
生:相隔时间久一些。
生:调查年份多一些。
师:其实,气象工作者和你们的想法一样,一般用现在月平均气温与前几十年的月平均气温作比较。(出示在常州气象局查阅的常州1949年-2000年的50年月平均气温和常州2010年各月平均气温)
……
《课程标准》(修订稿)对统计教学明确提出:要会根据实际问题设计简单的调查表,能选择适当的方法(如调查、试验、测量)收集数据。很显然,如何收集数据、搜集怎样的数据是要求学生达成的能力要求,那么,数据的科学性教育也就显得尤为重要了。
二、“数据”是分析问题的“依据”
1.要让学生读懂数据表达的信息。
在《复式折线统计图》教学中我们设计了这么一道练习:下面两幅统计图,只有一副是真的,请同学们猜一猜那副是真的。
这道题是根据苏教版小学数学教材中的练习改编而成。改编后的练习不仅丰富了统计内涵,更重要的是通过游戏的形式使学生产生对数据的亲近感,让学生感觉数据并不枯燥乏味,数据分析也不仅仅是计算,数据是蕴含信息的,数据是能表达生活实际,每幅统计图其实就是告诉我们一个生活故事。
2.要让学生体悟数据有助于分析问题。
发展统计意识、培养学生的数据分析观最有效的途径就是让学生体会统计的价值。数据是能表达信息的,数据所表达的信息是能够帮助人们做出决策的。
在《复式折线统计图》教学中,为使学生认识到统计对决策的作用,设计这样的题目:完成某地区7-15岁男女生平均身高统计图。
(1)给出7、8、9岁男女生平均身高的相关数据,要求学生独立描点、连线完成部分统计图,并交流绘制的过程。
(2)进行分析和推测。
看着7-9岁的身高图,先猜一猜9-15岁男女生的两条折线会有怎样的发展趋势。然后出示9-15岁的折线统计图,说一说男女生7-15岁身高有怎样的变化。再想一想,如果接着画下去,男女生的两条折线还会怎么样?
两次猜测都旨在建立“图表意义”与“现实问题”间的思维链接。第一次猜测直接出示统计图得到验证,重在读懂统计图;第二次猜测重要的不是结果,而是要让学生理解后面两条折线到底怎样变化,需要再调查数据,分析数据才能做出判断,重在统计思想的渗透。
摘 要 出于对跆拳道公平性的保护,随着跆拳道运动的发展,衍生出了目前的电子护具打分系统。从2012年中华人民共和国第9届大学生运动会跆拳道项目使用电子护具至今,全国大学生跆拳道比赛都采用DaeDO(大道)品牌电子护具。本文只从大学生跆拳道运动员中,分析传统护具与电子护具的得分对比,所提到的电子护具品牌只为DacDO(大道)品牌。希望从研究分析中了解造成当前大学生技术改变的根本问题,能对大学生跆拳道的发展起到推动作用。
关键词 大学生 电子护具 传统护具 技术 对比
一、研究对象与方法
(一)研究对象
北京交通大学跆拳道高水平运动队,女子57KG级运动员2名,男子58KG级运动员2名
(二)研究方法
数理统计法、逻辑分析法
三、研究成果与分析
(一)女子57KG级运动员得分统计(2局2分钟)
(见表1、表2)北京交通大学女子57KG运动员在传统护具中,中位横踢共得8分,高位技术共得9分,说明在传统护具技术下,横踢是绝对的主要得分腿法。从女子运动员技术特点来看,下劈技术也会在比赛中占一定的得分比重。在电子护具中,中位共产生4分,其中3分来源于推踢,总得分也远远低于传统护具中位得分的8分。从数据上来看,横踢技术的得分率下降很大。在高位技术上,横踢和下劈仍然是主要得分腿法,在电子护具中出现了拳的得分。从两个表对比可以看出,电子护具的总得分明显降低,这也意味着观赏性的降低。并且在中位腿法中的得分率降低,是其主要的因素。根据女子运动员技术特点来看,高位技术突出的运动员更能在电子护具中赢得优势。
(二)男子58KG级运动员得分统计(2局2分钟)
