欢迎访问爱发表,线上期刊服务咨询

结构优化方法8篇

时间:2023-09-17 14:51:35

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇结构优化方法,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

结构优化方法

篇1

关健词 船舶结构;优化;设计方法

中图分类号 U66 文献标识码A 文章编号 1674-6708(2013)103-0100-02

进行船舶结构优化设计的目的就是寻求合适的结构形式和最佳的构件尺寸,既保证船体结构的强度、稳定性、频率和刚度等一般条件,又保证其具有很好的力学性能、经济性能、使用性能和工艺性能。随着计算机信息技术的发展,在计算机分析与模拟基础上建立的船舶结构的优化设计,借鉴了相关的工程学科的基本规律, 而且取得了卓越的成效;基于可靠性的优化设计方法也取得了较大的进步;建立在人工智能原理与专家系统技术基础上的智能型结构设计方法也取得了突破性进展。

1经典优化设计的数学规划方法

结构优化设计数学规划方法于1960年由L.A.Schmit率先提出。他认为在进行结构设计时应当把给定条件的结构尺寸的优化设计问题转变成目标函数求极值的数学问题。这一方法很快得到了其他专家的认可。1966年,D.Kavlie与J.Moe 等首次将数学规划法应用于船舶的结构设计,翻开了船舶结构设计的新篇章。我国的船舶结构的设计方法研究工作始于70 年代末,已研究出水面船舶和潜艇在中剖面、框架、板架和圆柱形耐压壳等基本结构的优化设计方法。

由于船舶结构是非常复杂的板梁组合结构,在受力和使用的要求上也很高,所以在进行船舶结构的优化设计时,会涉及到许多设计变量与约束条件,工作内容很多,十分困难。船舶结构的分级优化设计法就是在这个基础上产生的,其基本思路是最优配置第一级的整个材料,优选第二级的具体结构的尺寸。每一级又可以根据具体情况划分成若干个子级。两级最后通过协调变量迭代,将整个优化问题回归到原问题。分级优化方法成功地解决了进行船舶优化设计中的剖面结构、船舶框架和板架、潜艇耐压壳体等一系列基本问题。

2 多目标的模糊优化设计法

经典优化设计的数学规划方法是在确定性条件下进行的, 也就是说目标函数与约束条件是人为的或者按某种规定提出的,是个确定的值。但是在实际上, 在船舶结构的优化设计过程、约束条件、评价指标等各方面都包含着许多的模糊因素,想要实现模糊因素优化问题, 就必须依赖于模糊数学来实现多目标的优化设计。模糊优化设计问题的主要形式是:

式中j 和j分别是第j性能或者几何尺寸约束里的上下限。

模糊优化设计方法大大的增加了设计者在选择优化方案时的可能性, 让设计者对设计方案的形态有了更深入的了解。目前,模糊优化设计法发展很快, 但是,还未实现完全实用化。多目标的模糊优化设计法的难点主要在于如何针对具体设计对象, 正确描述目标函数的满意度与约束函数满足度隶属函数的问题。

3 基于可靠性的优化设计方法

概率论与数理统计方法首先在40 年代后期由原苏联引入到结构设计中, 产生了安全度理论。这种理论以材料匀质系数、超载系数、工作条件系数来分析考虑材料、载荷及环境等随机性因素。早在50年代,人们就在船舶结构的优化设计中指出了可靠性概念,随后,船舶设计的可靠性受到人们的重视,开始研究可靠性设计方法在船舶结构建造中的应用。

船舶结构可靠性的理论和方法根据设计目标的不同要求, 可以得出不同的结构可靠性的优化设计准则。大体分为以下3种:

1)根据结构的可靠性R·,要求结构的重量W最轻,即:

MinW(X),s.t.R ≧R·

2)根据结构的最大承重量W·, 要求结构的可靠性最大或者破损概率最小,即:

Min Pf(X ) , s.t.W (X ) ≦ W·

3)兼顾结构重量和可靠性或破损概率, 实现某种组合的满意度达到最大,即:

Max[a1uw(X)+a2upf(X)]

式中, a1,a2分别代表结构重量和破损概率的重要度程度, 而且满足a1+a2≥1.0,a1,a2≥0;uw,upf分别为代表相应的满意度。

关于船舶结构的可靠性优化设计方法的研究越来越多, 逐渐成为船舶的结构优化设计中的重要方向。但是,可靠性的优化设计方法除了在大规模的随机性非线性规划求解中存在困难外, 还有一个重要的难点在于评估船舶结构可靠性的过程很复杂, 而且计算量大。

4 智能型的优化设计方法

随着人工智能技术(Al)和计算机信息技术的发展, 给船舶结构的优化设计提供了一个新的途径,也就是智能型优化设计法。

智能型的优化设计法的基本做法为:搜索优秀的相关产品资料,通过整理,概括成典型模式,再进行关联分析、类比分析和敏度分析寻找设计对象和样本模式间的相似度、差异性与设计变量敏度等,按某种准则实施的样本模式进行变换, 进而产生若干符合设计要求的新模式, 经过综合评估与经典优化方法的调参和优选, 最终取得最优方案。

智能型的优化设计法法的优点是创造性较强,缺点是可靠性较弱。所以在分析计算其产生的各种性能指标时,应当进行多目标的模糊评估, 必要时还应当使用经典优化方法对某些参数进行调整。

5 结论

通过本文对船舶结构优化设计方法的研究,我们得出在进行船舶结构优化设计的时候, 往往会涉及到很多相互制约和互相影响的因素, 这就需要设计人员权衡利弊, 进行综合考察, 不但要进行结构参数与结构型式的优选,而且还要针对具体情况对做出的方案进行评估、优选和排序。通过什么准则对不同的方案进行综合评估,得出最优方案, 成为专家和设计人员需要继续研究的问题。

参考文献

[1]郭军,肖熙.基于可靠性的船体结构多目标优化设计[J].上海交通大学学报,2010(1).

