时间:2023-09-08 09:29:02
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇初中数学常用的数学方法,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
一、课堂小结的作用
(一)整理与归纳课堂信息
与小学相比,初中数学课堂的知识点难度明显增加,通常情况下,一节数学课结束后,学生又接收到了很多新的知识点,面对新的知识点,学生很容易与旧知识点互为一谈。通过课堂小结,教师可以帮助学生梳清教学内容的重点和难点,从而满足归纳与整理课堂信息的需要。
(二)反馈与提升学习效果
为了明确学生课堂的学习效果,教师通常会以课堂小结的形式进行检测,通常情况下,教师会在课堂快结束的时候通过提问的方式检验学生的学习效果,在巩固所学知识点的同时,还能提升学生分析与解决问题的能力。
(三)承前启后
数学知识具有连贯性,旧知识是新知识的基础,新知识是旧知识的延伸、扩展。很多时候,教师为了充分利用教学时间,忽视了新旧知识之间的联系教学。通过课堂小结巩固旧知识的同时,还会与即将学习的知识点进行衔接,起到了承前启后的作用。
二、课堂小结常用的几种方法
(一)归纳总结型
归纳总结,是指教师在小结一节课的教学内容时,运用准确、简炼的语言,提纲挈领地使新知识在学生大脑中经过“信息编码”而“定格”。针对学生求知欲强,好奇心强等心理特点,在课堂小结时根据教学内容提出问题,激发出学生想揭秘的问题意识,将所学知识进行归纳、整理,使之系统化。通常情况下教师会在课程快结束的时候留适当的时间进行课堂小结,归纳总结型以教师提问为主,教师设置具有探讨价值的问题,引导学生谈论回答,学生在积极主动的探讨过程中各自表达自己的看法,从而完成课堂小结的任务。
例:学习了《有理数》这一节知识点后,为了进一步巩固学生对有理数概念的掌握程度,教师可以提出以下问题:
问题1:本节学习了那些知识?它们之间的联系是什么?
问题2:在有理数的运算中,应该追那些问题?
问题3:怎样解决有关数的规律探讨性问题?
问题4:通过课堂小结,你有哪些新的收获?
以上四个问题由浅入深、循序渐进,既引导学生对课堂知识进行了总结,巩固了记忆力,又提高了学生质疑、分析问题的能力。
(二)知识梳理型
知识梳理型是初中数学课堂使用较频繁的小结方法,这种小结方法的主要作用是通过教师对教学知识的总结,对教学难点和重点进行划分,引导学生较为系统地掌握本节课的知识点。
例:学习了《轴对称图形》这一知识点后,课堂小结可以这样设计:
1. 本节课的主要内容:轴对称定理,轴对称图形;
2. 轴对称定理的应用:画图,计算以及证明过程;
3. 解题的主要方法。
通过以上设计,教师将课堂内容进行了有效地梳理,学生在掌握课堂内容的同时,进一步激发学习兴趣。
(三)兴趣激发型
教育育心理学指出,所有智力方面的工作都要依赖于兴趣。托尔斯泰也曾说过,成功的教学所需要的不是强制,而是激发学生的兴趣。兴趣是学生主动学习、积极思维、探求知识的内在动力。例如学习“平面图形的认识”这一知识,教师在进行课堂小结设计时,可以安排学生分别扮演各种平面图形,然后向学生介绍自己,说明自身的特点。面对这种全新的小结方式,学生会积极主动地要求角色扮演,活跃的课堂氛围还可以激发学生的学习兴趣,保障课堂效益最大程度地发挥。
(四)拓展延伸行
1、预。预习有什么作用?其一,课前准备充分,为课堂专心听讲奠定基础。其二,熟悉将要学习的内容,找出新内容的重点、难点、趣点,及不理解的内容。明确了这些之后,听课的目的就更清楚了。在课堂上,大脑处于高度兴奋状态,思维敏捷、记忆力强学习效劳就高。其三,预习可以在新旧知识间架立桥梁。因为新旧知识之间联系越紧,学习起来就更容易。常说的“温故而知新”就是这个道理。
