时间:2023-09-22 09:30:29
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇人工智能对医疗的帮助,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
(讯)发展目标明确,到2020年产业规模超过1000亿元。此次《实施意见》为上海市人工智能发展提出了明确目标。到2020年,人工智能对上海市创新驱动发展、经济转型升级和社会精细化治理的引领带动效能显著提升,基本建成国家人工智能发展高地,局部领域达到全球先进水平。具体来看,到2020年要打造6个左右人工智能创新示范区域,形成60个左右人工智能深度应用场景,建设100个以上人工智能应用示范项目,建设10个左右人工智能创新平台,培育10家左右人工智能创新标杆企业,人工智能重点产业规模超过1000亿元。到2030年,人工智能总体发展水平进入国际先进行列,初步建成具有全球影响力的人工智能发展高地。我们认为,上海市在产业基础、科研基础、信息化程度、数据丰富程度、应用场景等方面在国内具有领先地位,具有发展人工智能的先天优势。大城市在城市管理、公共服务、交通、医疗、产业转型升级等领域存在的现有问题也有望通过人工智能技术而得以缓解,这进一步加强了上海这样的大型城市对于人工智能的需求。此前广州市的《建设“中国制造2025”试点示范城市实施方案》也将人工智能、新一代信息技术作为重点聚焦产业。政府的大力支持将推动人工智能在前沿技术、应用落地、产业集群、创新生态等方面的快速发展。
政务数据开放有望加快,AI产业基金成立可期。大数据是人工智能的基石。在政务数据开放共享上,上海市政府也将加大开放力度。目前上海已经形成最大的数据开放清单,有1500多项数据开放,下一步还将建立公共数据分级分类开放制度,出台相关的政务数据申请公开使用的细则,建立公共数据开放的应急工作机制,推进数据管理、数据利用、安全保护形成标准和规范。目前,上海已编制政务数据资源共享目录1.7万多条,有26万个数据项,年底前将启动建设全市政务信息交换共享平台。上海市政府下一步将建立跟企业合作的开放性行业大数据训练库,建设人工智能应用多场景验证环境。在资金扶持层面,市政府将加强财政资金扶持力度,引导企业和社会资本投入。目前,上海正在开展第一批人工智能产业基金和人工智能创新项目的组织遴选。在市场支持层面,将推动各级政府部门率先运用人工智能提升业务效率和管理服务水平,支持人工智能创新产品开拓市场应用。我们认为,人工智能的发展离不开政府,除了数据开放、资金扶持等实质性支持外,政府在社会资源引导、产业集群建设、应用场景开拓等方面会对整个行业带来帮助。
投资评级:我们认为,人工智能赋能是产业发展的大趋势。远期来看,人工智能与各行各业的融合有望带来新一轮产业变革。近期来看,图像识别、语音识别等人工智能技术在安防、金融、交通、零售、医疗等领域的应用呈现快速增长趋势。我们看好人工智能产业链发展,具体包括上游的人工智能芯片、智能传感器,中游的人工智能算法、人工智能软件以及下游的行业应用。对于计算机行业,我们维持行业“看好”评级。(来源:信达证券 文/边铁城 编选:中国电子商务研究中心)
【关键词】计算机;人工智能技术;应用
1引言
人工智能技术已经成为目前最受社会关注的新兴科技之一,随着该技术在各行业和领域中的应用不断深入,人们的工作和生活方式不断向智能化方向发展,工作和学习效率都得到了质的飞跃,未来,人工智能技术也必然会获得更加广阔的发展前景。
2人工智能技术概述
人工智能是计算机科学的一个分支,这门学科的主要目标是了解人类智能的本质,并通过将人类智能转移到智能机器中,使智能机器能在不同应用场景下做出类人思维的反应。人工智能是一项综合了多项高新科技的综合性学科,包含5项核心技术,分别是计算机视觉、机器学习、自然语言处理、机器人技术和生物识别技术。其中,机器学习是实现计算机人工智能技术的核心技术,该技术使智能机器在算法复杂度理论、凸分析、统计学等学科的支持下,能自主模拟人类行为。目前已经发表的机器学习策略主要包括模拟人脑的机器学习和采用数学学习方法2种策略。其中模拟人脑的机器学习策略又可细分为符号学习和神经网络学习,符号学习是以认知心理原理为基础,在机器中输入符号数据,用推理过程在图或状态空间中搜索并进行符号的运算,对概念性和规则性知识的学习能力较为突出,如示例学习、记忆学习、演绎学习等;神经网络学习是从微观生理角度对人脑活动进行模拟,利用函数结构模型代替人脑神经网络,以函数结构进行数据运算,并在数据迭代过程中在系数向量空间中搜索,对函数型问题具有较好的学习能力,如拓扑结构学习、修正学习等。采用数学方法的机器学习主要是利用统计机器,建立相应的数学模型,拟定超参数,输入样本数据后根据不同的运算策略对模型进行训练,最后根据训练结果进行结果预测。
3人工智能技术的发展历程
3.1人工智能技术的兴起
虽然新兴技术的兴起获得了广泛的关注,但由于人工智能技术涵盖的学科和技术范围过大,兴起阶段的该技术的理论知识、产品应用、发展应用等均存在明显缺陷。除此之外,计算机技术在当时也并不成熟,当时的计算机编程和计算水平较为落后,很多超前的想法以当时的技术水平来说实现较为困难。在多种因素的影响下,人工智能技术在兴起阶段并未得到快速发展。
3.2人工智能技术的高速发展
人工智能技术这一概念在提出后近20年的时期中其发展始终处于停滞状态,直至20世纪70年代,该领域的专家研发出全新的人工智能专家系统DENDRAL,该系统的诞生带动人工智能技术迈向新的发展阶段,并且在这之后进入高速发展时期。日本始终重视本国科学技术的发展,并且在20世纪80年代提出“科技立国”的政策,此后很长一段时间,日本依托此国策使经济得到迅速恢复和发展。在1982年,日本国内对第五代计算机的研究以失败告终,但此次研究中提出了新的计算机算法和逻辑程序语言Prolog,Prolog在处理自然语言过程中具有比LISP语言更好的应用效果,这一创新进一步促进了人工智能技术的发展。人工智能技术的发展建立在多项先进学科共同发展的基础上,与其他技术相比,人工智能技术在处理数据、整合资源方面具有更大优势。
3.3人工智能技术的发展现状
3.3.1专家系统
专家系统指的是一种智能计算机程序系统,是人工智能技术应用最为广泛也最为重要的领域之一,系统中涵盖大量某领域专家水平的知识与经验,通过应用人类在该领域中的专家级别知识来为用户解决在该领域中遇到的问题。专家系统有效地将人类智能延伸到专业领域中,实现了理论研究向实际应用方向过渡的目标,大幅提高了人类对专业问题的处理效率,并且专家系统依托复杂的算法能对专业问题未来发展的可能性进行更全面的计算,工作效率甚至会比人类专家更高效、更准确。随着对专家系统研究的不断深入,目前很多专家系统都能依据对人类行为的模拟在不同的应用场景中作出智能化的反应和判断,并且能够利用知识库,深入挖掘复杂问题的内在联系。专家系统已经在多个领域中都得到了广泛的应用,帮助企业更客观地摸索市场规律,从而作出正确的生产决策、调度规划、资源配置计划等,大幅提高了企业经营的科学性,使企业能在节省生产成本的同时,获得更好的经济效益。
3.3.2模式识别
模式识别是利用计算机技术将识别对象按一定特征归类为不同类别,目前人工智能技术在模式识别中的主要研究方向包括语音语言信息处理、计算机视觉、脑网络组等,希望通过人工智能技术实现对复杂信息的识别和处理,这一应用能促进多个行业向智能化方向发展,如军事领域、医疗领域等。
3.3.3机器人学
机器人学的主要研究方向是机器人的设计、制造和应用,随着人工智能技术的成熟与应用,机器人的智能水平不断提高,并且在不同行业中的应用已经较为普遍,日常生活中常见的机器人包括扫地机器人、迎宾机器人、快递机器人、早教机器人、无人机等,人们可以利用可移动设备对其进行操作,极大程度地提高了人们生活的智能性和便捷性。
3.3.4机器学习
机器设备并不具备自主思考能力,在不同应用场景下的反应主要是依托计算网络技术和算法对人类思维模式进行模拟,并将人类行为进行充分消化以使自身性能得到优化,能对不同问题进行处理。机器学习是一项涵盖多个学科且复杂程度很高的科学,包含统计学、概率学、算法复杂度理论等,是人工智能的核心技术,也是推动计算机向智能化方向发展的关键技术。
3.3.5人工神经网络
人工神经网络是人工智能技术自进入高速发展时期后广泛研究的重点内容。利用计算机算法将人脑神经元进行简单化、抽象化、模式化,并构建成与人脑神经元网络相似的网络结构。人工神经网络技术的成熟与发展为专家系统、模式识别、机器人学、生物、经济等多个学科的发展提供了技术支持,解决了很多人工智能技术发展中的实际难题。
4人工智能技术的应用
4.1人工智能技术在计算机网络技术中的应用
4.1.1计算机网络安全管理
人工智能技术与计算机网络技术互相依存、互相促进、共同发展,在计算机网络技术的多个方面都有深入的应用。其中,在网络安全管理方面主要有如下应用:①智能防火墙技术。防火墙技术随着计算机的普迅速发展,应用人工智能技术的防火墙技术比传统防火墙技术的性能更加优异。智能防火墙技术具有智能记忆功能,能自动记录并储存历史处理病毒的记录,在后续应用过程中依据记录直接优化计算机匹配环节,减少计算机数据量,提高防火墙的隔离病毒能力。另外,智能防火墙还能结合用户的需求,对用户不需要的弹窗功能、访问权限、有害信息等进行智能化拦截。②计算机入侵检测。防火墙的主要功能就是为计算机设备创造安全的运行环境,保证系统和内部数据不被侵害。计算机入侵检测功能是保障防火墙正常工作的基础功能模块,对提高计算机数据的安全性和可靠性具有直接的影响。应用人工智能技术的入侵检测功能,能对计算机系统进行智能化分析和处理,根据预定算法将处理数据整理成为入侵检测报告,让用户能全面地掌握计算机设备的安全状态。③垃圾邮件智能化处理。该技术依托人工智能技术中的模式识别功能,对接收邮件进行扫描和归类,发现垃圾邮件后直接将其标注为垃圾邮件,为用户发出风险警告,避免用户因误操对计算机系统造成损害。
4.1.2计算机网络管理
