欢迎访问爱发表,线上期刊服务咨询

高层建筑结构设计重点8篇

时间:2023-10-08 09:43:02

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇高层建筑结构设计重点,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

高层建筑结构设计重点

篇1

关键字:高层建筑结构设计;特点;要点

前言

为了追求利益最大化,建筑企业多数选择了设计高层建筑,以便在有限的面积内设计开发出最大的可用空间,为建筑企业创造经济效益。同时,人们对高层建筑的要求也是越来越高。因此,高层建筑的结构设计不仅要满足人们的需要,还要保证其设计的科学合理及安全性。如何设计出更好的高层建筑设计成为建筑行业亟待解决的重要问题。

1、高层建筑结构设计原则

1.1 选择合理的结构方案

在高层建筑的结构设计中,要选择经济合理的结构方案,从而保证结构设计的合理和安全。在结构设计方案的选择中,要注意对材料的要求、施工环境的综合考虑,同时要考虑地震区高层建筑设计的特点,要力图遵循平面和竖向规则,规避结构方案的不适性。在结构设计方案的选择中,要与建筑施工单位和基础设施供应方进行协商,从而选择合适的高层结构设计方案,充分发挥结构设计的效用。1.2 选择合适的基础方案

对建筑进行结构设计,要充分考虑建筑所在地的周边环境,要对工程的地质条件以及周围建筑的施工及特点做好调研,充分保证后续建筑过程与周边环境的和谐统一。建筑结构设计中要选择合适的基础方案,基础方案要体现结构设计的方方面面,要尽量显示建筑的全貌,同时要考虑建筑的经济成本和效益,最大限度发挥建筑周边条件的作用,保证建筑的正常实施。

1.3 选择合适的计算简图

高层建筑的结构设计要选择适当的设计简图,由此可以防止由于计算简图选择不当导致的建筑安全隐患的发生概率。建筑结构计算是以计算简图为基础的,所以结构设计中要特别注重计算简图选取问题,从而可以保证后续结构计算的准确和建筑设计的安全。当然,建筑实际结构与选取的计算简图之间允许存在合理的误差,但是要尽量把工程实际控制在计算简图精度要求范围内。

1.4 分析所得到的计算结果

当下,信息技术飞速发展,由此也带动了建筑结构设计对计算机软件的应用。由于不同计算机软件会产生不同的计算结果,所以要对不同结果进行分析处理。由此,建筑结构设计人员就要具备专业的建筑结构设计理念和知识,更要对计算机软件有充分详细的了解,便于对计算机计算结果进行客观分析。由于操作人员自身的问题或者计算机软件具有的自身误差,使得计算结果与实际情况出现一定的差异,这时就要求结构设计人员客观判断并予以纠正。

2、 高层建筑结构设计的特点

(1)结构延性是重要的设计指标

相对于低楼层而言,高楼层具有独特的特性,高楼层拥有更好的柔性,由此,高层楼房在遭受地震的时候更容易出现变形。所以在建造高层建筑的过程中,就要充分考虑如何保证高层建筑的延性,从而保证高层建筑进入塑性变形阶段之后仍然有较好的变形能力,防止坍塌现象的发生。由此就要在建筑结构设计阶段采取恰当的措施保证建筑结构的延性。

(2)水平载荷成为决定因素

高层建筑的设计和建造过程区别于低层建筑,不仅要考虑竖向载荷,同时要考虑水平载荷的影响。在建造高层楼房时,水平载荷的影响作用也非常重要。水平载荷之所以发挥如此重要的作用是因为在高层建筑设计中要充分考虑抗侧力,而水平载荷可以起到平衡作用。除此之外,对某高度的建筑来说,竖向载荷基本是一个定值,而作为水平载荷的风载荷和地震作用,则随着结构动力特性的不同而浮动。

(3)轴向变形不容忽视

在有外力作用的情况下,建筑结构会发生一定的位移,包括弯曲、轴向变形和剪切变形。对于低层建筑的结构,一般的结构构件轴向和剪切变形的影响相对小,由此不会涉及到轴向变形和剪切变形问题的考虑。但是高层建筑的轴力相对较大,由此产生的轴向变形就会比较显著,由此在建筑结构设计中就要把轴向变形考虑进去。

3、 高层建筑结构设计的要点

3.1 结构的超高问题

抗震规范中对建筑结构的总高度进行了严格限制,新规范中增设了B级高度,这与原来设定的A级高度在处理办法方面有很大的改变。所以在工程实践中,就要充分考虑建筑的超高问题及处理措施,在结构设计过程中要充分根据工程的实际进行抗震设计,防止建筑物结构过高导致的不安全因素。一旦在工程实际过程中忽视建筑物的超高问题,在工程后续施工过程中就会出现一系列的问题,这就会对工程工期和效益造成严重的损害。

3.2 短肢剪力墙设置问题

短肢剪力墙在规范中是这样定义的:墙肢截面高厚比为5-8的墙。实践表明,短肢剪力墙在高层建筑中的运用有更多的因素加以限制。因此,高层建筑结构设计过程中,就应当根据情况尽可能少的使用就要尽量避短肢剪力墙,从而减少由于短肢剪力墙的使用造成了不必要的麻烦,所以,在高层建筑的设计过程中,要特别注重工程的细节问题,从而提高工程建设的进度。

3.3 嵌固端的设置问题

高层建筑通常都有地下室和人防,由此嵌固端的设置位置可能在地下室顶板,也有可能在人防的顶板。在进行高层建筑结构设计的过程中,结构设计人员要特别注意嵌固端的设置问题,防止由于嵌固端设置所造成的问题。比如说嵌固端上下抗震等级的一致性问题和抗震缝设计与嵌固端位置的协调问题等等,由此可能造成结构设计的不合理,导致安全隐患的产生。

4、 结语

高层建筑是一种更为复杂的建筑模式,近年来,高层建筑发展迅速,然而建筑的结构设计效果并不理想,建筑安全问题发生的频率相对较高,由此在高层建筑结构设计过程中,建筑结构设计人员更应该根据建筑结构的特点,认真考察建筑具体实际,从而设计出合理的设计方案,保证建筑的安全性和稳定性,发挥建筑的效益,从而满足建筑使用群体的要求,同时为建筑业的更快更好发展做出贡献,使得建筑业可以有更长足的发展空间。

参考文献

[1]李红.关于高层建筑结构设计问题探析[J].民营科技,2013(3)

[2]宋金兰.浅谈高层建筑结构设计问题[J].中国新技术新产品,2012(10)

[3]张瀚.关于高层建筑结构设计问题探讨[J].中国新技术新产品,2012(23)

[4]王续晶.高层建筑结构设计问题探讨[J].价值工程,2011(9)

篇2

关键词:高层建筑;剪力墙结构;设计

中图分类号: TU208 文献标识码: A

引言

我国社会经济的迅猛发展和人口压力迫使城市建筑无限可能地纵向发展,高楼林立已然成为城市的一道亮丽风景线,现代高层建筑越来越向多功能的综合用途发展。人们对高层建筑平面空间的设计要求越来越高,普通的框架结构显然已不能满足人们对高层建筑室内空间的使用和整体美观的愿望。剪力墙从纵向及横向来承担荷载,其刚度有力地抗击着水平荷载,已经被高层建筑结构设计广泛使用。

一、剪力墙结构设计的基本原则

剪力墙结构在建筑中主要承担竖直方向重力与水平方向荷载,剪力墙结构的设计既要安全合理,又要考虑经济问题。设计过程中,各种位移限制值都要满足,结构构件中抗侧力构件的作用也要充分考虑到。设计时,剪力墙的数量也要满足位移限制值相关规范的要求,数量应该尽量少,但又不能影响基本振犁的要求。建筑中剪力墙结构所承受的倾覆力矩应不小于总数的一半。