2、读。数学教学中常常是重讲轻读,重练轻读。其实“读”也是数学教学别重要的一环节,一个题目读通了,读懂了,自然也就理解了,会做了。常有学生在做题时,漏掉关键字而做错了。
3、听。怎样听课呢?一是会神专心(即不分心、不打花杂,专心致志的听课)。二是连绵思活,即保证思路的连绵而不间断。思路,包括教材内容的思路和教师讲课的思路。三是抓住关键,即讲课时要抓住所讲内容的重点、难点、趣点,让学生听得轻松,学得愉快。我对学生听讲提出了三点要求:一是听懂,增强理解力;二是听全,增强记忆力;三是听话,增强想象力。
4、思。即听课要动脑,即深思。为什么要深思?一,深思才能解惑,故孔子说“学而不思则惘(迷惑)”。二,深思才能加深记忆。教育家苏霍姆林斯基说:“你对问题思考得越深,记忆就越牢固”。三,深思才能更好的领会所学的内容。
5、问。学数学要善疑好问,从教师一方面来说,在数学课中精心设问是很重要的。怎样设问,主要做到以下三点:其一,擎心设问,有利于深入理解新课内容。其二,精心设问,有利于抓住重点,突破难点。其三,精心设问,有利于培养学生良好的学习习惯,在新知识和已学过的旧知识之间搭起一座桥梁。
6、记。主要指在听课时怎样做笔记。我人为,数学笔记在于记住有代表性的教材上没有的难题,特殊的解题方法,以便记一解十。
7、议。议的形式主要是讨论,在新课学习之后,针对学生提出的问题,或课后的思考题,或教师队提出的自学题分组进行讨论,各抒己见,然后教师加以综合、分析,既活跃了课堂气氛,又锻炼了学生的思维、口头表达能力。
一、开门见山的导入
讲课前先把本节课要完成的教学目标讲清楚,让学生带着这节课的学习目的进入整堂课的学习中去。例如:在学习《菱形的性质》时,先讲平行四边形的性质是对边相等且平行、对角相等、邻角互补、对角线互相平分。,然后再引入菱形的性质是什么?它跟平行四边形的性质有联系吗?。又如在学习“同底数幂的除法”时可这样导入“在学习了同底数幂的乘法的基础上,我们来学习同底数幂的除法,那么有同底数幂的除法法则是什么?它跟同底数幂的乘法有联系吗?这就是我们这节课要研究的主要问题”。这种方法对于学习主动的学生比较有利,使学生明确本节课的知识结构,更能体现学生是数学学习的主人。
二、温故知新的导入
《论语》道“温故而知新”。美国心理学家奥苏贝尔也指出,“影响学习最重要的因素是学生已经知道了什么。学生能否学得新信息,主要取决于他们认知结构中已有的概念。”在学习一个新概念之前, 头脑里要具备与之有关的准备知识,它们是学习新概念形成的依托。所以我们可以在复习有关旧知识的基础上,来引入新知识。例如:我在讲平行四边形的判定时,先复习平行四边形的定义,即:两组对边分别平行的四边形叫做平行四边形。然后迁移到如何判定一个四边形是平行四边形,可以借用定义来判定。这样使学生较易理解如何判定一个四边形是平行四边形,在此基础上引导学生叙述判定定理,这样使学生很快地理解了平行四边形的第一个判定定理。这样导入,学生能从旧知识的复习中,发现一串新知识,并且掌握平行四边形的判定方法。
三、演示实验的导入
数学课也同样需要一定直观性较强的道具把趣味性实验引入新课,旨在激趣。会给学生留下深刻的印象,一些公式也会深深的记住终身难忘。 让学生在数学演示实验活动中去学习数学,构建新的知识,因势利导,有利于提高学生的思维能力。如:在教学列一元一次方程解应用题知识时,用鸡兔同笼问题创设情景,(鸡兔同笼共有头36只,有腿100条,求笼中鸡兔各多少?)学生虽然进人初中一段时间了,但对这个问题的解答还停留在小学的思维层次上,在短时间内只有少数学生会用小学所学的知识,通过列算式求出答案。 这时我给出这样的解题方案:利用多媒体演示让兔子把2只前腿都举起来,再问学生:“如果笼中所有的兔子都这样把前腿举在空中,那么站在地上的腿一共有多少?地上少了多少条腿?……”通过引导和分析,学生一般能较快求出兔子的只数。学生对这样的解答会产生兴趣,会在课堂上跃跃欲试,议论纷纷。