篇2

(1)速率:速率低,原因在哪?

(2)SINR:干扰高,怎么定位?

(3)覆盖:覆盖弱、重叠过高,原因在哪?

(4)业务:业务怎么分布、高业务在哪?

通过LTE网络结构分析优化平台(ASOS)软件的算法研究和软件开发,使得网络结构分析优化体系化且流程化。ASOS可以对LTE网络实现小区级的结构分析,对弱覆盖、重叠覆盖、过覆盖、下行SINR、上行SINR都可以实现小区级的统计分析,并可以实现弱覆盖及上下行SINR的采样点级的定位,快速查找问题区域。

1 LTE低速率原因分析方法

下载速率由单双流和MCS决定,双流和MCS由CQI决定,CQI由SINR决定,那决定SINR的因素就是网络结构优化分析的重点。

LTE低速率问题具体的表征有2个方面,一是每RB的传输效率低,二是PRB的调度率低。

2 LTE弱覆盖问题分析方法

弱覆盖发生的原因主要分为站距过大、基站未开通、移动参数配置问题、漏配邻小区、室分信号外泄。

在LTE网络结构分析平台ASOS中,采用MRO数据对弱覆盖进行定位分析,发现弱覆盖在小区中的具置,使得弱覆盖问题的解决更加有目标和针对性。

3 LTE干扰问题分析方法

下行SINR是有效信号功率和干扰信号以及噪声功率的比值,该指标能有效反映当前网络的干扰情况。SINR决定下载速率,两者呈线性关系。

导致低SINR的原因除了弱覆盖之外,还有重叠覆盖、切换不及时、漏配邻小区、室分外泄、过覆盖等。一般情况下弱覆盖的影响最大,可细分为缺站、基站未开通等问题。外部干扰也会导致SINR的严重恶化。

对于下行SINR,在OMC网络性能指标中并没有输出,LTE网络结构分析平台ASOS根据专利算法,实现全网络的下行SINR的计算和输出,对网络结构优化将会起到巨大推动作用。

4 LTE重叠覆盖分析方法

不同小区间的高重叠覆盖会引起干扰,干扰的程度会在SINR中体现,进而影响下载速率。将重叠覆盖和SINR以及下载速率进行关联分析,得出重叠覆盖对网络结构的影响程度。

在重叠覆盖分析中,通常会采用扫频数据,对于SINR,采用路测数据,两者通过栅格化的分析方向进行关联分析。重叠覆盖对SINR的影响非常明显,6dB范围内的重叠信号数越多,其平均SINR值与最大SINR估计值越低,在重叠覆盖度为1的情况下,平均SINR为12.78dB,每增加一个重叠覆盖小区,SINR下降40%以上。

篇3

【关键词】超深基坑,排桩内支撑支护结构,优化设计

随着城市化进程的快速发展,城市有限的地上空间越来越不能满足城市发展的需要,开发城市地下空间成为解决这一矛盾的重要途径。另一方面,随着建筑高度的不断增加,建筑基础的埋置深度也在不断的增加。基坑工程出现两个明显的趋势:基坑深度越来越大,工程环境越来越复杂。基坑环境保护的要求在不断的提高,同时基坑失效事故所带来的危害也越来越严重。如何确保在城市密集的建成区深基坑工程的施工安全和环境安全成为工程技术人员必须面对的课题。

本文结合青岛海景公寓深基坑支护设计方案,对岩土层开挖超深基坑中排桩内支撑支护结构进行优化设计研究。

1工程介绍

1.1工程概况。拟建工程场区位于青岛市香港东路南侧,国家级旅游胜地―――青岛市老人海水浴场以北,青岛啤酒城正南。设计单位提供的拟建物特征:地上30层,高99.80 m;地下4层,层高3.9 m~5.1m,层总高12.20m。现场自然地坪高-0.25m。平面尺寸为66m×45m。基坑东侧多为2层,7层砖混结构,距用地红线最近约为5.0m。基坑南侧和西侧均为砖混建筑结构,基坑北侧主要为道路和市政管线,用地红线距香港东路红线最近约为15.4m

1.2工程地质与水文地质条件。本场区内地形平坦,位于滨海平原地貌单元,第四系较发育。基坑自上而下依次穿越素填土、粉砂、淤泥质粉砂、粉质黏土、粗砂、粉质黏土、角砾,基地位于强风化岩层。支护体系的选用要遵循安全、经济、方便施工及因地制宜的总原则。一般要综合考虑场地条件、基坑开挖深度和范围、地质条件以及地下水情况等几个方面做出选择。根据本工程地层地质情况和周围环境要求,初步拟定围护方案为排桩内支撑支护结构:钻孔灌注桩的直径为1 200mm,桩间距为1 500mm,桩长23.4m,自上而下分别在标高-2.65m,-6.50m,-10.40m,-15.50m处设置四道支撑。

2排桩内支撑支护结构优化设计方法研究

目前内支撑体系结构计算方法主要分为三类:简化计算方法、平面整体分析和空间整体分析。本文中采用的是平面整体分析的方法,即将支撑杆件、腰梁作为一个整体,视为一个平面体系,设置若干支座,借助大型有限元分析软件SAP 2000进行分析,得出支撑体系的内力与变形,最终设计出各构件的截面。

利用SAP2000对内支撑体系进行优化设计,大体上分为以下几步:

1)定义轴网类型。2)定义材料属性和截面。本文研究的内支撑为现浇钢筋混凝土支撑,支撑截面均为矩形。3)绘制构件。将每一层支撑看作一个平面桁架,选用线单元来模拟这一桁架。4)指定节点约束。分不同工况对该平面桁架施加约束。例如:两邻边约束、对边约束等。5)荷载工况。在内支撑计算中考虑静力荷载工况。6)分析工况。根据不同的节点约束,分不同工况对模型进行分析,得出不同工况下内支撑的内力,包括弯矩,剪力和轴向力。7)找出最不利情况下的内力,对支撑体系进行结构设计。