(见表3、表4)北京交通大学男子58KG运动员在传统护具中,中位横踢共得到9分,高位得到6分,转身技术得到3分。与女子运动员结论一样,横踢仍然是主要得分腿法。从男子运动员技术特点来看,除了横踢,转身技术也占了得分的一定比例。在电子护具中,中位腿法共得到4分,其中3分为推踢,数据与女子运动员偶然一致。说明横踢技术在男子运动员中,得分几率也明显下降。但原本在传统护具中输掉比赛的运动员,在电子护具的比赛中,赢得了比赛。同样说明,高位技术突出的运动员可以在电子护具中赢得优势。
三、结论与建议
在跆拳道比赛中,男女共16个级别,笔者认为,每个级别的速度、力量都不同,这也造成了技战术的使用的不同,所以本文只针对女子57KG和男子58KG作为研究对象。在传统护具与电子护具的数据采集上,两次实战中间间隔了一周时间,只希望4名运动员都能够以最好的状态来完成比赛。本文只针对DacDO(大道)牌电子护具做研究,只讨论得分数据,不对其工作原理做分析。
(一)结论
1.所有跆拳道运动员中,横踢是传统护具主要的中位得分腿法,推踢是电子护具主要的中位得分腿法。原因笔者认为横踢简单、快速击打效果好的优点可以在传统护具中得到充分的发挥。而在电子护具中,双方运动员要求更高的击打准确性,而不要求击打效果,所以横踢的使用率相比电子护具就有了明显的下降。推踢的技术相对于横踢而言,上半身运动幅度小所以会节省体力,并且在进攻中会减小自己的动作破绽,还可以在中近距离完成高位的变线,所以在电子护具中推踢代替了横踢,成了主要的中位得分腿法,并且对运动员电子护具中的战术起到了框架支撑的作用。
2.所有跆拳道运动员中,高位技术突出的运动员,都会在比赛中获得更多的胜利机会。原因笔者认为,在传统护具,此优势并没有显示出很大,因为传统护具是一个突出击打效果的比赛模式,所有中位的连续技术会很多,尤其是男子运动员。相比较电子护具中,要求的中位击打的准确度,中位得分的难度明显加大,所有运动员会把得分注意力转向高位,此时高位技术更加优秀的运动员便有了明显优势,这也是当今跆拳道运动员在选材时更加注重身高条件的原因。
3.目前很大一部分跆拳道人认为,电子护具降低了对抗性,影响了跆拳道的发展。因为没有了华丽的组合技术,快速的攻防转换,使跆拳道的观赏性大大降低。可也有一部分人认为,在电子护具的基础上,双方起腿的数量整体提高了,并且击头的比例高了,实际上是提高了对抗性。笔者认为两种说法都有各自的部分正确性,当今的跆拳道比赛,对抗性是在提高的,因为比赛的起腿数量在提高,高位的得分率在提高,这是不争的事实,之所谓造成观赏性下降的原因,是在当今规则下得分技术上的问题。推踢主导比赛,必然会造成观赏性下降的结果,加之对于头部的得分并不要求力度,只是擦过性击打就产生分值,种种原因才是问题所在。但笔者认为,跆拳道项目仍然处于一个发展阶段,目前是走向成熟的毕竟之路,会有一天随着科技和规则的发展,跆拳道会回到一个观赏性与公平性共存的时代。
(二)建议
1.规则不应经常更改,这样不利于一个项目的良好发展。
2.可以把高难度动作的分值加大,比如转身技术击头可以给5分,这样更可以鼓励高难度动作的出现。
基金项目:中央高校基本科研业务费专项资金资助”(supported by“the Fundamental Research Funds for the Central Universities”)项目编号:KOJB14015536
参考文献:
[1] 高志红,冯巨涛,任文岗,秦志明.新规则和电子护具的使用对跆拳道技术应用的变化与影响[N].中国体育科技.2010.7.10.
[2] 刘卫军.跆拳道[M].北京:北京大学出版社.2006:5-7.
[3] 吴建忠,,吴素英.DaeDo电子护具下跆拳道新得分技术的研究[J].北京体育大学学报.2014.10.
