时间:2023-09-22 09:30:16
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇新能源科学工程,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
据了解,
“新能源科学与工程”是高校根据国务院关于加快培育发展战略性新兴产业的决定而新设的。国务院提出的七大战略性新兴产业包括节能环保产业、新一代信息技术产业、生物产业、高端装备制造产业、新能源产业、新材料产业、新能源汽车产业。其中,对于新能源产业,国家要积极研发新一代核能技术和先进反应堆,发展核能产业。加快太阳能热利用技术推广应用,开拓多元化的太阳能光伏光热发电市场。提高风电技术装备水平,有序推进风电规模化发展,加快适应新能源发展的智能电网及运行体系建设。因地制宜开发利用生物质能。
2011年,“新能源科学与工程”专业将在南京理工大学、华北电力大学、东北大学、河海大学、浙江大学、华中科技大学、中南大学、重庆大学、西安交通大学、上海理工大学、江苏大学等十所高校“生根发芽”。仅江苏就有3所高校设立了这个专业。国家战略性新兴产业把新能源产业作为其中的一部分提出来,可见其重要性,为什么这个产业会受到这么关注?新兴专业学什么?就业前景怎样?本文将对“新能源科学与工程”专业的相关状况做个详细分析,为考生了解、有的放矢的报考服务。
发展前景
东北大学博士生导师蔡九菊教授认为,发展新能源符合社会发展的需要,市场前景广阔,同时相关的专业人才需求量大。近年来我国经济持续高速增长,传统能源消耗量大幅增长,引发的能源短缺和环境污染等问题成为制约我国经济又好又快发展的瓶颈,为此,发展新能源产业势在必行。一方面,发展新能源产业孕育着巨大的投资机会,将有效拉动经济增长;另一方面,也可以有效地改变经济增长方式,引领中国经济走向低碳化。
目前,中国大力推动新能源产业的发展,在加大水电、核电、太阳能和风能设施建设的同时,计划在2020年前使新能源消费比例达到15%,规划到2020年,中国在新能源领域的总投资将超过3万亿元。虽然我国新能源产业迅速发展,然而推动新能源行业前进的人才供给却显得捉襟见肘。高素质专业人才和核心技术的缺失,已严重阻碍了我国当前新能源产业的健康发展。据估算,到2020年在风电领域的从业人员就将会有几十万,其中包括几万名专业人员。根据《核电中长期发展规划(2005―2020)》,在未来10年内,国家每年平均要开工建设5-8台以上的核电机组,预计每年对核电人才的需求有数千人,而全国每年相关专业的毕业生总量不超过500人。对于快速发展的太阳能产业而言,人才供应同样面临严重不足。因此,亟待加大新能源产业人才的培养力度,以满足新能源产业发展对高素质人才的迫切需求。
专业培养目标
新能源科学与工程专业面向新能源产业,根据能源领域的发展趋势和国民经济发展需要,培养在新能源科学研究及其利用的技术开发与实施等方面既有扎实的理论基础,又有较强的实践和创新能力的专门人才,以满足国家战略性新兴产业发展对该领域教学、科研、技术开发、工程应用、经营管理等方面的专业人才需求。学生的修业年限为4年,对于完成培养要求者授予工学学士学位。
专业课程体系
新能源科学与工程专业在课程内容体系的设置上紧密结合培养目标要求,既注重“厚基础”,突出基本理论与方法,又注重“宽方向”,丰富课程知识结构。注重学生“知识结构”的构建和“能力结构”的形成。
理论部分:在基础教育系列中重点强调基础性与综合性相结合的原则。包括高等数学、大学物理等工程技术基础课群;大学外语、原理等社会科学课群。在专业教育系列中重点遵循厚基础、宽口径的原则。包括工程热力学、流体力学、传热学、能源系统工程、可再生能源及其利用、光伏科学与工程、风力发电原理、生物质能工程、核能利用基础等专业平台课群;光伏材料与太阳能电池、风力发电场等专业选修课群等。
实践部分:重点培养学生的独立思考能力、动手能力和工程实践能力。单独设立“能源工程综合实验”课程,目的是充分利用学科的开放式实验室,指导学生开展设计性、综合性实验项目,培养学生发现问题、解决问题的创新能力。
毕业生就业去向
毕业生就业前景广阔,可在核能、风能、太阳能、生物质能等新能源和节能减排领域的企事业单位、高等院校和政府部门从事技术研发、工程设计、新能源科学教育与研究、新能源管理等相关工作。
如河海大学主修课程包括:理论力学、材料力学、机械设计基础、电工技术基础、微型计算机原理及应用、工程热力学、气象学、太阳能发电电气设备与系统、太阳能发电并网技术、项目及企业管理等。毕业生就业方向:培养太阳能利用工程系统设计、研究、运行、施工管理等方面知识的高级工程技术人才。
南京理工大学主要以新能源的能源转换过程、高效清洁能源利用与功率转换技术为核心,培养掌握上述领域基础知识和专业技能、具备良好综合素质的高级工程技术人才,为太阳能、风能电站和供电公司等电力部门提供后续人才及技术支持。南京理工大学对新能源科学研究与人才培养已有25年的历史,包括太阳能、风能以及能效节能的可持续能源投资中,还有一个巨大的市场有待开发――能效和节能。可再生能源的开发在中国有广阔的空间,新能源科学与工程专业人才的缺口很大,目前学校在此方向培养的硕士生一入校就被用人单位盯上。
新闻链接
北大世界新能源战略研究中心成立
2011年3月2日上午10点,北京大学世界新能源战略研究中心正式成立。该研究中心将立足于国际政治研究,密切关注世界新能源发展趋势,重点分析世界上主要能源消耗大国的新能源战略,为国内相关的部门和企业提供国际新能源合作方面的评估和咨询服务。中心致力于整合北京大学校内外国际关系领域和新能源战备与技术领域的专家、学者,联系国内外有关政府部门、新能源企业,努力形成一个跨学科、跨领域、跨地域的研究平台,成为在世界上具有影响力的国际新能源战略与国际合作的学术研究、资料信息、学术交流、人才培养及咨询服务基地。
新能源科学与工程专业简介
新能源科学与工程是中国普通高等学校本科专业。
该专业培养具备能源工程、传热学、流体力学、动力机械、动力工程等基础知识,掌握新能源转换与利用原理、新能源装置及系统运行技术、风能、太阳能、生物质能等方面的新能源科学领域专业知识,能在国家风能、太阳能、地热、生物质能等新能源领域开展教学、科研、技术开发、工程应用、经营管理等方面的高级应用型人才,跨学科复合型高级工程技术人才,和具有较强工程实践和创新能力的专门人才。
新能源科学与工程专业课程
工程力学,空气动力学,电路,电机学,电子技术基础,自动控制理论,电力电子技术,机械设计基础,风能资源测量与评估,风力机理论与设计,风力发电机组原理,风电机组调节与控制,风电场电气部分,风电场规划与设计等。
新能源科学与工程专业就业前景
新能源基本用来发电。分别有风能,太阳能,生物能,潮汐能,地热等。但现在技术上比较成熟的还是前两者。不过其中风能的缺点就是在国内并网比较困难,风能应用最好的是欧盟。太阳能的话,其制造过程污染很大。总的来说新能源前景绝对光明,只是道路可能有些曲折,还要看国家政策的侧倾力度。
本专业毕业生就业前景广阔,可在风能、太阳能、生物质能等新能源和节能减排领域的企事业单位、高等院校和政府部门从事技术研发、工程设计、新能源科学教育与研究、新能源管理等相关工作。