四、生活实践的导入
我们的日常生活丰富多彩,其中包含许多有趣的数学知识。我们可以根据学生的年龄段的心理特点和生活实践,把学生熟悉的生活实例引入新课。 例如,在讲线段的垂直平分线这节课,我是这样导入:为了改善甲、乙、丙三村吃水难的问题,市政府决定新建一个水电站,向三个村庄供水,要求水电站到三个村庄所辅设的管道长相等,你能帮助他们找出建水电站的位置吗?如果将三个村庄抽象成三个点A、B、C,如何求作一点P使PA=PB=PC?这时给学生充分的时间讨论,结合他们的讨论提出问题:这个点在哪儿?这个点怎么找?也就是说如何满足同一平面内一点到其他三点的距离都相等?利用已学过的知识,可以构造以P为顶点的等腰三角形PAB、PAC、PBC,而如何构造这样的等腰三角形呢?我们今天就来学习线段的垂直平分线。这样创设问题情境的实例导入,有意引起学生的好奇心,使他们对新的知识产生强烈的需要,让学生亲自经历将实际问题抽象成数学模型并进行解释与应用的过程,使学生真正感受到数学在日常生活中应用的广泛性,进而使学生获得对数学知识理解的同时,在思维能力、情感态度以及合作交流等方面都得到发展。
关键词 初中数学教育;数学思想;数学教育;教育方法
初中阶段的教育尤其是数学教育的重点和难点在于数学思想方法和数学思维方式的培养,良好的数学思想和数学思维对于初中阶段数学的学习可以说是至关重要的。随着社会的发展,初中阶段的教育也越来越受到广大家长以及教师的重视,同时初中数学的教学目标、教学内容、教学方法等一系列的问题也都在随之不断的变革。在这样的社会大背景之下,我们更有责任和义务去深入的研究初中数学常用思想方法,不断的深思其重要性,从而为我们社会的初中数学教育贡献自己的一份力量。
一、数学思想方法和数学思维
数学思想和方法,其实就是我们平时所说的数学学科本身的一些客观存在的“公式、定理、原理、数学符号”等,这些都是我们用来解决实际数学问题的最基本的工具。而数学思维则更多的是一种主观性的存在,是一种思考的方式的,当我们看到眼前的事物时,能将看到的现象,用数字、符号等数学语言描述出来,然后运用理性的思考方式找出各个事物之间存在的关系和规律,最终使问题得到解决。
虽然在数学教学理论上各种数学思想方式有着各自明确的定义和概念,但是在实际的初中数学教学中,教师的教学中一般是各种数学思想方法和思维方式相互的融合贯通,不再去刻意的追求某一种具体的数学思维或是数学思想方法,从而加强了学生在解决实际数学问题时的各种综合能力,使得学生能够独立的运用已经掌握的各种数学思想方法来看待问题,用独特的数学思维去解构数学问题,全面增强解决问题的实际能力。笔者以为,这也是初中数学教育的本质所在。
二、常用数学思想方法的研究
就我国现阶段初中数学教育来说,在当下的初中数学教学中采用最多的数学思想方法主要有:数形结合的思想方法、分类讨论的思想方法、化归思想方法、整体思考的思想方法等等。这几种数学思想方法也是初中数学教学中运用最多的,因此我们有必要对其进行深入的研究。
1.数形结合的思想方法
所谓的“数形结合”的思想方法就是在解决一些数学问题时,对待用文字数学语言描述的数学问题,我们可以用图形语言将它翻译过来。由此一个“数学问题”在一定程度上就变成了一个“几何问题”,从而完成了由抽象的思维方式到直观可视的思维方式的转变,在相当的程度上减小了解决数学问题的难度。对于初中阶段抽象思维还不是很完善的学生来说,“数形结合”的思想方法应当是最好的解题方法。
“数形结合”的思想方法中最常用的数学符号语言其中有数轴、平面直角坐标系等。“数形结合”思想方法就是数字和图形相结合的解题方式,它同时包含了抽象数学数据和直观的图形,成功的完成了抽象思维向形象思维的过渡转化,减小了解题的难度。