在科学研究中,数据的收集、分析和统计处理,需要用到医学统计软件包。目前常用的优秀的医学统计软件包有SAS,SPSS等。这些软件大都具有强大的数据管理能力、全面的统计方法、高精度的计算以及独特的多平台自适应技术,功能强大。但是这些软件的使用相对比较复杂,没有经过培训很难应用自如,充分发挥这些软件的作用。Excel是由Microsoft公司开发的一种功能很强的电子表格处理系统,它除了具备一般表格软件的功能以外,还包括文字处理、数据库管理和图表处理功能,同时还提供了统计与工程分析、决策支持分析的工具[1]。在我们的医学数据处理中,最常用的大都是要做一些简单的统计描述,或者进行方差分析、t检验及回归分析等等[2],作这些统计分析时,我们可以使用Excel“数据分析”工具来完成。
1 Excel中加载“数据分析”工具
首先,启动Excel,点击工具菜单中的“加载宏”选项,在出现的对话框中选中“分析工具库”,确定安装后,在菜单栏的“工具”下会出现“数据分析”选项。
2 使用Excel进行数据统计描述
用Excel可进行数据的统计描述,包括:(1)集中趋势(集中指标),它包括算术平均数,中位数,几何平均数,众数等。Excel提供有现成的公式及内置函数可进行这几个指标的计算。如首先输入一组数字,然后建入公式=AVERAGE(常数),=MEDIAN(常数),和=MODE(常数),按回车健可得到算术平均数,中位数和众数;(2)离散趋势(变异指标),它包括全距,百分位数,四分位数间距,方差,标准差,标准误,偏度系数和峰度系数等。而其中以方差,标准差,百分位数和标准误较为常用。同样在电子表格中建入公式=VARP(常数)和=VAR(常数)两函数可计算总体方差和样本方差。建入公式=STDEVP(常数)和=STDEV(常数)便可得到总体标准差和样本标准差。
3 t检验
t检验是医学统计分析中最常用的统计分析方法,用来检验标准试样测定结果的平均值与标准值之间是否有统计学意义。Excel“数据分析”中提供了多种不同条件的t检验工具,如“平均值的成对二样本分析”,“双样本等方差假设”,“双样本异方差假设”及其他统计分析工具,当样本中的观察值存在配对关系时,可以使用“平均值的成对二样本分析”t检验。例如对一个样本组在实验前后进行了两次检测,为确定实验前后样本均值是否相等,应使用成对t检验,此t检验并不假设两个总体的方差是相等的。例如,用某药物治疗高血压患者10名,治疗前后舒张压变化如下:
在工作表中输入上面的数据,比如数据区为A1至J2。分析时,在“工具”菜单中,单击“数据分析”命令。在数据分析对话框中,选择t检验:平均值的成对二样本分析,拉出平均值的成对二样本分析对话框,其中有如下输入项:变量1的区域:输入需要分析的第1个数据区域的单元格引用。该区域必须由单列或单行数据组成。可单击输入框右面的按钮,回到电子表格上自数据开始的单元格向结尾的单元格拖动。此时变量1的区域(A1~J1)自动进入输入域中。然后单击输入域右面的按钮,回到原对话框。变量2的区域:输入需要分析的第2个数据区域的单元格引用。该区域必须由单列或单行的数据组成。输入方法同前。变量2的区域为(A2~J2)。假设平均差:在此输入期望中的样本均值的差值。缺省为0值,即假设样本均值相同。标志:如果输入区域的第1行或第1列中包含有标志项,应选中此项:如果输入区域没有标志项,Excel将在输出表中生成适宜的数据标志。这里选中此项。α在此输入检验的统计意义水平。该值范围为0~1之间。缺省为0.05。
输出区域信息可选择如下单选项:输出区域和新工作簿。我们选择新工作表,结果为平均95.88889,方差80.86111,观测值9,泊松相关系数0.881366,假设平均差0,df 8,tstat 5.230769,P(T≤t)单尾0.000396,t单尾临界1.859548,P(T≤t)双尾0.000792,t双尾临界2.306004。两组比较差异有统计学意义(P
4 方差分析(analysis of variance,ANOVA)和卡方检验