1、调整楼层最小剪力系数方面的原则

设计中剪力墙结构的布置要尽量减小,大开间的剪力墙结构布置是最好的设计方案,侧向刚度结构可以达到较为理想的状态。楼层间的剪力系数尽量小,但不能超出规范的极限范围,短肢剪力墙承受的地震倾覆力矩于整体总底部承受的地震倾覆力比要小于或等于1:4,这样既可以减轻结构自重,同时降低了地震带来的危害又可以节约用费。

2、调整楼层间最大位移与层高之比方面的原则

规范规定的最大的楼层间的位移在计算的时候,如果楼层地区地震比较频繁,所用的标准值产生的楼层计算可以保留在结构的整体弯曲变形,应该计入扭转变形在以弯曲变形为主的高层建筑中。高层建筑重点考虑的方面就是楼层间的扭转和剪力变形。结构的剪切变形由竖向构建的数量决定着,在建设施工中,有足够多数量的构件还是远远不够的,更要考虑构建的布局是否合理,如果不合理,就会产生过大的扭转变形,楼层间的位移就达不到要求。因此,对于高层建筑而言,不能只是以楼层间的位移来确定竖向构件的刚度,而应该尽量减小扭转变形。

3、调整剪力墙结构连续超限方面的原则

剪力墙结构的连续跨高比太小会导致弯矩出现及剪力过大,超过规范限度,跨高比一般大于或等于2.5。规范规定,在跨高比小于5的时候,连续梁不能够拆减。跨高比的正确选择,可以很好地避免弯矩及剪力过量,可保持在规定范围内。在结构设计时,如果可以有效合理的用上这些,可以大大降低工程成本。

剪力墙结构不只应该符合相关规定,在设计时要考虑多方面的因素,建筑物的平面、立面应尽量均匀,剪力墙结构应尽量远离房屋中心,以保证房屋整体的抗扭。

二、高层剪力墙结构设计要点

1、剪力墙结构的合理布设

在对剪力墙结构进行合理布设时首先要注意以下几点:

(1)剪力墙应沿主轴方向双向均匀的进行布设,采用两个方向抗侧刚度接近为宜,不宜采用单向的方式进行布设。尽量使得刚度中心与质量中心靠近,减小地震造成的扭转。若无法避免,则最好在剪力墙的相应部位设置暗柱,当梁高大于墙厚的2.5倍时,应计算暗柱配筋;

(2)剪力墙结构的抗侧力刚度和承载力均较大,为充分利用剪力墙的这一特征,减轻结构重量,增大剪力墙结构的可利用空间,墙不宜布置太密,以便使结构具备适宜的侧向刚度。(3)在结构布置过程中,应避免布置墙肢长度过长(≥8m)的墙体。当有少量墙肢长度大于8m时,计算中,楼层剪力主要由这些大的墙肢承受,其他小的墙肢承受的剪力很小,一旦地震,尤其超烈度地震时,大墙肢容易遭受破坏,而小的墙肢又无足够配筋,整个结构容易被各个击破,这是极不利的。所以,对于大的剪力墙墙肢,应采用留置结构洞口(洞口连梁宜采用约束弯矩较小的弱连梁),把长墙肢分解成合理的墙肢长度,调整其刚度。

(4)剪力墙的门窗洞口宜上下对其,成列布置,形成明确的墙肢和连梁。当无法上下对其,成列布置时,应按有限元方法仔细计算分析,并在洞口周边采取加强措施。

2、剪力墙厚度的确定

剪力墙墙肢截面比较适宜简单、规则,建立阿强的竖向刚度应均匀,其门窗口最好成列布置,上下对齐,形成较为明显的连梁和墙肢,避免出现使墙肢刚度相差悬殊的洞口设置。在抗震结构设计师,一、三级抗震等级的剪力墙底部加强部位最好不要采用错洞墙,二、三级抗震等级的剪力墙均不宜采用叠合错洞墙。《高层建筑混凝土结构技术规程》中对剪力墙的截面尺寸有具体的规定“按一、二级抗震等级设计的剪力墙的截面厚度,底部加强部位不应小于层高或剪力墙无支长度的1/16,且不应小于200mm,其他部位不应小于层高或剪力墙的1/20,且不应小于160mm;按三、四级抗震等级设计的剪力墙的截面厚度,底部加强部位不应小于层高或剪力墙无支长度的1/20,且不应小于160mm,其他部位不应小于层高或剪力墙的1/25,且不应小于180mm”。

3、剪力墙结构构件延性设计

要使剪力墙具有延性,就要控制塑性铰在某个恰当的部位出现;在塑性铰区域防止过早出现剪切破坏(即强剪弱弯设计),并防止过早出现锚固破坏(强锚固);在塑性铰区域改善抗弯及抗剪钢筋构造,控制斜裂缝开展,充分发挥弯曲作用下抗拉钢筋的延性作用。剪力墙的塑性铰通常出现在底截面,因此,剪力墙底部应设置加强区,加强范围不宜小于H/8(H为剪力墙总高),也不小于底层层高。当剪力墙高度超过150m时,其底部加强部位的范围可取墙肢总高度的1/10。影响墙肢延性的因素主要有:

(1)剪力墙截面有、无翼缘对剪力墙延性影响很大。当截面没有翼缘时,延性较差。有了翼缘或端柱后,延性大为提高。

(2)剪力墙随轴力增大,延性降低。

(3)当钢筋总量不变,但端部钢筋与分布钢筋的分配比例不同时,墙肢延性不同。在规范许可条件下,适当增加端部钢筋,减少分布钢筋,即可提高承载力,又可提高延性。

(4)设置约束边缘构件是提高延性的有效方法。

4、剪力墙墙体配筋

一般要求水平钢筋放在外侧,竖向钢筋放在内侧。钢筋满足设计计算及规范建议的最小配筋率即可。剪力墙的加强区域10@200,非加强区域8@200双层双向即可。双排钢筋之间采用6@600×600拉筋。但是地下部分的墙体配筋大多受到水压力、土压力产生的侧压力控制,因此需要另行计算和配置,地下部分的墙体由于简化计算经常有竖向筋控制,在这种情况下为增大计算墙体的有效高度,可以经地下部分墙体的水平筋放置在内侧,竖向筋放置在外侧。

结束语

随着人们的高层需求不断增多,商业与住宅都出现了大量的高层建筑,这对城市的土地面积是一种有效的利用,符合目前社会发展的趋势要求。高层建筑中剪力墙的应用更是体现出了绝对的优势。不但满足最基本的实用性要求,更是对人们日益增长的个性化需求、工程经济性需求以及耐久性要求都可以实现。剪力墙结构设计技术的应用,极大地提高了建筑工程的质量,也有效降低了生产成本。在未来,剪力墙的结构设计将会有效避免劣势问题,通过技术的运用、完善的计算,不断提高剪力墙结构设计技术水平,促进我国建筑工程质量的不断提升。

参考文献

篇3

关键词:高层建筑;结构设计;问题

中图分类号:TU208文献标识码: A

高层建筑设计与施工是一个系统工程特别是设计阶段的工作尤其要引起重视。高层建筑的结构设计还有其他的重点问题,比如扭转的问题,要求几何中心、刚度中心、结构重心合为一;此外还要注意抗风结构的设计,保护建筑的支撑结构和装饰结构等;抗震结构也是建筑高层设计的难点,这需要设计人员有灵活性。最后,设计人员要注意消防设计,尽量减少高层失火对人们的伤害。