专业培养在风能、太阳能、地热、生物质能等新能源领域从事相关工程技术领域的开发研究、工程设计、优化运行及生产管理工作的跨学科复合型高级工程技术人才,和具有较强工程实践和创新能力的专门人才。专业学生主要学习新能源科学与工程的基础理论和基技能,受到新能源科学与工程方面的基训练,具有独立思考能力、动手能力和工程实践能力。
新能源科学与工程科必备能力
1.具有较扎实的数学、物理、化学、机械、电子等学科基础知识;
2.较好的人文社会科学基础和管理科学基础知识;
3.掌握新能源科学与工程的基知识和基理论;
4.具有综合分析和解决实际问题的基能力;
5.能比较熟练地阅读专业的外文资料;
关键词:风力发电;太阳能发电;人才需求;风能与动力工程;新能源科学与工程
作者简介:陈建林(1975-),男,湖南浏阳人,长沙理工大学能源与动力工程学院,副教授;陈荐(1967-),男,湖南衡阳人,长沙理工大学能源与动力工程学院,教授。(湖南 长沙 410114)
基金项目:本文系长沙理工大学教研教改项目(项目编号:JG1236)的研究成果。
中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)22-0020-03
风电和太阳能发电是我国战略性新兴产业之一,发展风能与太阳能也是我国实现传统化石能源为主过渡为可再生能源和清洁能源为主的必然之举。近年来,我国风电与太阳能发电迅猛发展,对新能源产业人才提出迫切需求。自2006年以来,我国相继有华北电力大学、河海大学、长沙理工大学等多所高等院校开办“风能与动力工程”本科专业;按照2010年《教育部办公厅关于战略性新兴产业相关专业申报和审批工作的通知》,自2011年开始,我国部分高等院校又设置“新能源科学与工程”、“新能源材料与器件”等新能源产业相关的本科专业;2013年,根据教育部要求,“风能与动力工程”专业将统一更名为“新能源科学与工程”专业。面对新能源产业发展需求和我国新能源产业人才培养现状,本文对“风能与动力工程”专业过渡为“新能源科学与工程”专业的人才培养模式进行探索与实践。
一、我国风电产业发展现状
1.总体装机情况
自2007年,我国风电装机容量呈高速增长趋势。如表1所示为2001~2012年我国新增及累计风电装机容量(数据来源:CWEA)。2010年,我国(不包括台湾地区)新增风电装机1893万千瓦,累计风电装机容量4473万千瓦,超过美国跃居世界第一位。至2012年底,全国新增安装风电机组7872台,装机容量1296万千瓦;累计安装风电机组53764台,装机容量达到7532万千瓦;风电并网总量达到6083万千瓦,发电量达到1004亿千瓦时,风电已超过核电成为继煤电和水电之后的第三大主力电源。
图1 2001~2012年中国新增及累计风电装机容量
至2012年上半年,我国规划建设的百万千瓦级、千万千瓦级风电基地包括甘肃酒泉基地(首期380万千瓦)、蒙东基地通辽开鲁基地(150万千瓦)、蒙西达茂巴音基地(160万千瓦)、河北承德基地(100万千瓦)、新疆哈密基地(1080万千瓦)的建设项目已部分或全部完成。此外,全国还有6个百万千瓦级风电基地正在组织开展建设前期工作,分别为宁夏贺兰山基地(450万k千瓦)、甘肃武威民勤红沙岗基地(100万千瓦)、吉林四平大黑山基地(170万千瓦)、锡林郭勒基地(300万千瓦)、兴安盟桃合木基地(200万千瓦)、呼伦贝尔基地(250万千瓦)等。
至2012年底,全国累计核准风电项目1651个,累计核准容量9040万千瓦(含国家核准计划外项目517万千瓦),其中累计核准容量2084万千瓦,居全国之首。2012年上半年全国风电累计吊装容量6190万千瓦,累计并网容量5572千瓦,在建容量3468万千瓦,并网容量占核准容量的62%。其中内蒙古风电并网容量突破1500千瓦,领跑全国,河北、甘肃、山东、黑龙江、江苏、新疆、山西、广东、福建等省区并网容量也均超过100万千瓦。
2.风力发电投资企业情况
2012年上半年,国电集团新增并网容量190万千瓦,累计并网容量1172万千瓦,继续保持全国风电并网容量首位;华能集团新增并网容量100万千瓦,累计并网容量759万千瓦,居第二;大唐集团新增并网容量101万千瓦,累计并网容量675万千瓦,居第三。五大发电集团累计并网容量3170万千瓦,约占全国并网容量的57%。2012年上半年全国投资企业基本保持稳定发展状态,同比2011年上半年并网容量降低了约16%。表1所示为2012年上半年主要投资企业并网容量统计情况。
3.风电机组制造商情况
大规模风电基地建设,为我国风电机组制造商开拓了广阔的市场。2012 年中国风电新增装机容量排名前二十的企业几乎占据了国内98%的市场份额,其中金风新增风电装机容量最多,达到2521.5兆瓦,占据19.5%的市场份额。2012 年,我国风电新增装机容量排名前三的企业分别为金风、联合动力和华锐。2012年中国风电新增与累计装机排名前二十的机组制造商分别如表2与表3所示。
另外,我国海上风电也取得较大进展。截至2012年底,中国已建成的海上风电项目共计389.6兆瓦,是除英国、丹麦以外海上风电装机最多的国家。我国海上风电开发提供风电机组的制造商中,华锐、金风、Siemens 所占份额较大,机型主要以2MW以上的风电机组为主。
二、我国风电人才需求及培养现状
风电产业的高速增长也带来了风电人才的短缺。我国的风电人才需求主要为三个方向:一是风电开发企业,如国电、华能、大唐、国华、华电、中电投、中广核、华润等下属的风电场,主要从事风电场运行与维护方面的工作;二是风电机组制造商,如华锐风电、金风、广东明阳、国电联合动力、湘电风能、Vestas、上海电气、东汽、Gamesa、GE等,这类企业一般需要高端的风电研发人才;三是风电规划设计或建设单位,主要从事风电场的规划、设计和施工等方面的工作。
目前,我国风电人才培养大体上形成了三个层次的格局:第一梯队是博士、硕士研究生培养,主要由国内各高校及研究机构借助风电领域的课题研究培养和造就一批具有较高学术水平、创新能力的风电领域高层次人才。第二梯队是本科生培养。据统计,自华北电力大学2006年创办我国第一个风能与动力工程本专业以来,包括长沙理工大学、河北工业大学、内蒙古工业大学等,全国已开设风能与动力工程本科专业学校有16所(2013年起,“风能与动力工程”专业更名为“新能源科学与工程”专业)。第三梯队是高职生。高职院校主要培养从事风电机组制造、风电场运行与维护的一线技能型人才。
从长沙理工大学(以下简称“我校”)首届风能与动力工程专业毕业生就业考研与出国情况来看,毕业生出现不同层次的走向。截至2013年3月20日,风能与动力工程专业2009级毕业生63人,已签约49人,就业走向主要为中国大唐集团、国电集团、华能集团、电力投资集团、华润集团等发电企业的下属新能源公司,少部分为风电机组制造商和电力建设单位;读研7人,分别被华北电力大学、中南大学、湖南大学等大学预录取;出国深造2人,分别为丹麦科技大学和德国汉诺威大学预录取。从目前人才需求角度来看,由于近几年风电项目的迅速扩张,风电行业对风电场运行与维护的技能型人才有较旺盛的需求。
