时间:2023-10-08 09:43:31
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇数字化设计和制造技术,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
中图分类号:TH16 文献标识码:A 文章编号:1674-098X(2016)02(a)-0004-02
1 计算机技术在机械设计制造及其自动化领域中的应用优势
计算机技术在机械设计制造及其自动化领域中的应用主要体现在计算机辅助技术的应用、基于计算机平台的数控机床的应用、计算机三维技术的应用以及计算机ERP管理系统的应用。目前计算机绘图技术、数控机床已经在我国的机械行业中得到广泛应用,保证了产品的设计质量和使用价值。计算机ERP管理系统在机械行业中的应用有利于降低企业生产成本,提高企业的经营效率,在企业的快速发展中发挥了重要、积极作用。计算机技术在机械设计制造及其自动化领域中的应用优势主要体现在以下几个方面:(1)计算机辅助技术的应用大幅度提高了机械行业的生产效率,主要体现于产品的设计和研发速度的提升,明显缩短了产品设计时间,提高了产品设计质量。(2)计算机ERP管理系统的应用实现了企业的全方位管理,保证了企业各个部门、各个环节信息的及时传输和反馈,提高了企业的反应能力。(3)计算机存储技术的应用实现了对企业各种生产信息资源以及产品设计图纸的有效存储,不仅提高了信息资源的管理效率,同时也避免了纸张的浪费。
2 计算机技术在机械设计制造及其自动化领域中的应用
机械设计制造及其自动化领域中计算机技术的应用主要体现在以下几个方面:一是可视化、仿真、模拟、绘图等辅助技术的应用,二是基于计算机平台的数控机床的应用,三是计算机三维技术的应用,四是计算机ERP管理系统的应用。
2.1 计算机辅助技术在机械设计制造及其自动化领域中的应用
在机械设计制造及其自动化领域中应用较多的计算机辅助技术主要有计算机可视化技术、计算机仿真模拟技术等。顾名思义,计算机可视化技术就是将抽象的机械信息和数据进行直观化、具体化、可视化,将其转化为更容易让人理解的信息和数据,进而分析、计算以及掌握机械产品的特点和性能,了解机械产品的动态生产过程,不断对其进行改进、优化。计算机可视化技术在机械设计和制作领域中的应用一方面可以发挥基础的辅助设计作用,有利于减少人工误差,提高产品设计的精确性;另一方面能够极大地提高工作效率,节约了大量的人力和时间,推动了自动化的进程。计算机仿真模拟技术以计算机和软件为基础,汇集了多个学科的理论知识和技术原理,仿真模拟技术的应用可以有效解决机械制造中的复杂问题。在机械设计和制造过程中,产品加工是企业生产产品的基础环节,利用计算机仿真虚拟技术可以为产品的加工提供理论和技术支持。例如在某些机械产品的磨削过程,利用仿真技术可以对磨削行为以及磨削质量进行预测和模拟,并以此为依据优化磨削过程。在机械设计阶段,应用较多的计算机制图技术,例如CAD、CAM 都是常用的计算机绘图技术,利用计算机绘图技术一方面可以减少制图的差错率,降低产品生产损失;另一方面能够缩短制图周期,为新产品的研发提供更多的时间。
2.2 基于计算机的数控机床在机械设计制造及其自动化领域中的应用
数控机床的最主要优势特征就是能够实现产品生产自动化,以计算机为平台、软件为基础的数控机床的编程主要有两种方式,即软件自动编程以及软件手工编程。基于自动编程的数控机床软件主要应用于较复杂零配件的生产,以计算机为平台采用标准的数控软件语言对应用程序进行编写,然后经过处理形成数控机床的运行程序。近年来随着数控技术的快速更新和发展,计算机语言与数控编写程序之间的相互转换更加容易实现,更大程度上满足了数控机床编程的需要。
2.3 计算机三维技术在机械设计制造及其自动化领域中的应用
三维技术是现代计算机技术的重要组成部分,其采用了更先进的理论和方法制作神奇三维立体,为产品的生产提供了更科学的设计方法,例如对产品结构的受力分析以及对产品形状的模拟分析都是三维技术在机械设计和制作行业的重要应用体现。CAD三维技术的应用不仅体现在对产品大小、形状、特征以及产品位置的模拟分析方面,另外还可以对产品赋予一系列物理特征信息,通过对产品颜色、产品质量、产品体积、产品承压力等物理特征信息的分析从而进一步保障产品设计质量。在以往的机械产品设计过程中,往往需要通过各种物理实验和化学实验来检验产品质量,而现在通过三维技术的模型功能就不再需要通过物理和化学实验保证产品设计质量,如此就极大地节约了产品设计成本,同时也有利于提高企业的生产效率。
2.4 计算机ERP管理系统在机械设计制造及其自动化领域中的应用
机械零配件种类的复杂性决定了机械行业自身具有较强的离散性,企业很难保证产品的终端性。对于任何一个机械产品生产企业来讲,都需要详细、准确地了解和掌握自己所生产产品的零配件,包括零配件的个数、零配件的具体型号、零配件的可用性等信息都要有准确的记录资料,这些信息资料是企业生产部门制定产品生产计划的重要依据。机械产品生产企业日常运营主要包括产品加工以及产品管理两方面内容,产品管理涉及到零配件数量管理、库存管理、产品生产计划信息管理,另外就是企业ERP系统的维护和管理,从ERP系统中可以准确查询企业每个批次零配件的具体数量、毛坯数量、半成品数量、成品数量,如此可以实现对每个批次产品的动态跟踪分析,及时掌握当前毛坯数量是多少、半成品和成品数量是多少、产品报废数量是多少,对以上信息的掌握可以为企业决策部门提供科学的数据支持,对降低企业生产成本、提高企业经营效益有着重要意义。
3 结语
计算机信息技术的普及应用推动人类从机械化时代进入信息化时代,计算机技术的强大功能在各个行业领域中发挥着不可估量的作用,其在机械行业中的应用不仅提高了企业的生产效率,降低了企业的生产成本,同时在推动企业实现生产自动化中也发挥了不可替代的作用。目前计算机技术在机械行业中的应用主要体现在计算机辅助技术的应用、基于计算机平台的数控机床的应用、计算机三维技术的应用以及计算机ERP管理系统的应用,随着计算机技术的快速发展以及机械行业改革的深入,计算机技术与机械设计制造以及其自动化的融合将会成为以后的研究热点。
参考文献
[1] 何楠.机械设计制造及其自动化中计算机技术的应用分析[J].山东工业技术,2016(7):148-149.
[2] 刘锐锋.探讨计算机辅助技术与机械设计制造的结合[J].化工管理,2015(7):194-195.
[3] 盛国亮,孙晓亮,张真.机械设计制造及其自动化的应用研究[J].硅谷,2015(3):101-102.
