时间:2023-09-17 14:51:05
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇航空航天的未来,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
达索系统近日携最新3D体验平台及相关航空航天应用参展第九届中国国际航空航天博览会,与业内人士分享了其虚拟现实立体交互漫游系统、面向虚拟试飞的完整研发流程以及实时协同审核的最新解决方案和成功案例,引发了业界的广泛关注和强烈反响。
达索系统是全球飞机设计和尖端解决方案的先驱者,在航空航天领域有着丰富的行业经验和前瞻的技术优势。全球前20家最大的飞机制造商和主要代工厂都采用达索系统的解决方案,而所有重要的航空工业的新研发项目,也都应用了达索系统的技术。在国内,达索系统的解决方案被中航集团各研究所以及国内一些大型的航空航天企业普遍采用。此外,达索系统还参与了中国首架具有完全自主知识产权的新支线飞机ARJ21和国产大型客机C919等国内重要航空项目的研发和设计。
2012年是达索系统开创新纪元的重要一年,了具有行业里程碑意义的3D体验战略——全新的3D体验平台。此次航展,达索系统亮相了基于3D体验平台的最新航空航天解决方案(包括CATIA, ENOVIA, SIMULIA, DELMIA and 3DVIA),这一解决方案更强调体验,让不仅仅能在产品交付前使用户进行体验,且将用户体验始终贯穿整个研发过程。新解决方案在单一的数据库上建构了所有的角色,从设计开始到总体、审核、工艺、检验、测量,到工厂、工人甚至到维护,都基于同一个系统。同时,达索系统还展示了面向虚拟试飞的完整研发流程和数字化设计环境下的实时协同审核方案,以及航母战斗群与战斗机虚拟现实立体交互漫游系统,该系统采用源自德国的工业级红外跟踪系统ART SmartTrack,可跟踪操作者视角,通过6自由度手柄进行全方位导航,方便易用。
关键词:计算力学;多物理场耦合;先进复合材料;有限元技术(FEM)
中图分类号:V211 文献标识码:A 文章编号:1671-2064(2017)12-0252-02
1 力学在航空航天领域的支柱地位
作为与材料科学、能源科学并肩的航空航天领域三大基础学科之一,力学在航空航天领域拥有无可辩驳的支柱地位。航空航天技术的发展与力学学科的发展有着举足轻重的关系。同样,力学学科的发展也推动了航空航天技术的发展。从航空航天的历史开端,力学便扮演着开天辟地的角色:莱特兄弟发明飞机前的时代,人类的航空器长期停留在热气球与飞艇的水平,人们普遍认为任何总密度比空气重的航空器是无法上天的;而随着流体力学的发展,越来越多总密度大于空气的航空器被发明出来进行试验,而莱特兄弟的飞机即为第一个成功的尝试,莱特兄弟的L洞也成为一个经典(图1)。从此,航空器的发展步入了快车道,各种结构的飞机翱翔于蓝天,从不到一吨的轻型飞机到上百吨的运输机,直至今天我们对机已经习以为常。
时至今日,航空航天的总体设计已由庞大的力学各分支支撑起来,从最基本的方面分类,可包括:飞行器整体气动外形归属于空气动力学;整体支承结构归属于结构力学以及材料力学;复合材料归属于复合材料力学;材料疲劳性能归属于疲劳分析;结构动力特性归属于振动力学;缺陷结构分析归属于损伤力学以及断裂力学。而对于具体的问题细分,则还有如:针对超高速飞行器的高超空气动力学;针对紊流等大气不稳定情况的非定常空气动力学;针对流固耦合问题的气动弹性力学;以及针对非金属材料的粘弹性力学等。此外,还有众多与力学相关的技术被发展起来,如有限元技术(FEM)等。
展望未来,力学发展的源动力在于航空航天综合多学科的交叉与技术。被誉为“工业之花”的航空航天工业,其研发生产涵盖了目前已知的所有工科门类,如此多的学科交叉下,力学的发展势必会与其他学科进行技术交流,这会带来问题的进一步复杂化,同时也丰富了力学的研究内容。
2 航空航天领域力学发展新挑战
航空航天的发展,给力学带来了新的挑战。结构的日趋复杂,给力学计算带来困难;繁琐的理论公式,需根据工程需要进行必须的简化;新材料的应用在航空航天领域最为敏感,在为飞行器降低结构重量的同时,也带来诸多的不利因素如耐热性能差、环境敏感度高等;而在某些关键部件的多物理场耦合问题也将成为重要的研究方向。
2.1 程序化
航空航天器和大型空间柔性结构的分析规模往往高达数万个结点、近十万个自由度的计算量级,这些问题包括但不限于:飞行器的高速碰撞间题,如飞机的鸟撞, 坠撞,包容发动机的叶片与机匣设计,装甲的设计与分析,载人飞船在着陆或溅落时的撞击等。为了解决这种计算量庞大的问题,上世纪50年代初,力学便发展出一门崭新的分支学科――计算力学。伴随着电子计算机以及有限元技术的发展,计算力学取得辉煌的成绩,这也说明了其本身发展潜力巨大。
力学分析技术的发展,特别是对于各种非线性问题(几何非线性、材料非线性、接触问题等)分析能力,是长期存在的。然而在很长一段时间内,受到计算机能力的制约,以及模型建立本身的局限性,力学分析求解停留在解析方法和小规模数值算法中。这对于工程人员的设计工作是一个极大的限制,对于航空航天领域而言则尤甚如此。计算力学的发展,带来的效益是巨大的。首先其可以用计算机数值模拟一些常规的验证性试验和小部分研究型试验,这可以节省很大一笔试验费用。其次,其可以求解某些逆问题,逆问题的理论解往往无法通过非数值的手段得到。最后,从工程管理角度考虑,数值模拟方法大大节省了产品研发的周期,由此单位时间内产生了更多的经济收益。有限无技术分析机翼见图2。
上述计算力学给工程设计方面带来的种种好处,都基于一个很重要的前提。那就是力学问题程序化。如何将力学问题转化为一个计算机可以求解的程序,一直是计算力学研究的重点,比如有限元技术就是其中一个典型代表。目前,有限元技术已经涵盖了大部分力学问题,包括:静力学求解,动力学求解,各种非线性问题,以及多物理场耦合等。但值得注意的是,除了静力学以及相对简单的问题外,其余问题所用的算法目前精度仍然有限,相较于工程运用而言仍存在诸多壁垒。对于这些问题算法的更新,是力学问题程序化必须面对的挑战,仍需研究人员不断探索。
2.2 工程化
力学工程化依然是基于计算力学而讨论的。所不同的是,程序化是针对一项力学问题能不能解决,工程化关注的问题是如何使得力学问题的解决过程更符合工程需求。
21世纪的航空航天,已经越来越趋向于商业化,美国已有数家私有航天企业成立,我国的航天科技集团也在进行着一些商业卫星发射。而商业化的工程问题,所追求的目标永远是效益。因此,力学工程化发展也应基于这一要求。航空航天工程的研发工作,一直给人周期长的印象,动辄10年以上的研究周期,对于目前商业化的运营是不适用的。如何快速的给出解决方案,是今后力学工程化的重要考量。随着软件技术的发展,越来越多的数值计算可以通过可视化、图表化等快捷的交互式设计方法呈现出结果,这可以直观地给予工程师设计反馈,从而达到加快设计进程的目的。同时,直观的结果反馈,也能避免数据分析过程出现人为失误,起到规避风险的作用。
2.3 非均质化
新材料往往首先出现在航空航天领域,其中典型代表便是先进复合材料。先进复合材料具有高比强度、高比模量、耐腐蚀、耐疲劳、阻尼减震性好、破损安全性好以及性能可设计等优点。由于上述优点,先进复合材料继铝、钢、钛之后,迅速发展成四大结构材料之一,其用量成为航空航天结构的先进性标志之一。
