时间:2023-08-31 09:20:54
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇医学影像技术与诊断,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
某一系统疾病的临床诊断过程以泌尿系统疾病为例,在临床上,泌尿系统疾病涉及肾上腺、肾脏、前列腺、输尿管、膀胱、尿道等部位,泌尿外科医生的临床诊断思维在形成过程中除了应具备大量的医学专业知识之外,还要具备认识客观事物的正确思维方法。疾病是一个客观事物,人们对客观事物的认识,即对疾病的认识,都要通过感性认识上升到理性认识。临床诊断要经历初步诊断、会诊、确诊等几个阶段,这个过程是泌尿外科医生对所获得的泌尿系统疾病信息进行临床思维,并进行分析、判断、推理,最终将信息形成疾病诊断的过程。正确处理医学影像高新技术与临床诊断思维的关系医学影像高新技术使外科医生的视野扩大了,并克服了过去脏器诊断的模糊性。随着医学技术的发展,CT、核磁共振等已成为肾脏等腹膜后器官检查的重要工具,而医学影像高新技术在各科中的广泛应用,极大地提高了诊断水平。医学影像高新技术的进步,不但使医生得到了对疾病的深层次认识,也使其对临床思维方式提出新的要求。例如,CT、MRI在成像手段上具有很高的创造性,它集计算机、物理学、生物工程学等于一身,形成了影像数字化。其高分辨及薄层技术可以对局部较微细的结构进行分析,从而对临床产生深刻的影响。事实上,诊断手段越先进,越要发挥人的能动性和创造性,越要求影像专业的各科医生具有更高的综合判断能力。所以,面对大量的影像高技术参数,临床理论思维方法要求更完善、更全面,就越要求各科医生具有更高的综合判断能力和临床水平。
在疾病诊断过程中,处理好医学影像传统技术与医学影像高新技术的关系
医学影像传统技术和高新技术对于疾病的诊断都具有重要的作用。因此,探讨两者的辩证关系,对医学影像技术在临床各科的合理应用具有现实意义。3.1医学影像传统技术医学影像传统技术是各项高新技术的基础,它已有百余年的发展历史,具有以下特点。医学影像传统技术具有“简”、“便”、“廉”的特征例如,腹部平片(KUB)就是最基本最典型的医学传统技术,它简单方便,易于实施,且费用低廉,因而成为最基本的技术技能。我校第二附属医院2007年门诊总人数为21062人,虽只有922人检查了腹部平片,但确诊为结石的患者有645人,其阳性率为70%,便能充分说明医学影像传统技术具有“简”、“便”、“廉”的特征。医学影像传统技术在适用范围上具有广泛性例如,肾绞痛患者的KUB传统技术,适用于所有的医疗卫生机构。静脉肾盂造影(IVP)可以作为泌尿外科大部分疾病的常规检查,我校第二附属医院2007年IVP检查人数为806人,阳性率为65%,这足以说明IVP等影像传统技术具有很高的临床价值。影像传统技术是发挥影像高新技术的基础例如,X-CT检查是一种目前已成为临床较为普遍开展的医学影像技术,它的产生和发展也是建立在普通X线基础之上的。医学影像高新技术医学影像高新技术是随着传统影像的突破及工程技术的发展而产生的,具有以下特点。医学影像高新技术具有新颖性、尖端性特点例如,应用MRI波谱技术检查前列腺中化学成分的变化来发现早期癌性结节的存在是很先进的影像检查手段。医学影像高新技术是一种综合性技术例如,CT技术就包含了X光技术、计算机技术、微电子技术和生物医学工程技术等,它是多种新技术综合应用的产物。因此,医学影像学和临床各科医生都需要了解和掌握相关专业的知识和技术。