关键词:机械设计;机械制造;自动化;核心技术
一、机械化设计制造与自动化研究的必要性
机器将人类从繁重的劳动中解放出来之时,人们就意识到他的重要性,从诞生之日起,机械工业的发展更是突飞猛进,为人类社会创造了巨大的价值和巨额的财富,对机械设计制造及自动化的研究是为了机器更好的工作、更好的为人类服务。第一,机械设计制造是个复杂的过程,每个零部件都会涉及到形状、尺寸、材料等等问题,对这些问题的处理不光需要丰富的经验,还需要一定的理论支持,才能确保机械部件生产的顺利进行和其组装的成功,确保了其正常投入生产。第二,机械自动化是现代工业追求的职能生产形式,一方面,机械自动化将人从危险、复杂的生产环境中解放出来,提高了工业生产的安全性、稳定性。另一方面,机械自动化利用传感技术、遥控技术等使机器在无人操作的情况下自动运行,生产系统效率高、故障小,大大的提高了产品生产效率、效益。第三,电子信息技术下,数据的采集、处理、传输等等方便快捷,其效率远远高出了人工,对提高生产效益意义重大。
二、机械设计制造及其自动化的主要技术分析
机械设计制造及其自动化是在计算网络科技发展的基础上发展起来的,其依赖的核心技术就是计算机网络技术。例如,机械设计中,计算机可视技术、现实模拟技术为其提供了有力支持,设计者通过计算机软件、硬件可将思想中的图形以立体的形式表现出来,并可以通关相关的电脑软件进行测试,提高了机械设计的合理性、可行性。其次,机械技术是机械设计制造及其自动化的基础技术,机械设备的结构、材料、性能等都是机械制造及自动化的关键技术,在设计中,也要对机械部件的受力、运作等进行精确的设计,才能确保机器组装的顺利和生产过程的安全、稳定。再次,系统技术,这是一个综合的、复杂的技术,它包含了信息系统、生产流程等等,是先进科学技术的融合,代表着工业生产的能力和水平。系统技术一方面,要注重先进科技的融合,提高系统的综合性能,使其对产品的生产更为高效;另一方,要重视系统的融合性,确保系统各个联系的有效、稳固,促进生产的安全性和可靠性。第四,传感检测技术,主要是通过各种传感器、计算机系统等组成一个传感网络,将其收集到的信息通过网络输出端描述出来,相关人员可依据这些信息对机械的生产、制造进行远程操作。第五,自动控制技术,这一技术的核心就是机械的智能化,机械生产信息通过输入端输入,计算机对输入的信息进行整理、传输,以便操作者能及时掌握机械状态,对生产急性及时的调整,确保生产的效率和产品质量。这一技术的应用优势非常显著,在提高生产效率、提升产品品质的同时降低了生产的危险性,使人员远离劳动条件差的工作环境,还节省了能源与材料消耗等,是机械设计制造及其自动化生产的又一核心技术。总之,机械设计制造及其自动化的相关技术十分丰富,且具有一定的复杂性、综合性,在机械设计制造及其自动化过程中,对这些技术的应用应从全局出发,注重硬件、软件的同时改进,才能更好的确保工业生产技术的国际竞争力,提高我国工业生产的实力。
三、机械设计制造及其自动化发展的前景分析
当前,随着人们生活质量的提高,对产品质量、性能的要求也在不断的变化,面对日益丰富的市场需求,机械设计制造及其自动化不但要满足商品制造需求,还要从环保、智能化、集成化等方面出发,不断的对其进行创新和优化。第一,工业生产在积累财富的过程中对环境有一定的破坏,环境问题已成为工业发展的一大助力,机械设计及其自动化的创新可有效的改良工业生产的模式,减少其对环境的污染,这将是机械设计制造与自动化生产未来研究的核心问题之一,现在已受到普遍重视。第二,智能化发展方向,使机器拥有人一样的智慧,能够对生产环节进行判断并作出相应的回应。目前,在强大的网络支持下,智能化生产已不稀奇,研究的方向将是如何提高机械设计制造的智能化水平。第三,进一步提升机械制造及其自动化的集成化、敏捷化和清洁性,将人力资源进一步从劳动一线退下来,实现生产系统的全自动化生产、清理等等。此外,还要考虑机械设计制造及其自动化的网络性、虚拟化等,全方位的提升工业制造的水平,提高产品质量和产品价值。
结语:对于机械设计制造及其自动化技术核心的研究是提高工业生产水平的有效途径,当前,一方面要提升自行研究的效率,树立自强、自信的研究精神,提高我国机械行业技术水平。另一方面,还需借鉴和模仿国外的先进技术经验,提高我国机械设计制造及其自动化的技术的发展,同时要重视借鉴和吸收过程的科学性、理智性,不照搬、不全面否定,结合我国国情有目的的分析研究,取长补短,促进我国机械行业技术水平的发展。
参考文献:
关键词:船舶建造;数字化;信息技术
中图分类号:U673 文献标识码:A
1.什么是船舶建造数字化
船舶建造数字化是以数据处理、图形图像、虚拟现实、数据库、网络通信、数字控制等数字化技术为基础,将数字化技术全面应用于船舶的产品开发、设计、制造、管理、经营和决策的全过程,使船舶产品的设计和生产向着自动化、精细化、柔性化、智能化的方向发展。通过数字化技术与现代管理思想和先进工程方法的融合,形成船舶制造业信息化的完整体系,实现对造船业的信息化改造,使得造船企业全面提升产品的研发、生产能力,降低生产成本,缩短设计、生产周期,提高产品质量。
2.船舶建造数字化技术的内涵
船舶建造数字化技术主要体现在如下3个方面:
2.1 CAX(计算机辅助技术)
CAX(计算机辅助技术)是CAD(计算机辅助设计)、CAE(计算机辅助工程)、CAM(计算机辅助制造)和CAPP(计算机辅助工艺计划)的统称。
(1)CAD(计算机辅助设计)指在计算机及可视化设备为基础的专业化计算机系统的支持下,帮助设计人员进行设计工作。可以在CAD系统的辅助下完成从合同设计开始的一系列设计工作,建立产品数字模型,进行工程计算和分析,生成和绘制工程图,生成物料清单等。
(2)CAE(计算机辅助工程)是用计算机辅助求解复杂工程和产品结构强度、刚度、屈曲稳定性、动力响应、热传导、三维多体接触、弹塑性等力学性能的分析计算以及结构性能的优化设计等问题的一种近似数值分析方法。
(3)CAM(计算机辅助制造)是将计算机应用于生产制造的过程或系统,其核心是计算机数值控制(简称数控NC)。有狭义和广义两个概念。CAM的狭义概念指的是数控,包括数控机床、数控加工中心、数控生产流水线、数控火焰或等离子切割、激光束加工、自动绘图仪、焊机、机器人等;广义概念还包括制造活动中与物流有关的所有过程(加工、装配、检验、存贮、输送)的监视、控制和管理。