人工智能技术的发展和应用促进计算机网络技术向智能化方向发展。在实际应用中,除计算机网络安全管理模块外,还能解决多种网络管理问题。随着计算机技术的普及,网络数据呈爆炸式增长,网络管理工作量和工作难度都达到了空前高度,通过应用人工智能技术,能大幅提高计算机网络管理效率,优化网络管理效能。
4.2人工智能技术在企业管理中的应用
企业是市场经济活动的主要参与主体,是维持市场经济稳定运行和发展的关键要素,在企业生产活动中科学地应用人工智能技术,能有效提高企业的生产能力,促进企业获得更高的经济效益和社会效益。具体应用渠道如机械自动化、智能监控、推荐系统、用户购物行为分析、零售分析、数据提取、文本归类、文章摘要等,从员工工作的细微之处实现工作效率上的提升,进而提升企业整体的运行效率。对工业行业来说,应用机械自动化技术还能有效降低传统工业生产中对人工的依赖性,大幅提高工业企业的生产能力,在行业发展的过程中起到了非常积极的促进作用。
4.3人工智能技术在航空航天技术中的应用
航空航天技术是目前人类最高科技的集合体,涵盖众多学科,如信息技术、卫星技术、生物技术、天文学、生命科学等,对提高国家的国防力量、提高国家的国际地位、促进国家经济增长都具有非常重要的意义。航天器设计是航空航天领域中的关键工作之一,而远程控制又是航空航天技术长久发展以来研究的重点,因我国对该技术的研发起步较晚,我国对航空航天技术的研发存在重重困难,但经过国家和科技工作者的不懈努力,目前我国航空航天技术已处于世界先进水平。将人工智能技术应用于航天远程控制中,利用智能系统对数据进行自动采集、处理和储存,如通过采集航天器的轨道信息,并以此分析航天器的运行状态,根据分析结果制定运行决策,对提高航天器的运行安全性和运行质量都是非常重要的举措,推动国家航空航天事业获得进一步发展。
4.4人工智能技术在医疗领域中的应用
目前,人工智能技术在医疗领域中的应用已经非常广泛,使医护人员的工作内容不断得到优化,提高工作效率,还有效提高了国家医疗水平。具体应用包括以下几项内容:①在电子病历中的应用。传统就医诊断环节,医生都需要以手写方式记录病患病例,并根据病例详细列出治疗方案,工作量大,且效率较低,病例保存便捷性较差。通过应用电子病例,不仅能大幅减少病例记录的工作量,还能在医疗系统中直接勾选治疗所需药品,完成病例及用药的勾选后打印即可,既能大幅提高工作效率,还能将病例在计算机中进行储存,且现阶段病例文件的储存格式不再局限于文字,语音和图像也可被添加到病例中,提高医疗诊断的准确性。②在健康管理中的应用。在现代医疗中应用人工智能技术,对病患的病情进行智能化分析,能使医生对疑难病症的分析更加全面准确,制定针对性更强的医疗方案,提高医疗水平,为改善患者的健康状况提供辅助。
5结语
综上所述,计算机人工智能技术的应用,对社会各行业都产生了不同程度的影响,人们的工作和生活方式得到优化和改变,国家科技水平也不断提升。加强对计算机人工智能技术的研究,推动人工智能技术在各个行业中的应用,让人们能切身感受到科技为生活带来的改变,对促进人类社会的发展具有非常重要的意义。
【参考文献】
【1】辛颖楚.计算机人工智能技术研究进展和应用分析[J].信息与电脑(理论版),2019(9):121-122+125.
【2】陈长印.计算机人工智能技术研究进展和应用分析[J].计算机产品与流通,2019(12):5.
【3】杨坤,顾兢兢.计算机人工智能技术研究进展和应用分析[J].电脑知识与技术,2019,15(33):197-198.
【4】郑骜.浅谈计算机人工智能技术研究进展和应用[J].科学与财富,2019(19):276.
【5】赵智慧.计算机人工智能技术研究的进展及应用[J].信息与电脑(理论版),2019,31(24):94-96.
【6】李子青.计算机人工智能技术的应用与未来发展分析[J].科技经济市场,2019(10):9-11.
【7】罗柱林,韩文超,吕文杰,等.计算机人工智能技术的应用及未来发展探究[J].中国航班,2019(16):90.
【8】李乔凤.计算机人工智能技术的应用与未来发展分析[J].数字技术与应用,2020,38(3):91+93.
【9】肖梅.计算机人工智能技术的应用及未来发展初探[J].缔客世界,2019(1):39.
智能医疗的兴起
人机大战1∶4的比分让相当多的人感到失望和悲观,还有人感到了恐惧,认为人工智能战胜人和主宰人类社会的时代已经开启。
然而,即便“阿尔法围棋”最终以5∶0的大比分大胜李世石,也不意味着人工智能主宰世界和人类被奴役时代的到来,理由也并非只是“阿尔法围棋”是人类设计出来的,而是因为,“阿尔法围棋”其实开启了人类利用人工智能的新时代,准确地说,是拓宽了让人工智能为人类干活的新天地,并有可能深入而广泛地让人类文明迅速发展。
“阿尔法围棋”是靠深度学习、蒙特卡洛树搜索算法和自我进化三招战胜人类棋手的,这三大功能也是人类驾驭人工智能为人类服务的途径。由于人工智能能够自我学习,学习能力会越来越强,而且搜集和贮存的数据会越来越多,将会在更多的方面成为人的助手或替代人的工作。例如,除了替代一些体力劳动以及低级岗位外,会学习的人工智能还会接手一些需要创造性、技术性和复杂运算的工作。此外,在各个领域的新产品的研发、预测分析、推广等方面,人工智能也能产生巨大的作用,创造不可估量的效益。
设计“阿尔法围棋”的深度思想公司(Deep Mind)的CEO杰米斯・哈萨比斯提出了人工智能的通用性,即通用人工智能,这种智能与人类专家协作可以解决和处理更多需要智慧才能解决的问题,如诊治疾病,处理气候变化、能源、基因组学、宏观经济学、金融系统、物理等方面的几乎所有问题。哈萨比斯称,人类想要掌握的学科越来越复杂,即使是最聪明的人,穷其一生也难以掌握其中一个领域。如果将“阿尔法围棋”看成一个能够自动将非结构化信息转化为可用知识的过程,那么通过筛选泛滥的数据得出合理的观点就指日可待。研究人员正在努力研究的是一种可以解决任何问题的人工智能超级解决方案。
具体而言,如果“阿尔法围棋”的自我学习能力、大数据存储和分析功能应用到医药领域,将诞生一种新的医疗和医药模式,即智能医疗(有人称智慧医疗,但由于智慧似乎为人类所特有,以人工智能为基础的新型医疗称智能医疗更好)。
智能医疗是指通过打造健康档案区域医疗信息平台,利用最先进的计算机和互联网技术,实现患者与医务人员、基础研究(医学和药物研究)与临床治疗、医疗机构、医疗设备之间的互动,逐步达到信息化防治疾病和健身强体的目标。
例如,通过无线网络,使用掌上电脑便捷地联通各种诊疗仪器,医务人员能随时掌握每个病人的病案信息和最新诊疗报告,随时随地快速制定诊疗方案;在医院任何一个地方,医护人员都可以登录距自己最近的系统查询医学影像资料和医嘱;患者的转诊信息及病历可以在任意一家医院通过医疗联网方式调阅;任何科学研究,包括医学和与医学相关的物理、化学等领域的研究最新成果能在互联网上及时公布等,让诊断、治病和用药以及公众的保健得到最有效、最迅速、最适宜、最廉价和最科学的处理。
智能医疗的具体表现
以“阿尔法围棋”为例,可以知道什么是智能医疗。
研发出“阿尔法围棋”的深度思想公司并非只是专注于让“阿尔法围棋”与人类棋手过招,而是注重把人工智能通过学习解决实际问题的能力贯穿应用到医学领域。2016年2月深度思想公司就已经了在医护领域使用的深度学习程序――深度思想健康(Deep Mind Health)。这是一款手机应用程序(APP),包括“识别风险病人”(Stream)和“早期临床护理管理”(Hark)两个模块。
这种手机应用程序当然也是一种人工智能,它们需要学习和帮助医护人员监护一些表面上不严重但实际很危险的病人,或者一些急性发病者。例如,深度思想健康的“识别风险病人程序”可以及时发现急性肾衰竭高风险病人,以便让医生及时治疗并改善对病人的护理。这个程序是通过检读血液检查报告,以辨别哪些病人存在风险。结果表明,有25%的急性肾衰竭死亡可以通过这个程序避免。“早期临床护理管理程序”则能帮助医生制定治疗方案和采取行动。使用该项程序能避免38%的患者病情恶化。
当然,这些只是人工智能开发和应用的冰山一角。实际上,在医药领域利用计算机技术和人工智能最早和进展较大的是药物的研发与监控。计算机和人工智能对于药物的研发在很多方面都起到了作用,如研发新药、老药新用、药物筛选、预测药物副作用、药物跟踪研究等。这实际上已经产生了一门新学科,即药物临床研究的计算机仿真(CTS)。
一种新药的开发一般估计需要15年时间,耗资10亿美元,但最近的估计是可能耗资40亿~120亿美元,还不能保证成功。因为,除了要求新药要有疗效外,还需要安全性的保障。如何监控和预测药物的副作用或不良反应就成为研发一种新药或老药新用的重要保证。
对于传统的药物研发来说,一种药物必须经过动物试验和人体的Ⅰ、Ⅱ、Ⅲ期临床试验。而且,即便Ⅲ期试验后批准上市,还有Ⅳ期临床研究,即新药上市后进行的临床研究,而且一类新药要求进行2000个病例的IV期试验。这也是造成药物研发周期长、费用高的重要原因。
但是,在今天有了计算机程序,特别是以“阿尔法围棋”为代表的能自我学习的计算机程序(软件),就为人们提供了一个检测药物的人工智能安全专家。首先是在新药筛选时可以获得安全性较高的几种备选物质。当很多个甚至成千上万个化合物都对治疗肝癌显示出某种疗效,但又对它们的安全性难以判断时,便可以利用“阿尔法围棋”的策略网络和评价网络,以及蒙特卡洛树搜索算法来挑选最具有安全性的化合物,成为新药的最佳备选者。
同样,对于尚未进入动物和人体试验阶段的药物,也可以利用类似“阿尔法围棋”这样的人工智能来检测新药的安全性。因为,每一种药物作用的靶向蛋白和受体都并不专一,如果作用于非靶向受体和蛋白就会引起副作用。类似“阿尔法围棋”的程序可以通过对既有的数千种已知药物的副作用进行筛选搜索,以判定一种药物是否会有副作用,或副作用的大与小以及最小,由此选择那些副作用概率最小和实际产生副作用最小的药物进入动物和人体试验,就会大大增加成功的概率,节约时间和成本。当然,利用“阿尔法围棋”等程序还可模拟和检测药物进入人体内的吸收、分布、代谢和排泄、给药剂量-浓度-效应之间的关系等情况,让药物研发进入快车道。