在解决实际的数学题目时,学生应该注意数量与图形的转化,在看待数字的同时在图像上找到与之相称的图像信息,在分析具体的数学图形时要做到见形思数,数形结合,最终完成问题的解答。
2.分类讨论的思想方法
分类讨论的思想方法也是初中数学教学中比较常用的一种思想方法,主要在有一定解题数量的基础之上,对遇到的数学题目进行归类、分析、总结,从而的出一套能够运用在一系列相同或者相似的数学问题之上的解题理论方法,减少分析已有问题的思考量。
分类讨论思想方法中的分类方式不是随意分类的,而是具有一定严格的分类原则的:被分类问题的标准时统一一致的,被分类问题的解题原理是相同或是相近的,被分类题目不能重复但是也不能遗漏。正确的分类是分类讨论思想方法的重点所在,因此在实际教学中,在必要的时候,教师应该进行适当的引导以保证教学方向的正确。
分类讨论思想方法的一般过程是,找到明确的数学问题个体,由该数学问题个体找到能够涵括此类问题的问题总体,完成问题的分类,在此基础之上,深入的研究解决此类问题共同的理论依据,总结出解决此类问题的实际方法,推广运用。
3.化归思想方法
化归思想方法的就是用已有的数学思想方法和数学技能把全新的数学问题转化为已经熟悉的数学问题的过程。其实这个过程就是一种知识的解构过程,把全新的数学问题“化成”几部分,然后运用熟知的数学思想方法重新组合、重新思考这个问题,完成看由全新到熟知的转化。
化归思想方法也是一种“由繁化简”的过程,例如在方程式问题方面,运用化归思想方法就能完成高次方程到低次方程的转化,多元方程向二次方程甚至是一元方程等转化。当完成了从复杂到简单的转化之后,数学问题就变的简单明了,学生就能很好的处理好初中阶段相对复杂相对困难题目的解答,对于学生数学能力的提升有很大的帮助。
4.整体思考的思想方法
古诗有“不知庐山真面目,只缘身在此山中”,告诫我们看待问题是不能局限于一个点或者是一个面,应该用一个整体的角度全面的去看待问题,只有这样才不会迷惑,不会陷于其中。
同样在解决数学问题时,我们应该汲取古人的经验,全面的看待问题。在实际教学中,经常出现学生因看不懂题目的一个方面,死钻牛角尖,最终无法完成问题解答的情况。每每遇到这种情况,我总是感慨,当我们在教学中不断的给学生灌输各种解题技巧各种数学思想方法的时候,我们忘记了告诉学生这样去思考,怎么全面的去看待问题。
三、总结
通过对初中阶段数学教育中常用的集中数学思想方法的介绍和深入的研究,我们对各种数学思想方法有了更加深入的了解和认识。在明了各种数学思想方法的基础之上,进一步明确了各种数学思想方法的作用方式,从宏观上更加深入的认识到各种数学思想方法在初中阶段数学教育中的重要性,各种数学思想方法相互作用,相互渗透,共同构成了数学教学的理论基础。
参考文献:
[1]高瑞.浅谈当前环境初中数学课堂中探究性学习探讨[J].中国教育.2010.(6)
[2]王薇.初中数学课堂中素质教育的思考[J].新疆农垦经济.2008.(11)
借贷记账法是以“借”和“贷”作为记账符号的一种复式记账法,以“有借必有贷,借贷必相等”作为记账规则。借贷记账法的具体运用就体现在会计分录上,编制会计分录分三个步骤:确定账户名称;判断增减方向,金额。
例如:销售商品实现收入10000万整,款项收存银行。首先要确定此项经济业务涉及哪些账户――银行存款和主营业务收入;然后是判断所涉及的账户是增还是减,即增减方向――通过数学应用判断得出银行存款增加,主营业务收入也增加;银行存款账户是资产类账户,增加放在借方,主营业务收入是损益类中的收入类账户,增加在贷方;最后确定金额――10000元,至此得出会计分录借:银行存款10000 贷:主营业务收入10000。在这个简单的会计分录的编制中很多同学会判断出主营业务收入是增加,但却会记在“借方”。这说明同学们对收入类账户的借贷方登记的是增加额还是减少额不是很清晰。