复合材料的运用给力学提出了新要求,相比于传统各向同性的金属材料,其各向异性的力学特性使得非均质力学应运而生,代表便是复合材料力学的诞生。非均质化力学需要将材料的承力主方向设计为结构中的主承力方向,而非主承力方向则需要保证一定强度,不至于破坏,这是其主要的设计特点。相比各向同性材料,其理论模型更为复杂,相应的数值求解方法也没有那么完善。同时,实际中复合材料的性能分散性和环境依赖性相当复杂, 设计准则和结构设计值的确定还很保守,导致最终设计结果并没有理论中那么完美,很大程度上制约了工程领域大规模使用复合材料。对于国内而言,复合材料研究工作相比国外则更为落后,无论是设计经验还是试验数据积累都有不小差距。
建立完备的非均质化力学模型,积累足够的原始参数,大胆尝试提高复合材料的设计水平以及用量是今后力学非均质化的主要任务,需要研究人员付出更多的努力。
2.4 多物理场耦合
2.4.1 电磁与力学耦合
新时代下的航空航天材料,已不仅仅局限于提供简单的支承作用,功能化是航空航天器新材料发展的重点和热点,其最终目的是为了未来航空航天器发展智能化目标。
目前,越来越多的具有电-力耦合功能的新型材料正成为航空航天器结构材料的选择。因为在对飞行器的自我检测技术方面,具有电-力耦合功能的材料的受力状态与电磁性能存在特定的函数关系,由此系统能通过检测电磁性能达到检测受力状态的效果,这大大方便了对飞行器的健康监测,也有效保证了飞行器的安全。这其中耦合函数的准确性便成为关键,电-力耦合的发展能促进这些技术的健全,具有十分积极意义。
2.4.2 温度与力学耦合
温度场与力场的耦合主要体现在发动机上,对于发动机内部涵道的设计最优化一直是热力学着力解决的问题。
目前大部分飞机均采用喷气式发动机,包括:涡喷发动机、涡扇发动机以及涡桨发动机。上世纪40年代末,涡喷发动机出现,飞机飞行速度第一次能超过音速,带来了一场飞机发动机的技术革命。由此,包括进气道以及发动机涵道的设计成为发动机研发的一个关键点,早期的涡喷发动机,由于涵道上的设计缺陷,导致燃料燃烧产生热能转化为推进力的转化比很低,同时伴随着燃烧不充分,因此发动机耗油量很高且推力较小。经过几十年的发展,目前无论军用还是民用飞机发动机,大部分均采用涡扇发动机,通过优化得到的涵道形状最大化了单位燃油所提供的推力。图3为民用客机发动机涵道。
我国的飞机发动机工业水平距离世界领先水平仍有较大距离,特别是在大涵道比的商用发动机研发上。发展热力学,对热-力耦合问题进行更深入的研究,是发展我国飞机发动机事业的奠基石。
2.4.3 流固耦合
流固耦合是飞行器研制最基本的问题之一。几十年的发展历程中,基于流固耦合研究的飞机外形设计取得了诸多进展,包括整体机身外形的优化,翼梢小翼的出现等。随着飞机飞行速度的不断提高,特别是军用飞机机动性的要求,出现了许许多多新的流固耦合问题。比如针对飞机在大攻角飞行时(一般出现在军机上),传统小攻角气动表示法、稳定理论等均不再适用。因此,解决大攻角非定常问题,需要从飞行器运动以及流动方程同时出发,建立多自由度分析和数值模拟模型。这是典型的流固耦合问题。
同时,以往旧的流固耦合理论,在先进复合材料大量运用的今天,显然已经不再使用。对旧有理论进行必要的修正,也将成为流固耦合问题亟需完成的工作。
3 结语
当前,国家大力发展航空航天事业,作为高精尖产业,其所运用的理论与技术绝不能落后。力学作为一门古老而又应用广泛的学科,其对航空航天事业的发展起着举足轻重的作用。为符合未来航空航天领域发展,航空航天领域的力学应着力向着程序化、工程化、非均质化、以及多物理场耦合化综合发展。
参考文献
[1]杜善义.先进复合材料与航空航天[J].复合材料学报,2007(2):1-11.
[2]尧南.计算固体力学的发展及其在航空航天工程中的应用[J].计算结构力学及其应用,1993(3):199-209.
第二代月球探索已经开始
月球探索之前一直都是国家行为,但现在越来越多的私营机构和商业公司正在寻求未来几年探索月球。
尽管距离1969年人类宇航员踏上月球已经四十多年了,但美国航空航天局(NASA)仍然计划重返月球。这次虽然没有总统的号召,但美国航空航天局的探月计划仍然是载人登月,至于时机嘛,就是他们宣布自己的新一代火箭和太空飞船“猎户座”准备就绪的时候。就在本周,美国航空航天局公开展示了造价高达5亿美元的“猎户座”太空飞船,并宣布计划在2014年以无人驾驶的形式展开首航,届时将以3.2万公里的时速飞到距离地球5800公里的地方。“猎户座”的载人飞行预计在2019年展开。“猎户座”本来是美国前总统小布什所制定的月球任务“星座计划”的一部分,但奥巴马上台后,取消了“星座计划”,而主张集中在改进火箭技术。不久后,奥巴马又恢复了“猎户座”宇宙飞船的部分,使它成为国际太空站的“逃命汽车”工具。据悉,“猎户座”宇宙飞船包括一个供航天员乘坐和运载货物的太空舱、一个推进电力系统与其他设备的太空舱,以及载有另一个太空舱的“发射后放弃”系统。其他国家,如俄罗斯、日本等,也有自己的探月计划。
不过这次美国航空航天局并不打算自己大包大揽一切。与之前的航天飞行一样,美国航空航天局再次与民间公司合作进行第二代月球探索,简称“探月2.0”。
新探月竞赛在私人公司间展开
上世纪六七十年代的登月竞赛是国家与国家之间的比赛。而这次的竞赛则在私人公司之间展开,他们正在研发探月用的机器人太空飞船。美国航空航天局希望从这些公司那里学习借鉴,以协助自己未来的太空探索任务——不仅仅是探索月球,还要探索小行星和太阳系其他地方。
美国航空航天局的“创新月球演示数据计划”(ILDD),由位于约翰逊航天中心的月球登陆器项目办公室负责,该计划于2010年,并在同年10月公布了一系列的合同。“创新月球演示数据计划”允许美国航空航天局去购买商业化运营的公司或实验室在研发月球登陆器方面的各种技术数据。
2010年10月美国航空航天局宣布与6家公司达成协议,将购买这些公司的探月相关技术数据。美国航空航天局感兴趣的是正在开发的新技术的相关信息,这些技术包括系统集成和测试、发射、太空演示、制动燃烧和月球着陆等。美国航空航天局计划利用这些数据去发展自己未来的登陆系统,为人类或机器人登月、登陆近地小行星或登陆其他太阳系目的地做准备。
2010年12月美国航空航天局宣布已经与3家公司签订合同,购买其登月技术数据,这3家公司分别是“月球快车”公司、“太空机械技术”公司和Dynetics公司,合同涉及金额都是50万美元。根据合约条款,这3家公司都必须证明一个已做好航天飞行准备的月球登陆器的关键技术组成。而这三家公司同时也都参与了“谷歌月球X大奖赛”(GLXP)。
“美国航空航天局将是探月2.0时代的强大领导者,正如它在上世纪六十年代的著名探月竞赛中所表现的那样。不过这次美国航空航天局将通过与国际伙伴、尤其是商业公司合作来显示自己的领导地位,同时也要进行它自己的月球探索计划。”威廉·波默朗茨评价道,他是“X大奖基金会”下属的“太空大奖”项目高级总监。
2012年4月23日,“月球快车”公司宣布已经向美国航空航天局交付了一个任务设计包,内容包括其探月机器人计划和月球金属矿产及水源开发计划的详细数据。