医学影像高新技术可实现临床诊治的定量化和定位化例如,CT检查能够准确测定肾脏等占位性病灶的各种主要成分的密度,MRI三维图像能够准确判定腹膜后病灶的位置、大小及毗邻关系等。这些医学影像学高新技术均提高了临床诊断定量化和定位化的准确度,从而为诊断疾病提供了可靠的依据。医学影像高新技术在临床诊断上的无创性CT及MRI对泌尿系统疾病的检查基本上是无创的,完全取代了以往有创的腹膜后空气造影,而且这种方法能获得更准确的诊断信息。医学影像传统技术与医学影像高新技术运用于临床诊断疾病的相互关系在临床外科领域,医学影像传统技术与医学影像高新技术并驾齐驱,给当代临床外科提供了一个新的内容。医学影像传统技术与医学影像高新技术是相互联系、相互依赖的虽然X光片能够确诊泌尿系统的结石等疾病,但其准确性要比CT逊色得多,而MRI对腹膜后结构的观察更精细、更清楚。相反,CT技术尽管能定性、定量分析患者疾病的种类和部位,但在治疗时仍需参考泌尿专科影像传统技术。例如,输尿管结石即使经CT明确了诊断,但手术时仍需要检查腹部平片进行术前定位。泌尿系各项影像检查均有优缺点,两者之间可以互补。我校第二附属医院2007年泌尿系CT检查数占CT总人数的5.2%,泌尿系疾病进行MRI检查的患者数占总数的0.96%,传统X线检查占3.3%,说明对泌尿系统疾病的检查既运用了高新技术又把传统影像技术作为适宜技术予以保留。医学影像高新技术的发展和运用,并不排斥医学影像传统技术例如,泌尿系MRI水成像技术(MRU)能无创地显示肾盂、输尿管和膀胱,但因为受尿液产生、排泄及输尿管蠕动的影响,有时难以达到满意的效果,而胆道MRI水成像(MRCP)检查,影响因素较小,效果好于MRU。我校第二附属医院2007年MRU检查人数只占核磁共振总检查人数的0.25%,MRC检查人数占总人数的5.75%,所以,逆行肾盂造影仍被广泛使用,它虽是有创的传统技术,但它对泌尿系统狭窄和梗阻病因的诊断具有很高的价值。医学影像高新技术向常规技术转化[2]随着现代影像技术的发展,医学影像高新技术迟早要转变为影像常规技术,这不仅是一种趋势,而且是一种必然。例如,CT引导下肾囊肿等的硬化治疗在治疗技术成熟后,它将成为较常规的治疗方法。
成像技术。临床诊断。合理使用。
随着医学影像的应用越来越广泛,the importance of medical imaging technology in clinic is becoming more and more prominent[1].Medical imaging technology is not only very simple and convenient to operate, 但是 而且 这个 最终的 后果 属于 医学的 成像 技术 诊断 是 不 明显地 不同的 从…起 这个 真实的 症状 属于 病人 这个 不断的 进步 属于 科学 和 技术 医学的 成像 技术 是 而且 不断地 改善 和 改善, 和 这个 精确 属于 成像 设备 是 而且 不断地 改进。本文通过介绍医学影像技术的应用类别和原理,研究了医学影像技术的临床意义。
医学影像技术的医学影像技术正变得越来越流行,医学影像技术也是最有前途的专业之一[1]。医学影像技术在临床诊断中的应用可以大大提高临床诊断的准确性,减少误诊的发生。