例如:将上述的收入10000元转入本年利润。很多同学们又不知道往哪个方向结转,提醒同学们主营业务收入发生时即增加时放在贷方;结转时即减少时,自然要放在借方。由此得出会计分录为借:主营业务收入10000元贷:本年利润10000。
在业务练习中,先让同学们阅读题干,然后判断是什么事项在增加,什么事项在减少;再来确定所涉及的账户增加记在哪个方向,减少记在哪个方向;带上金额,一个正确的会计分录就编制完成了。
关键词: 初中数学 思想方法 应用研究
1.引言
数学思想是贯穿整个数学教学中的,既不是简单的一类知识点,又不是整个数学,是指导学生学习数学的方法。在教学课堂上,如果教师很好地利用数学教学方法对学生加以训练,则能很快提升学生数学学习能力,帮助学生建立数学整体框架,提升课堂教学效率。本文主要对初中数学常用思想进行研究,对其应用提出个人意见,希望为数学教育事业作贡献。
2.数学思想方法概念及分类
数学思想指现实世界的空间形式和数量关系反映到人们意识之中,经过思维活动产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识,基本数学思想则体现或应该体现于基础数学中具有奠基性、总结性和最广泛的数学思想,含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。简单来说,就是数学思想是人类在不断了解数学过程中对数学进行的观点总结,是指导解决数学问题的思想。因此,掌握数学思想就是掌握数学精髓。
数学思想方法根据它的难易程度可以分为三类:低层次、中层次和高层次。低层次主要指那些应用范围比较广泛、较易理解的数学思想方法,主要有归纳法、反证法。中等层次是应用范围最广泛的一类,主要包括类比法、演绎法。高层次数学思想更能考查学生观察力和理解能力,帮助学生快速将复杂的题转换为简单的题,帮助学生更快地解答出来,主要包括分类讨论思想、数形结合思想、建模思想和函数思想。
3.数学思想方法在初中教学中的重要性
在数学教学中重视数学思想是提升学生数学素质的重要条件,能够更好地帮助学生构建数学认识框架,提升学生的数学学习能力。首先,数学思想能帮助学生加深对数学的理解,让学生在加深对数学的理解之后举一反三,学会更多的数学知识,解决更多的数学难题。其次,学生通过有条理的数学方法学习,帮助学生建立稳固和完整的数学知识框架,让学生在数学学习中更游刃有余。最后,通过数学思想培养,数学能力大幅度提升,锻炼学生严谨的学习态度和敏锐的学习视角。
4.初中常用数学思想方法应用探究
4.1重视定理和数学公式推导
数学公式和定理是数学家们经过验算和推理计算出来的,所以学生可以直接拿来用。但是大部分学生都不明白这些数学公式和定理是怎么来的,因为很多老师不对学生讲解数学公式和定理的推导过程,学生只能死记硬背,其实对学生理解能力和推导能力提升没有作用。所以教师应该在课堂上为学生讲解公式和定理推导过程,或者让学生在老师的指导下自己实践,推导出公式和定理。
4.2在例题讲解中挖掘数学思想
在数学教学中,教师总是通过经典例题为学生讲解新的知识点,经典例题中不仅包含新的知识点,很多时候还包含一些数学思想方法。对于经典例题,教师要精心为学生讲解,将其中数学思想传授给学生,将做题方法传授给学生,不仅激发学生学习兴趣,还提升学生的学习效率,帮助学生解决更多的数学问题,同时帮助学生学会归类学习。
4.3针对不同题采用不同数学解决办法