除了上述的“创新月球演示数据计划”相关合同,“月球快车”公司还与美国航空航天局签署了《补偿太空行动协议》,以研发自己公司的月球登陆器。根据该协议,“月球快车”公司可以从美国航空航天局购买技术和技术支援服务。
谷歌设巨奖激励探月竞赛
“谷歌月球X大奖赛”是私营公司之间探月竞赛的缩影,该大奖赛提供了史上最高的激励性奖金——这也反映了登陆月球在技术和资金方面所面临的挑战是多么巨大。一等奖3000万美元,将奖励给首个成功发射机器人探月器并成功登陆月球的公司,当然,这个探月器在登陆后还必须行进500米并向地球传回视频、图片和数据。
目前有25个参赛团队竞逐这3000万美金,原本是29个。今年5月,参赛者之一“月球快车”公司收购了另一个参赛团队“下一个巨大飞跃”。
关键词:空气动力学 流体控制 航空航天 发展方向
中图分类号:V211 文献标识码:A 文章编号:1672-3791(2012)06(a)-0000-00
空气动力学是研究物体同气体作相对运动情况下的受力特性、气体流动规律和伴随发生的物理化学变化,在流体力学基础上,随着航空工业和喷气推进技术的发展而成长起来的一个学科。空气动力学的发展对于航空航天飞行器的研制有着极为重要的意义,是航空航天最重要的科学技术基础之一,对国家安全、经济发展、社会和谐都有着重要和用。在过去一段时间里,由于航空工业的相对成熟,关于航空领的研究更多的集中于如何通过改进制造过程降低成本,而不再将主要力量投入新技术的研究,但随着国际形势的日益严峻、信息化程度的提高以及航空运输对安全性经济性的要求,航空技术研究面临着更多更新的挑战,使得全球重新提高了对航空技术研究的关注程度。作为航空航天技术的重要基础学科之一的空气动力学,也面临着全新的机遇和挑战。
1 空气动力学研究意义和研究现状
1.1 空气动力学研究意义
人们最早对空气动力学的研究可以追溯到人类对鸟或弹丸在飞行时的受力和力的作用方式的种种猜测,但真正形成独立学科是在20世纪航空事业的迅速发展之后,是在经典流体力学中发展并形成的新的分支,并且迅速成为发展航空航天各类飞行器的重要基础科学和关键技术,推动整个人类航空航天事业的发展,成为航空航天事业发展的基础。如今,空气动力学已经不再仅只是应用于航空航天领域,还被应用于环境保护、公路交通、铁路交通、冶金、建筑、体育等众多领域,对整个人类社会的发展与进步都有着极为深远的影响。
1.2 空气动力学研究现状
在20世纪90年代,随着航空工业的迅速发展,使得航空工业整体技术程度相对于其它行业都成熟许多,基于此种原因,在较长一段时间里学界多认为航空工业已经走向成熟,尤其是空气动力技术基础技术方面,因此航空工业的研究将更多的集中于成本费用的降低,而减少了对应用技术的研究重视程度,使得空气动力学的研究相对缓慢。进入21世纪以后,随着计算机技术、通信技术、飞机设计技术等的发展,人们重新重视起了空气力学的研究,使得空气动力学得到了较好的发展。如以Euler及Navier.Stokes方程为主要数学模型的整机及部件绕流流场和气动特性计算研究领域,在我国即得到了极大的发展,并被应用于很多重点型号的研制中;再如飞机多外挂气动干扰特性研究、现代歼击机大攻角过失速气动持性研究等,都取得了极大的进展,在计算空气动力学领域也取得了突出的成绩,很多研究成果处于国际先进水平。
2 空气动力学研究所面临的挑战
传统的认为空气动力学研究已经足以满足航空航天需求的认识很明显是错误的,随着飞机一体化设计技术、微型飞行器、行星探测飞行器的发展,必然向空气动力学的研究提出新的挑战。
3 先进飞机器研制需求所带来的挑战
随着航空交通事业的不断发展,以及出于国家安全等方面的需要,对先进飞行器的研制需求不断提高。如高机动性作战飞机、可重复使用高超音速飞行器、大型民航机、大型运输机、地效飞行器、微型飞行器、智能飞行器、无人侦察机、战略战术导弹、应用卫星、概念武器等,都对空气动力学的研究提出了更多的挑战性课题,需要空气动力学从复杂流场预测、喷流干扰、气动隐身、微流体力学、气动防热、高超音速边界湍流、低雷诺数流动力学、地面效应等多个方面进行更深入的研究,而所有这些研究,都涉及高度非定常、线性,包括复杂的物理化学变化效应的影响,难度极大。
例如,大容量运输机的研发,首先需要解决大容量运输机高燃油效率、低噪声、常规跑道起飞着陆能力的需要。在这里,虽然高燃油效率可以通过混合层流控制技术(HLFC)、发展新型发动机、采用高效的气动设计方面来进行满足,但这些技术要应用到大型飞机、高Re数情况却还存在很多缺陷和不足。再如低噪声的研究也是大型飞机所必须关注的问题,必须充分将声学研究向气动研究结合在一起进行。同时,还必须考虑增升阻力、尾涡效应、发动机喷流和外流干扰效应等。
3.1 自适应流动控制需要所带来的挑战
传统空气动力学对绕复杂物体的流动,多集采用涡发生器、吸气、吹气、肋条等技术进行模拟研究,但这种研究主要集中于流动的被动控制,随着近年来电子技术、软感技术、材料技术等的发展,传统的集中于被动控制的研究存在许多不足,必须对宏观流动和微观流动的主运控制进行更深入的研究,这对飞行器的未来发展有着极为重要的意义。只有提高自适应流动控制研究水平,才能提高自适应流动控制技术,为飞机结构设计提供更为全面的飞行控制函数,以有效减轻飞机重量和飞行能力。
自适应流动控制的研究主要包括减阻流动控制、边界层分离流动控制、高升力流动控制三个方面。具有感知能力的自适应流控制技术对于去不稳定性扰动源的影响极为重要,是未来飞行器发展所需要解决的一项关键性技术,对于简化吸气装置和相关系统都有着极为重要的意义。边界层流分离流动控制技术则驻地改善飞机气动性能有着重要意义,需要进一步研究射流、湍流、目标流场、近壁面压力分布等方面的关系。高升力流动控制技术对行器增升装置的研发有着重要意义,需要进一步研究如何在不降低飞机性能的情况下减少飞机重量提高飞机增升能力。
关键词:先进复合材料;航空航天领域;飞船;卫星;火箭;飞机 文献标识码:A
中图分类号:V257 文章编号:1009-2374(2016)13-0039-04 DOI:10.13535/ki.11-4406/n.2016.13.019
1 概述
现阶段,我国航空航天事业得到前所未有的发展,航空航天领域对材料的要求不断提升,为了满足航空航天领域对材料性能的要求,应该研发新型、高性能的材料,先进复合材料应运而生,其具有多功能性、经济效益最大化、结构整体性以及可设计性等众多特点。将先进复合材料应用在航空航天领域,能够有效地提高现代航空航天器的性能,减轻其质量。和传统钢、铝材料相比,先进复合材料的应用,能够减轻航天航空器结构重量的30%左右,在提高航空航天器性能的同时,还能降低制造和发射成本。现阶段,先进复合材料已经成为飞船、卫星、火箭、飞机等现代航空航天器的理想材料,同时,先进复合材料已经和高分子材料、无机非金属材料及金属材料并列为四大材料。因此,文章针对先进复合材料在航空航天领域应用的研究具有重要的现实意义。
2 我国先进复合材料发展现状