在风电大规模发展的同时,近几年我国太阳能发电也迅速扩张。截至2012年底我国累计光伏装机容量达到7.5GWp,预计2013年将新增光伏装机容量为10GWp,计划2015年新增光伏装机容量为40~50GWp,2020年新增80~100GWp。风电和太阳能发电作为新能源中两支主力军,出现并驾齐驱的局面,产业发展必然对专业人才提出迫切需求。2013年,教育部统一将“风能与动力工程”专业更名为“新能源科学与工程”专业。本专业也将面向更宽广意义的新能源产业需求,对专业培养方案进行调整。
三、新能源科学与工程专业人才培养模式的探索与实践
本科教育既是培养工程技术人才的中坚力量,又承担着为行业高端人才培养打基础的重要任务。本科生的优势在于理论基础、思维方法和发展潜力,但缺乏的是技术细节方面的训练。因此应始终以培养学生“基础理论扎实、工程实践能力与创新能力强为目标。从新能源产业自身发展角度来说,需要一批具有宽广知识体系、能够引领新能源技术发展的高水平创新型复合人才出现。新能源科学与工程本科教育应该既注重专业的基础性,又要注重工程实践性。为此,我校能源科学与工程专业人才培养模式在以下几方面进行了探索与实践。
1.以“厚基础、宽口径、强能力、高素质”为原则确立人才培养目标
2009年首届招生以来,本专业依托本校能源电力优势学科,立足新能源国家战略性新兴产业,面向风电产业人才需求,确定了“培养德、智、体、美等全面发展,基础扎实,知识面宽,有较高的综合素质、工程实践能力和创新能力强,具备较强的计算机应用能力和较高外语水平,系统掌握风能与动力工程专业基础理论和基本知识,能胜任风电场的规划、设计、施工、运行与维护,风力发电机组设计与制造,风能资源测量与评估,风力发电项目开发等风能与动力工程专业的技术与管理工作,并能从事其他相关领域的专门技术工作应用型高级工程技术人才”的人才培养目标。2011年,本专业被确定为湖南省省级特色专业。2013年,根据教育部对本科专业整理工作的统一部署,将“风能与动力工程”专业将更名为“新能源科学与工程”专业。本着“厚基础、宽口径、强能力、高素质”的原则,对专业培养方案做了相应的调整,但仍然保留“风能与动力工程”专业的特色,以风力发电为重点,涵盖太阳能光伏/光热发电等新能源知识体系,培养具有宽厚理论基础和创新精神、实践能力强的应用型高级工程技术人才。
2.注重基础性和实践性相结合设置课程模块与培养环节
根据学校的特色和优势,编制风能与动力工程人才培养计划,共开设必修课35门,开设选修课23门,现已开出课程门数为58门,学生需选修33学分选修课程,选修课在总学分中的占比为19.6%。设置了理论力学、材料力学、风力机空气动力学、机械设计基础、电机学、电路理论、自动控制原理、风力发电原理、光伏发电原理与应用、太阳能热利用原理与应用等主要理论课程和计算机辅助设计、电工电子技术、微机原理与接口技术、风资源测量与评估、风电机组设计与制造、风电机组控制与优化运行、风电场电气工程、海上风力发电等技术类课程;以金工实习、电子工艺实习、机械设计课程设计、风电场电气工程课程设计、风电机组设计与制造课程设计、风电场认识实习、检修拆装实习、仿真实习、运行(毕业)实习、毕业设计(论文)等作为主要实践教学环节。风能与动力工程专业在教学环节的设置上实践教学贯穿全程。共4次集中实习,课程模块与培养环节关系如图2所示。
图2 风能与动力工程专业课程模块与培养环节关系
3.在工程实践中培养创新意识和创新能力
创新型人才是支撑和推动新能源产业发展的主要动力。创新源于实践,在工程实践中培养创新意识和创新能力。长沙理工大学经过多年的探索与实践,构建了培养“具有创新精神的应用型人才”的学生能力结构体系、能力培养的实施方案、实践教学体系以及管理模式,提出了“工程基础训练+工程创新训练+大工程意识训练”的工程教育模式。基于工程教育理念,形成了“三层次、四模块、三结合”的实践教学体系,即实验、实习、设计等主要实践教学环节按基础训练、提高训练、综合训练三个层次进行系统设计;将实践教学内容分为实验、实习、设计、课外实践四个模块;采用课内外、校内外、第一课堂与第二课堂三结合的方式组织实践教学。
新能源科学与工程专业是一个实践性很强的专业,在办学过程中十分重视实践教学,并建立了稳定的校内校外实习实训基地,通过加强实践教学培养学生的创新意识和动手能力。
(1)校内实习基地。建立校内“风电机组运行特性分析实验室”、“风力机变桨控制实验室”、“风力机偏航控制实验室”、“风力机组检修拆装实验室”、“大型风电场运行仿真实验室”、“风力机叶片振动特性实验室”、“风力机设备腐蚀与磨损实验室”、“光伏发电实验室”等专业教学实验室,为专业实验课、认识实习、拆装实习、仿真实习提供良好的条件。
(2)校外实习基地。根据本专业人才培养目标和要求,制定与社会发展需要相适应的人才培养方案,与大唐华银城步南山风电场、华电郴州仰天湖风电场、中电投九江长岭风电场、大唐漳浦六鳌近海风电场、湘电集团有限公司、湖南兴业太阳能有限公司、北京木联能软件技术有限公司等省内外相关企业共建“风能与动力工程”专业,形成学校与企业产、学、研全面合作的长效机制。风电专业骨干教师共18人次先后到内蒙古华电新能源辉腾锡勒风电场、福建大唐漳浦六鳌近海风力发电场、河南南阳方城风电场、新疆电力设计院、大唐甘肃酒泉风电场等风力发电企业进行技术交流和科技服务。风电专业学生在华电郴州仰天湖风电场、宁夏贺兰山风电场与太阳山光伏电站等基地开展了丰富的暑期实践活动。依托专业实验室,学生开展了大量科技创新实践活动,专业教师指导学生开展了国家级(共4项)、校级(4项)“大学生研究性学习与创新性实验项目”的研究工作;参加全国大学生节能减排社会实践与科技竞赛、“挑战杯”湖南省大学生课外学术科技作品竞赛等各类科技性竞赛活动,获得较佳的成绩。
4.转变技术类或实践类课程的学习过程
本科教育的缺失是职业技能或技术细节方面的训练。理论知识宽广但实践动手能力差是目前本科教育存在的较普遍现象。本科毕业生感觉学了很多东西,又感觉什么也没有学到,学到的都是一些理论或概论性的东西。相反,高职院校的职业技能针对性很强,注重实际动手操作能力的培养,而弱化理论知识体系的教育,相比于本科生,高职生在职业技术方面更容易上手。但如果本科生像高职生那样培养,势必过于狭隘,也违背了大学本科教育的初衷。本科生的优势就在于理论基础、思维方法和发展潜力。因此,本科生的理论基础课程的学习可以沿用传统的书本教学为主,培养思维方法;技术类或实践类课程学习则应放弃那种“先书本,再实践”或“只有书本,没有实践”的教学方式,而应遵循“在实践中学习”的原则。针对不同的专业特点有选择性地开设或加强职业技能型的课程。对于本专业来说,则应加强计算机绘图、电气与控制、模拟仿真、机械设计与制造等模块的技能培养。如此,本科生则不但具有宽广的理论基础,而且具有较强的职业适应能力。
四、结论
风电与太阳能发电作为我国战略性新兴产业,呈现蓬勃生机的发展局面。新能源产业发展为新能源科学与工程专业毕业生提供了广阔的就业空间,同时本专业人才也必将成为推动新能源产业发展的动力。本专业应以“工程实践能力”为核心,夯实理论基础,强化实践能力和创新意识的培养,支撑新能源产业的发展。
参考文献:
[1]中国可再生能源学会风能专业委员会.2012年中国风电装机容量统计[J].风能,2013,(3).
[2]李俊峰,蔡丰波,唐文倩,等.中国风电发展报告2011[M].北京:中国环境科学出版社,2011.