。X射线成像主要取决于射线波长的穿透。主要用于观察人体器官和组织,如骨骼、形态、位置、性质、金属异物等。如果人体骨骼或器官有损伤或变形,可用射线扫描相关部位,然后在胶片上进行成像。从胶片的成像可以看到体内的病变,然后医生会根据病变的部位或具体情况采取相应的治疗措施[2]. 目前的X射线技术比以前更加完善和先进。以前难以成像的自然组织和器官,如血管、心脏、膀胱等,现在可以通过X射线成像。目前,大多数X射线摄影和透视设备采用多主机系统,然后与各种摄影、诊断床等辅助设备一起使用。结合先进的计算机控制和图像处理系统,X射线技术可以完成一些特殊任务和功能测试。
。CT的工作原理主要是利用人体组织吸收的X射线的不同性质。它可以将人体的一个特定层分成许多立方体。X射线可以通过扫描这些立方体获得临床诊断信息。计算机体层摄影技术主要扫描人体的某个部位或区域,然后在连接的计算机中形成诊断数据或治疗措施。计算机体层摄影技术在组织横断面扫描中的精度非常高。计算机体层摄影技术与射线成像的最大区别在于前者不仅可以定性地监测人体器官的进展,而且可以提供准确的检测数据信息。此外,计算机体层摄影技术不仅具有非常快的扫描速度,而且具有特别高的最终成像分辨率。摄影技术的扫描区域和工作区域的大小也关系到摄影和成像的效率。磁共振成像是一种与人体密切相关的磁共振成像。其工作原理是,当人体受到外部固定脉冲的刺激时,人体内会发生磁共振。一旦磁场消失,质子将发送MR信号以形成图像。磁共振血流成像技术在磁共振成像中可以清晰地显示心脏、心房等器官的精细结构,也为各种心脏病的准确治疗提供了依据。
阴影技术有许多应用,如腰间盘突出、寄生虫、脑血管疾病、肿瘤、鼻炎、头痛、心血管疾病、中枢神经系统疾病等。计算机体层摄影技术可用于诊断。通过CT的成像技术可以了解患者的实际情况。医生可以通过CT的影像为患者制定适当的治疗计划。计算机体层摄影技术可以提高医生诊断病因的准确性[3]。
。然而,使用计算机X线摄影有一个缺点,即在用X射线进行诊断时会对患者的身体功能造成一些损害。一般来说,计算机X线摄影的技术很少应用于腹部器官疾病或中枢神经系统疾病。因此,在使用计算机X线摄影技术之前,医生必须熟悉患者的病情,不能随意使用摄影和成像技术,然后根据患者的实际情况选择合适的摄影和成像技术。
。此外,高频超声成像技术还可以使用微型探头检查和诊断胃肠道疾病和胃肠道肿瘤。通过微型探头,医生可以了解肿瘤的大小、深度和范围,更好地为患者制定治疗方案和治疗方法,降低肿瘤患者的治疗风险,提高肿瘤患者的治愈概率[4]。
。医生可以通过三维超声成像技术了解胎儿的生产情况。此外,三维超声成像技术也将用于生殖医学和围产期观察。
超声造影剂注射到人体静脉后,它会随着毛细血管扩散到全身,然后通过相应的对比成像技术将体内各种器官和组织的实际情况成像到计算机上。此外,超声造影剂还可以反映人体各器官和组织的血流情况,为临床诊断提供坚实的事实依据。总之,随着医学技术的不断进步,他们在医学领域的影响力越来越大。最突出的应该是医学成像技术。在临床诊断中,医学影像技术不仅可以提高临床诊断的准确性,而且可以提高我国的医疗水平。随着医学影像技术的不断进步,我国的医疗水平也在不断提高。医学影像技术对临床诊断的重要性毋庸置疑,因此相关部门和医院必须更加重视医学影像技术,努力提高医院的质量和水平。本文对医学影像技术的工作原理和应用范围进行了简单的分析和研究,希望我国的医疗事业能够不断改进和提高。
[1]程磊。医学影像技术在医学影像诊断中的临床应用[J]。世界最新医学信息文摘,2019年,19(28):212。
[2]马秀敏。医学影像技术在医学影像诊断中的临床应用分析[J]。世界最新医学信息文摘,2019年,19(11):156.