自20世纪70年代开始,我国就开始了对复合材料的研究工作,经过40多年的研究与发展,我国先进复合材料的技术水平不断提高,并且取得了可喜的进步。现阶段,我国先进复合材料在航空航天领域中的应用,逐渐实现了从次承力构件向主承力构件的转变,被广泛地推广和应用在军机、民机、航空发动机、新型验证机和无人机、卫星和宇航器、导弹以及火箭等领域,即先进复合材料已经进入到实践应用阶段。但是,我国先进复合材料技术的发展和研究成果与国外发达国家的水平还具有一定的差距,现阶段我国先进复合材料的设计理念、制备方法、加工设备、生产工艺以及应用规模等都相对落后。例如,我国军用战斗机中复合材料的用量低于国外先进战斗机的复合材料用量,仅有少数的军用战斗机超过20%,例如J-20其复合材料的用量约为27%。我国成功研制的C9型民用飞机,单架飞机的先进复合材料的用量超过16吨,标志着我国先进复合材料在航空航天领域的应用水平在不断提高。
3 先进复合材料简介
3.1 先进复合材料的组成
复合材料是由金属、无机非金属、有机高分子等若干种材料采用复合工艺组成的新兴材料,先进复合材料不仅能够保留原有组成材料的特点,还能够对各种组成材料的优良性能进行综合,各种材料性能的相互补充和关联,能够赋予新兴复合材料无法比拟的优越性能。先进复合材料简称ACM,指的是碳纤维等高性能增强相增强的复合材料。先进复合材料的多种性能都优于普通钢、铝金属材料,在航空航天领域的应用,能够有效地减轻航空航天设备的重量,同时赋予航空航天设备特殊的性能,例如吸波、防热等。
3.2 先进复合材料的特性
先进复合材料的特性主要表现为:
3.2.1 多功能性。先进复合材料经过多年的发展,结合了众多优异的物理性能、力学性能、生物性能以及化学性能,例如防热性能、阻燃性能、屏蔽性能、吸波性能、半导性能、超导性能等,并且不同的先进复合材料的组成不同,其功能性存在一定的差别,综合性、多功能性复合材料已经成为先进复合材料发展的必然趋势之一。
3.2.2 经济效益最大化。先进复合材料在航空航天领域的应用,能够减少产品部件数量。由于复杂部件的连接不需要进行铆接、焊接,因此对连接部件的需求量降低,有效地减少了装配材料成本、装配和连接时间,进一步降低了成本。
3.2.3 结构整体性。先进复合材料可以加工成整体部件,即采用先进复合材料部件能够替代若干金属部件。某些特殊轮廓和表面复杂的部件,用金属制造的可行性较低,采用先进复合材料能够很好地满足实际需求。
3.2.4 可设计性。采用树脂、纤维、复合结构方式,能够获得不同形状、不同性能的复合材料,例如选择合适的材料、铺层程序,能够加工出膨胀系数为零的复合材料,并且复合材料的尺寸稳定性优于传统金属材料。
4 先进复合材料在航空领域的应用
传统的飞机制造以钢、铝、钛合金为主要材料,而传统飞机上应用比例最大、构成轻质结构主体的铝合金正在被越来越流行的复合材料所替代。我们所指的复合材料主要是以高性能纤维作为增强体,用树脂作为基体将纤维粘结在内部并固化成型的高性能塑料。随着复合材料的迅速发展和广泛应用,当前先进的复合材料在飞机上的关键应用部位和用量的多少,已成为衡量飞机结构先进性的重要指标之一。由于碳纤维材料具有耐高温、密度低、强度大等特点,目前在航空航天领域运用最为广泛。与密度达到2.8g/cm3左右的铝合金相比,先进的碳纤维复合材料密度一般在1.45~1.6g/cm3左右;而拉伸强度可以达到1.5GMPa以上,超过铝合金部件的3倍,接近超高强度合金钢制部件的水平。这种密度低、强度刚度高的优势,使飞机的复合材料结构部件在获得与先进铝合金部件在强度刚度等综合性能方面相当的水平时,重量可以大幅减少20%~30%。复合材料在飞机结构中的应用情况大致可以分为三个阶段:第一阶段是应用于受载不大的简单零部件,可减重20%;第二阶段是应用于承力大的部件,可减重25%~30%;第三阶段是应用于复杂受力部位,如中机身段、中央翼盒等,可减重30%。复合材料主要用于制造航空器的外饰和内饰部件,如飞机的一次构造材料:主翼、尾翼、机体,二次构造材料,副翼、方向舵、升降舵、内装材料、地板材、桁梁、刹车片等及直升飞机的叶片。根据统计,小型商务机和直升飞机的碳纤维复合材料用量已占55%左右,军用飞机占25%左右,大型客机占20%左右。
4.1 军机上的应用
为满足新一代战斗机对高机动性、超音速巡航及隐身的需求,20世纪90年代后,西方战斗机全部大量采用复合材料结构。先进的复合材料也大大增加了军用运输机的有效载重,增大了军用飞机的载油量,克服常规材料在高超声速飞行器研制中存在的瓶颈问题。因此,先进复合材料被广泛地应用在军机上,例如,碳纤维增强树脂基复合材料,在军机主结构、次结构以及特殊部位等方面的应用,有效地提高了军机的耐腐蚀性、抗疲劳性,同时还具有明显的减重效果;再如,F22由于存在超声速巡航需求,飞机外表面会长时间与空气高速剧烈摩擦,因此在机翼复合材料上放弃了环氧基树脂,而使用双马来酰亚胺树脂基体以获得260℃的最大工作温度。
4.2 民机上的应用
民机和军用飞机不同,民用飞机作为以载客飞行和运营为目的的交通工具,对安全可靠性和经济性要求更加严格。复合材料在飞机上大量应用的时间还比较短,在对材料工艺稳定性和有关试验数据尚不十分充分的情况下,应用较多含量的复合材料需要大量时间和实践的积累。民航上的复合材料应用受限,使用分为两类:结构件用复合材料、舱内材料。
以波音787为例,每架飞机的结构比例中有50%是重约35吨的复合材料,这意味着它从材料密度上就减轻了15吨左右的重量。而空客也不甘示弱,新的A350客机改名为A-350 XWB,XWB意为超宽机身,复合材料的比例达到了52%,是现在所有大型商用飞机中最高的。A-350XWB的机体比B-787还宽13cm。作为世界上仅有的两个大型商用飞机研制巨头,波音、空客先后推出复合材料占结构比例50%的主力型号,这意味着大型客机结构设计以复合材料为主要材料的时代已经拉开序幕。波音787等新一代复合材料飞机上实现的性能提升,并不仅仅是依靠低密度材料减重得来。实际上复合材料在工艺、结构力学设计上,都有着传统金属材料所完全无法比拟的优势,比如复合材料可以做出超大尺寸的整体结构部件,而且尺寸大小不会随着温度高低而产生变化。
国产大飞机在复合材料的应用上还比较保守,公开的报道显示,复合材料的使用量约占C919飞机结构重量的20%。飞机上使用的复合材料主要是碳纤维增强树脂基复合材料,它们具有高耐腐蚀、质量轻等特点,在这些性能上的确要超过一般的金属材料。通常复合材料的价格大约是常规铝合金材料的几十倍,即便是我们看起来已经很金贵的铝锂合金材料,其价格也比复合材料低得多,所以C919仅为波音737价格的1/2左右。
4.3 航空发动机上的应用
对于航空领域,特别是发动机的结构设计制造而言,高性能系统所需的轻质和耐高温等特性越来越重要。航空发动机产业是指涡扇/涡喷发动机、涡轴/涡桨发动机和传统传动系统以及航空活塞发动机的集研发、生产、维修保障服务于一体化产业集群。新的材料和工艺不断研发以应对新一代航空发动机的发展趋势,尤其是先进复合材料的应用,GE-AEBG公司、惠普公司在制造飞机发动机零部件时都采用了先进复合材料,主要包括风扇出风道导流片、风扇罩、推力反向器等部位。先进复合材料在航空发动机上的应用具体表现在以下两个方面:
4.3.1 陶瓷基复合材料的应用。陶瓷基复合材料是将碳化硅陶瓷纤维与碳化硅基底材料复合后,再涂覆一层专用涂层提升其性能,密度仅为金属材料的三分之一。由于陶瓷基复合材料具有的耐高温属性,因此在发动机流道中使用空气代替,在发动机高温区只需要较少甚至不需要冷却气体,涡轮扇发动机大幅减重,意味着发动机运转效率更高,提高了发动机的性能、耐久性、燃油经济性和高推重比。F-35战斗机使用的F135发动机是有史以来战斗机上安装过的推力最大的喷气式发动机,F135使用了陶瓷基复合材料(CMC),主要用在F135-PW-600喷管的外侧部分。