(4)CAPP(计算机辅助工艺计划)是通过计算机进行产品加工的工艺路线制定、工序设计、加工方法选择、工时定额计算,包括工装、夹具设计、刀具和切削用量选择等,生成必要的工艺卡和工艺文件等。CAPP是连接产品设计CAD信息和加工制造CAM信息之间工艺信息的桥梁,是生成各种加工制造,管理信息的重要环节。
2.2 企业业务技术过程与信息管理
通常包括PDM/PLM/ERP/MES/CIMS等。即产品数据管理PDM、产品生命周期管理PLM、企业资源计划ERP、制造执行系统MES、计算机集成制造系统CIMS等。它们通过信息技术与现代管理理念的融合,使人、资源、技术、管理等要素有机地结合起来,从而实现设计及生产过程管理的精细化和企业资源利用的优化。
2.3 数字化装备
软硬件相结合的数字化装备,如NC(数控设备)、FMS(柔性制造系统)、Robot(机器人)等通过数字控制形成的生产自动化装备。这些设备通过离散的数字信息控制设备或传动装置的运行,实现生产加工的自动化。
3.船舶建造数字化技术的发展历程
3.1 单项技术的企业部门级应用阶段
该阶段主要是单项技术,如数值计算技术、CAD/CAE/CAM技术、数控技术以及各种部门级的管理信息系统,如财务、人事、OA、物资等管理系统在企业部门的局部范围内的应用。部门级数字化技术的应用作为一种技术手段对提高设计和生产效率、提高产品质量发挥着重要作用。
3.2 企业内综合应用集成阶段
这一阶段是由企业内的信息集成、过程集成到应用集成。通过信息集成保证了系统间信息的一致性,通过应用集成使企业内部的各种信息系统组成了一个有机的整体,大幅提高了数字化技术应用的整体效益,使得企业设计、生产、经营、管理的各种业务活动得以协调运行,大大提高了企业的生产能力。
3.3 企业间的应用集成阶段
由于互联网技术的快速发展,促使电子商务、供应链管理、协同设计、敏捷制造等一些基于互联网技术的新型管理思想和管理方法得以实施,使得船舶这种具有大量配套设施的高度复杂产品的制造能够实现跨地域的专业化企业间的协同运作,使产品能够快速地、柔性地应对用户的需求。
自20世纪60年代末将计算机用于船舶线型放样开始,我国船舶行业信息化已历经40多年,国内造船业经过不懈的努力,使得造船数字化技术已逐步渗透到造船业价值链的每一个环节,引进或自主开发了各种各样的信息系统,已广泛应用于船舶设计、建造和管理过程中。国内一些骨干造船企业和研究院所已开始引进虚拟仿真技术,开展船舶和海洋工程的产品虚拟设计和建造过程模拟等研究。
4.船舶建造数字化技术体系
制造业数字化技术是以现代设计制造的工程方法和先进制造理论为依据,以数字化技术为手段,面向产品全生命周期,理论方法与应用技术相结合的一个复杂的技术体系。
4.1 现代制造理论与数字化技术基础
主要有计算机集成制造、并行工程、精益生产、敏捷制造、大批量定制等现代制造理论,以及建模技术、仿真技术、优化技术、集成技术等数字化技术紧密结合,形成了其技术理论基础。
4.2 数字化基础环境
主要包括计算机系统及系统软件、数据库管理系统及相关技术、网络系统及相关技术、信息安全体系、信息标准化体系等。
4.3 数字化产品开发设计技术
主要包括产品需求分析、设计开发、生产制造等各个阶段中,为分析和解决产品设计和制造过程中的各种问题而提供的数字化的技术方法和应用工具,如单项应用技术CAD、CAE、CAM、VR等,过程管理和集成平台PDM、仿真及优化应用等。
4.4 数字化制造技术
主要有数字化生产计划与制造执行控制、数字化工艺过程、数字化装备、数字化制造单元、基于数字化的生产系统综合集成等。
4.5 数字化管理技术
主要包括现代企业管理模式、集成化管理与决策信息系统、企业资源计划与管理系统、企业生产项目管理系统、企业间协作的供应链管理与电子商务技术、企业质量管理的相关技术及企业管理系统的应用实施过程及方法等。
船舶建造数字化技术是制造业数字化技术针对船舶制造的特点和具体要求的实际应用。船舶建造数字化技术体系包括现代制造与数字化技术基础、船舶产品的数字化设计技术、数字化制造技术、数字化管理技术和一体化集成技术,此外,还有数字化基础支撑环境与相关技术等。
(1)船舶产品数字化设计技术以三维建模技术、数值计算技术、CAD、PDM、并行协同技术等数字化技术为基础,按照船舶设计不同阶段及不同专业的规范和技术要求,形成船舶各设计阶段的数字化技术。
(2)船舶产品数字化制造技术以MES、CAPP、NC、过程仿真等数字化技术为基础,根据现代造船模式的要求,形成制造执行层面的船舶数字化制造技术。
(3)船舶产品数字化管理技术则是将制造业先进的管理理念和方法与数字化技术相融合,按照船舶生产管理特点,形成船舶制造数字化管理技术。
(4)一体化集成技术则是进一步在设计、制造、管理等数字化技术应用的基础上,实现信息的集成和应用的集成,达到工程的并行和协同。
上述数字化技术的研究、开发和应用需具备相应的基础环境,需要解决一些相关的关键技术,如信息标准化、编码体系、产品数据库、企业资源数据库、集成平台、信息安全体系等。
5.船舶建造集成系统
船舶建造集成系统涵盖船舶建造企业的设计、制造、管理的主要业务过程:
(1)设计方面主要包含船、机、电、舾装、涂装等专业门类的设计CAD系统、船舶设计虚拟仿真系统,以及结合生产工艺要求的各个专业的生产设计系统。设计系统生成的设计数据通过PDM(船舶产品数据管理系统)存放并管理,以PDM作为平台,为船舶制造系统和管理系统提供有关产品信息的共享。
(2)船舶建造和管理系统通常包含工程计划管理、物资与物流管理、成本管理、财务管理、质量管理、企业资源(设备与人力资源)管理,以及MES(制造执行系统)等。
(3)制造执行系统控制车间级的生产制造执行过程,如造船精度管理、资源日程计划、作业安排与执行实绩反馈等。制造和管理系统根据企业经管计划和产品生产设计的要求制订工程计划、采购计划、生产计划和其他生产准备工作,通过制造执行系统贯彻实施生产作业过程。
结语
随着信息技术的飞速发展,制造业的新思想、新方法、新技术层出不穷、日新月异,船舶建造业应该紧跟现代科技潮流,不断创新,以实现船舶建造技术的跨越式发展。
参考文献
[1]姜波.船舶制造企业项目成本管理问题及优化研究[J].现代商业,2009(26):178-178.