3A―A剖面结构设计计算

3.1排桩体系设计计算

根据前面提出的排桩内支撑体系的结构优化设计方法,以基坑东侧A―A剖面为例,对排桩体系进行结构计算。考虑工况,分段采用等值梁法计算排桩内力和各道支撑力,计算结果见表2。

表2 等值梁法计算结果

工况工况一工况二工况三工况四

Mmax/kN・m 173.0 324.5 658.0 986.0

T/kN 109.3 149.9 514.2 643.3

按各工况求得的墙上弯矩作出弯矩包络图,计算排桩配筋,计算结果见表3,按求得的支撑力设计各道支撑和围檩。

表3 排桩体系设计参数

参数桩径/mm桩长/m嵌固深度/m受力主筋箍筋

A―A 1 200 24.6 4标高10.4 m范围内:2828标高24.6 m范围内:323220@1 500

3.2内支撑体系的设计计算

内支撑系统由四道平面支撑和立柱组成。每道支撑包括环梁、腰梁和支撑杆。不同地质剖面计算求出的支撑系统需要提供的支护抗力是不同的,设计支撑系统时按所需最大支护抗力计算,第一,二道取N=353kN/m,第三,四道取N=571 kN/m,支护抗力较小侧将由基坑外侧的被动土压力平衡。

根据约束条件的不同,分四种不同支撑条件对支撑体系进行分析:1)X向两铰:即沿X方向在环梁的两端设置固定支座;2)两邻边固定1:将支撑体系的南侧与西侧的支座设置为固定支座;3)两邻边固定2:将支撑体系的北侧与东侧的支座设置为固定支座;4)全铰:将环梁的约束全部设置为固定支座。通过对计算结果分析比较得出:1)在X向双铰的支撑条件下,环梁的弯矩最大,支撑杆件的轴力最大;2)在将支撑体系的南侧与西侧的支座设置为固定支座的支撑条件下,腰梁的弯矩最大。在内支撑体系中,支撑杆件和环梁是主要的控制构件,因此考虑选用第一种支撑条件下各构件的最不利内力组合来对各构件进行截面和配筋计算。

篇4

[关键词]型钢混凝土;组合结构;优化设计方法

中图分类号:TU398.9 文献标识码:A 文章编号:1009-914X(2017)01-0136-01

型钢混凝土结构主要由以下两个方面组成:①型钢混凝土柱;②型钢混凝土梁。型钢混凝土具有承载力高以及弹塑性好等特点,目前来看,型钢混凝土在工程应用方面有很大的发展前景。型钢混凝土结构中的单调加载条件与循环加载条件下的受力性能研究有较大的应用前景,在循环荷载作用下呈现出较好的性能。从型钢混凝土结构应力发展裂缝情况不难看出,型钢混凝土结构在水平荷载作用下被分为以下三个阶段:①塑性破坏阶段;②弹性阶段;③弹塑性阶段。国内外的相关实验研究结果表明,型钢混凝土结构在低周反复荷载作用下具有良好的耗能能力,尤其是在型钢混凝土结构的延性以及刚度方面。

1 型钢混凝土组合结构的基本特点

型钢混凝土组合结构主要指的是把型钢埋入到混凝土中的结构形式,在操作过程中主要先通过定位放线最后再进行混凝土浇筑,被分为以下两种类型:①部分结构构件采用型钢混凝土结构形式;②全部结构构件采用型钢混凝土结构形式。上述两种结构类型都适用于以下四种结构:①框架结构;②底部大空间剪力墙结构;③筒中筒结构;④框架-剪力墙结构。与传统的型钢结构相比,具有以下三个方面的优点:①能够更为节约钢材;②具有良好的耐久性以及耐火性;③受力性能良好。与钢筋混凝土结构相比,型钢混个凝土组合结构具有以下三个方面的优点:①施工周期较短;②抗震性能较好;③承载力较高。型钢混个凝土组合结构具备以下两种结构类型的特点:①型钢结构类型;②钢筋混凝土结构类型。为了让人们能够更加清楚了解型钢混个凝土组合结构结构,笔者将针对型钢混个凝土组合结构的混凝土和型钢的计算和优化方法进行研究。举例来说,型钢混个凝土组合结构中的型钢与混凝土之间相互约束,在一定程度上提高了混凝土的强度和型钢的强度,有效增加了整体构件的延性、构件抗震性能以及改善混凝土本身不利于抗震的脆弱性。众所周知,智利是地震多发国家,智利国家尤其重视型钢混个凝土组合结构的性能研究和基础工程应用。例如,1973年建成的圣地亚哥,其所用结构为型钢混凝土组合结构,在地震中基本没有受到很大损毁,继而引起了日本建筑工程行业的重视。

2 型钢混个凝土组合结构优化设计的基本方法

型钢混个凝土组合结构在优化设计中基本以变量结构的参数形式出现,在根据相关要求的基础上,形成型钢混个凝土组合结构方案。简而言之,型钢混个凝土组合结构优化设计主要利用数学手段,并且按照设计者所规定的要求从中选出一个最为理想的方案。型钢混个凝土组合结构优化设计主要表现如下:①以有限单元法为基础的分析方法;②以数学规划为计算手段;③以现代高速计算机为工具;④最终得出设计方案。随着现代科学技术的发展,优化设计的过程具备灵活性等特点,再通过有限次的计算能够使得结构设计方案逐渐改善。笔者将根据相关工作经验,针对型钢混凝土组合结构优化问题算法来进行简单介绍:①简单解法;②数学规划法;③准则法。