以GE航空集团为例,陶瓷基复合材料在GE航空集团的技术路线图上是一条关键路径。通用电气航空集团将于2016年新建两个复合材料制造厂,用于碳化硅和陶瓷基复合材料的批量制造,这两种复合材料都是制造喷气式发动机零部件的必备材料。GE公司是所有厂商中第一个决定使用CMC制造旋转叶片的,通过把陶瓷基复合材料叶片安装在发动机上试车,它们已经证明了旋转CMC叶片的性能,这是一个重要的里程碑。
4.3.2 树脂基复合材料的应用。树脂基复合材料具有降噪能力强、耐腐蚀性强、耐疲劳能力好、比模量高、强度高等众多优点。通过将树脂基复合材料应用在航空发动机的冷端结构、反推力装置以及发动机短舱等结构上,不仅能够降低发动机的重量,还能够提高发动机的耐腐蚀性、抗疲劳性以及强度等。例如,JTAGG验证机的进气机匣利用PMR15树脂基复合材料,该种先进复合材料的应用比传统铝合金进气机匣的重量降低了25%。
4.4 新型验证机及无人机上的应用
现代战争理念的改变,使无人机倍受青睐,无人战斗机是未来航空武器的一个重点发展方向。无人机除在情报、监视、侦察等信息化作战中的特殊作用外,还能在突防、核战、化学和生物武器战争中发挥有人军机无法替代的作用。无人机的发展方向是飞行更高、更远、更长,隐身性能更好,制造更加简便快捷,成本更低等,其中关键技术之一就是大量采用复合材料,超轻超大复合材料结构技术是提高其续航能力、生存能力、可靠性和有效载荷能力的关键。和传统的铝合金混合结构相比,以复合材料为结构的无人机,例如“全球鹰”“捕食者”等无人机都采用先进复合材料。以“全球鹰”为例,该种无人机的机翼、尾翼都采用石墨/环氧复合材料,采用该种复合材料制造的无人机,和传统铝合金混合结构的重量相比降低了65%。再如,诺斯罗普・格鲁门公司研发的X-47无人战斗机,为了满足生存力、机动性、隐身性能等特殊要求,该无人机除了接头部位采用了少量的铝合金外,几乎整个机体都采用先进复合材料。依靠复合材料,设计师还可以做出传统金属材料所无法达成的气动力学设计,比如超声速飞行的前掠翼飞机。
5 先进复合材料在航天领域的应用
5.1 卫星和宇航器结构材料
卫星结构的质量会影响对运载火箭的要求以及卫星功能,卫星结构的轻型化设计已经成为卫星结构发展的趋势之一。国际通讯卫星中心的推力桶采用先进复合材料,该种推力桶质量比传统铝结构的质量降低了30%左右,降低的重量可以增加460条电话线路,同时还能够有效地降低卫星的发射费用。欧美国家卫星结构的质量为总质量的1/10,其原因就是大量的应用了先进复合材料。现阶段,我国神州系列飞船、风云二号气象卫星等都采用碳纤维/环氧复合材料,有效地降低了总体重量,同时发射成本也显著降低。
5.2 导弹用结构材料
现阶段,美国已经将先进复合材料作为导弹弹头结构壳体、级间段、仪器舱等部件的主要材料,洛克希德导弹与宇航公司指出,采用碳纤维/环氧复合材料制造的导弹比传统铝结构导弹的重量减轻40%。现阶段,采用先进复合材料的导弹发射筒也被国外发达国家应用在战术、战略型号上,例如,俄罗斯的“白杨M”导弹、美国的“MX”导弹都采用复合材料发射筒。因为先进复合材料导弹发射筒和传统金属结构相比,其结构质量显著降低,能有效地提高战略、战术导弹的灵活性。在战术导弹领域,先进复合材料结构的导弹发射筒更加灵活、应用范围更加广泛。现阶段,我国也研发了先进复合材料结构的战略导弹和导弹发射筒,还研发了先进复合材料仪器舱,有效地提高了战略导弹的灵活性和机动性,应用效果良好。
5.3 运载火箭结构材料
国外发达国家于20世纪50年代开始应用纤维缠绕成型的玻璃钢壳体代替传统的钢壳,例如,美国的“北极星A-3”潜地导弹,采用纤维缠绕成型的玻璃钢壳体,其重量比采用传统钢壳的“A-1”轻了55%左右,随后研发的“MX”“三叉戟1”的三级发动机壳体,全部都采用芳纶/环氧复合材料,该种结构形式的壳体质量比纤维缠绕成型玻璃体壳体的重量减轻了50%左右。随着先进复合材料的发展,其在运载火箭发动机壳体中的应用优势越来越明显,并且先进复合材料被应用在三叉戟Ⅱ、德尔塔Ⅱ-7925运载火箭等型号中。现阶段,我国运载火箭发动机壳体制造业逐渐的开始应用先进复合材料,虽然起步较晚,但是经过40多年的发展获得了巨大的进步,经过多年的研发,已经成功地将芳纶/环氧复合材料、玻璃纤维/环氧复合材料应用在运载火箭发动机壳体中。先进复合材料在运载火箭结构设计中的应用,有效地降低了运载火箭发动机的重量,同时提高了运载火箭发动机的性能。
6 复合材料在航空航天领域的发展前景
先进复合材料的应用已经成为评价航空航天器水平的重要标准,同时也是提高航空航天器结构先进性的重要物质基础和先导技术。由于我国先进复合材料的应用水平和国外发达国家还存在一定的差距,但是我国已经进行大量投入来强化先进复合材料方面的研究,其发展前景良好。未来先进复合材料的发展主要表现在以下四个方面:
6.1 智能化
智能型先进复合材料和结构的研究,能够创造巨大的经济效益和社会效益,智能型先进复合材料在航空航天器外表的应用:在未来航空器表面增加各种传感器,能够对周围环境进行实时、全面、智能的检测,同时为通讯系统、电子战以及雷达系统提供瞬时模态,以此保证航空器能够安全、稳定地飞行。
6.2 多功能化
在减小航空航天器体积的基础上,为了提高航空航天器的突防能力,许多结构部件需要具备多种功能,多功能先进复合材料的应用能够赋予航空航天器新的功能,现阶段,多功能先进复合材料的研究已经从双功能型向三功能型方向转变。
6.3 质量轻、性能高
目前,我国先进复合材料能够减轻航空航天器的质量占总重的20%左右,和国外25%以上的减重效率还存在一定的差距。导致该种现状的原因是我国先进复合材料的整体性能较低,并且结构的整体性相对较差。因此,在未来的发展过程中,应该加强对复合材料强度、韧性以及整体性等方面的研究,研发整体性好、强度高和韧性高的先进复合材料,同时使复合材料的减重率超过25%。
6.4 低成本
成本较高是限制先进复合材料在航空航天领域应用和发展的主要原因之一,为了解决该问题,应该对先进复合材料的制造工艺进行研究,采用科学的制造工艺进行先进复合材料结构、尺寸以及形状的加工和制造,同时采用先进的质量控制技术、自动化技术、机械化技术等,提高先进复合材料的生产效率,提高其成品率,以此降低先进复合材料的成本。
7 结语
综上所述,经过40多年的发展,我国先进复合材料工业逐渐形成了一个完整的体系,并且部分先进复合材料已经成功地应用在航空航天器生产实践中,获得了良好的效果。但是,从整体上来说我国先进复合材料技术水平和发达国家还存在一定的差距。因此,我国先进复合材料研究、研发人员和生产企业应该加快先进复合材料结构、制造技术、生产工艺等方面的研究,同时借鉴国外的先进技术和经验,解决我国先进复合材料在航空航天领域应用的各种难题,以此提高我国航空航天器的各种性能,进一步促进我国航空航天领域的全面、高速发展。
参考文献
[1] 王衡.先进复合材料在军用固定翼飞机上的发展历程
及前景展望[J].纤维复合材料,2014,(4).