1、高层建筑结构设计的概况及意义

随着我国城市化进程不断加快,城市人口显著增多,高层建筑在城市建设中发挥着越来越重要的作用。即使在建筑设计理念和方法日益先进的今天,仍会因为高层建筑复杂的结构,较广的学术知识涉及和较大的工程量而出现设计失误的现象。高层建筑结构设计的意义有:首先,如果建筑所使用的面积一定,设计和建造高层建筑可以获得相对多一些的使用面积,可以解决城市用地紧张、房价高涨等问题。另一方面,精美的高层建筑设计还可以改善城市的外观,或者说成为城市的一道风景。比如马来西亚的石油大厦和上海的金茂大厦等等。而如果设计的建筑高层密度、结构不合理,就会给城市带来热岛效应,影响城市居民的生活环境,甚至由于高层的玻璃因反光而发生光污染的现象。其次,如果是在建筑面积与建设场地面积的比值一定,那么建造高层建筑就会有效地节约城市土地面积,得到更多的空闲地面,用这些空闲出来的地面来进行城市绿化或者供人们休息娱乐。

2、高层建筑结构设计的特点

高层建筑结构可以设想成为支撑在地面上的竖向悬臂构件,承受着竖向荷载和水平荷载的作用,与多层建筑结构相比,高层建筑结构的设计具有以下几个方面的特点。

2.1、水平荷载成为设计的决定因素

图1高层建筑结构的受力及变形示意图

对于高层建筑结构,一般是竖向荷载控制着结构的设计。随着房屋层数的增加,虽然竖向荷载对结构设计仍有着重要影响,但水平荷载已经成为结构设计的控制因素。而且,与竖向荷载相比,作为水平荷载的风荷载和地震作用,其数值与结构的动力特性等有关,且具有较大的变异性。

在竖向荷载和水平荷载作用下,如图1(a)(b)所示,高层建筑结构底部所产生的轴力N和倾覆力矩M与结构高度H分别存在着如下的关系式,即:

结构底部的轴力

N=ωH

结构底部的倾覆力矩

式中,ω、q、qmax分别为沿建筑单位高度的竖向荷载、均布水平荷载和倒三角形分布荷载的最大值(kN/m)。

2.2、侧移成为设计的控制指标

我们知道,随着建筑高度的增加,水平荷载作用下结构的侧移急剧增大,水平位移增加的速度最快,内力次之。因此,高层建筑结构设计时,为了有效的抵抗水平荷载产生的内力和变形,必须选择可靠的抗侧力结构体系,使所设计的结构不仅具有较大的承载力,而且还应该具有较大的侧向刚度,将水平位移控制在一定的范围内。

2.3、延性成为结构设计的重要指标

对地震区的高层建筑,应确保结构在地震作用下具有较好的抗震性能。结构的抗震性能主要取决于其能量吸收与耗散能力的大小,而它又取决于结构延性的大小。因此,为了确保建筑结构在进入塑性变形后仍具有良好的抗震性能,需加强结构抗震概念设计,采取恰当的抗震构造措施,来确保结构具有较好的延性。

3、高层建筑结构设计的原则

高层建筑结构设计原则,是高层建筑结构设计过程中需要注意的重要标准和准则,也是高层建筑设计单位提高高层建筑结构设计质量与效益的重要保障。只有在一定的高层建筑结构设计原则支持下,才可以进行建筑结构设计。总体来讲,高层建筑结构设计原则主要包括以下几点:

3.1、基础方案合理

建筑结构基础方案是高层建筑结构设计的前提和基础,在实际的建筑结构基础方案设计中,需要根据实际施工地质条件,根据实际建筑结构施工需求进行设计。同时建筑结构基础方案需要配置完善的施工地质调查报告,最大程度的发挥建筑物地基的潜力,必要的情况下还需要对地基的变形做好相应的演算。另一方面,还需要对建筑物进行综合性分析,尤其是对于建筑物负荷以及上部结构类型,通过对这些综合性分析,最终选定最适合的基础方案,从而可以在提高设计质量的基础上提高经济效益。

3.2、计算简图适当

计算简图设计,也是高层建筑结构设计中需要注意的重要问题,主要原因在于高层建筑结构设计时需要对一些基本的数据进行计算分析,而这些计算分析都必须要建立在计算简图的基础之上。只有通过计算简图基础之上的数据分析,才可以提高高层建筑结构设计的安全性以及牢靠性。举例来讲,建筑物结构节点问题,建筑物结构节点并不是我们传统观念中的铰节点或者是刚节点,在进行计算简图设计时,需要对建筑物结构节点进行深入研究,提高计算简图计算的精确性,进而将计算简图的误差控制在合理的范围内。

3.3、结构措施完善

除了基础方案合理以及计算简图适当这两大基本原则之外,还有一条基本原则是经常忽略的,那就是结构措施完善原则。在进行建筑物结构的设计时,需要注意结构组件的延展性,例如建筑物中钢筋的锚固长度等。同时,还需要注意建筑物薄弱环节以及建筑物本身温度对于建筑物组件的影响,对于这两方面的问题,在实际的设计过程中,需要遵循“强柱弱梁、强剪弱弯以及强压弱拉”的基本原则,只有这样才可以提高高层建筑结构设计的安全性以及牢靠性。

4、高层建筑结构设计的问题

4.1、结构的规则性问题

新旧规范在这方面的内容出现了较大的变动,在这方面增添了相当多的限制条件。例如平面规则性信息、嵌固端上下层刚度比信息等,而且新规范采用强制性条文明确规定“建筑不应采用严重不规则的设计方案”。因此,在遵循新规范的这些限制条件上必须严格注意,以避免后期施工图设计阶段工作的被动。

4.2、超高问题

在抗震规范与高规中,对结构的总高度都有严格的限制。尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为a级高度的建筑外,增加了b级高度的建筑。因此,必须对结构的该项控制因素严格注意。一旦结构为b级高度建筑甚或超过了b级高度,其设计方法和处理措施将有较大的变化。

5、高层建筑结构设计的对策

5.1、高层建筑结构的规则性

高层建筑结构的规定了结构嵌固端的上下层的刚度比、平面规则性等等,因此,应严格按照规范执行。

5.2、高层建筑结构设计短肢剪力墙设置

短肢剪力墙在新规的定义是,墙肢的截面的高度和厚度比在5~8的墙,这加大了在高层建筑中使用的难度。因此,在设计高层建筑结构的过程中尽量避免使用。

结束语

改革开放以来,伴随着国民经济的快速发展,加上科学技术的不断进步,我国高层建筑行业取得了重大的突破。高层建筑结构设计是否合理,不仅仅影响到高层建筑实施施工,而且还直接影响到高层建筑建设以及后期养护的顺利开展。

参考文献

[1]周世航.浅谈高层建筑结构设计存在问题及解决对策[J].广西城镇建设,2013,05:80-82.

[2]殷辉.高层建筑结构设计存在问题及对策分析[J].硅谷,2013,21:164+141.

篇4

关键词:剪力墙结构、受力性能、抗震设计

Abstract: the shear wall structure is resistance and the vertical load under lateral force, has been widely used in modern high-rise building. Because of its section the height of the great and relatively small thickness, have bearing capacity and rigidity plane within advantages, but also has the shear deformation relative more adverse performance. Based on the shear wall structure of the high-rise building aseismic design as discusses key, from the structural behavior and related codes are primarily discussed.