在数据分析工具库中提供了3种基本类型的方差分析:单因素方差分析、可重复双因素分析和无重复双因素分析,现简单介绍方差分析的应用。
单因素方差分析:在进行单因素方差分析之前,须先将试验所得的数据按一定的格式输入到工作表中,其中每种水平的试验数据可以放在一行或一列内,具体的格式如表,表中每个水平的试验数据结果放在同一行内。数据输入完成以后,操作“工具-数据分析”,选择数据分析工具对话框内的“单因素方差分析”,出现一个对话框,对话框的内容如下:(1)输入区域:选择分析数据所在区域,可以选择水平标志,针对表中数据进行分析时选取;(2)分组方式:提供列与行的选择,当同一水平的数据位于同一行时选择行,位于同一列时选择列,本例选择行;(3)如果在选取数据时包含了水平标志,则选择标志位于第一行,本例选取;(4)α:显著性水平,一般输入0.05,即95%的置信度;(5)输出选项:按需求选择适当的分析结果存储位置。 双因素无重复试验方差分析 与单因素方差分析类似,在分析前需将试验数据按一定的格式输入工作表中。 数据输入完成以后,操作“工具-数据分析”,选择数据分析工具库中的“双因素无重复方差分析”,出现一个对话框,对话框的内容如下:(1)输入区域:选择数据所在区域,可以包含因素水平标志;(2)如果数据输入时选择了因素水平标志,请选择标志按钮;(3)显著性水平α:根据实际情况输入,一般选择0.05;(4)输出选项:按需要选择分析结果存储的位置。
可重复双因素分析:双因素可重复方差分析与双因素无重复方差分析数据输入的区别在于对重复试验数据的处理,就是将重复试验的数据叠加起来。 数据输入完成以后,操作“工具-数据分析”,选择数据分析工具库中的“双因素可重复方差分析”,出现一个对话框,对话框的内容基本与双因素无重复方差分析相同,区别在于每一样本的行数选项,在此输入重复试验的次数即可。若须对数据进行方差分析时,在输入区域选择数据所在区域及因素水平标志,在每一样本的行数处输入3,即每种组合重复3次试验,显著性水平选择0.05。在输出选项中可以按照需求选择分析结果储存的位置。选择确定以后分析结果。在工具菜单中均有现成的这3种分析工具。
5 非参数检验
Excel也没有提供非参数检验的分析工具,但可利用其提供的函数和公式可进行分析。如利用IF(指定要执行的逻辑检验函数)和COUNTIF( 条件函数 )进行编秩。利用=SUMIF(条件单元格求和函数 )计算正负秩和。=COUNT(个数函数)利用=ABS和=SQRT计算绝对值和z值。
6 相关回归
为了反映两个或多个变量之间的关系,描述相关关系的方向与密切程度,需采用相关分析;为了反映两个或多个变量之间的依存关系,建立回归方程,采用回归分析。先将数据输入工作表中,然后用Excel提供的函数可进行线性回归(linear regression)又称简单回归的分析和Spearman等级相关分析,用菜单中的“工具数据分析相关糸数可进行相关分析。用“工具数据分析协方差工具可进行协方差分析。用Excel的XY散点图工具可以进行散点图的绘制。
Excel是一种使用极方便的电子表格软件,它有强大的数据管理功能,不仅能够根据需要分类管理数据信息,能进行数据统计、筛选、排序、汇总、汇制图表等,还能利用其强大的函数功能以及分析工具库为建立复杂的统计或计量分析工作带来极大的方便。
参考文献
关键词:信息素养;研究生;数据;北京交通大学
中图分类号:G643 文献标志码:A 文章编号:1673-291X(2012)18-0245-03
信息素养是指人们在解决问题时利用信息的技术和技能。这个概念是1974年由美国信息产业协会主席保罗·泽尔斯基首次提出后又经该协会定义的。随着计算机等现代技术的发展,信息量以几何级数的方式递增。一方面,准确完整的信息是做好决策的基础,另一方面,如何进行有效的检索,是利用信息从而解决问题的关键,这两者均取决于人的信息素养。
研究生教育担负着为国家建设发展培养高素养、创造型人才的重任。现代管理学之父德鲁克曾经说过:“知识工作者的生产率是21世纪管理的最大挑战。”