[3]袁剑波,郑健龙.工程实践能力:培养应用型人才的关键[J].高等工程教育研究,2002,(3).
[4]李录平,张拥华.基于工程意识和能力培养的理工院校实践教学改革与探索[J].黑龙江教育,2010,(4).
[5]李录平,张拥华,周键,等.高等学校实践教育多维度理念探析[J].中国大学教育,2011,(11).
[6]何建军,陈荐.风电人才需求与人才培养模式的研究[J].中国电力教育,2010,(31).
[7]姜玉立,何伟军.我国风电人才培养现状、问题及对策[J].中国电力教育,2012,(24).
关键词:课程体系 新能源科学与工程 专业建设 光伏技术
中图分类号:G642.3 文献标识码:C DOI:10.3969/j.issn.1672-8181.2013.19.023
新能源产业人才培养落后于产业发展,已严重阻碍了我国当前新能源产业的健康发展,培养新能源方面专业技术人才已经成为当务之急[1-3]。新能源科学与工程专业是教育部2011批准的第一批战略性新兴产业专业,目前处于初步形成和探索阶段,没有现成的经验和模式可以借鉴。明确准确的培养人才定位,形成可操作性强、结构合理的课程体系是新能源科学与工程专业建设迫切需要解决的一项重大课题。
1 新能源科学与工程专业存在的问题
新能源科学与工程专业是2011年开始招生的战略性新兴产业专业,大部分高校都是在原有能源与动力工程专业基础上开始几门新能源领域相关的课程,专业培养方向、课程体系设置等方面存在不少问题。
第一,专业定位、培养方向模糊。在原有能源与动力工程专业基础上开设几门新能源领域相关的课程,培养出来的学生无法满足企业对专业人才的需求。
第二,设置的专业基础课程与专业课程的知识结构不成体系、不能相互支撑。新能源本身涵盖学科知识领域广,学生学习困难,难以达到理想的学习效果。
第三,缺乏合理的实践、实训体系。新能源技术涉及到多个领域,多种技术,要想达到理想的教学效果,培养合格的具备实践应用能力和创新能力的复合型人才,必须开设多种实践、实训教学,但教学设备状况根本无法满足人才培养的需求。
2 新能源科学与工程专业人才培养方案的制定思路
江苏是光伏产业大省,立足地方,结合光伏产业背景,构建常州工学院新能源科学与工程专业的课程体系,探索出与产业背景紧密结合、具有明显特色的专业课程设置,带动人才培养体系创新,实现教育教学质量提高。
第一,依据学校创新型应用人才培养目标,结合新能源技术的理论与实践特点,创新教学理念,提炼新能源科学与工程专业的培养方向与专业特色,为教学改革和创新型人才培养引领方向。
第二,根据学生的认知规律,结合新能源技术的理论与实践特点,以“新能源产业链为主线”构建纵横协同的专业课程体系。实现专业知识覆盖到“新能源材料开发”、“新能源器件制备”、“新能源应用系统设计”等整个完整的新能源产业链。
第三,以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系。纵横之间通过综合实训、课程实验、生产实习、课程设计、毕业设计等环节有机联系,协调运作,有效解决传统实践教学内容依附于理论课程进行划分,模块之间关联度小,知识体系缺乏连续性、系统性的问题,更好地适应信息时代的需求。
3 新能源科学与工程专业人才培养方案构建
3.1 结合江苏省的光伏产业背景,以及学校的实际情况明确培养方向
围绕常州的新能源产业背景,尤其是光伏产业,依托常州新能源学院,确定常州工学院新能源科学与工程专业以光伏技术为培养方向,培养从事可再生能源,尤其是光伏技术开发与应用系统的设计、开发、测试、运行、管理等方面的具有创新精神的应用型高级工程技术人才。
3.2 以“新能源产业链”为主线,构建纵横协同的课程体系
依据“以人为本,因材施教,学、做、创并举”的教学理念,构建纵横协同教学课程体系。纵向以“新能源产业链中的各种技术能力培养”为主线,建立适应新能源技术学科特点,涵盖新能源材料开发技术、新能源器件制备技术、新能源系统设计与应用等三大系列的“模块化、系列化”完整的课程体系。横向按知识体系与认知能力模块化专业课程,以“机电基础”与“理化基础”为两个专业基础模块、以“光伏技术”为专业主导线、“测试技术”为专业副主线、“各种新能源技术”为专业支撑线,“能源管理”为专业特色线四个专业模块,共六个课程模块。在课程体系范围内,根据培养目标的要求,完善教学大纲,科学合理的设置各个系列各门课程的“多样化”内容。
3.3 以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系
以“实践创新能力培养”为主线构建“分层次、递进式”实践能力训练体系。将学生实践能力的培养贯穿于实验、课程设计、毕业设计、技能培训、参加科研项目、创新训练项目、各种学科竞赛等实践教学活动的全过程,体现“全程化”。注重工程实际应用能力的培养,大部分课程设计、毕业设计的选题来自于各类科研项目,科研反哺教学,使学生受到更为系统的工程训练,体现“工程化”。针对基础、能力不同的学生,在实践能力培养上提出不同层次的要求,不搞“一刀切”体现 “多元化”。
4 结语
紧密围绕长江三角洲地方产业背景,确定常州工学院新能源科学与工程专业以光伏技术为培养方向;根据学生的认知规律,结合新能源技术的理论与实践特点,以“新能源产业链为主线”构建纵横协同的专业课程体系;以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系;探索出与产业背景紧密结合、具有明显特色的专业课程设置,带动人才培养体系创新,实现教育教学质量提高。培养多层次的光伏方向的专业人才,服务于地方经济的发展。
参考文献:
[1]王伟东,艾建军,杨坤.新能源产业人才培养问题与对策[J].中国电力教育,2011,(12):5-6.
[2]王彦辉,齐威娜.新能源产业人才培养存在的问题及对策[J].中国成人教育,2010,(2):54.
[3]王永,张渊,刘浩,程超.长三角地区高职光伏专业建设研究[J].职业教育研究,2012,(2):31-32.