大数据和信息共享
大数据和信息共享同样是智能医疗的核心。信息共享成为智能医疗的重要性在于,全球的科研人员只有科研共享,才能对各种危害人们健康的疾病和顽症,如艾滋病、癌症等进行有效的治疗,挽救人们的生命。这一点在突发公共卫生事件,尤其是暴发危害人们生命的疾病时,具有重大的作用,例如最近在南美爆发的寨卡病。
由于医护人员对寨卡病的发病机理、传播途径和危害胎儿和孕妇的机理并不清楚,对待这种疾病既无有效的药物,也没有疫苗,因此需要更多更新的研究结果来指导防治疾病,而对于最新研究信息的共享,则有助于指导全球医务人员和公共卫生专业人员,并通过医护人员向公众提供科学的防治方法。
正是在寨卡病的防治上,信息共享得以突破。现在,美国威斯康星大学麦迪逊分校病毒学家康纳研究团队用寨卡病毒感染猴子进行试验,并在网上公开了首批数据。这一行为改变了过去研究人员只是在学术期刊发表研究结果和数据的传统做法。美国研究人员在网上的是2016年2月15日他们将寨卡病毒注射进3只印度恒河猴体内获得的血液、唾液和尿中所检测到的病毒数量的原始数据。这些数据能让每个人都看到,并且每天都会更新研究结果。
此次康纳等人首先在网上公布动物试验的数据意味着,生物医学已经正式踏入智能医疗门槛。与此同时,中国研究人员也借寨卡的防治和研究而跨入智能医疗和大科技的门槛。中国疾控中心与江西省疾控中心、浙江省疾控中心、军事医学科学院等单位合作,分别对寨卡病毒感染病例血液和尿液标本中的寨卡病毒基因组进行了全面解析,获得病毒全基因组序列,并到网上。
这种科研的资源共享显然为人们认识寨卡病的病理、研制药物和疫苗奠定了基础。而且,基于对不同来源的寨卡病毒特点的认识,将进行针对性的药物和疫苗研发。例如,中国疾控中心和江西省疾控中心合作测序的寨卡病毒基因组有10676个碱基,与目前在美洲的流行病毒株具有高度同源性。但是,浙江省疾控中心测序的寨卡病毒核酸序列与太平洋岛国法属波利尼西亚地区报道的病毒基因组序列高度同源,而与中国其他省份报告的输入病例的病毒核酸序列存在差异。
不过,美国研究人员在网上公布恒河猴试验的数据还具有更多的意义。寨卡病是一起非常紧急的公共卫生突发事件,所有人都在与寨卡病毒赛跑,也与时间赛跑。除了不应让科学家的竞争成为保密理由而延缓对寨卡病的认知和防治外,还要意识到,对人的研究有很多伦理限制而无法获得相应的数据和知识。
由于寨卡病毒感染的形式和机制在人和恒河猴体内相似和相同,研究人员能通过向猴子体内注射不同剂量的寨卡病毒而获得该病有价值的第一手相关信息。科学家能对怀孕恒河猴体内的羊水反复取样,以判断寨卡病毒能否以及多染胎儿。这些数据一方面不可能从人身上快速且合乎伦理地获取到,另一方面也可能因此而延误人们对寨卡病毒是否导致小头儿等的认知。
有了对恒河猴的研究结果,并且能在网上,就能较快地获得诸如寨卡病毒是否与小头儿关联的确切信息和机理,例如,正在发育的胎儿可能何时会被寨卡病毒侵袭而导致出生缺陷,也就能为人们提供防治的线索和方式。
此外,由于世界一些国家反对动物试验,尤其是反对用灵长类动物进行医学试验的呼声越来越大,浪潮越来越高。欧洲一些国家,如德国已经在减少灵长类动物的医学试验,美国国立卫生研究院(NIH)也已决定结束其下属一家实验室存有争议的猴子试验,并终止了对黑猩猩侵入性试验的经费支持。
在这样的情况下,美国研究人员在网上公布寨卡病毒感染猴子的数据就更具有意义,因为这是在实现一个共同的目标,资源共享能让那些并没有进行动物试验的研究人员了解动物试验的情况和数据,也就会减少使用灵长类动物进行试验。
当然,大科技时代的资源共享也会让科研人员产生疑虑,其中最核心的是,研究成果的界定和归属,以及其他研究人员是否采信网上的动物和其他研究数据及结果。
对于第一个问题,也许可以用网上公布的时间来判断一项研究结果的最早时间和进行研究的科研人员,至于对网上公布的研究结果的采信与否,可能会随着大科技时代的进展由实践做出回答。无论其他研究人员是否采信网上公布的结果和数据,都会进行验证,因此,可能会有效地检验网上公布的研究结果。
患者也要利用智能医疗
一般而言,智能医疗通常指的是计算机、大数据和互联网+如何让医生和专业机构对病人的疾病诊治更准确和更科学,让人们既能看病有效,又能少花钱。
例如,现在飞利浦公司设计了一个智能软件飞利浦健康套件数字平台,希望将消费者、患者和医疗服务人员三方进行串连,在互联的护理领域进行尝试。这个平台是一个基于云技术的开放安全平台,能够收集和分析从健康手表、血压计、耳式体温计和身体分析仪等多个设备源头的健康数据。医生也可以在第一时间了解到患者的情况并做出医疗判断和治疗方案,从而大大降低医疗成本和漏诊误诊的发生率。
智能医疗的另一个维度是患者和家属,以及需要保健的正常群体,他们也需要大数据和智能分析来选择自己所需的诊治疾病的方式和程序,以及正常人需要选择的保健措施。
在这方面,利用大数据设计成智能软件,为患者和公众提供就医和保健的信息也格外重要。现在,美国已经出现了主流医院评价平台的智能软件,供广大公众选择。这个平台对美国近5000家医院、约14万医生以及16个医疗领域的137家专业医院排名。这个排名对医院声誉、患者存活率、患者安全性以及其他医疗相关指标在内的数十项评价指标进行综合排序,由第三方公司或组织进行多方位、多元化评价,更加关注医疗产出以及患者满意度。如此,这种智能平台可以向公众提供他们可以选择和信赖的医院进行就诊和治病。
现在,中国对医院和医生的评价还是采用最普遍的医院等级划分标准(3级10等)。医院评审分级标准包括医院的规模、技术水平、医疗设备、管理水平、医院质量等5个标准,但由于其他评审内容设置缺乏直观指标,容易量化的硬件标准(床位、科室设置、医疗设备、人员配备等)成为划分医院等级的决定因素,暂时未能考虑医院的综合医疗效果、患者存活率、患者安全性等。
现在,中国研究人员意识到医院评价和大数据的重要性,复旦大学医院管理研究所已经邀请全国30个临床专科的几千位著名专家学者共同参与评审中国最佳医院排行榜。其中,医院专科声誉主要由专家提名心目中名列前茅的医院,而在科研学术方面,得分主要来自于国家级奖项和科学引文索引(SCI)影响因子。
――找到甲状腺结节,标注位置和尺寸,并提示良性或恶性的可能性。
浙医一院的医生接待了一家来自兄弟单位的医疗人工智能创业团队――德尚韵兴的专家们。
这个团队的背景很牛,首席科学家孔德兴是知名数学家,浙大求是特聘教授。10多年前,当国际上刚开始把数理模型和高性能数学算法应用到医学图像领域时,这个团队也极为敏锐地进入这个新兴领域探索。他们开发的“DE三维可视化系统”,用于精准外科手g的术前规划、术中导航和术后定量评估,是北京301医院的必备软件之一。
最近几年,他们将深度学习技术应用于超声声像,开发了甲状腺结节智能诊断系统DE-超声机器人(以下简称超声机器人)。在此过程中,他们对原本“均码”的算法和神经网络,针对疾病特点进行“量体裁衣”。相关技术文章发表后,谷歌深度学习团队DeepMind也关注并引用了文章。
“副主任医师水平”
德尚韵兴团队此行就是带着“超声机器人”来跟浙医一院的超声医生“PK”的。医生只要坐在B超机前,用探头给病人检查后,将采集的图像保存发送给超声机器人,超声机器人就能实时生成检查结果――找到甲状腺结节,标注位置和尺寸,并提示良性或恶性的可能性。
不过,面对这个“超声机器人”,浙医一院的医生心中充满疑问――这个系统怎么能像他们一样做判断?结果准吗?出于礼貌,他并未当场提出。
当德尚韵兴专家离开后,这位主任医生准备了202个病例(恶性结节有病理对照,良性结节有三年以上随访期)发送给超声机器人,并认真记录机器人的诊断结果, 结果显示机器人的诊断准确率为85.7%。一段时间后,当他再次见到德尚韵兴的专家时,主动告诉他们:“我判断,超声机器人达到了医院副主任医师的水平,确实挺好。”
好的开始是成功的一半――这也开启了浙医一院和德尚韵兴后续的合作。
实际上,人工智能在医学领域的发展,在国内外都是刚刚起步。
“不能说是完全空白,但这个方向有很多值得我们研究的东西。”德尚韵兴总经理胡海蓉说。
德尚韵兴扮演着领域的“拓荒者”。胡海蓉向《IT经理世界》坦言,在这几年人工智能的落地实践中,她认为,组建跨学科团队,选择合适的切入点,收集和规范数据,开发让医生得心应手的产品是较为关键的环节。
跨学科明星队
人工智能+医学的落地实践,需要跨学科明星队。
“这里的关键体现在‘交叉’上。”胡海蓉说,“在医学重大需求上,数学家、计算机科学家或医学专家,任何单一力量是无法实现的。”
在这类团队中,数学专家负责提出高性能数学模型,“好的模型就像具有高IQ的大脑。”医学专家提供临床知识和经验,让机器能学到“真知灼见”,计算机软件专家要把数学家的语言转化成高效的计算机语言。
“可是,数学家、医学家和计算机专家都有各自的语言,怎么把他们串起来呢?”胡海蓉继续分析说,“我们就需要找到一个具有生物医学工程背景的人来做产品经理。他来负责产品的市场调研和规划,管理整个团队,充当‘多种部队’之间的翻译和桥梁。”
切入甲状腺超声诊断
选择切入点也很有讲究。这个切入点不能太过复杂――它要让团队能小步快跑,保障后续项目的进一步深入拓展;也不能太容易――它要能对医疗痛点有质的帮助,才有推广的价值,容易被市场接受。
“甲状腺结节诊断”最终跳入德尚韵兴团队的视线。
甲状腺癌在中国女性癌症发病率排名第五,在德尚韵兴所在的杭州,甚至排在第一位。但由于个体化差异,目前三甲医院甲状腺结节的诊断准确率平均只有60%~70%。用人工智能提升诊断准确率能造福老百姓。
相对肺、肝脏等器官,甲状腺是一个浅表器官,器官结构相对简单,没有复杂的血管。根据超声声像,就能对甲状腺结节的良恶性作出诊断。
但同时,甲状腺超声诊断也有一定复杂度――不像CT和核磁,超声因每位医生的扫描手法不同,得到的数据千变万化,因此对影像识别算法有很高要求。从这样一个诊断既有其简便性,又有其复杂度的疾病做起,可以在过程中积累足够经验,为开发难度更高的疾病,如乳腺肿块、肝脏肿块、肺结节的良恶性诊断打下基础。
数据!数据!