(1)简单解法。当设计变量处于不多的情况下,可以采用简单解法。一般来说,图解法对设计变量小于或者等于2h,效果达到最为理想。对于柱与板的优化设计问题需要采用松弛变量法,此种方法对求解约束条件要求不是很高。

(2)数学规划法。数学规划法(Mathematical Programming,MP)从结构力学的基本原理角度出发,选用MP来寻找设计参数的最优解。此种解答方法发展比较早,用途也较为广泛。数学规划法中主要包含以下几个方面的解法:①线性规划;②非线性规划;③动态规划;④几何规划。其中线性规划问题的解决方法较为成熟,在处理目标函数方面能够设计变量的线性函数问题。非线性规划则主要应用目标函数的方法,结构的优化设计有约束的非线性规划问题,在解答过程中有较大难度。例如,目前最常使用的导数分析方法以及梯度投影法等。

(3)准则法。准则法主要从工程方面的观点出发,从预先规定的结构来满足相关准则(能量准则、位移准则、频率准则以及应力准则等),为了满足上述准则条件应该使用结构最轻的材料。使用的相关方法为:利用最为优化的杆系结构,重新分析设计变量初始,一旦计算量不够大时,需要使用已经设定好的几个布局。准则法有其自身的缺陷,从工程应用方面来看,型钢混个凝土组合结构结构比较方便,能够更容易被人接受。在早期,准则法能够满足应力设计,将结构杆件的应力在某种情况下达到允许的范围力之内,充分发挥出材料强度的潜力。上述所说的方法在发展的基础上与框架结构的应力设计两者相互结合,从而处理弹性稳定方面以及位移方面等约束条件。

3 型钢混个凝土组合结构优化设计的基本原理

型钢混个凝土组合结构由柱构件与规则截面的杆系梁组成,在设计过程中均采用部分优化的方法。在满足相关建筑要求的情况下进行结构的平立面布置(抗震功能首先考虑原则基础上),进一步确定好梁的跨度与柱的高度。基于此,按照经济跨高比和框架梁进行初步选型,最终得出型钢混个凝土组合结构的初始截面。在上述初始方案基础上,采用有限单元法分析不同荷载情况下的受体力分析,最后得到剪力、轴力的组合值,再计算出常规设计所需要的参数值。例如,柱的计算长度以及梁的剪跨比等指标。将型钢混个凝土组合结构离散柱构件与杆系梁根据已经得到的受力条件来优化设计柱与梁,再得到工程的总造价。利用变量方法来进行二次处理,直到前后2次的设计方案能够接近并且最终得到优化设计方案。简而言之,确定好方案1之后再进行结构整体分析,通过分部方案1优化得到方案2,在进行分部优化设计时,需要注意以下几个方面:①利用结构分析得到剪力值、轴力值,继而能够优化截面;②对于超静定结构,初始截面的选择相对于构件内力所需要的截面来说不够充分,优化后构件的截面将会有效增大,重新分析构件内力时将会取得更大的效果。对于超静定结构优化过程,其构件内力始终和截面保持不一致,此种差距不会随着结构重分析次数的增加而减少,在优化构件设计时,对结构的内力应该引M超松弛系数,S′=S(S/R)α,其中S′代表构件内力,S为前一次结构重分析得到的构件内力,R为优化前构件抗力;α代表超松弛系数,α=0.4。

型钢混凝土框架梁的截面宽度不宜小于300mm,截面的高度和宽度的比值不宜大于4,为了进一步保证框架梁对框架节点的约束作用,便于施工过程中能够充分考虑到截面高度比值、宽度比值等,型钢混凝土框架梁在支座处和上翼缘受有较大固定集中荷载处,应在型钢腹板两侧对称设置支承加劲肋。

4 结束语

综上所述,型钢混个凝土组合结构作为一种工程方法,型钢混个凝土组合结构连续变量所得到的结果不能够直接被应用,在初步优化设计方法基础上,收敛的速度也能够接近优化解,当变量较多时此种途径能够带来较宽的时间效益。

参考文献:

[1]王秋维,史庆轩,侯炜,等.型钢混凝土框架结构基于增量动力分析的抗震性能评估【J】.世界地震工程,2011,27.

篇5

关键词:硅片传输机器人;手臂结构;优化设计

1 硅片传输机器人动态特性分析

手臂结构参数在固定频率基础上将会优化灵敏度,根据权值特点选择末端手臂质量作为优化参数的重点。变量会随着手臂厚度的调整约束结构尺寸以及手臂挠度,手臂末端发生的静偏移将会构建基础模型。手臂厚度在末端静偏移发生的规律影响下使手臂尺寸进行优化设计,结构经过调整之后需要对硅片传输机器人性能进行对比。这种方式能够降低硅片传输机器人手臂结构固定频率的发生,使末端手臂发生的静偏移会得到控制,同时将会保证参数进行调整提升系统运行的振动频率。硅片传输机器人柔性系统主要是通过多阶固定频率实现的模态化,但是这种模态化在固有频率下将会发生轨迹移动,并且影响到末端手臂运行的精确度。手臂结构优化重点放置在对末端手臂的精确度调整上,同时根据固定频率阶数积极的构建模态。固定频率是系统固有的属性,对于硅片传输机器人手臂运行的情况进行模态分析。主要表现为

M(q)+q+kq=0

根据对上述关系的分析,柔性系统在固有频率中对于模态振型可以通过模态振型矢量获取。根据上述等式变化硅片传输机器人手臂柔性关节系统质量将会发生变矩阵,在固定频率系统中末端手臂发生的位置移动主要表现为动态特性。