Key words: the shear wall structure, mechanical properties and seismic design

中图分类号:TU973+.31文献标识码:A 文章编号:

前言

剪力墙结构是指用钢筋混凝土墙代替框架结构中的柱,以承受竖向荷载、抵抗水平荷载的结构。其最大特点是能够有效控制结构水平作用。《建筑抗震设计规范》(2010年版,以下未注明处相同)称之为抗震墙,本文按照工程界习惯称作剪力墙。多数情况下,剪力墙截面高度大于其厚度8倍,厚度相对而言较薄,一般仅为200~300mm。因此,从墙体尺寸可以看出,其墙身平面内抗侧刚度很大,相反,平外面刚度却很小。根据这一特点,在进行结构方案布置时,墙体应当沿建筑物主轴方向均匀布置,利用平面内较大刚度承受纵横两个方向的水平和扭转作用。抗震设计中,要求在正常使用及小震作用下,处于弹性工作状态;在中等强度地震作用下,允许进入弹塑性状态,但应具有足够承载力、延性;在强震作用(罕遇烈度)下,不应出现倒塌。此外还应保证结构稳定。现通过对剪力墙结构中抗震设计的相关要素分析,希望和广大结构设计人员进行交流,共同进步。

受力性能

(1)整体墙和小开口整体墙

由于没有洞口或洞口很小,此类墙可以看作是一个整体悬臂墙。在轴向压力和水平力作用下,悬臂墙破坏形态主要是弯曲破坏。弯曲破坏又分为大偏压和小偏压破坏,要设计成“延性剪力墙”就是要把剪力墙的破坏形态控制在弯曲破坏中的大偏心破坏范围。从墙体尺寸而言,细高的剪力墙(高宽比大于3)容易设计成弯曲破坏的延性剪力墙。另外,墙肢的平面长度(即墙肢截面高度)不宜大于8米。当一个结构单元中有少量长度大于8米的大墙肢时,计算中楼层剪力主要由这些大墙肢承受。一旦地震,尤其是在罕遇烈度地震时,大墙肢容易首先遭受破坏,而小的墙肢又无足够配筋,使整个结构可能形成各个击破。当墙的长度很长时,可以开设洞口,将长墙分成较小长度、较均匀的肢墙,保证均匀受力。

(2)连肢墙

实际工程中,剪力墙经过门窗分割形成连肢墙。洞口上下部位是连梁,洞口左右部位是墙肢。连肢墙的设计应把连梁放在抗震第一道防线,在连梁屈服前,不让墙肢破坏。连梁自身要做到受剪承载力高于弯曲承载力。目的就是“强肢弱梁”和“强剪弱弯”。无论是在整体的开洞剪力墙设计,还是在连梁、墙肢等局部构件上的设计,都体现上述原则,才能保证墙肢安全。当连梁破坏时,结构会继续承载,直至墙肢截面屈服。

结构设计

(1)强剪弱弯

为避免脆性剪切破坏,应按照” 强剪弱弯”的要求设计剪力墙墙肢。一般的方法是将剪力墙底部加强部分的剪力设计值增大,提高抗剪承载力。《建筑抗震设计规范》6.2.8条规定了各个抗震等级剪力墙底部加强部位的剪力设计值应乘以不同的剪力增大系数,以此进行抗剪配筋设计,从而实现” 强剪弱弯”的结构受力性能。

(2)加强底部塑性铰区

一般在底部剪力墙弯矩最大,底截面钢筋屈服后会形成塑性铰区。而且,塑性铰区(分布于一定范围)是剪力最大部位,在反复荷载作用下,会形成交叉裂缝,可能出现剪切破坏。所以在塑性铰区要采取加强措施,即底部加强部位。《建筑抗震设计规范》6.1.10条规定了底部加强部位的具体高度要求。目的就是提高受剪承载力,加强抗震的构造措施,提升结构的弹塑性变形能力。

(3)限制轴压比

为保证剪力墙延性,避免截面上受压区高度过大而出现小偏压情况,应当控制剪力墙加强区截面相对受压区高度,但截面受压区高度与截面形状有关,实际工程中剪力墙截面复杂,会增加计算受压区高度的困难。为此,《建筑抗震设计规范》采用简化方法,限制截面的平均轴压比。计算轴压比时,规范采用了重力荷载代表值作用下的轴力代表值,即考虑重力荷载分项系数1.2后的最大轴力设计值。《建筑抗震设计规范》6.4.2条具体要求了各个抗震等级下的墙肢轴压比限值。在这里笔者想说明,2010年版《建筑抗震设计规范》6.4.2条较之前版本规范,增加了剪力墙抗震等级三级时0.6的轴压比限值要求(之前版本对抗震等级三级无轴压比限值要求)。笔者曾经参与过清远地区某个剪力墙高层项目,剪力墙抗震等级三级,按照2010年版规范轴压比限值0.6来控制,若从满足轴压比限值角度来布置剪力墙,相应的结构位移(刚度)大多数情况下都能够满足规范要求。由此可以看出,6度区剪力墙结构体系基本以竖向荷载作为剪力墙截面尺寸控制因素,当轴压比限值满足规范要求时,结构刚度一般都能够满足。在实际工程的结构方案(或初步设计)阶段可由此先估算墙柱尺寸,计算结构整体受力性能。

(4)设置边缘构件

边缘构件分为约束边缘构件和构造边缘构件两类。约束边缘构件是指用箍筋约束的暗柱,端柱和翼墙,其箍筋较多(配箍率特征值相对较大),对混凝土的约束较强;构造边缘构件的箍筋较少,对混凝土约束较差或没有约束。剪力墙墙肢的塑性变形能力和抗地震倒塌能力,除了与纵向钢筋有关外,还与截面形状、截面相对受压区高度(轴压比),墙梁端的约束范围、约束范围内的箍筋配箍特征值有关。当截面相对受压区高度(轴压比)大到一定时,需要设置约束边缘构件,使墙肢端部成为箍筋约束混凝土。《建筑抗震设计规范》6.4.5条对边缘构件的尺寸、配筋都做了具体的说明。特别是6.4.5-2款规定了“一、二、三级抗震墙,以及部分框支抗震墙结构的抗震墙,应在底部加强部位及相邻的上一层设置约束边缘构件,在以上其他部位可设置构造边缘构件。”这一点刚好就和本文之前提到的”加强底部塑性铰区”一节相呼应,可以看出,通过设置约束边缘构件,可以提高墙肢端部混凝土极限压应变、改善剪力墙延性。

(5)控制墙肢截面尺寸

剪力墙墙肢截面厚度,除了要满足承载力的要求外,还要满足稳定和避免过早出现斜裂缝的要求。一般情况下,把稳定要求的厚度称作最小厚度,通过构造满足。在实际结构体系中,

楼板以及与剪力墙平面外相交的剪力墙,是剪力墙的侧向支撑,可防止剪力墙失稳。通常情况下,剪力墙最小厚度由楼层高度控制。《建筑抗震设计规范》6.4.1条规定了剪力墙最小厚度要求。设计时需留意。另外,就是本文之前提到过的墙段高宽比不宜小于3,《建筑抗震设计规范》6.1.9条也做了具体的要求。

(6)配置分布钢筋

《建筑抗震设计规范》6.4.3条对剪力墙内分布钢筋的配置提供了具体说明。特别是6.4.3-1款:“一、二、三级抗震墙的竖向和横向分布钢筋最小配筋率均不应小于0.25%,四级抗震分布钢筋最小配筋率不应小于0.20%。”剪力墙中,分布钢筋的作用主要是:抗剪、抗弯、减小收缩裂缝等。如果竖向分布钢筋过少,墙肢端部的纵向受力钢筋屈服后,裂缝将迅速开展,裂缝的长度、宽度都较大;如果横向分布钢筋过少,斜裂缝一旦出现就发展成主要斜裂缝,剪力墙将沿斜裂缝被剪坏。因此,墙肢的竖向和横向分布钢筋最小配筋率是根据限制斜裂缝开展要求确定的。

结束语

剪力墙结构具有较好的抗震性能,且结构布置灵活,可以很大程度减小结构构件对建筑的使用影响,所以高层住宅较多使用这种结构形式。在抗震设计中,针对剪力墙结构受力体系及相关规范条文进行分析理解,合理采用计算分析方法,并采取相应构造措施,相信剪力墙结构能够以更加经济、实用的优势展现在住宅设计中,具有更广阔的发展前景。