对于医疗人工智能团队来说,数据的收集、规范和标注是行业性难题。
“数据收集不能全靠医院。”胡海蓉总结说。深度学习靠的是“吃透”大量样本。但目前大部分医疗机构并不愿公开数据。德尚韵兴尝试通过多个渠道,有社区检查,有付费志愿者,也有试点医院。
“我们已收集了两三万张超声图像,这是不多的。”胡海蓉客观地说,“如果样本量能提高一倍,我们的诊断准确率还有较高的提升空间。”现在德尚韵兴的甲状腺超声机器人诊断准确率已达85%以上。
除了数据收集,数据的规范和标注是另一项需要大量调研和沟通协作的活。
以甲状腺结节超声诊断为例,数据规范要从“医生的扫描手法”开始。团队走访了多家医院,听取多位医生建议,规范扫描手法,形成最终文档。
拿到超声影像后,还要找到结节进行勾画。现实中,医生和算法工程师对结节的勾画有不同标准,哪一种勾画对计算机算法更有利?团队要综合考虑,制定出适合的标准。
在数据规范化过程中,对那些疑难病例的判断和标注,特别需要医学专家的指导。“但高水平医生的工作是最繁忙的,他们往往没有时间和兴趣参与标注。”德尚韵兴要想办法争取医学专家的支持。
线上线下的商业探索
目前,国内业界对医疗人工智能的定位有一个共识――定位在辅助诊断上。人工智能系统可取代医生重复性、机械性的工作,让医生能够看更多的病人,做更多有价值的医学探索。
德尚韵兴的超声机器人也是这样定位的。它可以先选出有问题的声像图给医生,及时提醒恶性风险,让医生能更仔细的查看把关。
经过一段时间的试点后,德尚韵兴的超声机器人将首先向基层医院推广,这将提高基层医院患者首诊的诊断水平,让更多患者不出远门就能获得“专家级”服务,再根据诊断结果到不同级别医院治疗。
超声机器人可部署在云端,这特别适合新疆、等基层医院分散的地域。通过英特尔联合创新实验室的牵线,在新疆人民医院联合130多家医院建立的远程会诊体系中,超声机器人将成为关键服务之一。同时,与远程医疗平台汇医在线的合作,超声机器人也为平台上签约的全国基层医院服务。
超声机器人也有单机版,部署在医院和体检中心。其中,与从事体检中心业务的北京世纪经纶的合作,超声机器人将推广到几个省。
人工智能作为一项综合性应用技术,其研发的主要目的便是为了模仿人类的思维与行为,从而代替人们去完成一些难度较大、复杂繁琐的工作,以此为人们节省出大量时间,提高人们的日常工作效率。现今,我们日常生活中随处可见的智能化产品便是人工智能技术的重要体现,这些智能化产品的出现在方便我们日常生活的同时,也使生活变得更加丰富多彩起来。除此之外,目前人工智能技术的应用极为广泛,与计算机网络技术有着十分密切的联系,包括自动程序设计、智能控制等等,都是人工智能在计算机网络技术中的应用。
二、人工智能应用在计算机网络技术中的优势
(一)更具实用性
随着计算机网络技术的使用覆盖率不断扩大,当前各个领域乃至生活的各个细节都难以离开计算机网络技术。而人工智能技术的出现,从此使计算机网络技术变得更具实用性。智能与科技相结合,人工智能利用对新知识的学习能力,进而实现了对一些较难数据的推理核算工作。这样不仅极大程度的节省了网络查找的时间,还有效改善了人们的工作与生活,促进了工作效率与生活质量的双重提升。正因如此,人工智能技术的开发与应用更具实用性。
(二)便于网络管理
计算机网络技术的发展,让人们进行信息交流和讨论也变得更加方便快捷,同时也对世界各国之间建立良好的国际关系产生了极大帮助。随着人们对计算机网络技术的应用越来越广泛,因此对其要求也开始不断提升。而在人工智能的作用下,计算机网络技术也从此变得更具优势,对于人们无法处理或难度系数较大的问题,人工智能都能一一进行妥善处理。同时,人工智能还能加强对大数据的监控,实现智能化的网络安全管理,也使人们的交流与联系变得更具有安全性。由此可以看出,人工智能在计算机网络技术中的应用极为重要。
三、人工智能在计算机网络技术中的应用
(一)智能防火墙防护体系
防火墙的主要功能是抵御黑客攻击,防止计算机系统中的潜在风险对其造成破坏。人工智能技术与计算机系统中的防火墙技术相互融合,这样计算机的防护系统就相当于拥有了一位智能管家。如此一来,计算机系统不仅多了一重安全保障,同时给人们的使用也带来更为便捷、高效的体验。由于人工智能技术具备极强的数据分析能力,对于各行各业时常出现的计算机网络安全问题,人工智能防护都能及时对其进行全面优化与处理。比如目前现有的一些人工智能杀毒软件,即使没有网络连接,同样也能为计算机系统保驾护航,帮助其免受攻击。同时智能防火墙的研发,还有效避免了以往的防火墙技术频繁进行网络运行控制的弊端,只会在不确定的情况下进行报警询问和访问控制,而在计算机程序正常运行或者智能防火墙已判定病毒的情况下是不会对用户进行访问控制的。由此可以看出,智能防火墙增加了智能化识别技术,其在计算机系统中的识别力更加敏锐,更为高效的实现了预防病毒侵害的目的。
(二)智能信息检索
网络时代的到来,人们需要了解和掌握信息时都可以通过计算机网络技术来实现,而正因为人们对各类信息的需求越来越广泛,也因此导致了网络上的信息呈现出繁多、复杂的局面。此种情况下,当人们需要获取信息时也变的无从下手,海量的信息中开始很难筛选出能满足其需求的内容。而当计算机网络技术中科学应用人工智能技术后,智能信息检索的出现不仅有效弥补了传统搜索方式的非个性化搜索功能,还实现了传统搜索所没有的分布式智能搜索。如果用户采用其搜索所需信息,智能搜索将会自动对用户所需的信息的相关领域进行搜集、筛选、过滤,最终对用户提供其感兴趣且有价值的信息内容,以此大大节省用户获取信息的时间,并提高其工作效率。
(三)智能过滤系统
日常生活中,当我们利用计算机网络技术进行学习或工作时,常常会因为电脑中大量占用内存的垃圾信息而影响到工作效率。比如一些垃圾邮件等,它们占用了电脑内存,长期下来就会导致电脑无法正常运行,最终导致我们的工作效率大大降低。而当计算机网络技术中应用到人工智能后,其具有的智能化识别技术就如同为计算机系统配备了一个人工大脑,不仅能自动拦截用户使用过程中出现的垃圾信息,还能对各类信息进行分类处理。如用户收到邮件后,其智能过滤系统便会自动开启扫描,将垃圾信息筛选出来提醒用户尽快进行清理操作,有效保护用户使用过程中的安全。这样一来,人工智能与计算机网络技术完美融合后产生的智能过滤系统就为人们节省了大量的时间,同时也保障了工作和学习的效率。
(四)智能机器人
在计算机网络技术的迅速发展下,人工智能技术也在不断发展,而智能机器人也正是其共同发展的产物。如今的智能机器人相比传统机器人在思维、感知等方面都得到了极大完善,其通过全面模拟人类的智慧与能力,已经逐渐应用于社会各个领域。比如许多人类自身难以完成的高难度危险作业等,智能机器人都可以代替其高效完成任务。此外,智能机器人在商业管理、救火救灾、军事、医疗等方方面面都有涉及,比如自动驾驶、识别生物体征等等。正因为有了计算机网络的发展,人工智能的作业才得以高效发挥,因此,不仅是人工智能方便了人们的生活,计算机网络技术也对人们的生活作出了巨大贡献。
(五)智能人机交互
人工智能在计算机网络技术中的另一重大应用便是智能人机交互,其主要体现在智能家电家居、自动驾驶、人机对弈、管理培训、机器教学、医疗服务等方面。据相关研究表明,相比人类,机器核算往往更能准确无误的完成人类指定的各项操作,因此智能人机交互的发展也将会得到越来越广泛的应用,从而对人类未来的日常生活带来极其重要的影响。
(六)智能数据挖掘
大数据挖掘主要指的是通过对现有的数据进行分析和提取,最终筛选出其中具有实用价值的信息,从而为人们学习和使用提供便捷,既为用户节省了大量时间,也使其工作起来更为高效。人工智能利用相应技术充分模拟人类大脑的运行过程及状态,并在大数据挖掘过程中得以应用,目前已经逐步体现在医疗、工业、司法等多个领域,未来给人类生活的方方面面也将会提供极大的帮助。
关键词:人工智能;大数据;交叉领域
自二战时期阿兰•图灵破解恩尼格玛密码机带来胜利的曙光之后,人工智能初见苗头,1956年“人工智能”一词首次由约翰•麦卡锡等科学家在达特茅斯研讨会上提出,时至今日,人工智能经历了60多年的浪潮和洗礼,其中有曙光、有冰封,也有期望。纵观当下,人工智能不仅仅是机器智能,在深度学习和推陈出新的算法推动下,其携手云计算、大数据、卷积神经网络等,攻破了自然语言语音处理、图像识别的瓶颈,像潘多拉的盒子一样在认知科学、机器人学、机器学习等领域全面开花,人工智能涵盖了从基础层、技术层到应用层等多个方面,为人类文明带来了翻天覆地的变化[1-2]。人工智能包罗万象,在其基础上衍生的大数据“洪流”对人类社会的方方面面进行冲击,这些数字的价值已然超越了诸如金钱、财产、黄金、石油,甚至是土地。然而,大数据技术也如同普罗米修斯盗得的圣火,一方面给人间带来温暖和光明,另一方面也有可能使自身被奴役甚至使人葬身火海[3]。因此,当我们沉迷于大数据的海洋中时,我们是否有能力像蓝鲸遨游大海一样自由掌舵,是当今大数据和人工智能时代存在的一个重大问题。是“曲径通幽”还是“会当凌绝顶”,我们如何在大数据中“浮游”,而不是一味地扩充,需要理性看待与合理评价大数据对人类生存和发展的影响。
1.人工智能和大数据与“工业革命”