硅片传输机器人固定频率会随着末端手段端点位置发生的变化而变化。根据末端位置远点距离会模拟出相应的变化。动态系统在模态化关节发生的振幅比例中硅片传输机器人手臂结构会在末端运动轨迹的变化中发生直线运动,振动状态也会在末端轨迹中造成一定的影响。在进行硅片传输机器人手臂结构优化设计的时候要能够充分的考虑振动状态下的固定频率发生的改变。这对于确定手臂结构优化变量能够发挥重要的作用,同时使结构灵敏度得到控制,参数频率更加的固定。

2 手臂结构优化变量

2.1 优化参数

手臂结构参数的优化情况需要保证一定的灵敏度,手臂结构参数在固定频率基础上将会优化灵敏度,根据权值特点选择末端手臂质量作为优化参数的重点。变量会随着手臂厚度的调整约束结构尺寸以及手臂挠度,手臂末端发生的静偏移将会构建基础模型。手臂厚度在末端静偏移发生的规律影响下使手臂尺寸进行优化设计,结构经过调整之后需要对硅片传输机器人性能进行对比。

2.2 手臂结构优化设计

对于手臂结构优化设计应该确定大臂、小臂以及末端手臂质量,这是获取优化参数的重点。在固定频率上能够根据质量变化的不同积极的调整参数变化特点,降低小臂刚度质量将会直接的导致手臂竖直刚度的下降。悬臂结构会在静态变形中出现振动变化。

末端手臂的设计要根据承受的等效力变化进行负载参数的调整,将末端受负载参数设置为常数,并且利用荷载尺寸对参数数值进行约束。末端手臂会随着壁厚增加变形越来越明显,当壁厚增加到2mm左右的时候,这种末端变形影响较小,甚至可以忽略。但是当厚壁在1mm左右的时候,末端手臂变形较为缓慢。如图1。

小臂受力约束参数数值也会随着壁厚增加而增加,并且在2mm左右的时候变形不明显,这时候对于末端手臂的影响较小。但是当厚度在1mm以上的时候,变形较为缓慢。如图2。

3 硅片传输机器人手臂结构整体方案

手臂结构是硅片传输机器人核心部件,直接影响着定位精准度以及生产制造质量。手臂的传输情况需要末端执行器沿着设置好的轨道进行伸缩运动,直线方向运动需要保证连杆系统精确直线引导。手臂结构刚性越强,负载能力也就越大。针对这种情况需要齿轮的咬合力相对较大,能够保证手臂直线进行运动。实现齿轮能够同步精确的运转。硅片传输机器人手臂结构较为复杂,需要在一定的空间中进行结构优化设计,并且要能够在优化的过程中固定不变,相应性的增加运转重量,控制手臂刚性。手臂结构主要体现了硅片传输机器人的主要性能,大臂、小臂以及末端执行器等都是硅片传输机器人的主要部件,能够实现直线伸缩运动,以及在不同的模块中自由进行传输硅片运行。

硅片传输机器人手臂是一种悬臂梁结构,在运动过程中会经常发生轨迹的改变。并且在突发的加速或者减速中都会产生相应的震荡,因此要充分的考虑最小运动惯量,根据运行的实际状况提升平稳性。按照动力学要求,在满足手臂强度刚度条件下降低运动量,特别要注意运转轴质心的配置。选材上,可以在硅片传输机器人手臂上涂抹一层致密保护膜,这样能够更好的起到防腐蚀作用,并且不易发生氧化。手臂尺寸要按照运动空间的要求进行设计,选择最优最小的手臂尺寸,保证手臂刚度的同时降低运动惯量。手臂在外界压力作用下不能够发生变形,在位移情况下刚度会随着变形的增加使刚度发生明显的变化,合理的进行手臂力矩的调整降低手臂弯曲变形效果。

4 结束语

硅片传输机器人手臂结构优化设计需要根据各手臂静挠度进行确定,并且有手臂弯曲末端出现的竖直情况进行静偏移约束,在刚性杆转动下关节系统会随着固定频率发生柔性变化,这样就能够获取到优化设计的变化参数。根据硅片传输机器人结构参数调整频率灵敏度,设置优化变量,明确硅片传输机器人优化不适应情况,提出固定的设计参数,在频率权值的保障下调整依据准则,小臂与末端臂参数质量直接的反映硅片传输机器人的变量。手臂厚度变量对结构尺寸产生约束,根据末端发生的静偏移竖直方向将会发生变化,侧壁厚度影响相对较小。末端静偏移会随着厚度的变化逐渐的减小,但是当厚度增加到一定程度的时候,就不会出现末端静偏移。

参考文献

[1]刘延杰,吴明月,王刚,等.硅片传输机器人手臂结构优化设计方法[J].机械工程学报,2014,5:28.

[2]王铁军.硅片传输机器人的动力学特性与结构优化研究[D].大连理工大学,2012,11:1.

篇6

摘 要 资本结构是筹资决策的核心问题,不同的资本结构,会带来不同的风险和成本,从而引起股票价格的变动,适当地利用负债资金,可降低资本成本,发挥财务杠杆作用,增加每股收益,促使股价上升,但当负债比率太高时,又会带来较大的财务风险,为此,公司必须权衡财务风险和杠杆利益的关系,合理确定负债数额,运用EBIT-EPS分析法,比较公司价值法,以确定最优资本结构。

关键词 资本结构 优化

一、EBIT-EPS分析方法的含义

每股利润分析法(EBIT-EPS分析法)是利用每股利润无差别进行资本结构决策的方法。所谓每股利润无差异点是指两种或两种以上筹资方案下普通股每股利润相等时的息税前利润点,亦称息税前利润平衡点。根据这一分析方法,可以分析判断在什么样的息税前利润水平下适于采用何种资金结构。这种方法确定的最佳资金结构亦即每股利润最大的资金结构。