航空饭金工装数字化设计制造技术
与其他加工制造方法相比,饭金件的数字化设计制造有自身的特点。饭金件并非一次成形,它的制造过程包括多个工序,因此饭金件的数字化定义不仅包括零件本身的定义,更包括工序件的定义和优化。为了保证制造精度,必须根据零件形状、成形工艺、材料特性等进行成形过程中工艺数模的定义,作为工序间的制造依据和检测依据。其次,饭金件成形是塑性变形过程,无法完全定量控制。再次,饭金成形过程中需控制的主要是成形力、温度等工艺过程参数,而非坐标等几何参数,控制难度更大。由于材料性能的不稳定性和随机性,使工艺参数设计和成形过程精确控制十分困难。因此必须从成形工艺开始直至工装模具试压交付整个过程进行研究,形成饭金件数字化设计制造的解决方案,建立饭金的数字化设计制造体系。饭金数字化设计制造包括工艺数字化设计、数字化工艺数模(即制造模型)、工装数字化设计、工装模具数字化制造等内容,这些内容以产品数模库、产品工艺数据库、工艺数模库、模具设计知识库、标准件库、成形分析/仿真库等共享数据为支撑,通过数据接口与相关部门进行数据交换,由数据管理系统进行管理,进行系统集成,实现并行设计制造,从而提高饭金模具设计质量,缩短制造周期。饭金的数字化设计制造技术工艺设计和制造模型的定义是核心,应该进行以下方面的工作:建立企业共享数据库。饭金件设计是典型的知识需求密集的过程。企业在以往的制造过程中积累了大量关于饭金材料性能数据、典型流程、工艺参数等经验及试验数据,这些数据转化为共享知识,建立模具工艺知识数据库,有助于提高饭金工艺设计的效率和成形质量。此外还有模具设计知识数据库、模具数字化分析数据库等。研究饭金件制造模型定义方法,建立毛坯和工艺模型的专用计算工具,为工装设计、工艺参数设计、数控编程等提供数据源,以满足零件精密成形的需要。图1中,成形模具的外形制造依据为制造模型中的成形工艺模型而不是零件原始数模。成形工艺模型考虑了零件的回弹等因素,对型面和尺寸进行了合理的预修正。以制造模型为框肋零件橡皮囊液压成形工艺过程的数据源,改变了反复试错的制造方式,简化了模具设计的工作,减少了人为不确定因素的影响,提高了模具设计的效率,同时可保证零件成形后的精度,提高零件制造的质量,实现零件的精密、快速和低成本的制造。图1框类零件橡皮囊液爪成形过程飞机蒙皮柔性工装是数字化制造的一个典型案例。图2所示是一种柔性多点吸盘式夹持工装系统,采用数字量传递的蒙皮制造技术,与工艺数字化和数控设备结合很容易实现蒙皮零件的数字化生产,使工装制造周期大幅减少,生产效率显著提高。模具外形调整在10分钟之内可以完成,对于多品种小批量蒙皮零件的生产具有独特优势。国内北京航空制造工程研究所已经开展了这方面的工作5:。
国内航空公司的饭金工装数字化设计制造
【关键词】数字化;先进制造;机械;信息化
【Abstract】This paper presents the key feature of advanced manufacturing technology. The relationship of advanced manufacturing technology and digital technology were discussed. The status and development of the digital technology and advanced manufacturing technology were analyzed. Pointing out that digital manufacturing is the core technology of the advanced manufacturing technology. Several key technologies in the digital manufacturing system were specifically discussed.
【Keywords】Digital technology; Advanced Manufactories Technology; Mechanical Manufacture; Informatization
1 先进制造技术的含义
先进制造技术AMT(Advanced Manufactories Technology)是指以提高制造企业综合效益为目的,综合利用信息、能源、环保等高新技术以及现代系统管理技术,对传统制造过程中及产品的整个寿命周期中的使用、维护、回收、利用等有关环节进行研究并发行的所有适用技术的总称[1-2]。
相对传统制造技术,数字化制造技术是一项融合数字化技术和制造技术,且以制造工程科学为理论基础的重大的制造技术革新,是先进制造技术的核心。数字化先进制造是在计算机和网络技术与制造技术的不断融合、发展和广泛应用的基础上诞生的。它是对制造过程进行数字化的描述,将制造信息采用数字化的表征、存储、处理、传递和加工,从而在数字空间中完成产品的制造过程[3-6]。
2 数字化是先进制造技术的基础
2.1 先进制造技术的基本特征
先进制造技术包括以下五个基本特征。
(1)先进性。制造工艺作为先进制造技术的基础,必须是经过优化的先进工艺。先进制造技术的基础必须是优质、高效、低耗、清洁工艺,它从传统制造工艺发展起来,并与新技术实现了局部或系统集成。
(2)通用性。先进制造技术不是单独分割在制造过程的某一环节,它覆盖了产品设计、生产设备、加工制造、销售使用、维修服务,甚至回收整个过程。
(3)系统性。随着微电子、信息技术的引入,先进制造技术的驾驭信息生成、采集、传递、反馈、调整的信息流动过程。先进制造技术是可以驾驭生产过程的物质流、能量流和信息流的系统工程。
(4)集成性。先进制造技术由于专业、学科间的不断渗透、交叉、融合,界限逐渐淡化甚至消失,技术趋于系统化、集成化,已发展成为集机械、电子、信息、材料和管理技术为一体的新兴交叉学科。
(5)技术与管理的更紧密结合。对市场变化做出更敏捷的反应及对最佳技术经济效益的追求,使先进制造技术十分重视生产过程组织管理体制的合理化和最佳化。
2.2 基于数字化的先进制造技术
数字化制造技术符合先进制造技术的上述五个基本特征。先进制造技术时代是数字化信息的时代,数字化技术是数字的生产、采集、存贮、变换、传递、处理及广泛利用的新兴科技领域。制造业从50年代数控机床的发明,标志着机械制造业向着数字化走出了第一步,随后制造信息化沿着三个方面推进,一是现场生产方面,如:NC/CNC/DNC/PLC/FMS/AC等;二是产品和工艺设计方面,如APT/CAD/CAM/CAE等;三是生产管理和集成方面,如MRP/PDM/ERP/CIMS等。可以说信息技术改变了当代制造业的面貌。