作者简介:熊超,常州工学院光电工程学院,江苏常州 213002
袁洪春,常州工学院光电工程学院,江苏常州 213002
关键词: 应用型本科院校发酵工艺学教学改革创新能力培养
国内外同类高校对于发酵工艺学课程教学改革的研究,主要体现在教学方法的研究,较多研究的是如何采用现代化的教学手段,改变过去纯讲授的上课模式。也有研究教学内容改革问题,主要集中在改革过于陈旧的理论知识和增加当代新的发酵理论知识上。但是这些教学研究往往是对全国任何一所院校的食品科学与工程专业发酵工艺学课程教学而言的,缺乏针对性。其研究成果对于像我校这样的应用型本科院校的食品科学与工程专业的应用价值有限。
目前国内外同类高校的研究,主要是针对纯粹的理论教学课程的研究,对于在发酵工艺学课程教学中增加实践创新环节的研究内容极少,而有系统地主要针对发酵工艺学课程教学中增加实践创新环节的研究,并与国内外本学科最新研究成果、教师的科研成果相融合,目前笔者还未发现类似的研究项目。
一、课程教学改革与学生创新能力培养需要解决的主要问题
1.建立新的课程体系。
进一步修改完善专业课教学大纲和教学内容,增设课程实验教学内容,在教学内容上力求基本理论可靠、论述准确、信息量大,尽可能地包括该学科的最新研究进展和研究成果。
2.重点、难点的突出性。
采用以科研促进教学,及时将教师的科研成果融入到教学中,把研究内容充实到讲课和实验中,以提高教学质量。在教学过程中,教师应尽量采用启发式的教学方式,活跃课堂气氛,调动学生的积极性、主动性和创造性,尽可能通过大量的彩色照片、课件、录像,将枯燥乏味的操作流程变得生动形象;课件的制作力求图文并茂,收集大量的国内外先进技术的图片,促进学生对知识的认识和掌握。
3.实践教学建设力度的加大。
为了培养学生的创新精神和实践能力,教师应强化实践教学环节,使实践课的作用发挥到最大,并结合现阶段的实验条件,尽可能地多安排实验教学,让学生外出参观,使学生对发酵工艺的操作过程、企业的实际生产有更深的理解和认识。
二、课程教学改革与学生创新能力培养的主要措施
1.优化教学内容。
科学的教学大纲和教学内容,先进的教学手段是提高教学质量的关键。现代科学技术的迅猛发展使食品科学与工程专业教学面临知识类别空前复杂、研究程度日趋深入、成果信息日新月异的现状,这对食品科学与工程专业教学的知识容量和教学效果都提出了更高的要求。因而不断修改完善专业课教学大纲和教学内容显得尤为必要。我们应以科研促进教学,及时将科研成果融入到教学中,把研究内容充实到讲课和实验中,以提高教学质量。
2.更新教学方法,充分利用先进的教学手段,提高课堂教学质量。
以信息技术为主体的现代教育技术推动着教学的手段、方法、内容、模式、规模以至体制、观念诸方面的变革,大学课堂教学已经不能满足于一块黑板、一支粉笔,许多知识需要通过运用现代教育技术手段传授给学生。针对现在学生思维活跃、爱思考、好动的特点,教师需要以提高学生的综合能力为核心来组织教学,改变传统的单一的注入式教学方法,通过大量的彩色照片、课件、录像,以读书报告与学科发展相结合,课堂提问与专题讨论、平时测验与期终考试相结合等方法来培养学生的综合能力。
3.关注本学科研究的热点问题和发展趋势。
教师可要求学生写出综合性读书报告,阐述本学科研究的热点问题和发展趋势,培养他们分析问题、综合问题的能力。教师也可亲自写出示范读书报告,让学生分析讨论,从选题到基本格式,从收集资料整理总结到写出读书报告,使学生学到许多课堂上不能学到的知识。
4.结合生产实践,开设综合性实验。
为了培养学生理论联系实际,并能解决实际中的问题的能力,笔者首先利用100L啤酒生产线在实验室进行综合性试验,然后将学生带到生产现场,了解目前生产中存在的问题和希望解决的问题,从而使学生在学习的同时,养成善于思考问题、解决问题的习惯,培养解决实际问题的能力。
三、结语
通过长期的调查和研究,笔者认为分层次的发酵工艺学教学研究是以后研究的一大趋势。不同层次的高校的人才培养目标不一样,不能用同一种教学内容、教学方法和研究成果去要求每一所院校。笔者的研究是针对应用型本科院校的食品科学与工程专业进行的。
目前,众多院校的研究学者已经注意到发酵工艺学理论教学与企业需求的脱节问题,针对发酵工艺学理论课程教学中增加实践创新环节的研究已成为一种趋势,只是缺乏专门针对此项内容的系统研究,希望有志同仁能对此进行探讨。
参考文献:
[1]林剑,郑舒文,王长海等.发酵工艺学的教学改革[J].药学教育,2002,18,(3):31-32.
东北石油大学于2010年成功申请了能源化学工程专业——国家战略性新兴产业相关本科专业。如何在深化教育改革,全面推进素质教育的过程中,突出本专业学生创新素质的培养,积极探索培养高素质创新型工科人才的途径和方法,是培养我国能源化工人才和教育改革发展的主题。人才质量的高低在很大程度上取决于其创新意识和创新能力的高低,而这正是目前高等教育的薄弱环节。“授人以鱼,不如授人以渔”,就是对培养和锻炼学生创新意识和创新能力重要性的最好诠释。
一、优化课程结本文由收集整理构
创新能力来源于宽厚的基础知识和良好的素质,仅仅掌握单一的专业知识是很难做到的。因此,加强学生专业基础教育的内涵更新和外延拓展及构建合理的课程体系非常重要。首先要优化课程结构,按照“少而精”的原则设置必修课,增加选修课比重,允许学生跨系跨专业选修课程。还要提高学生获得信息的手段,使学生有机会接触各学科发展前沿,了解科技发展的趋势,掌握未来变化的规律。
二、优化课堂教学形式
课堂教学是教学的基本组成形式,学生的创新精神和创新能力的培养也必须渗透到各科教学过程中。教师既是知识的传授者,也是创新教育的实施者。要结合学生的认知水平和生活体验,创设新的教学情景导入新课,营造一个鼓励学生创新的课堂氛围。采用多样的课堂教学形式,鼓励学生提出不同的见解。加强各学科的相互渗透和交叉综合,有利于学生整体素质的提高;注意融合学科前沿知识和高新科技,激发学生的创新精神。
三、探索开放式实验教学体系
充分利用我院省级化学工程实验教学示范中心的仪器设备和师资力量,探索和完善实施开放式实验教学的方法及其在课堂教学、实验技能竞赛、创新实验设计竞赛、新能源设计竞赛、数学建模竞赛、本科生毕业设计(论文)中的应用,改革和完善实验课程成绩的科学评价体系,改革实验室管理运行机制,探索开放实验室的管理方式和体制,探索保障实验仪器设备不断更新以跟上学科发展的途径,完善实验仪器设备、实验经费和实验耗材的实验室管理体制。
四、完善学生科技创新体系,建立校内外创新实践基地
实行学生研究训练计划,引导学生在教师的指导下进行科研训练;鼓励学生参加教师的科研课题,与教师合作进行科学研究;实行学生科研立项制度,从政策和经费上鼓励学生进行科技创新;聘请国内外著名专家学者为学生作学术报告等形式,使学生了解能源化工专业发展的学术前沿;鼓励学生申报国家创新实验项目,省、校级挑战杯项目等,提高学生的科学素质,培养学生的科学精神。发挥区域经济优势,签约合作企业,并对创新设计实验室进行重点投入建设,本专业已建成国家级石油化工工程实践教育中心和大庆炼化公司的创新实践基地,为学生创新实践提供了保障。
五、完善评价体系,建立创新激励机制
评价是教育管理中实施控制的特殊手段,是教育管理的重要环节。传统培养体系不利于培养创新人才的弊病反映在评价体系上采用简单划一的方式,未能反映出学生的真实全面的水平和能力。对学生的评价不仅要重视知识的全面性考查,更要重视创新能力的考查。考试方式多样化,考试时间自主化。同时建立对学生的创新意识、创新能力、创新成果积极的激励机制,即对学生的各种创新行为和成果给予正面的激励和奖励。建立专门制度,从政策导向上鼓励和支持教师在传授知识过程中,积极探索创新思维能力培养的方法并付诸实践。