二、EBIT―EPS分析法原理

负债的偿还能力是建立在未来盈利能力基础之上的。研究资本结构,不能脱离企业的盈利能力。企业的盈利能力,一般用息税前盈余(EBIT)表示。负债筹资是通过它的杠杆作用来增加财富的。确定资本结构不能不考虑它对股东财富的影响。股东财富用每股盈余(EPS)来表示。将以上两方面联系起来,分析资本结构与每股盈余之间的关系,进而来确定合理的资本结构,这样就产生了EBIT―EPS分析法,也叫做每股盈余无差异点法。

三、EBIT―EPS分析法的具体运用

案例:W公司目前拥有长期资本8500万元,其资本结构为:长期债务1000万元,普通股7500万元。现追加筹资1500万元,有三种筹资方式可供选择:增发普通股、增加债务、发行优先股。假设利率为9%不变,有关资料如下:

最后,我们可以从图示上得出结论:每股利润无差异点的息税前利润为870万元的意义在于,当息税前利润是870万元时,普通股筹资和债务筹资对企业来说,没有影响,会的到相同的每股收益,同样,当息税前利润为1173万元时,普通股筹资和优先股筹资对企业的影响是一样的,也会得到相同的每股收益,所以,可以说,当EBIT870万元时,普通股筹资比债务筹资和优先股筹资更有利;当870万元 EBIT1173万元时,选择债务筹资比普通股和优先股筹资都有利;当EBIT1173万元时,选择优先股筹资比普通股和债务筹资更有利。

四、EBIT-EPS分析方法的优劣分析

每股利润无差别点法的测算原理比较容易理解,测算过程较为简单。它以普通股每股利润最高为决策标准,也没有具体测算财务风险因素,其决策目标实际上是股票价值最大化而不是公司价值最大化。

另外,EBIT―EPS的分析方法是一种定量的分析方法,它只考虑了资本结构对每股盈余的影响,并假定每股盈余最大,股票价格也就最高。但把资本结构对风险的影响置之视野以外,是不全面的。因为随着负债的增加,投资者的风险加大,股票价格和企业价值也会有下降的趋势,所以,单纯用EBIT―EPS分析法有时会作出错误的决策。但在资本市场不完善的时候,投资人主要根据每股利润的多少来作出投资决策,每股利润的增加也的确有利于股票价格的上升。

五、EBIT-EPS分析方法的改进

1.我们采用“股东财富最大化”作为财务管理的目标,则能使股东权益增加的方案是可选方案。这时应该用“权益资本收益率”(ROCE)作为衡量的指标。ROCE是衡量股东投入资本所得到的回报的财务指标,它是税后利润与投入资本的比值。上例中当EBIT=900万元时,按“每股收益无差别点”法,应当采用负债融资。此时计算出的企业全部资本收益率(ROA)=(900-270)(1-40%)÷10000=3.78%,负债利率9%,可见资产的回报并未大于负债的利息,可知负债的利息支出超过了资产的盈利能力,负债在侵蚀股东权益。

因此笔者得出“ROCE无差别点”法。设用ROCE1、I1、C1和ROCE2、I2、C2分别表示股票融资和负债融资方式下的净资本收益率、负债利息和股权资本。由于在ROCE无差别点上,无论采用负债融资还是股票融资,其ROCE是相等的,则有ROCE1=ROCE2,即(EBIT-I1)(1-T)÷C1=(EBIT-I2)(1-T)÷C2,能使上述条件成立的EBIT为ROCE无差别点的息税前利润。用上例中的数据,则有:(EBIT-90)× (1-40%)÷9000=(EBIT-90-135)×(1-40%)÷7500,得到EBIT=900万元。

当EBIT>900时,运用负债融资可提高ROCE;当EBIT9%的情况下,负债利息才不至于侵蚀股东的权益资本,负债融资才会增加股东财富。

2.若要更准确地确定这个问题,应采用“企业价值最大化”作为财务管理的目标,此时能使总资本净增值最大的方案才是首选,所以我们选择目前国际上比较认可的财务业绩评价指标“经济净增值”(EVA)来进行分析。其计算公式是:

EVA=税后营业收入-资本投资×加权平均资本成本

EVA的计算结果反映为一个货币数量。如果其值为正,就表示公司获得的税后营业收入超过产生此收入所占用资本的成本;换句话说,公司创造了财富。如果其值为负,那么公司就是在耗费自己的资产,而不是在创造财富。因此公司的目标应该是最大限度地创造正的、不断增加的EVA。股权资本是有成本的,持股人投资A公司的同时也就放弃了该资本投资其他公司的机会。EVA和会计利润有很大区别。EVA是公司扣除了包括股权在内的所有资本成本之后的沉淀利润,而会计利润没有扣除资本成本。EVA的计算有两种方法:一是从净利润出发,EVA=净利润-股权资本成本;二是从息税前利润出发,EVA=息税前利润×(1-T)-全部资本(含债务资本和权益资本)×加权平均资本成本。其实最终两者得出的结果是相同的。

仍以上题为例,假设股东要求的报酬率为12%,即股权资本成本为12%,且增加负债对股权资本成本并无影响。则可以分别计算出两种筹资方式下各自的EVA:

由于EVA=(EBIT-D×Kd)(1-T)-E×Ke,其中D为负债、E为所有者权益、Kd为负债成本、Ke为权益资本成本、T为所得税税率。我们用EVA1和EVA2分别表示权益筹资和负债筹资方式下的经济增加值,则有:

EVA1=(EBIT1-10000×9%)×(1-40%)-10000×12%>0得到EBIT1>2900;

EVA2=(EBIT2-7500×10%)×(1-40%)-7500×12%>0得到EBIT2>2250.