[2] 朱晋生,王卓,欧峰.先进复合材料在航空航天领域
的应用[J].新技术新工艺,2012,(9).
[3] 吴良义.先进复合材料的应用扩展:航空、航天和民
用航空先进复合材料应用技术和市场预测[J].化工新
型材料,2012,40(1).
[4] 何东晓.先进复合材料在航空航天的应用综述[J].高
科技纤维与应用,2006,31(2).
[5] 刘强.碳纤维复合材料在航空航天领域的应用[J].科
技与企业,2015,(22).
[6] 高琳.智能复合材料在航空、航天领域的研究应用
[J].纤维复合材料,2014,(1).
[7] 徐倩.航空碳纤维复合材料切削研究[D].北方工业大
学,2010.
[8] 施晶晶.航空复合材料可重入制造过程建模与调度方
法研究[D].南京航空航天大学,2014.
[9] 沈军,谢怀勤.先进复合材料在航空航天领域的研发
与应用[J].材料科学与工艺,2008,16(5).
[10] 王春净,代云霏.碳纤维复合材料在航空领域的应
用[J].机电产品开发与创新,2010,23(2).
[11] Yin-hsuan Lee,Chuei-Tin Chang,David Shan-
Hill Wong,Shi-Shang Jang.Petri-net based
scheduling strategy for semiconductor manufacturing
processes[J].Chemical Engineering Research and
Design,2011,89(3).
[12] El-Khouly I.A.,El-Kilany,K.S.El-Sayed,
A.E.Modeling and simulation of re-entrant flow
shop scheduling:an application in semiconductor
星期四,地面科研人员将菜籽植入植物垫中。今年晚些时候,宇航员会用它们在太空中种出莴苣和白菜。在种下菜籽之前,这些在佛罗里达州肯尼迪航天中心实验室里工作的科学家,已经花了一周时间将无菌土壤和特殊肥料装填进特氟龙和芳纶布制造的包装袋里。他们把这些包装袋叫作“植物垫”。
与其说菜籽是种下去的,不如说是被粘到了最佳位置,使用的黏合剂是一种叫作瓜尔豆胶的常用食品添加剂。这些位置可以使菜籽长出的根迅速找到水源,并且让植物垫外生长的菜叶尽可能高效地发芽。这些植物垫将会被封装在运输包内送往国际空间站,然后被放置在特制的生长室内。这个生长室配备了光照、照相机和其他在轨实验所需的条件。轨道实验室中的宇航员将会每
天给种子浇水,而地面研究人员也会进行同样的实验作为对照。
这些被植入18个植物垫的菜籽,将在下周的CRS-7号发射任务中,搭载太空探索技术公司的龙飞船进入太空。
2015年7月7日
明天,宇航员会给莴苣种子浇水, 打开特制LED光源,开始下一轮国际空间站上的蔬菜生产。这是2014年开始的Veggie蔬菜种植系统实验的第二阶段。
实验中经常遇到的问题是生长中的植物接触不到足够的水分。这就需要宇航员对灌溉过程进行直接干预――亲自给植物垫中的种子浇水。
一周之后,莴苣植株将会被疏松栽培,让最大最强壮的植株获得更多空间和资源,以更好地生长。根据生长状况,完成该实验大约需要28天。在绕地球飞行的同时,宇航员会吃掉其中一半的作物。另一半将被送回地球进行研究。对未来飞向太空深处执行探索任务及飞向火星的宇航员来说,哪怕只有少量的新鲜蔬菜,都会提供极具价值的营养。
2015年7月8日
在宇航员斯科特・凯利将含有菜籽的植物垫放置在蔬菜种植系统中并给它们浇过水之后,国际空间站的第二批蔬菜种植实验正式开启。专门化的太空农场给植物提供光照,并让植物垫的棉芯通过吸收湿气获得水分。斯科特・凯利将给生长中的植株拍照,并将照片传给肯尼迪航天中心的科学家,以便他们对实验进行监控,并且在地球上用同一种菜籽进行对照实验。预计几天之后,空间站上的菜籽就会发芽,一个月后,宇航员就应该可以饱餐一顿莴苣了。这项研究被认为对
于将宇航员送往太空深处,并最终送上火星的未来计划至关重要。在长时间的太空旅行中,宇航员可以通过绿色蔬菜补充维生素,并享受来自地球家园的宽慰。
2015年8月10日
宇航员的一小口,人类历史的一大。在从国际空间站Veggie蔬菜种植系统收获了“极品红”长叶莴苣之后,宇航员斯科特・凯利、科尔・林格伦和油井龟美品尝了他们的劳动成果。
2015年8月11日
太空蔬菜种植前景一片光明。未来的火星之旅离不开在微重力环境条件下生产食物的能力,地球上的农业生产者以及食客们也可因这项研究获益良多。8月10日,宇航员斯科特・凯利、科尔・林格伦和油井龟美成为第一批尝到太空食材的人,他们采摘并品尝了国际空间站内种植的莴苣。
他们食用的是名为“极品红”的长叶莴苣品种,这些莴苣摘自在轨运行的国际空间站内的Veggie蔬菜种植系统。今天早晨,美国航空航天局肯尼迪航天中心的蔬菜种植组也从地面收获了莴苣,除了生长地不同外,与空间站中的莴苣别无二致。“蔬菜种植系统表明植物在太空中生长和在地球上生长极其相似。”美国航空航天局肯尼迪航天中心蔬菜种植组的负责人乔亚・马萨博士在组内通风会上表示。肯尼迪航天中心副主管珍妮特・佩特罗说:“创新是美国航空航天局继承的巨大资产,也是我们的文化,国际空间站是近地轨道上的一个良好的科研平台。但是如果要去火星,我们需要脱离地球的束缚。”
除了能让未来的太空探索受益,该项研究也能给地球带来显而易见的好处。全球人口持续增长,如何在有限的空间内种植更多的粮食作物也越发重要。该项目副总监丽莎・克罗雷多说:“美国航空航天局的商业航天员正在计划联手国际空间站的研究,为未来将人类送上火星而努力。”她指出,一旦商业航天器开始向空间站输送宇航员,就能够有足够的人手来延长宇航员用于科研的时间。
马萨还说,目前Veggie蔬菜种植系统的成功让他们有信心认为宇航员可以自己生产食物。无论是在未来国际空间站,还是在向火星进发的旅途中,宇航员都可以吃到新鲜的蔬果来加强营养,还能在原本了无生机的航天器里通过小规模种植作物得到心理享受。马萨说:“离开地球是为了更好地服务地球,服务未来。”
2015年11月16日
新年过后,国际空间站里很可能会有鲜花绽放。今天早晨,美国航空航天局的宇航员科尔・林格伦在国际空间站内启动了Veggie蔬菜种植系统,并将含有百日菊种子的植物垫放在该系统内。这是轨道实验室里第一次进行花卉种植实验,在地球轨道上生长的百日菊将会为日后在太空种植其他开花植物提供初期信息。“种植花卉比种植莴苣这样的蔬菜难度更高,”美国航空航天局肯尼迪航天中心Veggie蔬菜种植系统的载荷科学家乔亚・马萨说,“ 光照和其他环境因素更为关键。”