关键词:医学影像;后处理技术;方法;流程
针对医学影像,利用全网服务器向患者提供医学影像后处理技术,有效解决了大规模数据网络传递等重难点技术问题,为临床诊断和治疗提供了便捷。医学影像后处理技术在临床会诊中心、手术室、内外科中广泛应用,使得医学影像技术更好地服务于诊疗工作,进一步提升了医疗技术水平。
1 医学影像的简介
医学影像技术是当代医学主要的构成部分,而且是当前医学技术中发展最迅速的技术之一。其主要由医学影像分析处理技术、医学成像显示技术和医学图像压缩传输技术构 成[1]。传统医学成像技术是以现代电子计算机技术和物理学技术为理论指导,以成像机理将其划分为X射线计算机断层成像、X射线成像、放射性核素、超声成像、磁共振成像、红外线成像及放射性核素等。随着计算机技术的日益成熟,利用三息摄影为基础的三维成像技术被广泛应用,在很大程度上提高了医学诊断技术的准确度和清晰度。
2 医学影像后处理技术处理方法及流程介绍
在临床疾病诊断过程中,不管是采用功能影像技术还是结构影像技术,随着计算机技术的发展、网络信息技术的日益成熟,医学影像后处理技术在临床医学诊断中发挥着无法替代的作用。医学影像后怎样开展后处理,这是医学科研人员和临床工作人员重点思考的课题之一。
2.1医学影像后处理技术处理方法 医学影像后处理技术是在影像学检查结束后,为了对患者病情进行更加全面、准确的分析,应该对影像进行后续处理与加工的技术。后处理技术主要是全面分析、识别、分割、分类及解释医学影像技术呈现出的结果。该技术的额目的在于更好地分析患者病情,为临床诊断和治疗提供可靠、准确的影像识别。
医学影像后续处理方法主要分为两类,①直接处理技术,这一技术在患者影像学检查完成后,在影像设备上采用软件技术直接进行处理,例如在MRI和CT设备上直接生成血管成像等。但是这一处理方法的缺点在于无法改变影像,只有检查人员基于自身多年处理经验对病理学进行处理。②脱机应用工作站处理,该处理方法是在工作站或把胶片通过扫描仪对已经生成的医学影像进行数字化处理后,再对其进行影像后处理。例如多维影像(以MRI/PET/CT,SPECT)进行融合,同时采用专门软件自动识别、分割影像图。这种影像后处理方法的优势在于处理后的结果对于医护人员而言可靠性、准确性较高。
2.2医学影像后处理技术处理 对于医学影像技术而言,其同数字图像处理技术密切相关,尤其是在医学图像分析处理和图像压缩传递环节中,这一关系表现得更加密切。医学图像分析处理的流程示意图,见图1。
图1 医学图像分析处理的基本流程
3 医学影像后处理技术具体介绍
善于利用计算机软件处理医学影像,其目的在于为临床医学提供更加精确、可靠的判断依据,从而才能更加深入分析患者病情。按照医学影像特点和后处理的目的,医学影像的常见方法包括影像增强、影像分割、影像配准与融合、影像可视化、影像数据压缩等。
3.1医学影像增强 通过相关设备获取的医学影像主要分为CT片、X线片、MRI、B超等,然而这些医学影像成像普遍都是灰度图像。对于临床专业技能强、经验丰富的专家而言,便能够从图像中总结分析出患者准确的病情情况。然而,由于成像设备及其他因素的影响,在一定程度上造成医学影像质量的降低;即便是获得了高品质医学影像资料,但是对于临床技能和经验不足的医护人员而言,便难以从中分析出患者具体病情。所以,应该利用t学影像增强技术。医学影像增强主要是开展信噪比增强操作,对感兴趣对象区域或边缘予以突出,从而为患者病情分析和相关计算提供依据。
3.2医学影像分割 在医学临床实践和研究过程中,为了获取患者组织的功能或病理相关信息,一般需要准确测量人体某一种器官和组织的截面面积、边界、形状及体积等方面。医学影像分割操作过程中需要考虑到不同人体解剖结构不同,且采用设备获得的医学影像具有不均匀和模糊特征。基于此,采取分割技术重点突出医学影像中能够体现出患者病理的重要信息,从而有助于医护人员按照医学影像分析患者病理状况。