教师为学生讲解问题的过程中,少不了教学生解决问题方法,针对不同种类数学习题,老师要采用不同的数学方法,只有这样才能系统培养学生的数学能力。将需要解决的问题适当转化,归结到比较熟悉的问题上,再将其解决,这种方法就是化归方法。如果题中出现未知数,或者量与量之间有一定的函数关系,这时候我们就能利用方程、函数的方法解决。方程、函数这一内容是初中学习的重点,所以教师要带领学生系统学习这一部分内容。还有一种比较常用的数学思想――数形结合,这种方法常应用于几何题和代数题中,遇到这类问题用数形结合方法一般都能得到不错的解决结果。最后一种比较常用的数学方法是分解、自合的数学方法,这种数学方法主要帮助学生解决数学计算问题,通过不同量之间的组合,简化计算过程,帮助学生学习更有效率的解题方法。
4.4在解决问题中传授给学生数学思想
学生学习完新数学知识之后,需要通过大量数学练习加以巩固,这样会在短期内让学生加强对新知识点的印象和理解。做练习题的时候,教师不能只看学生的最终结果,还要注意学生的解题过程。只看最终结果的后果就是学生只会一味模仿和套用知识点及解题过程,并不能灵活掌握和运用知识点,真正提升数学学习能力。教师需要帮助学生掌握知识点,并充分消化和吸收,只有这样才能真正提升学生的数学学习能力,让学生建立完整的数学知识体系。
5.结语
在学习数学的过程中,学生通过数学思想学习,大大提升数学学习能力,提升数学学习效率,逐渐认识数学,建立起对数学的整体认识。在新课改背景下,学生需要更灵活地学习数学知识,并且灵活运用到生活和学习中,只有这样,学生才能享受到学习数学给自己的生活质量带来的好处,学到对生活有用的知识。
参考文献:
[1]邱凤华.初中数学教学原则与常见的几种思想方法教学比较[J].中国校外教育,2001(1).
[2]程燕英.基于初中数学思想方法实践探索的几点思考[J].数学教学通讯,2014(22):37+58.
[3]敖丽华.浅谈初中数学思想方法[J].吉林省教育学院学报(学科版),2011(12):135-136.
【关键词】初中;数学方法;数学思想
数学教学数学思想数学方法任何学科都有它的教学思想和与其相配套的教学方法,数学学科也是这样。可以这样地讲,数学思想和方法是学科的精髓,也是知识转化为能力的平台。初中阶段,为了更好地提高学生的数学素质,必须指导学生领悟数学思想,掌握学习数学基本方法,这些要领的心领神会,必须通过反复解题,并在解题中学会思考,形成举一反三及派生的能力。初中数学教材中大量的优秀例题和习题,过程中很好地体现了数学解题方法与解题思维。作为一名初中一线数学老师,我们就应该顺着这条线索把知识中孕含的思想与解题过程中的要领讲清楚。让学生明白,并掌握一种学习技巧。下面就自己多年教学经验,谈谈教学过程中数学思想与数学方法渗透的几点做法。
一、依据《数学课程标准》,把握教学方法
数学思想,浅意地说是对数学规律的理性认识。数学方法,是解决数学问题的根本程序,是数学思想的具体反映。
1.《数学课程标准》要求渗透“层次”教学。对初中数学中渗透的数学思想、方法划分为三个层次,即“了解”“理解”和“会应用”。数学思想有:数形结合的思想、分类的思想、类比的思想等。方法有:分类法、图象法、反证法等。数学是一门逻辑思维非常强的学科,这就更加严谨要求老师在讲课时,不能将不同层次的方法混用在同一知识教学过程当中,方法如果用得不恰当,学生就会一头雾水,听不明白,并逐渐丧失学习数学的兴趣,损失很大。如初中数学三年级上册中明确提出“反证法”的教学思想,且揭示了运用“反证法”的一般步骤,但《数学课程标准》“反证法”被定位在通过实例,“体会”反证法的含义的层次上,这就要求我们在教学中,应牢牢地把握住这个“度”,不能随意拔高、加深。否则,教学效果将是得不偿失。