在北京交通大学,早在2004年,便把信息素养的教育列入了研究生学期教育的内容,为了全面掌握研究生信息素养情况,使信息素养教育更具有针对性,我们于2011年9月对北京交通大学的博士研究生和学术型硕士研究生进行了抽样调查,并结合访谈的形式对于相关重点问题进行了确认。
一、样本与调查维度说明
调查根据各院系学术型研究生数量的相对比例,共随机抽取360位研究生进行调查。经检查核对,最后共获得有效问卷343份,有效问卷回收率为95.27%,样本总量占6 847名学术型研究生总量的5.3%。有效样本在各学院的分布情况为:电子信息工程学院50人,计算机学院29人,经济管理学院97人,交通运输学院29人,土木建筑工程学院39人,机械与电子控制工程学院20人,电气工程学院20人,理学院21人,人文社会科学学院11人,软件学院17人,建筑艺术系5人,语言与传播学院5人。在全部被调查者中,硕士研究生为主体,占84.54%,其余为博士研究生;从年级分布看,一年级占45.18%,二年级研究生占43.73,三年级研究生只占11.07%;从性别构成看,男性占57.73%,女性占42.27%,与我校男女生总体比例58.4∶41.6持平。
调查的维度包括研究生信息素养教育基础、获取并利用专业信息的途径、对提高自身信息素养的途径选择与期望三个大的方面,共包含22个问题。
二、调查结果
1.研究生信息素养教育基本情况。调查表明:近四成研究生在本科阶段没有受过正规的信息素养教育。有34.74%的被访者在本科阶段没有学习过科技信息检索或类似的课程;有40.12%的被访者没有学过学术论文和学位论文写作的课程或听过相关讲座。
2.获取并利用专业信息的途径。在使用各种信息资源方面,以图书馆资源配合网络搜索引擎为主;将近1/3的学生经常使用纸本书和期刊,并通过专业相关论坛学习;还有一小部分学生利用免费的(见表1)。
在对既有资源的深入使用方面,对我校图书馆的使用情况的调查表明:有80.62%的学生使用过借还书服务;61.67%的学生做过电子数据库检索;44.49%的学生进行过书刊阅览;只有36.12%的学生使用过学术资源门户;26.43%的学生做过信息咨询;17.62%的学生使用过馆际互借;甚至有20%未使用过借还书服务(见表2)。
计算机技术发展到今天,涌现出很多面向公众的免费软件,这些开源软件除了在社交网络方面,在各专业领域里也层出不穷,熟练运用这些免费软件将是对我们当前有限资源的一个有效补充。但使用情况并不普遍。有15.42%的学生没有用过任何一款开源软件(见表3)。
研究生对本专业领域内优秀文献及前沿信息的掌握情况在一定程度上决定其创新力。研究生对其专业核心期刊及网站信息的掌握途径如下:60.79%的学生请教导师或同学,46.26%的学生利用期刊导航系统,28.63%的学生利用CSSCI或CSCD获知,11.45%的同学咨询图书馆员,其他途径为4.41%(见表4)。
从外文数据库的使用情况来看,有3.08%的学生从不使用本专业外文数据库;有43.17%的学生不熟悉外文数据库但常用Google找英文文献阅读;只有29.52%的学生经常使用本专业的外文数据库。由此可见,我校的专业外语和外文数据库的培训亟须加强(见表5)。
学术数据库的便捷和及时已成为研究生学习、研究过程中不可或缺的工具。随之而来的大量电子文档如果得不到系统的管理,会浪费掉很多时间和精力。与国外学校情况相比,我校研究生对参考文献管理工具的认识和使用情况令人担忧。以三种最广泛使用的管理工具为调查对象,使用过endnote、noteexpress或 refwork这三种管理软件的学生分别占16.74%、12.33%和8.81%,竟有近63.88%的学生没有使用过任何参考文献管理软件(见下页表6)。
3.提高研究生信息素养的方向与途径选择。调查显示:31.42%的被访者不太能对所浏览的网站的权威性作出判断,2.65%的被访者完全不能判断出所浏览网站的权威性;有40.27%的被访者回答能够判断网站的权威性,但根据的是模糊的经验;只有25.66%的被访者因为听过有关讲座,从而能够准确判断所浏览网站的权威性。