参考文献

施岚清---注册结构工程师专业考试专题精讲—建筑抗震设计机械工业出版社 2011

篇5

【关键词】高层建筑;结构设计;设计要点;对策

1高层建筑结构设计的特点分析

(1)水平力是设计的决定性因素。在低层或者多层的建筑结构设计中,常常用重力为代表的竖向荷载去控制建筑物的结构。然而,在高层建筑中,虽然竖向荷载能起到一定的控制作用,但是水平荷载在其中却起着决定性的作用,因而不能忽视。使得水平荷载比竖向荷载更起决定性作用的主要原因在于,高层建筑物的自身重量和使用荷载在竖向构件中能够引起的轴力和弯矩的数值,仅仅与建筑物的高度一次方成正比,而水平荷载对结构产生的倾覆力矩以及在竖向构件中引起的轴力,与建筑高度两次方成正比。

(2)侧移是设计的重要控制指标。在高层建筑结构设计中,结构侧移是高楼结构设计中的重要控制因素,这一点与低层建筑不一样。当楼房的高度不断增加的时候,水平荷载下的结构侧移变形会逐渐拉大,这就给高层建筑的稳定性造成了一定的影响。因此,在设计高层建筑结构的时候,应该将水平荷载作用下的侧移控制在一个限度之内。

(3)抗震设计要求较高。在高层建筑结构设计中,对于抗震设计的要求显得更高。一般来说,除了要求抗震设防的高层建筑有普通的竖向荷载、风荷载以外,还应该促进结构设计具有良好的抗震性能,达到小震不坏,大震不倒的目的。

(4)轴向变形需加以重视。在高层建筑中,竖向荷载数值变大的时候,会在柱内产生较大的轴向变形,使得连续梁弯矩发生变化,让连续梁之间支座处的负弯矩值变小,还会对预制构件的下料长度造成影响。因此,在进行高层建筑结构设计的时候,要对轴向变形的数据进行仔细计算,对下料长度进行有效的调整,防止高层建筑的轴向变形数据不断拉大。

2 高层建筑结构设计的原则

高层建筑结构的设计是一个复杂繁琐的内容,其中需要注意的内容涉及也十分广泛,根据多年的工作经验总结,主要集中在以下几个方面:

2.1结构方案的选择

合理的结构设计方案对于工程来讲是十分关键的,好的设计方案在满足结构形式和体系的基础上,还要充分考虑造价成本,把经济适用发挥到最大程度。结构体系的最基本的原则是受力明确、传力简单,结构方案在满足使用、安全要求的基础上,尽量的简洁。最终结构方案的确定,需要对地理条件、工程设计需求、材料的选择和施工条件等进行全面的考量和整合,并且和建筑水、暖、电各个分项相互协调,综合各方面因素进行最后的确定。

2.2计算简图的选择

计算简图是进行高层建筑结构设计的基础,是所有计算数据的出处和根源所在。关系到各环节的建筑尺寸和误差。如果不能选择合理的计算简图,对于结构安全就会埋下隐患。因此,高层建筑结构设计的安全保障前提,就是合理计算简图的选择。同时,在选择了计算简图之后,还应该采用相应的构造方法保证其安全性。在结构的实际施工中,结构节点不单单是钢节点或者铰接点,要使得计算简图的误差在规定的允许范围之内。

2.3 计算结果要进行准确的分析

科技的发展也推动建筑领域不断的进步,计算机作为现在科技发展的集中产物,自然在建筑结构设计中也得到了广泛的应用。经过几年的发展,市场上的计算机软件种类和数量都大大提升,但问题也随之涌现出来,很多时候,统一种类的计算数据在不用软件中处理产生的结果并不一致。这就对计算数据的准确程度提出了严苛的校对要求,也对结构设计人员的能力提出了更高水平的要求。在全面了解软件的使用范围和条件的基础上,选择最为合理准确的软件也成为设计人员必须完成的课题。与此同时,建筑结构受到各种不可掌控的实际情况制约,与计算机得出的理想结果不能达到完全的吻合,因此在计算机辅助设计的同时,设计人员的主导能力还是最为关键的。

3高层建筑结构设计中关键要点分析

(1)扭转问题设计。要求高层建筑的结构设计必须三心尽可能汇于一点,即建筑结构的刚度中心、几何形心、结构重心三心合一。倘若在设计中未很好地做到三心汇聚一点,建筑易发生扭转问题,并在水平力作用下造成高层建筑结构的毁坏。

(2)抗风结构设计。高层建筑由于其具有楼层多,高度高的特点,因此相比较其他建筑,在建筑物表面更易改变风的流动性和空气的动力效应。在楼层柔软部分风和空气会产生动力形式和静力形式,并由此产生的震动,会对楼层的墙体、装饰结构以及支撑结构产生破坏,危害建筑的稳定性,所以在进行高层结构设计的过程中,应该进行抗风结构的设计,杜绝建筑物在自然因素的影响下留下隐患。

4高层建筑结构设计问题的有效对策

4.1合理设计平面布局

高层建筑结构设计过程中,扭转问题出现的原因是由于三心未合一导致的建筑物质量分布不均匀。所以在设计过程中,相关设计人员对高层建筑应当采用相对规则的图形,例如正方形、矩形、圆形、正多边形等较为简单、分布均衡的平面形式。尽量不采用L形、T形、十字形等复杂平面形式。在环境要求或结构要求特殊情况下,应当根据相应规范进行设计,避免建筑结构突出部分过大,同时尽量保证结构的对称性。

4.2优化抗风结构设计方案

针对高层建筑结构抗风结构存在的难点和问题进行优化。一是基础优化。要保证高层建筑结构的抗风性良好,首先要保证高层结构的基础牢固。二是增加高层建筑耗能结构设计。在高层建筑结构设计过程中,对相应非承重构件利用耗能构件如楼板、剪力墙等来抵消风能对建筑的影响。三是减小水平荷载和风力叠加对高层建筑的影响。四是增大结构承载力和抗风力。根据相关数据进行高层建筑结构承载力验算和抗风力验算,在此基础上制定一个放大系数,进一步保证高层结构的抗风性能。

4.3优化抗震结构设计方案

当今高层建筑结构的抗震设计存在很多问题和难点,结合相关设计经验总结了集中抗震结构的优化方案。一是合理布置抗侧力构件。二是增加地基抗震能力。三是设计高性能剪力墙。高性能剪力墙的设计能够有效地提高剪力墙在地震过程中吸收建筑内力的能力,可以适当增加墙体和楼板的刚度来控制建筑位移,达到抗震目的。四是进行高层结构构件的简化和一体化。通过对扶壁、筒口、筒脚的简单化设置,达到相应建筑物的对称。

4.4加强消防结构设计

当下很多大型火灾、恐怖袭击等恶劣事件已经让高层建筑的消防结构设计面临必须改善和加强的地步,但是消防设计应该从消防结构设计和使用期间消防规范来共同执行。在高层建筑消防结构设计过程中,应该加强对防火结构间的距离控制,在符合当地的地形条件基础上,高层结构在防火结构间距离上可适当加大处理。在材料使用上,可以尽量减少易燃材料的使用,同时增加耐火材料的运用来达到防火目的。另外,良好的疏散系统是保证火灾发生之后减少人员损伤的重要保证。高层建筑的疏散系统呈垂直状态,容易导致疏散效率不高的问题出现。在消防结构设计时,可以通过设置双通道疏散,增设防烟区、耐火区、避难层等设施来增加消防能力。同时,高层结构可以通过设置相应的隔离结构来有效地控制火势蔓延,增强建筑消防安全能力。

参考文献:

[1]柳奕成.高层建筑混凝土结构设计[J].江西建材,2014(04):20-21.