3 数字化是先进制造技术发展的核心
3.1 数字化先进制造的核心技术
数字化是先进制造技术的核心,它是在计算机和网络技术与制造技术的不断融合、发展和广泛应用的基础上诞生的。数字化先进制造主要包括以下几个核心技术[4,6]:
(1)制造过程的建模与仿真。制造过程的建模与仿真是在一台计算机上用解析或数值的方法表达或建模制造过程,建模通常基于制造工艺本身的物理和化学知识,并为实验所验证。
(2)网络化敏捷设计与制造。利用快速发展的网络技术,改善企业对市场的响应性。我国企业向国际接轨就必须在此领域开展研究,尽快掌握并赶上国外先进水平。
(3)虚拟产品开发。虚拟产品开发有四个核心要素:数字化产品和过程模型、产品信息管理、高性能计算与通讯和组织、管理的改变。
3.2 数字化对先进制造技术的实现
(1)数字制造的全球实现―网络制造。随着数字化技术、计算机网络技术及交通运输事业的迅速发展,这些企业可利用协同工作技术,在一定的时间、一定的空间内,利用计算机网络,小组成员共享通过数字网络在企业内部传递的知识与信息。
(2)数字制造的动态联盟―敏捷制造。为实现高增值、高产品质量及优质服务,只有借助于高性能计算机和高速网络,在数字化环境中,充分利用其他企业制造过程的信息流和数据库等有用的数字化资源,才能对变化市场做出快速的响应。对于某些产品一个企业不可能快速、经济地独立开发和制造其全部,必须根据任务,由一个公司的某些部门或不同公司按资源、技术和人员的最优配置。于是,一种以数字制造为平台的先进制造技术即数字制造的动态联盟―敏捷制造崭露头角。
(3)数字制造的计算机实现―虚拟制造。数字化表征与传递、建模与仿真是数字制造的核心科学问题。这种能实现制造形状与过程的数字化表征、非符号化制造知识的表征、制造信息的可靠获取及其传递的、由整个制造信息形成的数字空间,为计算机和计算机网络的应用提供了用武之地。
(4)数字制造的快速实现―快速原型制造。制造业面临两个重要的挑战:一是要大大减少开发时间,二是产品的个性化。虽然计算机辅助设计和制造(CAD和CAM)已在很大程度上改善了传统的产品设计和制造方法,但在计算机辅助设计和计算机辅助制造集成实践过程中仍有许多障碍。
虚拟制造技术在计算机上实现了产品实际的制造过程,对缩短产品开发的周期、减少开发费用、提高市场竞争能力做出了重大贡献。通过长期的探索与实践,催生了制造技术上的又一次新的变革―快速成型制造技术。
(5)数字制造的环保化实现―绿色设计与制造。制造业为人类的繁荣昌盛做出了巨大贡献的同时,每年产生了近55亿吨的无害废品和7亿吨的有害废品。因此,为了有效地保护环境,一定要在制造的各个阶段进行污染控制。有必要使用能在各个阶段评估环境被影响的后果的工具和方法学来支持设计和制造,一种具有意识的先进制造技术―绿色设计与制造ECD&M (EnvironmentallyConscious Design and Manufacturing )。
4 数字化是先进制造技术发展的未来
目前,计算机和网络已成为制造业企业的基础环境和重要手段,目前世界500强企业无一例外地建立了内部网。制造业在知识经济到来时呈现明显的信息化趋势,可以说信息技术在促进当代制造业发展过程中的作用是第一位的,信息技术将在更深层次上渗透和改造传统制造业。
当前,数字化制造正在深入发展,其主要趋势呈以下四点:
(1)由二维向三维的转变―形成以MBD/MBI(Model Based Definition,MBD 基于模型的定义/Model-BasedInstructions,MBI基于模型的作业指导书)为核心的设计与制造。MBD是用集成的三维实体模型来完整的表达产品生命周期各阶段的产品定义技术标准,为设计人员服务,解决的是要制造什么的问题;MBI是以三维模型表达的车间工作规范和方法,为加工、装配、检测人员服务,解决的是怎么制造的问题。MBD/MBI技术将使工程技术人员从繁琐的二维图纸和表格文化中解放出来,可将更多精力转移到需求分析和产品创新研发上。
(2)真正并行和协同的实现-数字化制造中的直观可视化工作环境以及建模和仿真技术,为并行和协同工作提供了友好的协同工作环境及有效的实验验证手段和评估优化工具。数字化制造是制造业信息化发展的新阶段,也是目前制造业的重要发展方向,如精密化、智能化、网络化、极端化等,无一不与数字化制造技术的发展密切相关。
(3)数字化装配与维修的应用―装配是产品生命周期中的重要环节。虚拟现实技术(VR, Virtual Reality)的发展为解决装配序列规划和装配性能仿真提供新的思路和方法,虚拟装配技术可在无物理样机的情况下对产品可装配性、可拆卸性、可维修性和装配过程中的装配精度、装配性能等进行分析、预测和验证,并支持面向生产现场的装配工艺过程的动态仿真、规划与优化。目前虚拟装配技术已从简单的几何装配正朝着考虑精度、物性、过程、环境等多方面因素的装配技术方向发展,这是推进虚拟装配技术实用化发展的重要一步。
(4)数字化车间与数字化工厂―数字化工厂是数字化制造技术在车间和和工厂集成应用和高效运营的全新生产模式。它在三维工艺过程、工艺装备、生产线布局和生产管理综合优化和集成的基础上,实现产品在工厂、车间和生产线上由设计到制造的数字化执行、管理和控制问题,是实现企业挖潜和增效的最有效形式。目前,生产线建模仿真技术和车间布局规划已日益受到重视,它为高效物流实施以及精益生产、可重构制造、单元化制造等先进制造模式提供科学分析工具,尤其对多品种、变批量和混线生产等复杂生产模式具有重要指导意义。
5 结束语
先进制造技术是改造传统制造业的有效手段,为了有效地在我国利用先进制造技术改造传统制造业,需要明确研究、开发和应用先进制造技术的重点。综观以上先进制造技术的现状和发展,可以看出数字制造实为先进制造技术的核心技术,是实施其他先进制造技术的平台。
数字化先进制造技术是席卷全球的数字化浪潮中的重要一环,其本质是支持数字化或信息化制造业的技术。充分运用当代数字化技术,大力发展数字化先进制造技术符合本世纪制造业的发展趋势。
【参考文献】
[1]杨叔子,吴波,李斌. 再论先进制造技术及其发展趋势[J].机械工程学报,2006,42(1):5-8.
[2]江征风,吴华春.以数字制造为基础的先进制造技术[J].组合机床与自动化加工技术,2005,6:5-7.
[3]张训杰,童伟国,陈林静,胡金泽.先进制造技术与数字化制造[J].装备制造技术,2007,11:106-107.
[4]张伯鹏.数字化制造是先进制造技术的核心技术[J].制造业自动化,2000,22(2):1-9.