2020年刚刚结束的新一轮美国总统竞选上演了各种“国家闹剧”,为何特朗普在2016年赢得大选,而4年之后却无法连任?时间推移,2016年他胜利的部分原因在于他利用了面临技术威胁的工业行业中工人们的焦虑,同时指责非法移民对美国及美国人资源和就业机会的占用[4]。但在技术浪潮的挑战中,自动化和人工智能才是占用的“根源”。早在18世纪60年代工业革命时期,机器取代人力,规模化工厂生产取代个体手工生产,即引发了人工智能数据的工业大变革。从机械结构、电气控制等模块的设计和改良,车间机器人的智能化已可以代替人完成生产作业[5]。通过智能化机器人可以减轻劳动负担,还可以用于环境检测[6]和实施救援[7]等,保护我们的人身安全。这些“机器人”在为我们减负的同时确实也引发了“失业危机”,这种现象不仅于美国,日本、韩国和德国亦是如此。我们也许可以形象一下,未来20或30年后,工厂中工伤几乎为“零”,完全实施机器人24小时作业,速度惊人,质量统一,而仅有的几个人使用简单的触摸界面对机器下达“命令”。机器的发展已超乎我们对普通机械的认知,21世纪开发的三大机器人中大狗(BigDog)解决了运动和重载运输问题,特别用于军事领域,被誉为“当前世界上最先进适应崎岖地形的机器人”;亚美尼亚(Asimo)从人类如何移动上展现了机器人仿人运动;Cog具有了人类所特有的思考,由不同处理器组成的异种机互联网络形成了“大脑”。特斯拉——其除了是电动汽车和能源公司外,还是自动驾驶汽车行业的领跑者之一。其2016年已销售具有自动驾驶、自动自制和自动停车功能的电动汽车,但出于法律和伦理层面,驾驶员还是要坐在驾驶位上,但他可以做他想做的其他事,发短信、打电话或是休息,而不再是驾驶汽车。我们可以不用担心酒驾,不用因为时间紧张而疲劳驾驶,不必为新手司机而变得脾气暴躁……汽车自动驾驶将让我们行驶得更规则、更安全和更“无聊”。自动驾驶上的智能进化,使得自驾型派送车为商业化服务成为可能,还有自驾型飞行器也在被研发,通用、宝马、谷歌等公司一直在努力开发,通过无人机在您家门口投送包裹将对电子商务世界带来更多创造性方案。“如果你够走运的话,机器可以把你当成宠物。”虽为戏谑之言,却又饱含心酸。工厂变得越来越自动化,但其仍需要人类专家,他们才知道如何监控传感器,知道在发生故障时如何进行修复,机器的运行离不开人的监控,只有人的思考才能有新产品的诞生以及高效的生产流程,我们与机器共存,是从体力中解放,但要从事脑力工作。
2.人工智能和大数据与金融的未来
“数字蝶变”席卷金融行业各个领域[8],金融行业应用大数据、移动互联网、人工智能等先进信息技术,累积了非常多的客户信息。通过大数据的帮助,金融公司在分析数据下寻找更多的金融创新机会。在商业智能(BI)的辅助下,电信业可以对客服描述和定位及需求进行预测;保险业可以在进行风险分析的同时进行损益判断;银行业可以调整市场活动,建立信贷预警机制等等[9]。人工智能和大数据让金融业形成了“以客户为中心”的模式。与客户最密切的金融即是金钱,但是它们已经被“支付宝”和“微信”以及更多的电子支付方式取代,越来越少的人使用现金,数字金钱是否会完全取代物质金钱,我们很可能会发展为无现金社会。那么首先“下岗”的是谁呢?答案毫无疑问:银行。巴克莱银行前首席执行官安东尼•詹金斯曾预测,对于工业化国家,银行员工和其分支机构在未来10年内会消失;花旗全球视角与解决方案的一项研究预测,美国和欧洲的银行将在未来10年裁减约180万员工;甚至2016年2月的一份丹麦银行家协会新闻稿表示,银行抢劫案数量连续第5年下降。就支付领域而言,在这样的时代背景下,如何利用大数据技术对跨越式发展的支付行业进行监管,成为一个值得深入研究的课题[10]。在人工智能下,我们都有被银行自动回复或自会读取特定问题的“员工”惹恼过。沟通技巧和财务知识同样重要,因此,银行业员工的下岗只是在基础性操作上,对于“专业咨询”,需要更多受过高等教育、具有更好沟通能力的员工。目前,我国的多数银行还没建立“开放、共享、融合”的大数据体系,数据整合和部门协调等问题仍是阻碍我国金融机构将数据转化为价值的主要瓶颈。大数据的整合、跨企业的外部大数据合作不可避免地加大客户隐私信息泄露的风险。有效防范信息安全风险成为商业银行大数据应用中急需解决的问题。
3.人工智能和大数据与“专家系统”
电子病历数据、医学影像数据、用药记录等构成了医疗大数据。医疗数据不仅包括大数据的“4V”特点,即规模大(volume)、类型多样(variety)、增长快(velocity)、价值巨大(value),还包括:时序性、隐私性、不完整性和长期保存性。医疗大数据可以提供预警性,当数据发生异常时,通过一定的机制可以发出警告,从而迅速采取相应措施,及时解决问题[11]。成立于1989年的美国胸外科协会(STS)数据库,至今已经涵盖了美国95%的心脏手术,收集了500万条手术记录[12]。其中的先天性心脏手术(CHSD)数据库是STS数据库的重要组成部分,是北美最大的关注儿童先天性心脏畸形的数据库,被认为是医学专业临床结果数据库的金标准。近年来,基于CHSD数据库所进行的数据挖掘不断增加,大型数据库对提高医疗质量所起到的正向作用正在日益凸显。如Welke等基于CHSD数据库探讨小儿心脏外科病例数量和死亡率之间的复杂关系[13];Pasquali等基于CHSD数据库探讨新生儿Blalock—taussig分流术后的死亡率[14];Jacobs等基于CHSD数据库采用多变量分析方法来研究病人术前因素的重要性[15];Dibardino等基于CHSD数据库采用多变量分析的方法来探讨性别和种族对进行先天性心脏手术结果的影响[16]。这些都是在医疗领域采用人工智能提供的医疗诊断,形成了“专家系统”,专家系统可以说是一种最成功的人工智能技术,它能生成全面而有效的结果。借助医疗大数据的平台,“专家系统”可以智能辅助诊疗、影像数据分析与影像智能诊断、合理用药、远程监控、精准医疗、成本与疗效分析、绩效管理、医院控费、医疗质量分析等。不仅是数据平台,“达芬奇机器人”可以看成医疗的高精尖“人工智能”,它能缩短泌尿外科手术以及术后患者恢复时间,促进患者早期下床活动,减低并发症发生率[17]。达芬奇手术机器人在消化系统肿瘤、泌尿系统肿瘤、妇科肿瘤和心胸部肿瘤等手术中均有运用[18]。正是机器人,还有其他人工智能设备,如插入手表或衣服里的传感器、植入我们皮肤下的芯片,以及智能手机中装有各种“专家系统”的远程医疗、预防医学,甚至是器官的3D打印和虚拟现实治疗等的发展,让医学发生相应的转变,并使其逐步突破人类的传统健康概念,那么是否意味着医学将成为只有科学性,毫无直觉性的学科呢?我们携带的内部传感器和外部应用程序将成为我们的医生吗?“你好,医生”被“嘿,Siri”取代吗?这不尽然。医学必然将是向精准化发展,并更具个性化、参与性、预防性和可预测性。医生不再是疾病的修理工,而是改善我们健康状况的顾问。直观当下,我们还是被“看病难”所困扰,我们提出“分级诊疗”,是在拥有家庭医生、全科医生和专科医生的基础上再加上人工智能,以实现预期的健康监测、辅助诊疗和疾病筛查。
4.人工智能和大数据与教育变革
面对各行业和各学科,教育作为传承文明和创新知识的载体,似乎被排除在人工智能之外。就目前而言,人工智能与教育深度融合发展还存在技术基础不稳、教育数据缺陷、算法能力不足等现实问题[19]。我国目前更想要做到的是在教育上消除“信息鸿沟”,促进教育公平、均衡发展。因此,目前可以看到人工智能的教育多在于语言学习软件,通过虚拟技术和人工智能构建一个灵活的、可扩充的虚拟交互平台,设计多维虚拟场景和智能人工角色,实现不同场景下人机角色的交流和学习,提升学习者的口语能力和语感知识[20]。这使得教师不再是唯一的知识传播者,任何互联网搜索引擎都将提供比教师所有的更多信息,并且可以更快捷地获取。肺炎疫情暴发以来,远程网络教育成了主要教学形式,互联网教育形式其实早在小学、中学和大学中运用,虚拟现实技术在教学领域的研究和探索也在全面展开。谷歌已经开发一款VR纸板视图,并将研发的虚拟课程一起推向市场,使现实生活中在生物课上解剖一只青蛙成为一件容易且有趣的事,通过虚拟青蛙,学生们可以去除心脏和其他器官,而不再是象征性的抽象体验。虚拟现实可以像互动游戏一样,比单一的在教室听老师授课带来更多乐趣和体验,学习效果可能更好。我们的学习是知识的积累,那么教育就是我们的库,荀静等结合自身情况对西安工业大学知识库构建进行探究,认为机构知识库在保存知识资产的同时,更重要的是促进学校知识资产的传播利用和管理,提升学校影响力和学术声誉[21]。刘畅等通过对东北大学机构知识库服务的推广研究,了解到开放获取的概念和实践已经受到了广泛的认可,机构知识库不仅可以成为一个知识的存储库,也可以成为各个学科领域的学者进行在线交流的平台,提供个性化的增值服务,既有利于机构知识库的内容建设,也可以进一步促进学术交流和科研合作[22]。知识库,即大数据的有机整合和有序利用,是学术成果、视频文档、实验数据等进行收集、长期保存、传播和提供开放利用的知识资产管理与教育服务[23]。
5.人工智能和大数据应用的共性需求