信息搜索能力提高途径方面,43%的同学希望采取听主题讲座的方式;22%的同学选择上选修课;20%的同学选择自学;15%的同学愿意请教导师和同学。
三、分析与建议
1.需强调信息技术教育与信息素养教育的结合。近四成研究生在入学之前没受过正规的信息素养教育,这样的数据映射了中国对于信息素养教育的认识严重不足。国外对信息素养问题的研究可谓由来已久。20世纪60年代至今,相关的研究已相当深入。通过Elsevier、Infotrieve等检索系统都可以检索到众多的研究文献。而通过“google”进行网络检索则返回了1 180 000条记录。这些记录中包含大量的信息素养研究组织、论坛、专门研究网站和资源网站,可以找到数量丰富的研究报告、论文、会议文献及有关的项目和计划等资料。资料还反映出信息素养概念的内涵逐渐由最初单纯的信息技能掌握到人的整体素养层面的演进以及信息素养重要性被广泛认可的过程。
相对而言,国内信息素养理论研究比发达国家滞后得多。1984年,教育部《关于在高等学校开设〈文献检索与利用课〉的意见》,奠定了《文献检索与利用课》作为中国高校大学生用户教育主要形式的地位。此后,受国外影响,中国图书情报界对用户教育活动的理论思考逐渐演变上升为信息素养层面的研究。就发文量而言,中国对信息素养问题的真正研究始于20世纪中期。1995年首次在研究文献中出现了“信息素质”和“信息素养”的概念,但之后发文数量一直非常有限,到2011年一共682篇。反映出中国对信息素养问题的研究多年来一直徘徊在较低的水平。
在对被调查者的访谈中,他们接受的信息教育要么就是计算机教育(简称为“计算机课”、“电脑课”)和在此基础上有所发展的信息技术教育,并以掌握计算机、网络等信息技术的知识和技能为最终目的;要么就是信息化教育,即将计算机、投影仪等设备用于辅助教育。从2000年开始,信息素养概念已进入一部分信息技术教育研究人士的视野,在国家信息技术教育相关政策中也出现了“信息素养”的提法,但基本上是将信息素养的培养局限于信息技术教育之中。而图书情报界则主要是从原有的用户教育、尤其是文献检索课的视角来看待信息素养。
因而,针对于研究生的信息素养教育,应该强调信息技术与人的学习、生活和工作的联系,强调信息和信息技术在各个层次上的学习与应用,特别强调信息素养在终身学习与自主学习中的作用,强调信息素养与个人发展的关系。
2.有待建立统一的信息素养标准,涵盖教育的全过程。信息素养标准是信息素养评估的依据,也是信息素养教育的课程目标。因此,各国积极建立适合本国国情的信息素养标准。在这一方面,美国、英国、澳大利亚制定的信息素养标准都对其他国家产生了一定的影响。美国最具有影响力的信息素养标准分别制定于1998年和2000年。1998年美国学校图书馆协会与教育交流技术协会制定了《学生学习的九大信息素养标准》,并且涵盖了教育的全过程,是从中小学基础教育到高等教育的一个重要主题。
中国的信息素养教育研究起步比较晚,目前还没有制定出一套全国通用的信息素养评估体系。《北京地区高校信息素养能力指标体系》是中国第一个正式的并且比较有权威的信息素养评价标准体系。该指标体系参照了美国、英国和澳大利亚高校的信息素养评价标准,共分为7个一级指标、19个二级指标、61个三级指标。
信息素养教育和其他任何一种教育领域一样,素养的提高是多个相互联系的因素持续作用、形成合力的结果,局部的强化难以实现。且研究生中的绝大多数毕业后便要走向职场,与其他层次的教育相比,除了传统意义上的学习的压力,还有面临从学生到职场人的转变的压力。如果单纯从研究生阶段加强信息素养教育,即使体系完备,也难以避免学生现学现用,不成系统的弊端。
3.信息素养教育亟待与学科课程整合。最新的研究文献数量表明:国外的信息素养教育的重点已经转向培养学生的终身学习能力和评判性思维能力,探讨促进图书馆、学生、教师及管理层的密切合作、谋求多学科的信息素养教学已经是研究重点之一。