【关键词】 飞机 数字化 柔性装配
1 引言
传统的飞机装配采用刚性工装定位、手工制孔连接、基于模拟量传递的互换协调检验方法和分散的手工作坊式生产。自20世纪 80 年代以来,随着计算机辅助设计/制造(CAD/CAM)技术、计算机信息技术、自动化技术和网络技术的发展,数字化技术在现代飞机制造中得到了广泛的应用,飞机制造进入了数字化时代。
在数字化技术的推动下,飞机装配技术快速发展,形成了现代飞机的数字化柔性装配模式。数字化柔性装配模式具体表现为:在飞机装配中,以数字化柔性工装为装配定位与夹紧平台,以先进数控钻铆系统为自动连接设备,以激光跟踪仪等数字化测量装置为在线检测工具,在数字化装配数据及数控程序的协同驱动下,在集成的数字化柔性装配生产线上完成飞机产品的自动化装配。
2 飞机装配生产线特点
一般机械制造中的装配线是指人和机器的有效组合,通过将生产中的输送系统、随行夹具和在线专机、检测设备等进行有机组合,从而满足多品种产品的装配要求,充分体现了设备灵活性。装配生产线的应用,提高了生产效率缩短了制造周期,但自动化生产线的成本较高,主要用于批量生产,如在汽车行业。
但飞机产品型号多、批量少的特点使得飞机装配生产线需要在具有一般机械产品装配生产线的特点基础上,还应具有一定的柔,这样同一生产线既能用于同型号同批次,又能适用于同型号改进改型系列机型的飞机产品装配,从而满足了装配生产线对产品产量的要求,可充分发挥其优势,实现现代飞机产品的精益制造。
与国外发达国家相比,我国现代飞机柔性装配生产线技术无论在研究层面还是应用实践层面都存在较大的差距,主要表现在:
(1)现有的产品设计模式和产品特征没有充分考虑产品柔性装配技术的应用需求,不适应柔性装配生产线的发展要求。
(2)基于MBD的数字化装配工艺规划与管理技术缺乏系统研究和应用。工艺设计手段还停留在二维工艺设计和表述为主的水平,存在与数字化产品设计不衔接、设计周期长、返工量大、需要实物验证和示教性差等诸多问题,大量制造依据信息以工艺文件形式分离存在,管理混乱,不能满足柔性装配生产线可视化装配、无图制造的发展要求。
(3)数字化检测技术严重滞后。
大量采用专用工装、标准量具等模拟量设备进行产品的测量与检验,测量效率低、精度差,不能满足柔性装配生产线快速精确测量、在线质量控制的需求。
3 数字化柔性装配生产线内容及关键技术
通过研究国外数字化装配技术的发展状况,结合飞机装配及其生产线的特点,可得出构建新一代飞机数字化柔性装配生产线必须包括以下内容及关键技术:(1)面向装配的数字化产品并行设计,为实现柔性装配、敏捷制造提供前提和基础;(2)数字化三维装配工艺设计与仿真系统,实现整个装配过程中数字量传递;(3)数字化柔性工装系统,实现工装快速响应、快速重构以及数字化定位;(4)先进的连接设备及技术(包括柔性制孔技术、自动钻铆技术、电磁铆接技术等),保证装配质量和效率,实现装配过程的自动化;(5)数字化测量检验系统,实现装配过程中的精确测量和协调装配,装配完成后的精确检验;(6)数字化装配生产线辅助装备及管理,建立数字化柔性装配生产线集成管理系统,实现从产品设计、工艺、装配、检验和现场管理各装配生产环节信息的高度集成和移动生产线的自动配送物流管理。
上述各项内容在实际应用中互相联系、互相支撑,通过将其整合和集成,可构建现代飞机的数字化柔性装配生产线,实现现代飞机产品的数字化、柔性化、自动化装配。
数字化三维装配工艺设计与仿真系统是实现飞机数字化装配模式、构建飞机数字化装配生产线的软件基础,现代飞机整个装配过程都是建立在数字化工艺设计的基础之上的,只有采用基于单一产品三维数字量模型的数字化工艺设计方式,为整个装配过程从源头上提供数字量数据基础,基于数字化装配的柔性装配生产线才有可能真正实现。
数字化柔性工装系统、先进连接设备及技术、数字化测量检验系统是实现数字化柔性装配生产线的硬件基础。通过数字化装配工艺设计仿真系统得到的数字量数据必须由数字化的工装及设备来执行,才能保证整个装配过程的全数字量传递,从而实现整个装配生产线的数字量协调。
4 结论与展望
当前国内军机产品的数字化设计与零件制造技术发展迅速,但是装配技术作为飞机制造的关键还停留在二、三代机的制造水平,与其他军机制造技术相比严重滞后,已成为军机型号快速研制和生产的瓶颈。数字化产品定义取代二维工程图样已成为必然趋势,零件精准制造技术的快速发展为实现飞机柔性装配提供了必要的前提,新一代飞机长寿命、隐身、高可靠性、低成本快速研制的需求对数字化柔性装配生产线的应用提出了迫切要求。
(1)发展应用柔性装配生产线是现代飞机制造业大势所趋,通过发展应用柔性装配生产线,可大幅度提高产品装配质量和效率,是现代飞机产品制造的显著特点。
(2)通过发展柔性装配生产线,可促进数字化柔性装配技术的发展和应用,从而解决现有装配技术难以满足新一代飞机长寿命、隐身和高可靠性等要求的瓶颈问题。
(3)通过发展柔性装配生产线,可建立飞机柔性装配多系统异构测量平台和集成检测系统,形成数字化装配模式下的新质保体系和产品检测机制,从而解决现有模式下测量手段简单、无法实现空间大尺寸动态测量,测量数据手工记录,与产品设计和工艺规划系统脱节,难以保证装配的高精度与产品及工艺的完整性等关键技术难题。
综上所述,在国内发展应用数字化柔性装配生产线势在必行,但应充分利用前期研究工作基础,围绕数字化装配技术的发展趋势和生产线的迫切需求,根本上改造传统的设计体系、制造体系、技术体系和管理体系,实现流程再造、资源整合和生产组织调整,从而构建现代飞机数字化柔性装配生产线。
参考文献:
[关键词] 机械制造; 机械自动化; 机械设计; 机械数字化系统
一、前言
机械制造及其自动化数字化设计系统是作为一项复合型新兴技术,其独特的自动化、数字化使得传统的机械设备在技术和性能上有着很大的显著改变,具备更稳定、更快速、更高效的性能,设备上更为人性化,智能化和自动化。不可否认,这样的技术系统,在这二十一世纪里,不仅有巨大的发展空间,还有着跨越时代的意义。机械制造利用自动化的数字化设计程序对设备进行改造,实现设备可自行持续性的自动生产、加工、优化等过程。典型机械制造设备有机床、水轮机、传真机等。它们可经过机械制造及其自动化数字化设计系统的改造进而附于更多的功能,为人们提供更多方面的服务,更好的促进技术的创新,技术的发展。
二、机械制造及自动化的数字化设计系统的特点
随着我国经济的快速发展,工业行业的发展势不可挡,而机械制造及自动化的数字化设计系统在此领域优势凸显,与传统的机械设备相对比而言存在着以下几方面的优势特点。
(一)提高工业制造的效率
机械制造及自动化的数字化设计系统通过新一代的控制系统,使设备进而更为人性、智能从而代替人工操作的相关操作提高工作效率和质量,间接的也是针对某些特殊情况下,避免人工操作的意外情况发生,实现更好的专业操作。
(二)具有稳定的工作性能
机械制造及自动化的数字化设计系统可以在机械设备的正常运转中,难免会发生系统故障,一旦发生故障,可自行分析系统故障原由、扫描漏洞,进而及时修复系统问题维持系统的正常运转。传统的机械不能如此进行自我修复故障,维持正常运转,还需人工监控才能确保机械工作的正常运行。
(三)工作更快捷方便