林格伦会开启红、蓝、绿色LED光照,激活Veggie的灌溉和营养系统。百日菊的生长期为60天,是国际空间站前两批种植的“极品红”长叶莴苣生长期的2倍。在生长期内,LED系统将循环提供10小时光照和14小时黑暗环境,以刺激植物开花。“种植百日菊将帮助我们深入理解Veggie 蔬菜种植系统中植株开花的过程,使我们可以把蔬菜种植系统作为在轨农场,在太空中种植和食用土豆这样的开花植物。”肯尼迪航天中心Veggie蔬菜种植项目的主管特伦特・史密斯说。
研究者同时希望获取其他方面的优质数据,例如种子长期贮存和发芽率,花粉会不会造成问题,以及对宇航员士气的影响。国际空间站计划在2017年种植土豆。
2016年4月8日
美国航空航天局计划开展代号为Veg-03的Veggie蔬菜种植系统第三次实验,含有白菜品种“东京小白菜”的植物垫在佛罗里达肯尼迪航天中心准备就绪,即将被送往国际空间站。Veg-03将继续推进美国航空航天局的太空植物生长研究,为人类飞往火星的旅程奠定基础。执行本次任务的航天器是太空探索技术公司的龙飞船,这也是它第八次开展商业性补给服务。
由于受到不同环境因素的影响,植物在太空中的生长与在地球上不同。人类将来开展太阳系长途飞行任务,以及最终登陆火星,都需要向宇航员提供新鲜的食物供给。了解植物如何响应微重力环境条件,是实现这一目标的重要前提。Veg-03科学组的负责人乔亚・马萨说:“我们选择这一白菜品种,是因为它长势喜人并且风味绝佳。Veg-03会测试一系列新的蔬菜品种,我们希望宇航员会喜欢它们的风味,从而使国际空间站拥有一个蔬菜沙拉供应系统。”
在国际空间站准备设施处的一个实验室里,Veg-03科学组首先往18个植物垫中插入棉芯,然后准确称量一定配比的煅烧土(即太空尘土)以及肥料,配好后将混合物填入植物垫中,最后将其缝合。此外,科学组对东京小白菜和“极品红” 莴苣的种子进行了灭菌,然后分别种植到枕中,封装进真空包,转交给工程服务承包商,整合到运输的货物中。这一批要运送到国际空间站的蔬菜一共有12枕白菜和6枕莴苣。Veggie蔬菜种植项目的负责人特伦特・史密斯说:“Veg-03将建立在前空间站成员斯科特・凯利改进的自动化园艺系统之上,采用与其类似的操作技术来测试对蔬菜的适用性。希望国际空间站的成员们会喜欢这些白菜。”
在空间站里,宇航员会把这些植物垫放置在Veggie蔬菜种植系统中,启动LED光照和灌溉系统,定期监控和照料蔬菜生长。今年夏末,美国航空航天局还将把一块纪念牌匾送上国际空间站,宇航员会把它挂在蔬菜培养设施上,以表彰太空生物学先驱的贡献,特别是近期过世的索拉・ 豪尔斯泰德和肯・苏萨。他们致力研究生物体对微重力环境的响应机制,并且亲手促成了太空生物学作为一门学科的建立和发展。他们做出的贡献影响仍将持续,使未来火星之旅的探险者受益。
2016年7月22日
13株生长在国际空间站的百日菊被送回佛罗里达州肯尼迪航天中心,并在国际空间站准备设施处Veggie蔬菜种植系统飞行实验室里进行了解剖分析。另有12株百日菊被留在国际空间站里,作为宇航员的纪念品。来自美国航空航天局的一组科学家和国际空间站地面处理与研究项目办公室的合约科学家合作,小心翼翼地从13株太空百日菊和地面对照实验的百日菊植株中获取了种子。
科学家对这些百日菊种子进行了仔细的显微检查,然后将它们封存在小瓶中,做好标记供进一步分析。在肯尼迪航天中心,这些种子将会接受微生物分析以及发芽率测定,以决定能否将它们送回国际空间站,在Veggie蔬菜种植系统中进行新一轮生长。这批百日菊是2014年4月作为Ve g-01实验的一部分被送上国际空间站的,含有百日菊种子的植物垫在2015年11月16日被宇航员斯科特・凯利放置在Veggie蔬菜种植系统中并开始生长,当时凯利正在执行为期一年的驻站任务。在系统的灌溉和监控下,这批百日菊生长了90天。
2016年2月14日,这批百日菊被收割、打包,并由太空探索技术公司CRS-8货运补给任务带回地球。Veggie蔬菜种植系统是由美国航空航天局太空生命与物理科学研究项目分部出资支持的。美国航空航天局希望通过在国际空间站内完善Veggie蔬菜种植系统,为将来的宇航先驱者提供可持续的食物供应――这是美国航空航天局火星计划中的重要M成部分。鉴于美国航空航天局正在逐步展开有关太阳系深处的长途探索任务,植物种植系统将会成为宇航员重要的食物供应源。同时,蔬菜种植还能在长时间的太空旅行中为宇航员提供休闲园艺活动。
2016年11月21日
一套高仿真的测试版美国航空航天局植物培养高级系统于上周抵达了肯尼迪航天中心。植物培养高级系统是为美国航空航天局打造的最大的植物舱。这套工程开发系统由卡车运送至国际空间站准备设施处,之后被转移进实验室。在实验室里,美国航空航天局的工程师以及工程服务合同内的科学家和技师,都将使用这套测试设备进行训练,学习如何对它进行操作和组装,为明年迎接真正的植物培养高级系统做准备。他们还将测试植物培养设备的各系统如何与科学研究进行整合。
美国航空航天局肯尼迪航天中心的工程师设计了植物培养高级系统的部分子系统,并且制造了飞行培养舱,其他子系统由威斯康星麦迪逊的ORBITEC公司设计制造。该设备是一个具有可控环境的闭环系统,可以容纳大型植物。整个系统使用红、绿、蓝色LED光照,和目前国际空间站上的Veggie蔬菜种植系统类似。植物培养高级系统还可以使用白色LED光照和红外线。此外,植
物培养高级系统将装备180个传感器,并且光输出量是当前Veggie蔬菜种植系统的4倍。
肯尼迪航天中心的科学家开发了可以整合入植物培养高级系统的科学载荷,用于国际空间站上的植物生长实验以及地面控制实验。载荷集成工程师会和雅克布斯公司一起,根据《测试与运行协作合约》,将包含种子的科学实验整合到植物培养高级系统中去。雅克布斯公司的研究者同样为植物培养高级系统提供了实验空间和技术支持。该项目的小规模实验名为“植物培养1”号,或PH01,将包含拟南芥、卷心菜和芥菜类的小型开花植物。PH01和植物培养高级系统都会在2017年被送上国际空间站。
2016年12月6日
昨天,也就是星期一,肯尼迪航天中心Veg-03实验地面对照组进行了第一次莴苣收割, 开启了应用“割韭菜式”的方法进行的四次连续作物收获。这种方法的理念是每10天收割一次“极品红”长叶莴苣,只摘掉每一株的部分叶片,让剩下的叶片继续生长。
与地面实验的收获方式不同,12月2日在国际空间站里,宇航员享用了他们的劳动成果。而肯尼迪航天中心收获的蔬菜则在包装、称重后,被冷冻起来供未来使用。地面Veggie系统是为了给在轨种植提供对照组。国际空间站上未来几次收获的蔬菜将会被保存起来,在返回地面航天中心之后供科学家对比研究使用。对比研究不仅包括太空和地面种植的产量对比,还包括食品安全分析,研究者将评估“割韭菜式”方法造成的叶片表面微生物含量随时间的变化。
2017年1月20日