篇6

关键词:结构设计;水平力;扭转

Abstract: n, the specification only given the minimum limits or recommended values for the considerable part of the components in structural design, in the actual design process, everyone's different understanding may be take considerable differences in the entire design. There are some areas belonging to the conceptual design especially worthy us to explore together.Key words: structural design; horizontal force; to reverse

中图分类号:TB482.2 文献标识码: A 文章编号:

随着社会经济的迅速发展和建筑功能的多样化,城市人口的不断增多及建设用地日趋紧张和城市规划的需要,促使高层建筑得以快速发展。另一方面由于轻质高强材料的开发及新的设计计算理论的发展,抗风和抗震理论的不断完善,加之新的施工技术和设备的不断涌现,特别是计算机的普及和应用以及结构分析手段的不断提高,为迅速发展高层建筑提供了必要的技术条件。

一、高层建筑结构设计的问题

(一)高层建筑结构受力性能

对于一个建筑物的最初的方案设计, 建筑师考虑更多的是它的空间组成特点, 而不是详细地确定它的具体结构。建筑物底面对建筑物空间形式的竖向稳定和水平方向的稳定都是非常重要的,由于建筑物是由一些大而重的构件所组成, 因此结构必须能将它本身的重量传至地面, 结构的荷载总是向下作用于地面的,而建筑设计的一个基本要求就是要搞清楚所选择的体系中向下的作用力与地基土的承载力之间的关系,所以,在建筑设计的方案阶段,就必须对主要的承重柱和承重墙的数量和分布作出总体设想。

(二)高层建筑结构设计中的扭转问题

建筑结构的几何形心、刚度中心、结构重心即为建筑三心,在结构设计时要求建筑三心尽可能汇于一点, 即三心合一。结构的扭转问题就是指在结构设计过程中未做到三心合一,在水平荷载作用下结构发生扭转振动效应。为避免建筑物因水平荷载作用而发生的扭转破坏, 应在结构设计时选择合理的结构形式和平面布局, 尽可能地使建筑物做到三心合一。在水平荷载作用下,高层建筑扭转作用的大小取决于质量分布。为使楼层水平力作用沿平面分布均匀,减轻结构的扭转振动,应使建筑平面尽可能采用方形、矩形、圆形、正多边形等简面形式。在某些情况下,由于城市规划对街道景观的要求以及建筑场地的限制, 高层建筑不可能全部采用简面形式,当需要采用不规则L 形、T 形、十字形等比较复杂的平面形式时, 应将凸出部分厚度与宽度的比值控制在规范允许的范围之内,同时,在结构平面布置时,应尽可能使结构处于对称状态。

(三)高层建筑结构设计中的侧移和振动周期

建筑结构的建筑结构的振动周期问题包含两方面: 合理控制结构的自振周期; 控制结构的自振周期使其尽可能错开场地的特征周期。

1、结构自振周期

高层建筑的自振周期(T 1) 宜在下列范围内:

框架结构: T 1= (0. 1~ 0. 15)N

框―剪、框筒结构: T 1= (0. 08~ 0. 12)N

剪力墙、筒中筒结构: T 1= (0. 04~ 0. 10)N

N 为结构层数。

结构的第二周期和第三周期宜在下列范围内:

第二周期: T 2= (1 3~ 15 )T 1; 第三周期: T 3= (1 5~ 17)T 1。

2、共振问题

当建筑场地发生地震时, 如果建筑物的自振周期和场地的特征周期接近, 建筑物和场地就会发生共振。因此在建筑方案设计时就应针对预估的建筑场地特征周期, 通过调整结构的层数,选择合适的结构类别和结构体系, 扩大建筑物的自振周期与建筑场地特征周期的差别, 避免共振的发生。

3、水平位移特征

水平位移满足高层规程的要求, 并不能说明该结构是合理的设计。同时还需要考虑周期及地震力的大小等综合因素。因为结构抗震设计时, 地震力的大小与结构刚度直接相关, 当结构刚度小, 结构并不合理时, 由于地震力小则结构位移也小, 位移在规范允许范围内, 此时并不能认为该结构合理。因为结构周期长、地震力小并不安全; 其次, 位移曲线应连续变化, 除沿竖向发生刚度突变外, 不应有明显的拐点或折点。一般情况下剪力墙结构的位移曲线应为弯曲型; 框架结构的位移曲线应为剪切型; 框―剪结构和框―筒结构的位移曲线应为弯剪型。

(四)位移限值、剪重比及单位面积重度

1、位移限值

在结构整体计算的输出结果中, 结构的侧移(包括层间位移和顶点位移) 是一个重要的衡量标准, 其数值大小从一个侧面反映出结构的整体刚度是否合适, 过大或过小都说明结构刚度过小或过大(或者体现结构两个主轴方向的刚度是否均衡) , 以致要引起设计者对其中的结构体系选择、结构的竖向及平面布置合理性的再思考。现行规范中将顶点位移与层间位移并重对待,经实践探索并参照国外经验, 得出的结论为: 高层建筑尤其是超高层建筑, 顶点位移限值决定的不仅是其数值大小而且还有其振动频率,人的舒适感觉与振动频率有关而与振动幅度(绝对位移) 关系不大, 即摆动频率不太高时就可满足人们的舒适度; 其次, 防止结构由于变形过大而可能遭受损坏或破坏的控制因素是层间相对位移, 而其限值在现行规范中似偏严, 可予放松。同一结构用不同的计算程序计算, 如果其层间位移数值差异很大,则有可能是其“层间位移”内涵不同所致, 有的是指楼层形心位移, 有的则专指考虑楼层转动后的最大角点位移, 后者通常比前者要大, 形心位移对规则建筑有意义, 而角点位移则更能反映结构楼层的真实位移,因此角点位移是结构工程师必须关注的一个数值。

2、剪重比及单位面积重度

结构的剪重比(也即水平地震剪力系数)是体现结构在地震作用下反应大小的一个指标, 其大小主要与结构地震设防烈度有关, 其次与结构体型有关, 当设防烈度为7、8、9度时, 剪重比分别为0. 012, 0. 024, 0. 040; 扭转效应明显或基本周期< 3. 5s 的结构剪重比则分别≮0. 016, 0. 032, 0. 064。单位面积重度是衡量结构构件截面取值是否合理和楼层荷载数据输入是否正确的一个重要指标。

以上两个指标不仅在施工图设计阶段, 而且在初步设计阶段都是非常重要的数据, 其数值正常与否从另一个侧面反映出结构体系的选择是否合适, 结构布置(包括构件截面确定) 是否合理, 电算数据输入是否正确, 以及最后决定电算结果是否可信可用等, 因此结构设计者对这两个指标切不可掉以轻心, 更不可认为是无关紧要的。

二、高层建筑结构设计的特点

高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有:

(一) 水平力是设计主要因素

在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中, 尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比; 而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说, 竖向荷载大体上是定值, 而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。

(二)侧移成为控制指标

与低层或多层建筑不同,结构侧移已成为高层结构设计中的关键因素。随着建筑高度的增加,水平荷载下结构的侧向变形迅速增大,与建筑高度H 的4 次方成正比。另外,高层建筑随着高度的增加、轻质高强材料的应用、新的建筑形式和结构体系的出现、侧向位移的迅速增大, 在设计中不仅要求结构具有足够的强度,还要求具有足够的抗推刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,否则会产生以下情况:

1、因侧移产生较大的附加内力,尤其是竖向构件,当侧向位移增大时,偏心加剧,当产生的附加内力值超过一定数值时,将会导致房屋侧塌。

2、使居住人员感到不适或惊慌。

3、使填充墙或建筑装饰开裂或损坏 使机电设备管道损坏,使电梯轨道变型造成不能正常运行。

4、使主体结构构件出现大裂缝,甚至损坏。

(三)减轻高层建筑自重比多层建筑更为重要

高层建筑减轻自重比多层建筑更有意义。从地基承载力或桩基承载力考虑, 如果在同样地基或桩基的情况下, 减轻房屋自重意昧着不增加基础造价和处理措施,可以多建层数, 这在软弱土层有突出的经济效益。地震效应与建筑的重量成正比,减轻房屋自重是提高结构抗震能力的有效办法。高层建筑重量大了,不仅作用于结构上的地震剪力大,还由于重心高地震作用倾覆力矩大,对竖向构件产生很大的附加轴力,从而造成附加弯矩更大。

篇7

关键词:高层建筑;转换层;结构设计;施工要点;探讨;

一、引言

在高层建筑物的施工过程中,由于其结构的多样性,给转换层的结构设计带来不少困难,在对转换层进行设计时,必须要针对高层建筑的结构类别,对方案的设计采取区别性对待,认真设计,并通过精心组织施工,高要求确定模板、混凝土及钢筋等的施工方案,为实现施工方案提供有利的条件,把施工的难度降低下来,为高层建筑转换层的结构安全奠定坚实基础。

二、高层建筑中转换层设计的原则

(一)、高层建筑中转换层的结构布置

通过分析得出,首先,底部转换层位置越高,转换层上、下的刚度突变越大,转换层上、下内力传递途径的突变就会越加剧。另外,转换层的位置越高,落地剪力墙或简体越容易出现受弯开裂,从而增大框支柱的内力,造成转换层上部附近的墙体容易被破坏。其次,底部带转换层的结构,由于其上部的部分竖向构件,不能直接连续贯通落地,所以,必须设置安全可靠的转换构件。就目前而言,转换构件一般可采用转换大梁、斜撑、箱形结构以及厚板等形式。由于在地震区使用转换厚板的经验较少,可在非地震区或六6抗震设计时采用,对于大空间地下室,因周围有约束作用,地震反应小于地面以上的框支结构,因此,七八度抗震设计时,地下室设计可采用厚板转换层。

(二)、高层建筑中对转换层的抗震设计

首先,为确保转换层设计的安全性,规定部分框支剪力墙结构转换层的位置设置在三层以上时,其框支柱、剪力墙底部加强部位的抗震等级需要按照高规规定提高一个等级采用,以便提高其抗震构造措施。其次,对于底部带转换层的框架一―核心简结构和为密柱框架的简中简结构的抗震等级不需要提高,只需要对转换层的转换构件水平地震作用的计算内力进行调整增大。在进行八度抗震设计时,还必须注意竖向地震作用的影响。

(三)、高层建筑中转换层的竖向布置

首先,转换结构要根据建筑功能和结构传力的实际需要,沿着高层建筑物高度的方向一处或多处进行灵活布置。还可以依据建筑物功能的要求,将转换层布置在楼层局部,且自身的这个空间既可作为技术设备层,也可作正常使用楼层,为防止沿竖向刚度过于悬殊,前提是必须确保转换层有足够的刚度。其次,对于大底盘多塔楼的商住建筑来说,塔楼的转换层设置在裙房的屋面层比较适宜,为避免中间出现刚度特别小的楼层,减小震害,设计时还必须加大屋面梁、厚度及板尺寸。对部分框支剪力墙高层建筑结构,其转换层的位置设计,若是七度区则不要超过第五层,若是八度区则设置不宜超过第三层。

三、高层建筑转换层结构形式及特点

高层建筑转换层结构形式主要有梁式转换、箱式转换、板式转换、桁架转换、斜柱转换等几种形式。梁式转换是高层建筑中使用频率比较多的结构形式。转换梁的截面通常是0.8至1米。梁式转换传力路线比较明确,这就给建筑工程的研究计算与设计带来很大的便利,在加上其成本较低,因此应用范围比较广。箱式转换是通过双向与单向两个方面来实现的,与上下两层较厚的楼板结合在一起,成为一个整体。这种方式要求转换层必须有较大的刚度。

板式转换是当其厚度无次序、分错开较大、梁承托不了的时候。这种形式的转换层的下层灵活度大,但因为比较厚重,施工的时候难度提高了很多,相对比较麻烦。桁架转换与其它的转换层结构形式相比,其受力路径更清晰,抗震能力更好,使用更灵活。但其节点的设计比较麻烦,加上其它的不利因素,运用范围不是太广。斜柱转换层能够使混凝土的可压缩性进行充分发挥,扩大了建筑物的可利用空间,不足之处会使水平荷载加大。因此,对斜柱转换层进行施工时,需要添加拉梁或圈梁,将斜柱连接更多的楼层,相对减少水平荷载,促使建筑达到平衡,确保了建筑的安全。

四、高层建筑转换层的施工设计要点

(一)、高层建筑钢筋工程结构设计要点

由于高层建筑转换层具有钢筋高含量、主筋长、钢筋布置密集的特点,因此,在施工时要准确地翻样、下料,安放、安装好钢筋,防止钢筋发生“抢位”而造成的返工问题

首先是关于钢筋的翻样、下料。对转换层设计理念进行分析,在对设计文件说明认真审核和熟悉的基础上,结合实际条件翻样施工工作;适当增加节点空间,以便为混凝土的浇灌和振捣提供有利的施工条件;闪光对焊大梁主筋接头,除了要做好电焊培训工作之外,还要保证施工材料的质量;分别设置跨中1/3的跨长内和支座1/3跨长内于梁上部的主筋接头、部主筋接头两个位置,在下料主筋的同时,对所有钢筋的接头位置进行合理安排,防止主筋焊接接头的重叠;梁主筋需要根据接位的顺序进行编号,主筋下料的时候也要密切关注对焊接头的准确性。

其次是关于钢筋的安装、就位。大梁钢筋的安放需注意:搭设临时的钢管搁架,搭设位置在梁底上方;铺设纵筋和首排面筋于搁架下的横杆上;铺设所有主筋于梁下部上;铺设首排面筋于搁架下的横杆上并将钢筋做成S形。首层面筋铺设后,铺设第二排纵筋,第二排纵筋铺设完毕后,再铺设第三排纵筋,逐层挂起全部纵筋;梁纵筋的安装,梁与梁之间的位置,柱节点箍筋安装位置和数量,要通过依次交叉穿插和上下交替搁置等方式进行确定,在每一层的主筋之间穿插柱箍筋,特大梁钢筋骨架就位之后,按需固定和绑扎柱箍筋。

(二)、高层建筑模板工程结构设计要点

第一,对模板支撑工程方案的选择,要求其具有适用性。在对方案进行选择时,需要对支撑系统的稳定程度及强度进行细致检验。在进行混凝土浇筑之前,必须完成支撑系统的搭建,并确保其牢固程度。

第二,对支撑系统的脚手架进行设计时,要将其宽度控制在1200mm左右,高度控制在1700-1900mm之间,托顶和加调座底在门式脚手架之上,托顶与底座的距离控制在900mm左右,确保支撑两层门架中间可以交叉与连接。

第三,将钢管水平架布置在转换梁的侧模位置,每根钢管的间隔控制在450mm,采用配对拉螺栓将钢管加固。在施工之前,要对拉螺栓的牢固程度及侧模的刚度进行检查,对第一层的梁板支撑进行拆除时,要确保在七个小时之后进行。