人工智能和大数据时代,海量的信息来自“五湖四海”,但都通过互联网络汇聚智能终端。这些数据只会进一步增多,不仅仅是云存储,对于信息的进一步挖掘、处理、分析和利用,目标性结果才是我们最想要的信息。全球包括IBM、微软、谷歌和亚马逊等一大批知名企业纷纷掘金大数据挖掘这一市场,大家都在开拓自己大数据分析平台。数据挖掘是大数据时代孕育的产物[24],是我们的共性需求,与传统的统计分析技术相比,数据挖掘有着自身的本质特征,数据挖掘是在没有明确假设的前提下去挖掘信息并发现知识。数据挖掘所得到的信具有先前未知、有效以及可实用三个特征[25]。数据挖掘的出现不是为了替代传统的统计分析技术,相反,它是统计分析方法学的延伸和扩展[26]。随着信息时代的到来,数据挖掘被越来越多地应用于各个领域。
6.人工智能和大数据的展望
大数据与人工智能相辅相成,在人工智能的加持下,海量的大数据输出优化的结果,使人工智能向更为智能的方向进步,大数据与人工智能的结合将在更多领域中击败人类所能够做到的极限。漫长的人类历史发展和进化,信息和人类一直“缠缠绵绵”“你追我藏”,因此,我们应该明白信息就是信息,我们需要的是“维基百科”,而不是仅仅的“维基”。走出狭隘的信息资源,管理和洞察大数据,才是对数据的有用。因为,我们早已告别了数据库放在一间房间的时代。此刻不得不提蓝鲸法则——大数据之道:了解数据懂得利用数据的“浮力”才是关键;“以简约为目标”将数据最终形成洞察及行为;可以通过“数据”“信息”“知识”流程式、组合式、直通车式各种需要的方式来获取[27],在简约中“印象”处理繁杂的大数据,使之“为我所用”。=数据也是一门科学、一项技术,如果实验不能证明其具有可重复性和一般性,那它是没有科学依据,但是,任何一项科技,如果你坚信它必将改变社会和商业,选择从长期展望其发展并持续付出努力,那么就是一种战略选择[29]。人类社会的政治、经济、文化、思维等固有“态势”被重刷,数据思维将为我们带来一个智能全新的世界观。
在国家社会科学基金和互联网经济学研究联盟的支持下,《财经问题研究》编辑部特别组织了“互联网经济的理论与反垄断政策探讨”笔谈,邀请数位专家对相关问题展开讨论,相关成果发表于《财经问题研究》2018年第9期,本文为其中之一。
核心问题
人工智能和互联网能否带来新的经济增长?
产业互联网将如何影响产业竞争的格局,其对整个经济的增长有什么样的影响?
平台型组织的演变会对社会产生多大的影响?
01
引 言
在过去的十多年时间里,全球经济面临一个比较大的挑战就是如何重塑经济增长。2005—2014年,全球最发达的经济体的增长率长期停滞不前,急需要寻找一个新的经济增长驱动力量。
互联网在中国经历了20年的快速发展之后,已经取得了世人瞩目的成就。特别是随着智能手机的普及,移动互联网在中国已经相当发达。根据中国互联网协会的数据,2016年中国境内活跃的手机上网码号数量达12.47亿。
得益于中国特殊的市场规模和移动互联网的发展,中国的消费互联网市场发展迅速,代表性的电商平台如阿里巴巴、社交及游戏公司腾讯,这两个公司以市值计均进入全球财富五百强的前十位。
当前,人们关注的热点是中国的互联网红利是否已经消失,传统产业的互联网转型是否会带来新的增长机会?
此外,人工智能最近这几年发展迅速。2017年中国的人工智能(AI)投资仅次于美国,成为投资热点,政府也不断推出鼓励和支持政策。
这种变化引发业界和学界的思考,是不是会出现新的驱动经济增长的力量?这个力量如果能够驱动经济增长,其对于整个社会的改变会有哪些影响?
1999年,美国微软的创始人盖茨有一个非常有名的论断:商业新法则就是“互联网会改变一切”。从他提出这个论断到现在已近二十年,可以看到,电影、阅读、新闻等商业模式都发生了巨大的变化。
但另一方面,还有很多东西没有发生变化,如航空发动机的数据获取,1960年和2015年的方式并没有太多的变化。很多产业,如海关报关等,也没有发生实质性的变化。在今天,一个备受关注的问题是,人工智能对于社会将有多大影响?
笔者将从产业竞争和战略的角度来讨论产业互联网和人工智能会如何重塑中国经济的问题。主要讨论三个问题:
第一,人工智能和互联网对经济增长的影响。人工智能和互联网是否有可能提高经济的长期增长水平?
第二,产业互联网将如何影响产业竞争的格局?它对整个经济的增长有什么样的影响?
第三,产业互联网和人工智能如何影响产业结构的变化?特别是产业互联网和人工智能是否会导致产业的平台化?这种平台型的组织又会对社会产生多大的影响?
分析表明:
第一,产业互联网和人工智能会大幅度提升生产力。而且产业互联网和人工智能会提升要素配置的效率,进而提升生产率。因此,可以乐观看待长期经济的增长率。
第二,平台和组件的模式会影响一切组织和经济形态。平台会影响国家的竞争、城市的演变和产业转型。一切组织都会向平台化的方向发展。
02
人工智能和经济增长
经济的长期增长,主要是来自全要素生产率的增长。全要素生产率的增长,除了科技(包括人工智能)的进步,还包括管理效率和要素错配这两个问题带来的影响。
大量的数据都表明,经济的长期增长率一直在下降。无论是20世纪80、90年代还是千禧年后,整个世界的GDP增长一直在下降。
Gordon(2016)提出,美国的长期经济增长将继续下台阶。Gordon研究了美国过去150年的经济发展史,认为美国的发展呈现倒U型的特征。美国经济大约从19世纪70年代开始起飞,到20世纪50年代达到顶点,之后逐步下降。
Gordon的一个略为意外的发现是,从20世纪70年代开始,美国经济的增长表现非常普通,特别是创新的步伐和技术进步带来的增长并没有惠及到更多人。
为什么现在大家如此关心人工智能的发展?很重要的一个原因是希望能够找到提升经济增长新的关键要素,希望找到推动经济持续增长的新动力。这是大时代的背景。
人工智能是否会推动经济增长和提升生产率,对中国同样非常重要。
一是因为目前对中国经济长期增长源泉的解读有很多误区。很多人认为中国经济的增长来自于投资的驱动,认为由于投资占比已经很高,且投资回报率逐步降低,所以中国的经济增长必然下行。
第二个原因是人工智能对组织生产活动的要素配置会有影响。如果人工智能可以提升要素配置效率,那经济增长的潜力也会提高。
Zhu(2012)的研究表明,与很多人想象的不同,中国经济的增长主要来自于效率的提升,而不是来自于投资的增加。虽然投资的增加是经济增长很重要的一部分,但最主要的增长还是来自于经济效率的提升。他的这一发现在学术界受到了越来越多的关注。
这一研究的重要性不仅在于其给出了一个与主流很不一样的观点,更重要的在于这个研究对判断经济增长的潜力有非常大的参考意义。
根据这一研究,1978—2007年,在中国经济增长的贡献中,有70%是来自于全要素生产率的增长。这一结论非常重要,意味着中国长期经济增长仍然有非常大的空间。
这是因为在经历了40年的高速增长后,中国的全要素生产率仍然只有美国的20%多。这表明通过提升全要素生产率来促进中国经济增长的空间非常大。这就是为什么人工智能和新的经济增长动力如此重要的根本原因。
由此,需要一个坚实的支持经济增长的微观理论基础来对当前的经济形势进行解释和指导。人工智能可以看作是广义的机器自动化。在经典的索罗模型中,可以借助一个简单的增长模型来讨论人工智能对经济增长的影响。
参考ZEIRA(1998)的经济增长模型,简单来说,经济增长实际上可以看成一个抽象的生产函数。一个国家的产出是由生产力、资本和劳动共同决定的。
根据这一模型,可以推导出一个重要的结论:经济的增长速度与自动化的比例正相关,即自动化的提升会增加长期的增长。此外,自动化比例的提升意味着资本在总产出中的占比提高。
这个简单的模型有两个非常重要的含义。
第一,人工智能在理论上有可能会带来经济的持续增长。人工智能比例的提升,会带来经济增速的持续提高。这实际上就是从经济学上定义的奇点。经济学家在这方面向自然科学学习了很多。这里的所谓奇点,从经济学角度来说,就是持续的超高增速。
第二,资本和劳动在产出中的占比关乎收入的分配及平等和长期的社会稳定。资本占比提升和劳动的占比越来越低意味着贫富差距会增加。资本家是成为人工智能的投资者和获益者,而普通的工人则可能成为受害者。
对于人工智能对经济增长的影响,在给出确定结论前,可以简要回顾一下历史。关于人工智能的争论其实是一个历久弥新的话题,从信息技术一出现,大家就在讨论这个问题。
20世纪90年代《经济学人》的说法是,计算机不会提升人们的生产力。Zachary(1991)认为数据过载限制了生产率的提高。而信息技术对生产率的提升是显而易见的。
但1996—1999年,美国私人部门的年均增长率达到2.8%,是1980—1995年间的2倍。这段时间可以明显看到信息技术带来的生产力的提升。
人工智能鼻祖和行为经济学鼻祖西蒙也认为计算机和自动化会推动生产力的持续提升,但可能不是加速的提升。加速就是前面提到的奇点,即人工智能应当会持续提升生产率。业界的研究也支持这一判断。
埃森哲的研究表明,美国生产率的增长受益于人工智能,到了2030年可以实现翻倍,意味着全球的经济增长可能会重新进入高速增长的环境,全球经济将进入新的增长周期。
经济增长的源泉无外乎生产率的增长、资本投入的增加或是劳动人口的增长。如何理解抽象的增长模型中人工智能会导致长期的总经济增长?