六、实践成果
1.丰富和完善了教育教学研究的改革和实践。项目在能源化工专业2009级中进行了三年的应用,收到了良好效果,极大地推动了其他化工专业类拔尖人才和创新人才的培养和实践,对促进石油化工类拔尖创新本科人才培养质量的提高发挥了积极的作用。2010年以来,石油化工类专业承担省级教改项目3项。发表教学研究论文9篇,主编教材3部;完成了《分离工程》等省级精品课程的建设,《化工热力学》、《化学反应工程》、《工业催化》3门重点课程建设。
2.促进了石油化工专学科建设。石油化工创新拔尖人才培养的改革促进了以化学工程与工艺为主的石油化工类学科建设。目前在学科建设方面已有1个国家级特色专业—化学工艺,1个国家级战略性新兴产业相关专业—能源化学工程,1个省重点(特色)专业—化学工程。已有1个国家级实践教育平台—国家级石油化工工程实践教育中心,1个轻烃加工与利用部级重点实验室,1个石油与天然气化工省重点实验室和1个省级石油化工技术研发中心,已成为黑龙江省石油化工工程技术人才培养和培训基地。
3.学生创新实验与竞赛获奖。通过创新培养体系的实施,能源化工09-2班25名学生,8名学生参加国家级大学生创新实验计划,10余名学生参加国校级大学生创新实验,公开7篇,申请专利2项。英语四级一次性通过率100%,六级一次性通过率80%;国家二级计算机考试一次性通过率100%,并有40%的学生自愿考试通过国家三级计算机考试。同时该专业学生积极参加各种竞赛活动,3名同学获全国大学生化工设计竞赛1等奖,5名同学获得全国化工设计竞赛二等奖,2人获得全国英语竞赛三等奖。1人获得2011年“国信蓝点杯”全国软件人才设计与开发大赛黑龙江赛区c语言程序设计三等奖,1人获得2011年高教杯全国大学生数学建模竞赛二等奖。校级英语竞赛、物理竞赛,软件设计大赛和挑战杯等获奖30余项。经过系统化、有针对性的培养和严格的考核,学生的综合素质得到了极大的提高,班级大多数学生获得了“三好学生”、“优秀学生干部”、“优秀团干部”等荣誉称号。在此基础上班级的学风日益浓厚,多次获得校级荣誉。
关键词:工科院校;实践能力;创新能力;培养体系
提高学生的实践能力和创新能力,既是经济社会发展对人才素质的要求,也是学生自我发展和增强就业竞争力的现实需要。地方工科院校承担着为社会培养大批应用型工程技术人才和管理人才的任务。如何把实践能力和创新能力培养贯穿于人才培养的整个过程之中,构建与一般工科院校人才培养目标相符合的创新教育体系,提高人才培养质量与社会需求的符合度,是当前地方工科院校面临的重要课题。近年来,辽宁工业大学以培养学生的实践与创新能力为核心,不断推进人才培养模式改革。在主要教学环节中渗透工程教育思想,强化学生的实践能力与创新能力培养,建立了贯穿人才培养全过程的创新教育体系。
一、建立课内外相结合的实践与创新能力培养体系
学生实践与创新能力培养体系建设,即包括在基础课与专业课、理论教学与实践教学等主要环节加强学生能力培养,也包括课外创新教育体系建设。要重点解决好学生受益面问题,使大多数学生在创新教育中受益,并形成长效机制。
1.重要基础课的创新教育
高等数学、大学物理、大学英语、计算机基础、机械制图、力学、电工与电子技术等课程是面向全校学生的重要基础课。针对这些课程的教学目标,在大学生中开展科技竞赛活动,学生受益面大,对于培养学生的实践动手能力与创新能力具有重要作用,是基础课创新教育的重要组成部分。此类竞赛活动可采取理论分析、实验操作、设计研究等模式,面向已修完相关课程的本科生,每年由学校统一组织,作为校级竞赛每年定期开展。表1列出的是我校针对基础课开展的科技竞赛活动,参加人数每年达8000多人次。
2.各院系及校级创新机制
建立学院层面的大学生创新活动机制,其主要内容就是在每个专业开展具有学科专业特色的科技创新竞赛活动。根据学科专业特点和培养目标,每个专业至少要确定一个科技竞赛项目,每年组织一次竞赛活动,形成长效机制。表2列出的是我校部分学院开展的具有专业特色的科技创新竞赛活动。
我校每年举办校院两级科技竞赛20余项,每年参赛人数超过10000人次。同时,学校积极鼓励教师和学生参加省级以上较高层次的科技创新竞赛活动,把教师指导学生参加省级以上科技竞赛获奖作为教师教学工作成绩,在职称评定及岗位聘任时列为加分指标。围绕大学数学建模竞赛、机械设计竞赛、电子设计竞赛等省级以上大赛,开展教学活动,努力提高我校大学生科技创新活动的水平。
通过开展多层面的、具有学科专业特色的科技创新竞赛活动,为学生搭建了科技创新平台,为学生进入实验室创造了条件,实验室教学资源也得到充分利用。使学生在不同的学习阶段受到实践能力、创新意识等方面的培养和训练。
3.大学生研究性学习和创新性实验项目培养计划
学校以立项的方式资助大学生开展大学生研究性学习和创新性实验项目,目的是使部分有能力的学生较早地进入研究性学习和创新性实验研究,提高大学生创新的水平。立项范围应包括发明、创作、设计类项目,应用性、创新性研究类项目,社会调研项目等。该项培养计划与本科生专业导师制相结合,学生在导师的帮助下自主开展研究性学习,自主进行实验方法的设计、组织设备和材料、实施实验和分析处理数据、撰写实验报告等工作。
我校把实施大学生研究性学习和创新性实验项目培养计划作为提高学生的实践能力和创新能力的重要措施之一,于2010年首期立项资助了100个项目,并制订了项目管理办法,取得了较好的效果。
4.考试方法改革
考试方法改革是教学改革的重要内容。考试方法改革的核心是摒弃简单的、只用一次期末闭卷考试评价学生的办法,推行注重学习过程的考核模式,使问题式学习、探究式学习、体验式学习等以学生为中心的教学方法得以贯彻,达到培养学生的实践与创新能力的目的。
2005年我校下发了《关于进一步深化考试方法改革的若干意见》,大力推行考试方法改革。除了部分重要基础课采用“平时+期中+期末”的模式以外,专业课要根据课程性质采用不同的考试模式。比如:工程设计性较强的课程采用“笔试+设计性题目”模式;计算机语言类课程采用“平时+上机测试+笔试”模式:综合性、应用性较强的经管类等课程采用“课程论文+答辩”模式;艺术类课程采用“平时+作品设计+方案评析”模式;等等。
目前,已有135门专业课实施了考试方法改革,超过专业课总数的60%。通过考试方法改革,实现了“三个转变”,即考试方式向多样化转变,考试内容向注重综合能力考核转变,成绩评定向综合性转变。通过考试方法改革转变了教师的教学行为和学生学习方式,促进教师在教学方法上突出综合能力培养,改变了学生平时不用功以及死记硬背的不良学习习惯。
5.加强课程设计、毕业设计等实践教学环节
一是提高课程设计质量。课程设计是工科院校的重要实践教学环节,对于培养学生的工程实践能力具有重要作用。目前普遍存在的问题是对课程设计重视不够,不能很好地实现教学目标。我校的做法是重新制订课程设计教学质量标准和工作规范,实行课程设计教学检查和评估制度,把课程设计教学评估作为常态化的校内评估项目之一,每学期进行一次。通过改进和加强课程设计的选题、指导、成绩考核等环节,提高课程设计教学质量,使学生受到工程实践能力方面的训练和提高。
’