4.结束语

通过以上分析,不难看出,在高层建筑物的施工过程中,转换层的施工设计是结构设计的一个难点,由于建筑空间的整体复杂性,建筑结构的施工技术控制也会在不断的发生变化,为了能够对建筑工程的整体的空间布局进行有效控制,就必须在结构的转换上下大力气。因此,随着建筑物结构的不断变化,转换层截稿施工设计也要不断的变化,加强对转换层的整体施工质量进行控制,确保建筑工程最终的整体施工进度,以实现工程建设安全、适用、经济的综合目标。

参考文献:

篇8

关键词:高层建筑;转换层;结构设计

1、结构转换层定义及其布置原则

1.1定义:建筑物某层的上部与下部因平面使用功能不同,该楼层上部与下部采用不同结构类型,并通过该楼层进行结构转换层。

1.2布置原刚:由于高层建筑结构下部楼层受力很大,上部楼层受力较小,正常的结构布置应是下部刚度大,墙体多、柱网密,到上部渐渐减少墙、柱的数量,以扩大柱网。这样,结构的正常布置与建筑功能对空间的要求正好相反。因此,为满足建筑功能的要求,结构必须进行“反常规设计”,即将上部布置小空间,下部布置大空间;上部布置刚度大的剪力墙,下部布置刚度小的框架柱。为了实现这种结构布置,就必须在结构转换的楼层设计水平转换构件,即转换层结构。结构特性高层建筑转换层按照结构来分类主要有以下几个形式:梁―柱体系、桁架体系、墙梁体系、厚板转换体系等,其中以梁―柱体系最为常用。按照转换层结构功能的不同,一般可分为以下三类:建筑上、下部分之间结构类型的转换,此类建筑上部和下部采用的结构形式不同。建筑上、下部分之间的柱网尺寸不同,这种建筑虽然上下部分的结构类型相同,但通常需要通过转换层,扩大其下部结构的柱距,以形成大柱网。同时具备转换结构和扩大轴线尺寸的混合形式。

2、转换层设计原则

2.1转换层的竖向布置

转换结构可根据其建筑功能和结构传力的需要,沿高层建筑高度方向一处或多处灵活布置;也可根据建筑功能的要求,在楼层局部布置转换层,且自身的这个空间既可作为正常使用楼层,也可作技术设备层,但应保证转换层有足够的刚度,以防止沿竖向刚度过于悬殊。对大底盘多塔楼的商住建筑,塔楼的转换层宜设置在裙房的屋面层,并加大屋面梁、板尺寸和厚度,以避免中间出现刚度特别小的楼层,减小震害。对部分框支剪力墙高层建筑结构,其转换层的位置,7度区不宜超过第5层,8度区不宜超过第3层。转换层位置超过上述规定时,应作专门研究并采取有效措施。

2.2转换层的结构布置

研究得出,底部转换层位置越高,转换层上、下刚度突变越大,转换层上、下内力传递途径的突变就越加剧;此外,转换层位置越高,落地剪力墙或简体易出现受弯裂缝,从而使框支柱的内力增大,转换层上部附近的墙体易于破坏。总之,转换层位置越高对抗震越不利。

底部带转换层结构,转换层上部的部分竖向构件不能直接连续贯通落地,因此,必须设置安全可靠的转换构件。按现有的工程经验和研究结果,转换构件可采用转换大梁、斜撑、箱形结构以及厚板等形式。由于转换厚板在地震区使用经验较少,可在非地震区和6度抗震设计时采用,对于大空间地下室,因周围有约束作用,地震反应小于地面以上的框支结构,故7,8度抗震设计时的地下室可采用厚板转换层。

2.3转换层的抗震设计

为保证设计的安全性,规定部分框支剪力墙结构转换层的位置设置在3层以上时,其框支柱、剪力墙底部加强部位的抗震等级宜按高规规定提高一级采用,提高其抗震构造措施,而对于底部带转换层的框架一核心简结构和为密柱框架的简中简结构的抗震等级不必提高。对转换层的转换构件水平地震作用的计算内力需调整增大;8度抗震设计时,还应考虑竖向地震作用的影响。

3、转换层结构的设计要点

高层建筑转换层的设计造成建筑物的刚度发生突变在水平地震荷载作用下,转换层上下容易形成薄弱环节,因此在进宪高层建筑转换层设计是,要注意下述要点;

3.1应协调上下部分结构布置,尽量减少转换结构的数量;

3.2尽量降低转换层建筑中的高底,提高建筑整体稳定性;

3.3保证结构竖向刚度比;

4、梁式转换层结构的设计

4.1框支柱的设计

有地震组合时,一级、二级框支柱承受的地震的作用产生的轴力设计计算值分别乘以1.50,1.25的调整放大系数;框支柱承受的地震剪力标准值应按下列规定采用;框支柱的数目多于10根时,当框支层为1-2层时,每层每根柱承受的剪力之和应取基底剪力的20%;当框支层为3层及3层以上时,每层框支柱承受剪力之和应取基底剪力的30%;框支柱剪力调整后,应相应调整框支柱的弯矩及柱端梁的剪力、弯矩,框支柱轴力可不调整;而当框支柱的数目不多于10根时,当框支层为1-2层时,每层第根柱承受的剪力应到少取基底剪力的2%;当框支层为3层及3层以上时,各层每根柱所受的剪力应至少取基底剪力的3%。

4.2框支梁的设计

框支梁截面尺寸一般由剪压比控制,宽度要大于其上墙厚的2倍,且大于400mm;高度大于计算跨度的1/6。工程框支梁梁宽统一定为800mm。框支梁受力巨大且受力情况复杂,它不但是上下层荷载的传输枢纽,也是保证框支剪力墙抗震性能的关键部位,是一复杂而重要的受力构件,因而在设计是应留有较多的安全储备二级抗震等级的框支梁纵筋配盘率大于0.4%。框支梁在满足计算要求下,配筋率大于0.8%。框支梁一般为偏心受拉构件,梁中有轴力存大,因而应配置足够数量的腰筋。

4.3转换层楼板的设计

框支剪力墙结构以转换层为分界,上下两部分的内力分布规律是不同的。在下部楼层由于框支柱与落地剪力墙间的刚度差异,水平剪力主要集中在落地剪力墙上,即在转换层入荷载分配产生突变;而在上部楼层,外荷载产生的水平力大体上按各片剪力墙的等效刚度比例分配。转换层楼板承担着完成上下部分剪力重分配的任务;由于转换层楼板自身平面内受力很大,而变形也很大,所以转换层楼必须有足够的刚度作保证。

5、转换梁结构设计方法

转换梁的设计方法主要有;

5.1按普通梁进行受弯构件承载力计算,但须采用高层建筑结构计算分析程序TAT、TBSA或TOWER等;

5.2按偏心受拉构件截面设计方法进行计算,但必须把有限元分析得到的转换大梁的内力转化为截面内力,然后进行正截面承载力和斜截面承载力计算。

5.3按深梁截面进行设计,取转换大梁高跨比在1/8-1/6,此时要考虑转换大梁的跨度,一般转换大梁跨度大于12m时,要考虑上部墙体多于3层进行分析计算,否则计算结果偏不安全。

6、转换梁设计的注意点

6.1转换梁设计占高层建筑转换层设计的决大多数,在实际应用中,通常把转换层作为设备层来使用。因此,在转换梁设计中要考虑腹部开口相对大小和开口位置;

6.2要充分考虑转换梁与上部结构共同工作的程度,通常分为完全、部分和没有共同工作三种情况来分板,否则会造成梁的跨中弯矩和支座剪力与实际情况发生很大差异;

6.3尽量避免转换层与下部结构竖向刚度产生突变,对下部结构在满足建筑物使用功能要求的基础上,应提高下部结构的截面尺寸,增加剪力墙、提高混凝土的强度等级;

6.4转换层是一种不利于抗震的设计方法,在抗震设防烈度为9度时不应使用;

6.5设计时要充分考虑施工的可操作性

结束语

推荐期刊