第一,从资本的角度,对人工智能的投资会产生很多不会折旧的资产,甚至还会增值,这是因为人工智能有学习能力,如阿尔法狗,它一天比一天聪明。这与传统的资本完全不同。
第二,从劳动力的角度,人工智能与劳动力之间的替代关系和互补关系同时存在。在国民经济的很多部门,人工智能会逐渐替代人工,但在其他很多部门,人工智能与劳动力之间是互补的。而且人工智能对劳动力的替代,有可能意味着人们会接受更多的教育,从而带来劳动生产率的提升。
从历史的经验来看,可以参考信息技术对生产率的影响。1996—1999年,是美国信息技术、互联网开始发展的时期。这段时期,美国全要素生产率年均增长2.8%,是1980—1995年的两倍。这一数据表明人工智能这种新的技术会使得生产力有大幅度的提升。
第一次工业革命时期,1850—1910年,蒸汽机驱动的经济增长是0.3%,而第三次工业革命也就是信息技术驱动的经济增长是0.6%。
有估算认为,人工智能驱动的经济增长在0.8%—1.4%。虽然这个数字还难以确认,但有充分的理由相信,人工智能对整个经济效率的提升有非常大的帮助。
除了人工智能直接带来的经济增长,还有两个与人工智能间接相关并会提升经济增长的原因。
第一,来自于管理和组织效率的提升,这个是在微观层面上的。
Bloom(2007)等学者的研究表明,不同国家的企业管理水平差别很大。假设企业管理水平的总分是5分,将各国企业管理水平得分排名,美国、日本、德国名列前茅,中国则仍然处在一个非常低的水平上。这一研究对于理解中国经济增长的长期潜力有非常重要的含义。
中国是在如此低的管理水平的基础上取得近四十年的高速增长的。如果中国能够借鉴国际先进的企业管理经验,提升组织管理效率,就可以大幅提升中国的经济增长水平。
第二,要素错配的问题。
要素错配对经济增长的影响近年来在学术界引起了很大的关注。提升经济增长的另外一种方式是改善要素错配。要素错配会导致经济效率的损失,如果中国能够改善经济要素的配置效率,就可以提升经济效率,进而促进经济增长。
谢长泰[6]等的研究表明,与理想状况相比,中国的全要素生产率提升可以超过100%;即使是与美国的实际水平相比,中国的全要素生产率仍然会有3%—50%的提升,这表明如果中国能够改善要素配置,经济增长的潜力就会持续提升。
总体来讲,跨部门、跨行业的生产率都存在差别。一个国家的企业生产率越集中,表示企业之间的生产效率越是接近的;越分散则表示不同企业的生产效率有差别。而中国企业的生产效率有很大的提升空间。
中国消费互联网的发展已经证明了提升要素配置促进经济增长的作用。阻碍要素配置效率方面有几个重要的调整成本,包括企业所有权和政治的联系、大量的非正式部门等。
但人工智能的发展会导致这些非正式部门的快速消失。这就是为什么产业互联网和人工智能的出现会改善要素配置效率,促进经济增长的原因。
03
产业互联网的影响
在消费互联网中,已经出现的代表性企业有美国的谷歌、苹果、脸书、亚马逊,中国的百度、阿里巴巴、腾讯。
但产业互联网还正在发展中,目前还看不到明确的巨头。美国的通用电气是在产业互联网方面转型最坚定的企业,但目前仍然没有看到非常明显的竞争优势。
什么是产业互联网?笔者的定义是,产业互联网是通过互联网来重构产业的价值链和创造新的价值。而不是简单地在互联网上加一个东西,其范围其实是非常广泛的。
需要正确理解产业互联网与通常所讲的“互联网+”或“+互联网”的区别。
以婚介市场为例,婚介市场是一个具有很大的商业价值和社会价值的大市场。简单的“互联网+”就是把婚介搬到网上去,即国内很多婚恋网站的模式。这种做法只是把线下的婚介搬到线上。其目标是尽可能多地促进互动(interaction)。但美国有一家与众不同的婚恋匹配的网站,叫做eHarmony。
中国的很多婚恋网站注册很容易,但美国这家公司却不同。如果想要成为该网站的会员,需要花四个小时做心理学专家仔细设计的250道问题。这种做法的好处在于可以剔除哪些不是严肃找婚恋对象的用户,有效提升匹配效率。
这里的核心就是进行价值链的重构。整个网站是在信任的基础上,给用户提供严肃、有效的匹配。这种做法完全改变了婚恋网站的商业模式和治理方式,这就是产业互联网与“互联网+”的区别。
产业互联网是一个巨大的市场,发展空间巨大。通用电气的估计是32万亿美元,占到了美国46%的GDP。根据思科的估计,到2020年,美国公司的利润通过产业互联网可以增长21%。
虽然目前中国市场上没有明确的产业互联网巨头,但可以期待产业互联网会为中国带来同样的巨变。
革命性的新产品或新服务一定会出现,类似于苹果创造新的市场,或是特斯拉改变世界汽车产业的方式。特斯拉的意义在于其完全颠覆了一个产业。
电动车并不是新东西,爱迪生是最早看到电动车前途的。但真正驱动汽车产业大发展的是福特的T型车和汽车能源的使用方式。
特斯拉的重要性在于其对汽车产业的两个根本性改变:自动驾驶系统和充电电池系统。这就是为什么特斯拉的市值会超过传统的汽车巨头通用汽车。需要看到的是,特斯拉试图做的是成为汽车产业的微软和英特尔的结合体。
新的应用效率可能会降低成本,提升满意度和安全性。因为在整个生产、服务领域,都会有非常大的改变。
提到工业物联网,如果效率的提升会带来整个产值的增加,那么无论是航空、电力、健康、铁路,还是石油、天然气,产业互联网和人工智能对上述产业的改变都会非常大。
04
平台化组织
今天全球十大公司很多都是平台型公司,包括谷歌、苹果、腾讯、阿里巴巴等。平台经济的商业模式会影响到很多层面,包括国家层面、地方政府、城市,以及各个产业。人工智能的出现,会加剧这个过程的演变。
以PC产业的演变为例,传统计算机产业的典型代表是早期具有垂直整合结构的IBM,即计算机的所有零部件都由自己生产。但今天的计算机产业是一个非常碎片化的产业,由极少数的关键玩家主导,如芯片由因特尔主导,操作系统则由微软主导,其他的部件则由标准化配件提供商生产。
计算机产业从垂直整合结构演变为分散水平结构,意味着这个产业的利润被少数平台型公司获取,其他公司只能赚非常薄的利润。这是非常重要的演变趋势,PC产业的演变,将来有可能会在很多产业中复制。
任何一个行业,如果像PC产业一样演变,那就意味着产业里绝大部分公司只能退化成一个提供标准化组件并获取市场平均利润的普通公司,而主导产业演变的平台型公司则将领导整个产业并获取绝大部分的蛋糕,如智能手机平台苹果、搜索平台谷歌、电商平台阿里巴巴和社交平台腾讯。
平台型组织的演变会对社会产生的影响主要有三个趋势:
第一个趋势是平台化后,产业的合作和融合更加明显。
一些提供单一功能或服务的企业存在通过其独特服务渗透到其他产业进行平台覆盖的可能。产业的分散化意味着核心的主导公司可能会通过技术来颠覆传统产业。
如在汽车产业,传统的主导公司是通用、福特、奔驰等汽车制造商,但在自动驾驶和新能源时代,谷歌和特斯拉可能通过其全新的驾驶技术或充电技术颠覆传统产业。新兴的科技公司也有可能通过智能手术技能来颠覆传统的医疗产业。
第二个趋势是人工智能的基础设施能够促进增长,包括硬件、数据。庞大的数据会使大公司的优势加强。
平台的演变会影响一切经济形态和组织形态,意味着平台的模式将主导一切,平台型的国家会出现。未来,美国和中国将会成为全球经济的超级两强,其他国家则会成为全球政治和经济上的组件和配角。
人工智能会使得中美两国在资本、技术方面的优势进一步强化。而平台型城市会使得人才和资本的规模效应更强,更集中在大城市。深圳就是非常典型的平台城市。
第三个趋势是平台型产业的普遍化。
现在还没有看到人工智能这个产业里出现非常典型的突出玩家,但将来一定会有某个公司提供主导机器的操作系统。这个产业一定会产生一个领导性的企业,类似于微软的超级平台。
可以肯定的是,目前经济体量较大的国家在人工智能方面的投入会非常多,并进一步导致国家间的强弱分化。
05
结 论
本文主要讨论了三个问题:人工智能和互联网能否带来新的经济增长?产业互联网将如何影响产业竞争的格局,它对整个经济的增长有什么样的影响?平台型组织的演变会对社会产生多大的影响?