二是提高毕业设计(论文)质量。毕业设计(论文)在培养大学生的创新能力、实践能力及综合素质等方面具有不可替代的作用。目前,在学生容易受到就业影响的大环境下,强化毕业设计(论文)的过程管理、提高本科毕业设计(论文)质量,已越来越成为各高校的共识。我校通过实行毕业设计(论文)中期检查制度、二次答辩制度、内外审制度等措施,对毕业设计过程中的指导教师资格、选题、开题、实习与实验、教师指导、撰写论文、答辩及论文质量等主要环节进行全过程监控。强化毕业设计(论文)的过程管理,提高毕业设计(论文)质量,充分发挥毕业设计(论文)环节对学生创新与实践能力培养的作用。
三是重视实习教学,加强基地建设和教学管理。学校建立了实习教学评估制度和实习教学日常检查制度,加强实习教学管理。同时,加强实习基地建设,已建成稳定的校外实习基地180个。
二、保障机制
1.本科生专业导师制
实行本科生专业导师制是加强学生实践与创新能力培养的重要保障措施。目的是充分发挥教师对于学生能力培养的重要作用,使学有余力的学生及早参加科研及工程实践活动,真正做到因材施教。
专业导师的主要任务一是指导学生专业学习;二是指导学生参与科学研究和各种科技创新竞赛活动,如参
加导师的项目研究或“大学生研究性学习和创新性实验计划项目”等:三是指导学生开展工程与社会实践活动。
专业导师也可以作为学生的毕业设计指导教师,指导学生完成与项目相关的毕业设计任务。本科生在完成两学年的基础阶段学习后,学习成绩优良或有专业特长的学生,可申请参加相应导师的课题组。目前,我校已有263位教师担任本科生专业导师,在校生中有1117人参与导师课题组。学校制订了本科生专业导师考核办法,定期对本科生导师工作进行考核。本科生专业导师制的实施对于帮助学生完成专业阶段的学习任务,提高专业素质,培养学生的实践与创新能力发挥了重要作用。
2.实践教学体系与创新学分
一是优化专业培养方案,完善实践教学体系。专业培养方案是人才培养过程必须遵循的,实践教学体系是专业培养方案的重要组成部分,是学生实践与创新能力培养的基本保证。我校把制订专业培养方案作为专业建设和教学改革中的头等大事,每四年修订一次。新修订的专业培养方案在实践环节设计上,加大了实践教学环节的比重,保证工科各专业实践环节占教学计划总学分的30%以上,同时增加设计性、综合性、创新性实验和工程实践训练环节,突出实践与创新能力培养。
二是在教学计划中设置创新学分。我校自2002级学生起,将学生科技创新活动纳入培养方案,在教学计划中设置了创新学分,规定学生在校期间必须获得2个创新学分才能毕业。学生可以通过参加各种科技竞赛活动、研究性学习与创新性实验项目以及院系结合专业特点组织的创新教育活动等途径获得创新学分。
3.教师工程实践能力培养与考核机制
教师的工程实践能力是实现大学生实践与创新能力培养的基本保证。特别是工科院校,应把加强教师的工程实践能力培养作为师资队伍建设的一项重要内容。学校应进一步完善教师培养培训与考核机制,建立包括青年教师进实验室制度、专业教师到企业实践制度、教师专业综合能力竞赛制度在内的一系列保障制度和措施。
(1)教师专业综合能力竞赛制度。举办教师专业综合能力竞赛,是我校为了提高教师的专业水平、实践能力和教学能力所采取的一项重要措施,旨在通过竞赛调动广大教师提高专业水平和工程实践能力的积极性和主动性。该项竞赛每年举办一次,要求40岁以下的专业课教师都要参加。竞赛题目要求是与本科教学密切相关的基础性、综合性题目,主要考核作为专业课教师必须具备的实践操作能力、综合设计能力和运用专业知识解决实际问题能力。评审专家组由企业界专家和校内专家共同组成。同其他教学大赛一样,学校将教师参加专业综合能力竞赛获奖列为职称评定、岗位聘任的指标之一。竞赛在校内外引起较大反响,得到了广大教师和企业界的广泛赞誉。
(2)教师到企业工程实践制度。为了提高中青年专业教师的工程实践能力,学校规定年龄40岁以下且没有企业工作经历的专业教师,都要参加相应专业的企业实践,专业教师到企业实践时间累计不少于6个月。学校建立教师企业实践基地,并设立专项基金。到企业实践的教师要进入企业的设计开发、生产制造及经营管理等部门参与相应的工作。教师参加企业实践并考核合格,将作为专业技术职务聘任的必备条件。
关键词 人才培养目标 定位 复合型 应用型
中图分类号:G642 文献标识码:A DOI:10.16400/ki.kjdkx.2016.03.025
进入二十一世纪以来,随着全球不可再生能源资源日益枯竭,能源供需矛盾突现。世界各国都致力于开展能源科学领域的研究,同时将能源产业特别是新能源产业作为国家战略性产业之一。而要促进该产业的发展就必须有大量的人才,高等教育必须培养出优秀的新能源领域的高级人才,因此新能源科学与工程本科专业在2010年获得了教育部的正式批准,并初步确立了专业培养目标,即培养能够适应能源产业快速发展和建设需要的专业人才,必须具有扎实的理论基础、较强的实践能力和创新能力,能够进行新能源科学的研究以及利用技术的开发和实施,能够从事该领域的教学科研、技术的开发、工程应用和经营管理等方面的专门工作。现今新能源科学与工程专业正处于发展的起步阶段和关键时期,各高校在专业建设的各个方面进行了大量研究,取得了阶段性成果。然而由于已开设该新专业的50多所高校的历史背景、办学层次和条件等不同,对新能源专业的认识不同,在进行新能源科学与工程专业的人才培养目标定位时有所差异,存在定位不明确、表述模糊等问题,而这将会影响专业的后续发展和人才培养的质量。在新形势下,本文从人才培养目标的内涵出发,调研了25所高校的新能源科学与工程专业的人才培养目标,对其进行综合性分析,指出各高校应在教育部基本培养目标的框架内,合理准确定位本校本专业的人才培养目标。
1 人才培养目标的内涵思考
随着经济的全球化,开发人才资源成为了现代社会发展的战略措施,人才成为了经济发展中最重要的战略资源。2010年,教育部出台了《国家中长期人才发展规划纲要(2010-2020年)》以及《国家中长期教育改革和发展规划纲要(2010-2020年)》,为近10年的教育改革和发展开辟了广阔空间,提供了开放思路。《纲要》提出高等教育要“提高人才培养质量”、“增强社会服务能力”,高校人才培养目标的制定就是要明确办什么样的学校,培养什么样的人。
潘懋元先生曾在文献中对高等教育的培养目标进行了表述, “社会主义高等教育必须通过德育、智育、体育、美育,培养知识、能力、素质结构优化,全面发展,具有创新精神与创造能力的高级专门人才”。①可以看出,我国的教育方针以及高等教育培养目标的一般性要求都在这个表述中得到了体现。高校在制定各自的培养目标时,都应遵循两个规律-教育的外部关系规律和教育的内部关系规律。即以适应社会发展的需要为目标要求,适时合理地调整学校的专业设置以及各专业的培养目标,培养能够符合社会经济发展需要的适应性人才;同时以专业的培养目标、培养规格为基准要求,适时调整本校各专业的培养方案,协调人才培养模式的诸多要素,提高人才培养的质量,完整体现人才培养的目标。因此,高校在制定学校以及专业的人才目标时,应充分考虑本地区社会与经济发展对人才的客观需求,即需要什么层次、什么规格、什么类型的高级专门人才,从而合理恰当地定位学校以及专业的人才培养目标。
潘懋元先生按人才培养层次规格的不同,将高校分为了学术型、应用型和职业技术型三种:培养以学习基础和应用科学的基本理论为主,旨在研究高深学问的学术型人才的学术型大学;培养以学习各行业专门知识为主,旨在将高新技术转化为生产力的能力的应用型专门人才的应用型本科高校;培养以学习各行业的职业技能为主,旨在从事生产、管理、服务第一线工作的技能型人才的职业技术学校。这一分类方法得到了大多数人的认同,已成为现今高校人才培养目标定位的依据,笔者对此持赞同态度。不同类型的高校定位人才培养目标时都应考虑两个因素,即学校在同类高校中具有什么样的地位和学校为人才的培养承担什么样的任务,在对人才培养目标进行描述时应指出所培养的人才得到了什么样的训练,具有什么方面的基础,包括理论知识和实践技能,具备什么样的能力,能够从事哪些方面的工作等,定位人才的类型。