2.“方法”中提炼“思想”,“思想”中导引“方法”。初中数学数学思想和方法大多是一致的。只是方法较具体,思想比较抽象。比如,化归思想,可以说是贯穿于整个初中阶段的教学,就这一数学思想,教材中引入了许多数学方法,如换元法,图象法、待定系数法、配方法等。在教学中,通过对具体数学方法的学习,使学生逐步理解其数学思想;同时思想又深化了数学方法的运用。这样相辅相成的教学妙用,是教学过程中发挥的极致,也会取得很好的教学效果。
二、把握教学原则,实施创新教育
创新是一种能力,更是一种教学智慧。初中学生数学思维能力薄弱,知识贫乏,这就要求老师要把握好知识之间相互联系,理清知识之间难易层次,做到这一点,学生必须要熟记数学概念、公式、定理、法则,并知道这些定义法则提出的理论依据。使学生在这些过程中展开思维,提出问题,解决问题,获取新知。比如,初中数学《有理数》这一章中,“有理数大小的比较”,贯穿在整章之中。在数轴教学之后,就引出了“在数轴上表示的两个数,右边的数总比左边的数大”,“正数都大于0,负数都小于0,得出的结论就是正数大于一切负数”。教师在教学中应把握住这个逐级渗透的原则,就会使本章节知识融会贯通;又能很好掌握数形结合的思想,学生易于接受,形成举一反三的能力。数学思想的内容是相当丰富,方法也有难有易。老师在教学中做到创新就必须熟知初中所在数学知识要点,绝对凌驾教材之上。才能运用恰到好处,才能有创新的能力。如在教学同底数幂的乘法时,引导学生先研究底数、指数为具体数的同底数幂的运算方法和运算结果,从而归纳出一般方法,在得出用a表示底数,用m、n表示指数的一般法则以后,再要求学生应用一般法则来指导具体的运算。在整个教学中,教师分层次地渗透了归纳和演绎的数学方法,对学生养成良好的思维习惯起重要作用。
三、数学思想方法的具体应用
1.转化思想。转化思想是初中数学中常见的一种数学思想,且应用十分广泛,数学问题其实就是一系列转化的过程,如化繁为简、化难为易、化未知为已知等,这种数学转化方式与过程激发学生学习数学兴趣。
初中数学教学中,最常用的转化形式就是,化高次为低次、化多元为一元。例如,“有理数的减法”和“有理数的除法”这两节教学内容中,使学生在自主探究和合作交流的过程中,经历把有理数的减法转化为加法、把有理数的除法转化为乘法的过程,“减去一个数等于加上这个数的相反数”,“除以一个数等于乘以这个数的倒数”,这个地方虽然很简单,但却充分体现了把“没有学过的知识”转化为“已经学过的知识”来加以解决,学生一旦掌握了这种解决问题的策略,今后无论遇到多么难、多么复杂的问题,都会自然而然地想到把“不会的”转化为“会的”“已经掌握的”知识来加以解决,这符合学生原有认知规律,作为教师,我们不能因为简单而忽视它的教学过程,实践告诉我们,往往是越简单、越浅显的例子,越能引起学生的认同,所以我们不能错过这一绝佳的提高学生的思维品质的机会。
【关键词】初中数学 教学策略 创新思维
【中图分类号】G632 【文献标识码】A 【文章编号】1674-4810(2012)04-0131-01
一 引导学生开拓数学创新思维空间
数学创新思想是数学教学的灵魂。具体来讲,数学思想就是对数学知识和方法的本质认识,是对数学规律的理性认识。教师在整个教学过程中,不仅应该使学生能够领悟到这些数学创新思想的应用,而且要激发学生学习数学的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性地解决问题。在教学中,教师要认真把握好“了解”“理解”“会应用”这三个层次。不能随意将“了解”的层次提高到“理解”的层次,把“理解”的层次提高到“会应用”的层次,否则,学生初次接触就会感到数学思想、方法抽象难懂,高深莫测,从而导致他们失去信心。初中数学中渗透的数学创新思想划分为三个层次,即“了解”“理解”和“会应用”。在教学中,要求学生“了解”的数学思想有:数形结合、分类、化归的思想、类比和函数等。数学思想方法中,最重要的是那些简单朴素的思想方法;任何复杂的问题,如能分解转化为中学数学中常用的简单的问题,就会迎刃而解。比如:化归思想是渗透在学习新知识和运用新知识解决问题的过程中的,七年级数学“一元一次方程简介”一章中,为体现划归思想在解方程中具有指导作用,讨论解一元一次方程的各个步骤时,都注意点明解方程的目的,即为最终使方程变形为x=a的形式,各个步骤都是为此而实施的,即在保持方程左右两边相等的前提下,使未知逐步转化为已知。