当EBIT一定时,EVA1总大于EVA2,且EVA1-EVA2=650。这意味着当股权资本成本为12%时,负债融资方式下的EVA总是大于股权融资下的EVA,故应选择负债融资。而现实中,企业筹借长期债务会加大财务风险,同时股东为补偿增加的风险,必然会要求提高风险报酬,从而引起股权资本成本的提高。而股权资本成本的提高又将减少负债融资方式下的EVA,当其提高到一定程度,负债融资方式下的EVA将小于股权融资下的EVA,就不应再采用负债融资。设EVA1=EVA2时的股权资本成本为R,则得出结论:当股东要求报酬率

篇7

关键词:房屋;建筑;结构;方法;设计;优化

对于房屋建筑的自身结构而言,只有保证其结构的合理性,房屋建筑的整体质量与使用性能等才会得到显著提高,并且可以有效避免建设资金等的浪费。如果房屋建筑的自身结构存在严重不合理之处,不仅会增加相关的建设成本,房屋建筑的整体质量也无法达到相关要求,这样就会给用户带来安全隐患等。基于上述背景,对房屋建筑的结构设计予以优化就变得尤为重要。

1房屋建筑结构设计优化的相关要点

第一,模型的确立。在房屋建筑结构优化设计当中,模型的确立是基础环节,相关人员只有对具体变量参数进行提取分析,才能根据相关参数建立模型,以此求出最佳答案。相关人员需要科学选择变量并且对目标函数进行确定分析,以此满足后续相关需求。第二,程序的设计。在房屋建筑结构的设计优化中,相关人员需要科学确定优化程序,并且将具体程序导入计算机内部,利用计算机就可以将相关数据求出。第三,结果的分析。相关人员在利用计算机等进行计算之后,就要对相关的结果进行分析,并且根据结果中的具体信息等制定后续的设计方案等。

2房屋建筑结果设计优化方面的具体方法

2.1上部结构的优化处理

对于房屋建筑的结构设计优化而言,上部结构优化十分重要,特别是剪力墙结构的建筑,需要相关人员对这一部分的结构进行优化布置。相关人员需要保证剪力墙的重量均匀性,这样才能确保每层建筑的重心与平面刚度的中心位置完全一致,这样就可以有效避免外界的风力及自然灾害等给房屋建筑带来严重的影响。如果房屋建筑的剪力墙结构为大开间形式,相关人员就可以尽量减少混凝土的使用量,并且尽量减少墙肢的数量。如果房屋建筑的所处环境地质条件相对较差,就需要有更强的防震性能等,相关人员在上部结构的优化处理当中就尽量不要采用大开间形式的剪力墙。

2.2框架结构优化

在很多房屋建筑的施工当中,都会选择钢筋混凝土结构,这种类型的框架结构优化也会成为房屋建筑结构优化设计的重要组成部分。相关人员在实际的框架结构优化当中,可以选择准则法来进行操作。相关人员也可以根据房屋建筑自身结构的截面大小情况,选择有限单元法等进行优化分析,这样就可以有效保证房屋建筑的结构优化得到顺利进行。

2.3建筑平面优化

在房屋建筑的结构优化设计当中,平面优化也是重要的组成部分。首先,相关人员需要针对楼面量进行科学的控制。楼面是房屋建筑的重要结构之一,楼面量减少或者是楼板的开洞量出现过大,都不利于楼面整体结构的稳定。所以,相关人员在实际工作当中应当针对天井或者楼面的开洞量等进行严格、细致的计算分析,这样才能对房屋建筑的楼板面进行科学控制。与此同时,相关人员应当适当提高房屋建筑内楼板的配筋量,以免出现严重的预应力损失等,并且保证不同结构之间的连续性,做好楼层之间的支撑等。其次,相关人员在房屋建筑的结构优化设计当中,还需要做好平面布置方面的外形优化等。相关人员在实际工作当中需要仔细考虑风压带来的影响,对房屋建筑的外形结构进行科学的优化设计,这样才能有效避免外力带来不利影响。在具体操作当中,相关人员可以根据房屋建筑所处的环境及地理位置、气候特点等进行分析。比如,如果房屋建筑位于沿海地区环境,在其自身的外形方面,相关人员就要避免其外形凹凸面积较大,以免给整体结构带来较强的不稳定性。相关人员一定要根据外形合理化的基本原则进行优化设计,特别是要重点考虑风压因素,这样才能有效保证房屋建筑平面得到明显优化。

2.4建筑阶段性及相关寿命的优化

对于房屋建筑结构的设计优化而言,阶段性优化及整体寿命的优化也十分关键,这一部分的的内容不仅仅在于正式施工至建筑工程的使用年限之内。房屋建筑的设计人员等需要根据其自身不同阶段出现的特点等进行分析,并且参考相应的实际情况进行处理。这样才能在保证建筑自身质量的基础之上,实现建筑企业的整体效益。此外,在房屋建筑的寿命优化方面,相关人员还需要切实按照建筑自身的使用年限、具体的施工方式等进行综合性分析,确保在建筑房屋的使用年限当中不会出现严重的意外问题,这样才能有效保证房屋建筑相关结构的优化。

3结语

目前,人们的生活水平与过去相比出现了明显的提高,其自身的安全性、实用性等也得到了普遍的关注,除了房屋建筑的自身质量需要相关单位及人员给予高度重视之外,房屋建筑的经济性、美观性也成为了人们关心的重点问题之一。所以,在房屋建筑的设计当中,针对其自身结构方面的优化设计就成为房屋建筑建设的重要组成部分。相关单位及人员等需要切实把握房屋建筑结构设计优化的具体要点,并且从多方面选择科学、有效的方法等保证房屋建筑的结构优化顺利进行,以此保证房屋建筑的质量与美观性、经济性及实用性等。

参考文献:

[1]刘松.建筑结构设计优化方法在房屋结构设计中的应用[J].城市建设理论研究(电子版),2016(20).

[2]战福明,刘鲲.建筑结构设计优化方法在房屋结构设计中的应用研究[J].门窗,2016(07).