今天,宇航员佩吉・威特森启动了新一轮国际空间站蔬菜种植实验。名为东京小白菜的白菜品种首次在太空中进行栽培。选择这种白菜是因为它生长迅速,具有很高的营养价值,并且风味独特。威特森将作为在轨种植的负责人,在为期一个月的时间里照料这些白菜。
2017年4月3日
今天,宇航员佩吉・威特森将在国际空间站种下第二批白菜,也是Veggie蔬菜种植系统的第六批作物。在两个月的种植期内,威特森将会定期采摘白菜叶供宇航员食用,同时进行科学研究。这将是国际空间站成员第二次使用“割韭菜式”的方法收获作物,以期增加蔬菜产量。此前这种方式被用于“极品红”莴苣。这一次,威特森拿到的种植指南根据第一批白菜表现出的需水量更大的生长特点进行了修改。
这项收购的对象,是一家鲜为人知的美国无人机制造商——泰坦航空航天公司,最终的成交价格可能只有6000万美元左右,不及Whatsapp收购价的零头。
但如果考虑到它未来可能带来的价值,这起收购的意义,并不会比收购Whatsapp逊色太多。
能飞5年的无人机
泰坦航空航天是一家非常年轻的公司,成立于2012年,总部位于美国新墨西哥州,专注于研发太阳能无人机。
在2013年的国际无人操控载具展览(AUVSI)上,泰坦航空航天展示了正在研发的两款太阳能无人机Solara 50和Solara 60。
这是两架硕大无比的长航概念无人机,其中的Solara50是轻型版本,有着50米的超长翼展,升级版Solara 60则有60米的翼展和更大的骨架,它们由飞机弹射器发射升空并可以通过飞机底部的滑轮着陆。
泰坦航空航天更倾向于把他们的产品称为“大气卫星”,而不是行业内习惯的称呼“遥控无人机”或“无人机系统”。因为它们和轨道卫星一样,能够在空中长时间巡航停留。
以Solara 50为例:升空之后,它可以在20千米的高空携带一个32千克重的有效载荷,以每小时96公里的速度巡航飞行长达5年。
之所以可以不受天气和夜晚的影响不间断地工作如此长时间,是因为Solara无人机的机翼表面、升降机组和水平尾翼上,布满了总共约3000个高效率太阳能电池板。
白天飞行时,由太阳能电池板所产生的多余能量会自动存储在位于两侧机翼内的锂离子电池中,这样就可以保证为无人机夜间的续航飞行提供足够的动力。
这种超强的续航工作能力,正是泰坦航空航天认为无人机几乎可以替代大气卫星等设备,实现低成本气象监测的主要原因。
低成本多用途
目前,气象监测只有两种解决方案:发射卫星和地面监测,如果要完成大气观测和天气监测,通讯转播,海洋研究和地球成像等一些更高级的任务,发射气象卫星就成了唯一选择。
不过发射气象卫星通常要耗资数亿美元,而且无法回收利用,一旦卫星搭载的大气传感器或者仪表损坏,要么付出高昂维修成本去维修,要么只能选择遗弃它。
相比而言,无人机的成本就低得多,一套无人机系统的总成本不到200万美元,而且和卫星不同,即使是仪器设备损坏,还能让它降落,维修或更换设备后重新发射升空。
事实上,Solara无人机成本构成中最主要的部分,并不在于制造无人机,而是电池。理论上只要有足够的太阳能驱动,泰坦无人机就能够长时间地工作下去,但太阳能电池会随着时间推移逐渐老化,因此每隔5年左右就必须更换。
为了论证这个数据,在新墨西哥州,泰坦航空航天公司正用两架1/5原机大小的试验机进行试飞,今年夏季,全尺寸的机型将有可能正式上天,执行气象监测任务。
除了气象监测,泰坦航空航天公司给这两架无人机的使用定位非常广泛,Solara无人机还可以执行宇宙辐射监测、垃圾带跟踪、作物监测、海洋与大气温度监控、陨石跟踪和浮油映射等任务,另外在针对森林火灾和海上搜救等救灾方面,无人机也可以提供辅助。
比如监测森林火情,Solara无人机可以应用于森林火灾预警、火灾地点确定以及火情观测等,并且解决了传统无人机监测系统中无人机续航时间短的问题。
“太空无线路由器”梦想
如此广阔的应用前景让泰坦航空航天获得了不少战略投资者的关注,即使两年来Solara 50和Solara 60一直处在原型设计阶段,连正式的试飞和信号覆盖测试都没有进行过,泰坦航空航天还是获得了三笔融资。
不过,也正是因为无人机科研成本太高、硬件研发周期太长,一些早期投资者开始质疑这个项目的发展前景。资金紧缺之下,泰坦航空航天萌生出售想法。2014年初,Solara50完成了原型机测试,硬件设计工作结束并开始正式建造后,Facebook抛来了橄榄枝。
在外界看来,Facebook有意收购泰坦航空航天,除了Solara无人机未来的诸多应用前景之外,还有一个更迫切的想法,就是为了推进其2014年年初发起的全球互联计划,希望为全球无网络连接地区建立网络热点,提供免费上网服务。
泰坦航空航天的Solara无人机正好可以满足这个计划的硬件需求,在无人机上搭载超视距通讯系统所需的无线电中继器后,无人机就变成了一个置于空中的、信号覆盖范围极广的“无线路由器”。
因为Solara无人机的航空高度足够高,它的信号传播范围最大可达 100 海里(约 185千米),所以利用无人机在全球无网络连接地区实现组网后,它将会成为Facebook获取数十亿潜在用户的重要网络硬件接口。
如此看来,这台“太空无线路由器”的价值远远超过6000万美元。
进入火星大气层的“好奇”号飞行器,时速达到2.1万千米。展开巨大减速伞后,飞行器坠落时速降到320千米。接着再利用制动火箭,以每小时3.2千米的速度下降。最后以缆绳从飞行器上垂降放下庞大的探测车。当探测车顺利着陆后,飞行器随即飞离。从进入大气层到着陆,整个降落过程被工程团队称为“惊魂7分钟”。
在空中垂降探测车的想法听起来很疯狂,不过这是“轻放”如此庞大的探测车的最佳方式。“2001火星奥德赛”号卫星和火星勘测轨道飞行器构成的美国航空航天局太空通讯网会监控整个登陆过程。这样的登陆任务很难不令人紧张,而紧张可能需要借由花生来消除。美国航空航天局的任务指挥中心有一项传统,会在登陆前打开一包花生,然后传遍指挥中心。这一“幸运豆”的传统可以追溯到1964年的“徘徊者7”号月球近距离拍摄任务。火星任务的总监阿瑟,阿曼达表示:“我们有很多花生,通常任务总监会假定花生不会被消耗完。”
航行8个月半,2.5亿千米的旅程,这位“大男孩”平安到达目的地后,得向地球上焦急的美国航空航天局任务指挥中心报平安。不过,这通长途电话却不简单。
地球和火星的距离为2.5亿千米,即使以接近光速的无线电波,在两星球间传递信息也需要13分钟。这意味着“好奇”号发生状况13分钟后,位于地球的指挥中心才会接到消息,再花13分钟才能将指令送达火星上的“好奇”号。对于在地球上收听实时广播的我们来说,非常难想象这有多困扰。因此,“好奇”号具备一定的自动反应能力,能实时应付在火星上遇到的状况。
另一个大问题是,火星和地球都会自转,要是“好奇”号在火星上的位置背对地球,便无法顺利将电波信号直线传送到地球。对此,两部先前由美国航空航天局发射,环绕在火星轨道上“2001火星奥德赛”号卫星和火星勘测轨道飞行器就派上用场了。