机械制造的工作,不同部件的制造,其精准度和规格往往大不相同,因此,总是需要人为对此进行各种调整,难免会出现误差,导致产品规格不及格,造成经济的损失。而机械制造及自动化的数字化设计系统可根据实际,设置多种生产模式,需要时只需输入相对应的指令便可自动调整为另一种生产模式,除了精准度高意外,一旦出现偏差,会自行矫正,使得机械制造流程更为便捷。
(四)绿色节源
机械制造及自动化的数字化设计系统的结构小,重量小,相对消耗的能源也小。因而符合我国倡导“绿色环保”的社会理念,其日后在的相应领域中会倍受欢迎,更是紧密联系着我国建设节约环保型小康社会的发展观念。
(五)应用领域广
机械制造及其自动化数字化设计系统作为一种复合型新兴技术,适用于多方面领域,凭借其自身分析、处理故障的高效性能的绝对优势,可在多个领域立足,满足社会中人们与日俱增的个性需求,其产品质量安全有保障。
三、机械制造及自动化的数字化设计系统技术的现状
宏观这发展快速的工业领域,在人们日渐俱增的个性需求挑战下,目前机械制造及自动化的数字化设计系统技术方面经过历练成熟了不少,其发挥的作用也在这个社会上备受关注。
(一)工业制造业的新星
机械制造及自动化的数字化设计系统技术的自动化、智能化、自我维修故障等优势,比传统机械制造的产品更好、更快,产品类型也更加的多样化。机械制造及自动化的数字化设计系统技术在工业制造领域的普遍应用,证明了机械制造及自动化的数字化设计系统技术的成功,成为工业制造领域的新星。
(二)满足工业发展需要
机械制造及自动化的数字化设计系统技术的成功,掀起工业领域新一番热潮,工业各产业机构的竞争也越来越激烈。工业的制造是满足工业发展的需要为前提进行。机械制造及自动化的数字化设计系统技术全面提高了产业结构链,在相对的优势上,更能有力的占据工业市场的主导,能够基本满足自身发展的需要的同时,也能够给其他的产业提供便利的需要。
(三)提升产品的档次
机械制造及自动化的数字化设计系统技术代替了传统的机械化制造技术,就目前看来,机械制造及自动化的数字化设计系统技术体系逐步在工业领域中完善,进而从中了解“科学是第一生产力”的硬道理,在生产制造方面更具有强大的动力、支撑力,促进着工业领域的发展,也提高的机械设备的质量,进而提高产品的档次。
四、机械制造及自动化的数字化设计系统技术的发展意向
从机械制造及自动化的数字化设计系统技术在工业制造领域的成功到工业领域机械制造及自动化的数字化设计系统技术体系的完善,让我们对机械制造及自动化的数字化设计系统技术方面有着更深层的了解,进而对其日后的发展进行探索分析。
(一)技术趋向多元一体发展
机械制造及自动化的数字化设计系统技术的复合型功能,让我们体验到了前所未有的方便,快捷。正值当前,将更多项功能技术结合为一体,这样的产品形式是工业领域各方面技术相互交融的结果,进而追求更大工作效率的机械设备,提供更高质量的产品,推动产业一体化的发展。
(二)技术追求更智能化
机械制造及自动化的数字化设计系统技术的智能化是重要的技术指标之一,自动化的管理,降低了劳动者的负担,提高了工作的效率和精准稳定,通过自我修复等高效性能,很大程度的保证了工作的正常进行。追求更智能,不仅是为了让机械设备的稳定性和可靠性的提升,还是想让使其更人性地作为一个“人”,拥有类似人一样的思维对工作的操作程序等进行更快速,更合理、更正确的分析、处理,不断的把产品制造做得更加完美。
(三)系统技术多模式化
机械制造及自动化的数字化设计系统技术多模式化的研发设计,是为了提高产品制造的效率和速度而进行,面对人们需求各种各样的产品结构,通过机械制造及自动化的数字化设计系统技术多模式化实现不同结构的产品制造,产品制造过程规范、有序,也保障产品的质量,更好的在制造业中立于不败之地。
(四)绿色环保的工业制造
如今这社会现实,经济正在飞速的发展,但是环境质量却是飞速的下降,“绿色和谐社会”是我国正提倡的理念。因此,希望社会在经济发展的同时,也能考虑到自然的影响,减少对环境的污染。资源不是取之不尽,用之不竭的,对此低消耗能源,低环境污染的机械制造及自动化的数字化设计系统在现在具有非常重大的研究意义,争取做到机械制造及自动化的数字化设计系统所制造的产品经利用之后还可以再次回收利用,共创绿色和谐生活环境,坚持贯彻落实可持续发展的观念。
(五)数字化设计系统网络化
如今,全球信息化正是高速发展的阶段,网络应用的领域越来越大,而且信息化正逐步延伸至基层,并与人们的日常生活紧密联系。把机械制造及自动化的数字化设计系统网络化,可以远程控制设备服务器,进而达到远程监控设备的效果更方便、快捷利。也可以利用信息化交织成的信息网把产业领域扩大,面向全球销售产品,促进产业的发展。
五、机械制造及自动化的数字化设计系统发展举措
随着机械制造及自动化的数字化设计系统的普及应用,使得不少企业机构采用机械制造及自动化的数字化设计系统让企业处于不断生产运营状态之中,有效提高企业经济效益,抢占市场行情的商机。如今正处于机械制造及自动化的数字化设计系统发展阶段,以下是对机械制造及自动化的数字化设计系统发展进行设想的发展举措。
(一)调整数字化设计系统
企业机构之所以采用机械制造及自动化的数字化设计系统,全在于它可以为企业提供快速且高效率的生产力度,进而生产高质量的产品,提高企业的经济收益。历史的足迹告诉我们,不可盲目求快的发展,要根据实际生产情况,一步一步,脚踏实地将机械制造及自动化的数字化设计系统全球化。其原因有两个,一是因为相关领域的国际、国内市场竞争太过于激烈,弱肉强食的社会现实即便是知名企业,也会有面临倒闭或被兼并的可能;二是信息化的全球促进了各方面的发展,也加剧了彼此之间的竞争。只有以生产的实际情况作为技术发展的基础,保证足够的资金周转,才能应对不时之需和新技术的研发。
(二)研发可快速盈利的方案
科技是不断更新的,投资过高,收益见效太长的机械制造及自动化的数字化设计系统技术相对市场的性价而言比往往不受大众青睐,而投资少,见效快的机械制造及自动化的数字化设计系统是我国国情最为需要的,有着很大的潜力价值,和广阔的前景,便于与时代共同进步。此外,减少投资的方式可利用网络进行宣传,进而扩大宣传力度,进而推动机械制造及自动化的数字化设计系统发展进度。
(三)结合国家政策发展
绿色生产线是国家现在倡导的生产方式,绿色生产线保证了产品的安全性,经利用后可再次利用,尽最大努力将机械制造及自动化的数字化设计系统对环境的造成的负面影响。脱离政府政策支撑的企业是不可能快速发展的,也只有在政府支持的情况下,才能保证企业能够长期、稳定的发展下去。
六、总结
机械制造及自动化的数字化设计系统的发展经历了刚性自动化,柔性自动化,目前正向综合自动化发展。传感检测技术系统、自动化控制系统、接口技术、精密机械设计系统等机械自动化是工业制造中面临的主要挑战,而且各方各面的行业领域正以迅猛的形式在这个经济信息全球化的社会发展中,机械制造及自动化的数字化设计系统对于现在的时代来说是比较具有研究价值的领域,因其应用领域非常广泛,不但逐渐与人们的日常生活联系在一起,也与其他的行业领域联系在一起,如电子行业、网络信息行业等领域密切联系在一起。利用其他领域信息技术和经验充实自己,更新自己,实现多元一体化、人性化、智能化、网络化。此外,还应清晰理解机械制造及自动化的数字化设计系统机械工业领域中的重要地位,并突破技术引进形式的研发模式,日后研究出更为高端的机械制造技术。
[参考文献]
[1]范彩霞.机械专业数字化设计制造能力培养的探索――以黄河科技学院为例[J].中国电力教育.2010,01(07): 32-34.