篇8

关键词:房屋结构设计;设计师;建筑结构设计优化方法;房屋质量与环境;经济

DOI:10.16640/ki.37-1222/t.2017.13.096

0 引言

房屋结构设计,是当下房屋出售过程中,销量的最重要的影响因素之一。为了迎合顾客的要求,建筑结构设计优化人才紧缺。建筑结构设计优化在房屋结构设计中有着重要的作用,它涉及到房屋的安全性方面、实用性方面、美观性方面等,使房屋除却使用价值外,更具有其他的价值,让人们的生活更加丰富,更有质量。

1 建筑结构优化方式简述

建筑结构优化方式,是我们专业人员在长期的时间、实践中总结出来的一种带有科学化的、合理化的房屋结构设计的方式。它包含着很多的方面,比如房屋建设前期调查考研。这需要建筑设计师有长远的目光,立足于整体,综合多方面的联系等做出基础的决定;在设计时,还要考虑到建筑的难度,周围环境的合理利用,消费者需求需要等。因此基于这些综合条件下,设计师们的建筑结构设计优化才能为房屋结构设计做到最好的效果。

总体而言,我们可以总结以下几点:设计理念基于多个学科的知识,是跨领域的智慧集结体;建筑结构优化,更注重房屋的质量,无论是怎么优化,质量是基础,切勿中看不中用;建筑结构设计向“外表”侧重,即多侧重于房屋建筑的外表设计,多注重房屋外部美观性;建筑结构优化方式紧跟社会主流,倡导卫生环保理念 ;房屋建筑结构要求有特色,多利用环境的特色进行创意建造,且考虑施工便易度。

2 建筑结构优化方式在房屋结构设计中的重要性

无论是怎样的房屋建筑设计,首要所考虑的就是房屋的质量。并且在实践中我们不难发现,我们传统地房屋建筑设计,质量保证是绝对主要的,因此在一定程度上忽略了一些“加分项”。当然除此之外,建筑结构优化方式在房屋结构设计中还发挥着重大的作用。

随着经济的发展,房屋占地面积越来越多,为了节省土地,房屋的层数不断增加。这样的高层次叠起,导致工程量增加,经济等的投入增加,房屋卖价也随之增长,循环下来,最终导致消费者需要高价买房。

建筑结构优化方式,是在多方面影响因素的基础上做出的科学化房屋建造方式。它不仅提倡房屋建筑的质量,并且秉承着外表美观的理念。从整体出发,具体问题具体分析的设计,多方面考虑房屋建筑的造价问题,以最少的、最好的建造成本打造最优的房屋,带动经济的发展,为人们谋利益,当然这也是促进企业快速发展的重要保障。

总的来看,房屋结构设计中的建筑结构优化方式是当前房地产相关企业重点发展的部分,收益利益的同时,也打造良好的品牌,长久发展。

3 建筑结构优化方式在房屋结构设计中要求

建筑结构优化方式在房屋结构设计的实践过程中,无论是设计人员,还是施工人员,都面临着巨大的压力,想要达到房屋建造的最好状态,只有双方共同协作才是最好的方式。

首先是设计人员。前面我们也提及到,设计是跨越了多个学科知识的智慧结晶,尤其是在艺术修为上,必须要有较深的造诣,才能够拥有设计的灵感。除此之外,设计人员的整体性观念必须要强。建筑结构优化方式是基于多方面的影响因素。设计人员把握整体的设计,也要考虑当下房屋建造技术的程度,最大化的设计出既美观又实用的房屋建筑。

其次是施工人员。施工人员并不是机械的按照设计师所设计出的房屋结构进行施工,其中也是含有灵活灵用的成分。当然,施工人员必须要遵守:质量第一、安全第一。为了提高自身的能力,施工人员应该多学习相关的理论知识,并将其应用到实践中,在实践中锻炼自己、提高自己。

最后就是设计人员与施工人员双方的巧妙配合。双方应该积极沟通,为对方提供更好的理解,达到最优的房屋结构设计效果,实现双赢,促进经济的发展。

4 建筑结构优化方式在房屋结构设计中的实践

实践出真知,只有经过实践的检验才能真正成为大众所需要的。房屋结构设计也不例外。建筑结构优化方式在房屋结构设计中的实践,我们可以得出以下几点:

(1)综合理念的考虑。无论是哪种房屋建筑,在建造的过程中都有着层次性和多方性的特征。针对于房屋建筑的层次性,它包括着房屋建造的设计理念方面、构造方面、建造施工方面等。综合理念的考虑,是极其重要的。

(2)施工期的规划。当房屋建造时,施工时间是有规定的。但是建构结构优化方式考虑到了多方面的因素,因此施工期间,房屋建造需要进行规划,要考虑到房屋建造的阶段性。

(3)房屋基本结构。对于一个房屋建筑而言,基础打造是必修课。首先是房屋的桩,既要选好桩的材料、桩的位置,又要考虑好环境对桩的影响。其次是对于房屋上部结构[5]的考虑。房屋不倒,要考虑好受力的重心。在建造结构上优化这些短处而且房屋的排水系统也是一个重点。在选择排水管的时候一定要结合实际,适当选择。

(4)房屋内线路铺设。当房屋建造好之后,电路也是一个问题。首先要考虑好电路之间的关系问题,合理安排。其次要注意电线的铺设,不能杂乱的在外,要注意安全。

5 结束语

综合以上来看,建筑结构优化方式牵扯到了方方面面,其中不变的理念就是房屋建筑的质量和外在美观度的结合。无论是设计者还是施工者,又或是企业本身,都是在积极的探寻建筑结构优化方式,期望能达到房屋建造结构的最优。并且随着时代的发展,我们相信,建筑结构优化方式会更优化,人们的住房环境会越来越美。

参考文献:

推荐期刊