2 新能源科学与工程专业人才培养目标设置现状及分析
一个学校会在综合分析考虑了国家的知识政策、社会发展的需要、人才个性的需要、学校的自身定位等方面之后制定学校的总体人才目标,然而在落实时就需将其转化为各专业的具体人才培养目标。笔者以开设新能源科学与工程专业的25所学校作为调研的研究样本,对新能源科学与工程专业的培养目标设置现状进行了分析,探讨了其和学校人才培养目标的关联性。调研的25所院校,其所属类型、办学层次、校级人才培养目标、专业培养目标部分内容列举如表1所示。
通过分析25所高校的办学层次、办学类型和校级人才培养目标、新能源科学与工程专业的培养目标,得出以下结论。
2.1 专业培养目标与校级人才培养目标具有较强的一致性
所调研的25所院校中有7所院校为列入211/985的全国重点的学术研究型或教学研究型型院校、5所为省部共建的教学研究型大学或应用型大学、7所省属重点的教学研究型大学或应用型大学共19所本科一批次学校,6所本科二批次的应用型地方院校。可以看出,各高校在定位自己的校级培养目标时大都考虑了本校在全国高校中的地位以及学校对地方经济发展的作用,定位基本正确;新能源专业人才培养目标的设定落脚于复合型人才或应用型人才,与所在学校的人才培养目标定位属于一脉相承的关系,具有较强的一致性。如东北农业大学为211工程、全国重点的研究型大学,校级人才培养目标为“经济社会发展需要的研究型、研究应用型或复合性应用型、应用型人才”,新能源专业的培养目标为“掌握能源与环境科学、生物质能转化和利用原理与技术、风能转换原理与技术、太阳能热利用与发电原理与技术、节能原理与农村节能工程等的基本理论和方法,基础知识扎实、国际视野宽广,……的复合型工程技术人才”;常州工学院为一所普通的应用型地方院校,校级人才培养目标为“切合地方经济社会发展需要的应用型本科人才”,新能源专业的培养目标为“应用型高级工程技术人才”。
笔者认为无论是高校校级还是具体专业的培养目标定位,都应该对下面两个问题有一个清楚的认知:什么是复合型人才和应用型人才,它们的区别在哪里;专业的培养目标是否一定要与学校的培养目标一致。所谓应用型人才应该指的是那些熟练掌握了所从事专业的基础知识和基本技能,能够将专业知识和技能应用于社会活动实践,注重专业实践能力的人才;而复合型人才应该指的是那些学习了宽厚的基础和应用科学的基本理论,构建了复合知识、复合能力、复合思维的综合能力突出的多功能人才。从所调研的情况来看,将专业人才培养目标定位于复合型人才的高校大都是211/985高校,学校的师资力量雄厚、硬件设施和软件条件都非常高,能够实现复合型人才的培养。对于第二个问题,从调研的情况就可以看出,绝大多数院校的专业培养目标与学校的一致,但也有个别例外。如济南大学的校级与专业培养目标定位分别为“高级复合型专门人才”和“高级应用型人才”,专业目标定位的层次维度低于校级目标。笔者认为这并没有任何问题,因为一所高校在一定时期内其总体人才培养目标是确定的,但个别专业依据办学传统的不同、拥有的条件不同、不同时期社会对专业人才的需求特点不同,其培养目标可以低层次、低维度地进行异型设定,这样才能更好地适应社会及个人的需要,才是好的专业培养目标定位。
2.2 培养目标中人才定位表述随意、概念模糊不清
在所调研的高校中,将新能源专业人才培养目标定位于复合型人才的院校,在表述目标时用到了诸如“复合型技术人才”、“复合型工程技术人才”、“复合型人才”、“跨学科复合型工程技术人才”、“复合型高级专门人才”;“复合型专门人才”、“跨学科复合型高级人才”、“复合型技术人才”、“高级工程技术复合型人才”、“跨学科复合型人才”等词语;而定位于应用型人才的院校在目标描述时用到了“应用型工程技术人才”、“应用型高级工程技术人才”、“高级工程技术人才”、“高级应用型人才”、“应用型高级专门人才”等词语。从中可以看出,大多数学校在目标定位时存在着概念不清、分类不明确等问题,需要从人才的定义、高校人才培养的类型出发,正确认识,理清所属关系,进行明确的专业人才培养目标定位和准确描述。
我们可以遵循从认识世界到改造世界的过程规律来进行人才培养类型的划分,刘维俭据此将高校人才培养类型分为了四种:②深入研究基础学科和应用学科的基础理论的研究型人才,将科学原理转化为可以直接应用于社会实践的工程设计、工作规划、运行决策等的工程型人才;处于各行业的生产第一线或工作现场,从事专门的组织管理、生产建设、服务等实践活动以及技术工作的技术型人才;掌握某一门专门的知识技术,具备一定的操作技能,在工作实践中进行实际操作的技能型人才。与潘懋元先生的高校分类对比可知,学术型高校培养的人才侧重于研究型人才,也可以是学术、应用兼重的复合型人才;应用型高校所培养的人才就应该是应用型的,包含工程型和技术型两种,还可以有技能型人才。
从所调研高校来看,在具体描述专业培养目标时表述不够准确,概念混淆。如前所述,复合型人才就是既具有宽厚的基础和应用学科的理论知识,又具有本专业的深厚理论基础知识,具有两门以上不同学科的知识和技能,能够适应跨专业行业需要的、实践创新等综合能力突出的高级人才。该人才需掌握跨专业的知识结构,对两个及以上专业领域的理论和应用都有一定程度的了解,不是深入研究具体业务能力的“专才”,也不是掌握广博知识面的“通才”。而“专门人才”这一概念,强调的是人才的专业性,需经过专业的培养或训练,掌握某种专业知识、专门才能的、但又能从事管理的应用型人才。所以定位落脚点在复合型人才的,在进行定位描述时不需要出现“跨学科”、“高级”字眼,不能将“复合型”与“专门”放在一起叙述,笔者认为直接定位于复合型人才即可。
还应该指出的是,地方本科院校的专业在进行应用型人才培养目标的定位时应将人才培养目标定位进一步细化,具体而明确地指出是应用工程型还是应用技术型,而不是笼统的工程技术人才。只有准确、细化地定位了专业的人才培养目标,才能在人才培养方案中提出具有操作性强、可执行性强的知识要求、能力要求和素质要求,才能正确指导专业课程体系的安排设计、课时比例的分配等问题,才能制定符合教育规律和社会及个性需要的凝聚力强的人才培养方案。
3 结论
高校在制定学校以及专业的人才目标时,应充分考虑本地区社会与经济发展对人才的客观需求,即需要什么层次、什么规格、什么类型的高级专门人才;考虑两个因素,即学校在同类高校中具有什么样的地位和学校为人才的培养承担什么样的任务,从而合理恰当地定位学校以及专业的人才培养目标。具体专业的培养目标在大方向上应与学校的人才培养目标一致,但也可依据具体情况进行异型设定。在深刻理解各种类型人才的内涵后,依据社会的需求和自身的发展需要,准确定位人才类型,按“类”、“群”的理念来培养学生,通过人才培养模式的改革与协调,来加深人才培养质量的内涵,以促进学生个体的全面发展,更好更快地适应社会。从国家知识政策的发展方向、社会对新能源产业人才的迫切需要来看,那些师资力量、教学条件各方面都很好的高校应该将专业培养目标定位于复合型人才,培养出基础理论宽厚扎实、工程实践能力较强、专业特色明显的高素质创新人才;而地方普通高校则应将专业培养目标定位于应用型人才,致力于新能源行业领域的工程型和技术型人才的培养。
注释