二 帮助学生掌握智能化的数学解题方法
以数学思维方法解决问题是数学教学的根本行为之一。具体讲数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程度时就产生了质的飞跃,从而上升为数学思想。若把数学知识看作一座高楼大厦,那么数学方法相当于建筑施工的技术,而数学思想就相当于建筑工程师设计的图纸。关于初中数学中的数学思想和方法的内涵与外延,目前尚无公认的定义。其实,在初中数学中,许多数学思想和方法是一致的,两者之间很难分割。它们既相辅相成,又相互蕴涵。只是方法较具体,是实施有关思想的技术手段,而思想是属于数学观念一类的东西,比较抽象。因此,在初中数学教学中,加强学生对数学方法的理解和应用,以达到对数学思想的了解,是使数学思想与方法得到交融的有效方法。如在“一次函数”的教学时,先引导学生列出几个具体的函数关系式,再引导学生归纳出这些函数的形式都是自变量的常数倍与一个常数的和,最后才给出一次函数的一般形式即一次函数的定义。在整个教学中,教师分层次地渗透了归纳和演绎的数学方法,对学生养成良好的思维习惯起了重要作用。化归思想,可以说是贯穿于整个初中阶段的数学教学之中,具体表现为从未知到已知的转化、一般到特殊的转化、局部与整体的转化等。在教学中,通过对具体数学方法的学习,使学生逐步领略内含于方法的数学思想,同时,数学思想的指导,又深化了数学方法的运用。这样使“方法”与“思想”珠联璧合,将创新思维和创新精神寓于教学之中,教学才能卓有成效。
三 培养学生理性化的数学创新思维能力
数学教育的目标主要是培养学生的能力,特别是创新能力。要通过数学学习,发展理性思维,使学生逐步成为乐于并善于追求真理的人。由于初中学生数学知识比较贫乏,抽象思想能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。因而只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的良机。如对解方程的本质有比较透彻的认识,就容易主动地探究具体方程的解法,这远比死记硬背方程的解法步骤的效果要好。数学思想的内容是相当丰富的,方法也有难有易。因此,必须分层次地进行渗透和教学。这就需要教师全面地熟悉初中三个年级的教材,钻研教材,努力挖掘教材中进行数学思想、方法渗透的各种因素,对这些知识从思想方法的角度作认真分析,按照初中三个年级不同的年龄特征、知识掌握的程度、认知能力、理解能力和可接受性能力由浅入深,由易到难分层次地贯彻数学思想、方法的教学。数学知识的学习要经过听讲、复习、做习题等才能掌握和巩固,数学思想、方法的形成同样有一个循序渐进的过程,只有经过反复训练才能使学生真正领会。
四 结束语
教师在数学教学中,要不断以创新思维方法和创新教育理念为指导,适时恰当地对数学创新方法给予提炼和概括,让学生对数学知识有更深刻的理解。由于数学创新思想、数学方法分散在数学知识的各个不同部分,而同一问题又可以用不同的数学思想、方法来解决。因此,在探索创新过程中,教师的概括、分析是十分重要的。教师还要有意识地培养学生自我提炼、揣摩概括数学思想方法的能力,这样才能把数学创新思想、创新方法的教学落在实处,真正与素质教育结合起来。