[2]谭伟,程芳.数字化设计与制造环境下课程体系设置与应用型人才培养的探索实践[J].科教导刊(上旬刊).2011,05(05):40-41.
[3]贾静.本科层次机电类技术人才需求状况分析――以机械设计制造及其自动化专业为例[J].科技信息.2011,15(06):124-125+81.
[4]范彩霞.机械类专业核心实践课程的项目式集成研究[J].中国电力教育.2012,01(09): 83-85.
[5]邱友梁.论机械设计制造及其自动化专业教学难点与对策[J].中国科教创新导刊.2013,01(04):173.
[6]邢邦圣.机械设计制造及其自动化省级特色专业建设的实践与探索[J].江苏技术师范学院学报(自然科学版).2009,15(03): 53-57+64.
关键词:无图制造 钣金零部件 数字化系统
中图分类号:TP393 文献标识码:A 文章编号:1007-9416(2012)08-0195-01
随着数字化无图制造技术的发展,数字化制造系统已经演变成钣金零部件加工和制造的关键性工具,钣金数字化制造的信息载体已经完全由“模拟量”转换成“数字量”。众所周知,“数字量”信息其做大的优势就是安全、精确、并行分布式处理、传递易行、容量大。钣金数字化制造系统的信息所表达出来的“数字化”,往往会引发信息处理上的一些变化,譬如:其所引发的技术革新和操作手段都有了巨大的变化和更新,因此,我们必须要在数字空间的实际运行模式中不断的完善和探索。
1、钣金数字化制造现状分析
激光切割制造技术的出现,完全替代了“剪切-冲”的工艺流程,它的特点就是灵活且具有较大的柔性,其缺点就是运作成本比较高。这种制造技术最常见于一些形状不规则的产品或器件上,随着小批量零部件的大量生产,激光切割制造技术越来越受到人们的重视。因为激光切割具有高柔性和高精度以及三维设计技术的不断完善和成熟,使用者可以完全从新设计和流程中取得收益,这样就可以大大降低生产成本,而且还能够有效地缩短工期。所以新的钣金工艺其实就是从设计开始的,及设计+激光切割+折弯+焊接/铆焊。多重折弯工艺在国内的箱体制造业已经比较普及。好处是省掉了传统的加强筋。在实际生产过程中我们发现激光具有切缝细,精度高的优秀特点。通常情况下,都是一次性进行切割,然后配合4次的折弯,从而实现4个工件。这种制造方式,完全超越了传统工艺的设计思路,所以为缩短工期奠定了基础。激光切割的不断普及,市场要求提高速切割,只有这样才能降低待机的时间,向厚板,高反射材料进行扩展,降低电耗成本等。例如雅马哈2010年所推出的by speed机型,其切割的速度可高达40m/min,加速度为3g,它能够切割20毫米厚的不锈钢,12毫米厚的铝合金,6毫米厚的紫铜等,而所耗电只有60kW左右。机器的有效利用率能够达到95%以上。
2、钣金数字化制造系统模式
2.1 数据源的整合与集成
钣金零部件的数字化制造数据大都是采用集中的管理与存储,这样就可以形成一个惟一的数据源。每一个系统都是经过产品的具体数据管理系统进行访问制造相应的模型、工装和工艺信息,从而改变了模拟量的传递模式,满足了所有信息在不同的用户之间与不同的应用系统之间的集成和共享。钣金零部件制造数字化数据库所有的知识组元可以随时更新而且还能够多次使用,钣金数据库知识系统的完善和建立,极大程度地满足了所有信息的数字自动化表述,同时,在每一个数字化的设计当中都可以重新使用所有者的制造技术,这就完全颠覆了传统意义上,单凭经验和多次的试验设计模式。集成系统协同设计就是把数据库、知识重用工具以及应用系统整合到一个相同的平台,该平台为工程设计的统一介质,使得整个数字化流程固定化,对所有数字化制造流程进行统一的控制和管理,从而进一步集成了各大子系统制造工艺,完成了其要素的设计。
2.2 数字量控制与传递
在传统钣金制造模式中模拟量主要是依靠传递实现的,所有零部件的生产流程中所有的环节都缺少一个整体的数字化定义,其所生产的成品难以确保精度和准度。数字化制造则是通过前提准备,将每一个使命的设计要素准确地进行了数字化的表述,凭借数字化的信息驱动生产材料加工的所有过程。通过对零部件模型的设计,就能得到所需产品的具体尺寸和形状,不过由于在零部件生产过程中出现很多的中间不确定状态,所以很难对设计信息向制造延伸。设计和制造模型属于相同对象的不同组成部分,其分别用于两个不同的生产阶段。确定了内容与工序之后,制造模型主要是结合工艺生产过程中的具体因素,对产品做出的一个详细描述,把以往制造模式中通过模拟量表达零件尺寸与形状的所有信息进行了数字化的定义,是工艺过程设计和工艺资源设计的依据。
3、钣金制造要素设计
3.1 知识建模
知识建模其实就是根据钣金零部件生产过程中所出现的知识,通过钣金零部件将其串联起来,把钣金制造和加工过程中所有知识作为一个整体系统,从横向和纵向两个方向进行归纳建模。纵向方面主要是从宏观到微观组元进行构建知识系统,同时依据不同知识组元易难程度进行分层建模,通常都是将该系统划分为型、域、属、族四个不同的层次。知识分类的最基本的单元就是型,它是根据知识具体求解对象的疑难程度进行分类,主要包含实例、基型和典型知识。横向方面,通过进一步地分析所有组元间的相互依赖关系,建立一个如同记忆网一样的模型,把钣金相关知识转化为由制造要素所组成的网络,建立一个完整、科学、便于管理的钣金知识库。
3.2 知识使用
基本类型的知识对形成问题解方案的作用方式分为表型和典型两种。知识可直接形成问题的解方案,基型知识则部分形成问题的解方案。钣金制造指令设计、成形模具设计等问题求解,根据知识的层次模型使用对应的属及基类知识,开发不同的推理方法,如:基于表型知识的推理、基于典型知识的推理、基于基型知识的推理等。以工艺流程设计为例,对于典型钣金零件,通过归纳总结典型方案,根据各种条件检索得到合理的工艺流程;对于非典型零件可以依次采用基于实例的设计或创成式方式来完成;知识检索采用基于编码的精确匹配方法。
4、结语
无图制造技术的发展,为钣金零部件的生产和加工提供了一个巨大的发展空间,其主要就是因为无图制造技术不但涵盖了最新信息和最前端技术,而且更重要的是它促进了生产技术的数字化智能化的发展。本文通过对钣金零件数字化制造系统模式的研讨和分析,提出了钣金数字化制造模式和解决思路,其中制造模型是面向制造过程对钣金零件信息的组织,采用集成管理的方法形成了钣金数字化制造的数据源。
参考文献