无论是历史的数据还是理论分析都表明,可以适度乐观看待产业互联网和人工智能对经济的影响。人们有理由相信产业互联网和人工智能会大幅度提升生产力,并推动长期经济增长。
同时,笔者认为,平台加组件的模式会横扫一切组织形态,包括国家、城市和产业,整个社会都会全面向平台化发展。
关键词:人工智能;教学改革;教学方法
引言
人工智能(ArtificialIntelligence)是一门研究和模拟人类智能的跨领域学科,是模拟、延伸和扩展人的智能的一门新技术。由于信息环境巨变与社会新需求的爆发,人工智能技术的日趋成熟。随着AI3.0时代的到来,大数据、云计算等新技术的应用也愈发广泛,对于管理类人才来说,加强对人工智能知识的深入学习,不断将人工智能技术与管理知识结合起来,对其未来职业生涯的发展有着重要作用。人工智能是一门前沿学科,管理学院开设人工智能课程的目的是为了更好地培养学生的技术创新思维与能力,基于其覆盖面广、包容性强、应用需求空间巨大的学科特点,通过概率统计、数据结构、计算机编程语言、数据库原理等基础课程的学习,加强学生解决实际问题的能力,为就业打下基础。本文基于社会对于人工智能领域的人才需求,结合诸多长期从事经管类专业课程教学的老师意见,针对管理类人才的人工智能课程教学内容与方法进行探讨,以期对中国高校人工智能课程教学改革研究提供帮助与借鉴。
1、教学现状与问题
作为一门综合性、实践性和应用性很强的理论技术学科,人工智能课程内容及内涵及其丰富,外延极其广泛。学习这门课程,需要较好的数学基础和较强的逻辑思维能力。针对管理类人才,该课程在课程教学过程中存在几个较为突出的问题。(1)课堂教学氛围枯燥目前,中国大多数大学仍采用传统的课堂教学模式,在教学过程中照本宣科,忽略与学生的互动,并且缺乏能够有效引起学生学习兴趣与加深知识理解的教学环节设置,如此一来大大降低了学生自主思考的能力。在进行人工智能相关课程知识讲解时,随着章节的知识难度不断增加,单向介绍式的枯燥教学方式无法反映人工智能学科的全貌,课堂讲解难以同时给以学生感性和理性的认知,部分学生因乏味的课堂氛围渐渐无法跟上教学进度,导致学习动力不足。(2)基础课程掌握不牢管理类专业的学生大部分都会走向更加具体化的管理岗位,具有多学科的素养,但这也导致很多学生所学知识杂而不精。学生在基础不夯实的情况下去学习更高层面的知识,给学生学习与老师教学都造成了很大困扰。人工智能课程知识点较多,涵盖模式识别、机器学习、数据挖掘等众多内容,概念抽象,不易学习。一些管理类专业的学生未能熟练掌握高等数学、运筹学、数据结构、数据库技术等先修课程,缺乏一定的关联思考和研究意识,导致课程学习难度增加,产生学时不足和教学内容难点过多的问题。(3)教学与实际应用脱节当下,人工智能广泛应用于机器视觉、智能制造等各个领域,给学生提供了大量的现实案例,使得人工智能不再是高深莫测的理论,而是现实中可以触及的内容。例如,在机械学科领域,人工智能技术是电气工程、机械设计制造、车辆工程等方向的重要技术来源;在医疗领域,是医疗器械的创新生产源动力;在能动领域,是高端能源装备与新能源发展的重要驱动;在光电信息与计算机工程领域,技术的发展时刻推动着智能科学与技术核心价值的提升。然而,对于管理类专业的学生来说,现阶段的人工智能教材涵盖许多智能算法及相关理论,在教学过程中常常涉及到很多从未接触过的抽象理论和复杂算法,书本中的应用实例大多纸上谈兵,缺乏专门适用于管理类专业知识与人工智能技术相结合的教学实践,加上一些教师授课方法单一,不利于引导学生将人工智能算法应用于现实生活。另外,大学生对知识的理解能力差异很大,教师采用统一的方式教给他们,这使一些学生无法跟上和理解,教师也无法控制学生的学习状况,导致学生缺乏动力。因此,如何结合学生的现实情况,提高他们的动手能力和实践经验也是人工智能课程教学要考虑的问题。
2、管理类人才的人工智能课程教学改进策略
课程教学改革是一项提高大学教学效果和人才培养质量的重要手段。如何在时代背景下应用新技术和新思想进行实施课程教学改革是高校亟待解决的问题。对于高校的教学工作而言,教学目标、教学内容和教学方式的变化不再是课程资源的简单数字化和信息化,而是充分利用时代信息资源优势的新型教学模式。针对管理类专业人工智能课程教学过程中存在的问题,可以从教学方法改进和教学内容设置两个方面进行课程教学改进。
2.1教学方法改进
教师对学生具有引领作用,其教学方法的改进能够带动学生改进自身学习方法。(1)启发式案例教学案例教学法就是教师根据教学目标、教学内容以及教学要求,通过安排一些具体的教学案例,引导学生积极参与案例思考、分析、讨论和表达等多项活动,是一种培养学生认知问题、分析和解决问题等综合能力的行之有效的教学方法。启发式案例教学以自主、合作、探究为主要特征,调动学生的学习积极性,并紧密结合人工智能领域的相关理论与方法,有效理解知识要点及其关联性,适用于管理类专业学生的教学。具体而言,高校基于其问题启发性、教学互动性以及实践有用性等特点,可以建立基于人工智能知识体系的教学案例库,虽然这项建设将极具挑战性与耗时性,但具有很强的积极效果:培养学生较强的批判性思维能力,更多地保留课程材料,更积极地参与课堂活动,对提高教学质量、培养具有人工智能背景的管理类人才具有重要意义。例如,通过单一案例教学,让学生掌握相关基础知识原理及应用;通过一题多解的案例使学生思考如何获取最有效的解题方法;通过综合案例的设计,启发学生全方位地探索问题的解决方案。(2)研讨互动式教学研讨互动式的各个教学环节是逐渐递进、有机结合的。研讨是基于学生个体的差异性,在课堂讨论的过程中对学生做出评判,从而对不同类型的学生开展针对性的教学。互动则是在研讨的基础上,通过老师与学生、学生与学生的互动,让学生主动参与到课堂教学的过程中来。在人工智能课程教学过程中,教师通过课堂讨论了解学生对于知识点的掌握情况,可以有针对性地设计教学内容,例如,对于学校积极性不强的学生,将人工智能理论内容与学生个人兴趣范畴、社会产业发展及研究现状联系起来,能够极大程度地提高学生学习的自主能力;对于基础知识较为薄弱的学生,可以在教师的指导下查阅相关文献资料,根据自己的理解撰写心得报告,并在课堂或课外进行师生互动。像这样研讨与互动相结合的模式。有助于增强学生的探索和求知欲望,建立起浓厚的学习氛围。(3)有效激励式教学人工智能是引领未来的战略性技术,人才需求量极大,对教师的教学水平也提出了更高要求,因此,进行有效激励极为重要。在学生激励方面,可以举办各类人工智能竞赛项目,设置相应项目奖学金,吸引学生参与实践,调动学生做研究、发论文的积极性。例如,教育部主办的中国研究生人工智能创新大赛,围绕新一代人工智能创新主题,激发学生的创新意识,提高学生的创新实践能力,为人工智能领域健康发展提供人才支撑。高校也可以借鉴这种模式,在各学院乃至全校开展此类竞赛项目,激发学生的创新能力与团队合作能力,鼓舞更多学生加入到人工智能课程的学习中来,激发其学习兴趣。在教师激励方面,在教师聘任和提升过程中把参加学生课程制定、课堂与课外作业、课程项目和论文指导等看作教学任务的一部分,鼓励教师积极参与这些活动。(4)学科渗透式教学人工智能学科知识融合程度较高,学科交叉性强。基于人工智能的学科交叉性特点,增强管理类人才对学科应用的领悟,可以采取开展学科渗透式教学的方法。从2015年起,国务院和教育部先后印发了《国务院关于积极推进“互联网+”行动的指导意见教育》、《高等学校人工智能创新行动计划》等文件,“互联网+”、“智能+”已经渗透到各个领域,人类进入数字经济时代,社会需求“技术+管理”的高端复合人才。例如,基于工业4.0和强国战略,人工智能技术在智能制造的应用极为广泛。上海理工大学非常重视少数民族预科班的教育质量。为增强少数民族管理类人才对该领域应用的认识,我们请机械工程、能源动力领域的相关专家以授课或讲座的形式,进行相关领域知识和发展趋势的讲解,使学生理解更为透彻。此外,在教学实践过程中,还可以用举办人工智能知识交流会、线上人工智能论坛等形式,促进不同专业间老师、学生对于人工智能知识模块的见解,相互交流、渗透和学习,从而推动人工智能课程教学的改进。
2.2教学内容设置
世界一流大学在人工智能课程内容设置根据不同国家的教育体系设置,肯定会有不同,但颇有共通之处。本文借鉴世界顶尖大学经验,针对管理类专业人工智能课程教学内容进行研究,结合中国教育体系设置,认为应从以下几方面进行改进。(1)核心内容设置为避免学生因为知识点过多而出现杂而不精的问题,势必要精化教学内容。在互联网时代,我们可以使用云计算和其他方式来实现数据信息的传输、存储和处理,通过在线收集和整合网络课程相关数据,挖掘和丰富教学资源,并在整合课程资源的基础上,进行研究方法和前沿知识的扩展。在核心内容设置方面,可以通过收集到的数据资料,选择人工智能领域具有代表性且难易程度适中的知识作为重点,使学生能够在有限的学时内掌握人工智能的知识脉络。例如,编写针对管理类人才的人工智能教材,内容涉及绪论、知识表示与推理、常用算法、机器学习、神经网络等方面的同时,重点增加相应知识点在管理上的应用案例,加强学生对知识点的理解。同时,根据管理类专业偏向领域,开设关联程度较大、应用较广泛的人工智能选修课程,以便学生根据自己的兴趣与需求选修具体方向的课程。(2)注重学生的数理及编程基础良好的数理及编程基础是学习人工智能的前提。只有具备了这些基础,才能搞清楚人工智能模型的数量关系、空间形式和优化过程等,才能将数学语言转化为程序语言,并应用于实验。管理学院人才的数理及编程基础相对薄弱,因此,在安排学生学习人工智能课程之前,建议开设面向全体管理类专业学生的微积分、线性代数、概率论等专业基础数学课程以及C语言、python等编程基础课程,使学生具备数学分析的基础与一定编程基础,为学习人工智能课程打下坚实的基础。另外,可以推进MOOC平台建设,在平台上开设人工智能网络课程,帮助学生掌握人工智能知识基础及专业技能。(3)实验建设为了加强学生对于人工智能知识点间的关联性理解,可以基于不同的应用模块,设计具有前后铺垫、上下关联的综合性实验,设计不同层次的项目要求,同时基于相同的实验课题,让学生分组对实验课题进行攻克,并设置多元化的实验评价体系,通过实验教学过程中反映出的不同进度,让教师能对学生的学习水平做出准确评判,及时进行教学反思,以便更好地开展下一步工作。例如,针对人工智能课程应用中很广的遗传算法,在某一管理规划的具体应用上设置理解-实现-参数分析-具体应用-尝试改进-深度拓展的不同层次的项目要求,在这些项目层次中规定必做项与可选项,让学生基于同一实验课题进行合作学习,然后通过个人自我评价、小组成员互相评价以及教师评价的方式进行打分,对小组整体能力以及个人能力进行综合评估,以期培养学生的自主思考能力。