3.3医学影像配准与融合 医学影像成像模式较多,不同成像模式的影响包含了不同的病理、生理、解剖学或功能等方面的信息[2]。为了增强诊断可行性和效率,采用计算机图像处理方法对包括不同信息的医学影像进行人工综合方法,这就是医学影像配准和融合。
将具有不同信息来源的影像通过配准后融合在一起,便形成了多模式图像,便可以获得更多的信息,从而为医护人员在临床诊疗、治疗方案设计、外科手术和疗效评价方面更加准确、全面。例如,把密度分辨率最高、显示钙化和骨质结构最佳的CT同软组织对比分辨率最高的MRI,或者把解剖结构显示清晰的CT或MRI与显示功能和代谢改变的SPECT或PET影像进行融合,形成一种新的图像,增加了更多有价值的诊断信息,更加准确定位了病灶,或者更加直观地显示了形态结构,使得医务人员能够从代谢功能和心态学两方面全面判断患者的病灶。
3.4医学影像可视化及压缩 对于医学影像处理技术而言,医学影像可视化是一种价值较大的模块[3]。医学影像可视化的过程便是把CT、MRI等数字化成像技术获得人体信息在计算机上以三维模式呈现出来,利用三维模拟表现出传统手段难以获取的结构信息是该技术的最终目的。医学影像可视化是一种有效的辅助方法,能够有效弥补影像成像设备在成像方面的缺陷,在辅助医务人员诊断、引导治疗和手术仿真等方面发挥着重大价值。
当前,多排螺旋CT的广泛应用,CT/MRI在临床应用的范围越来越广,尤其是在数据采集与传输技术在三维世界中实现可视化的影像成为可能。为了适应CT/MRI技术的改革浪潮,作为临床医生和放射科医务人员必须深入了解医学影像后处理技术,并灵活运用到临床实践中。医学影像后处理技术是医学影像有效的补充,将其同传统影像诊断技术有机结合起来,进一步提高医疗技术水平。
参考文献:
[1]宁春玉.医学影像后处理技术的研究及其在X线影像优化中的应用[D].吉林大学,2011.
[关键词] 医学影像技术专业;主干课程;模块化课程
[中图分类号]G642 [文献标识码]C [文章编号]1673-7210(2009)02(a)-104-02
医学影像技术专业在国内开办已30多年,开办高等职业教育也近10年。随着医学影像技术的迅速发展,医学影像学范畴不断扩大,已包括X线、CT、MRI、超声、核素扫描等多种成像技术。因此,如何根据各级医院及影像科职业岗位能力的不同需要设计医学影像技术专业主干课程体系,培养适用性专业技术人才,是高职教育教学改革必须解决的重大问题。笔者根据近十年来从事高职教育教学实践经验,结合医院影像科职业岗位能力的需求情况分析,对我校医学影像技术专业主干课程模块化改革进行了研究和探索,并取得了初步成效,现报道如下:
1 医学影像技术专业主干课程设计现状
据调查,全国50多所高职高专院校医学影像技术专业人才培养方案中设计的专业主干课程是基本相同的,其中包括《医学影像设备学》、《医学影像成像原理》、《医学影像检查技术学》、《医学影像诊断学》等,这种课程设计模式已经有约10年了,对培养医学影像技术专业人才起到了重要作用。但是,随着高职教育教学改革的发展和医学影像技术专业毕业生就业市场的需求变化,现有的专业主干课程设计也逐步暴露出某些不适应之处。
1.1 专业主干课程设计与医院职业岗位能力要求不适应
目前,一般地(市)级以上综合性医院影像科的职业岗位包括普通放射科、CT室、MRI室、超声室和核医学科等多个部门;一般县级医院只有普通放射科、CT室和超声室;社区和乡镇卫生院则只有普通放射科和超声室。从毕业生就业定位来看,高职高专院校医学影像技术专业毕业生大多数在县级医院及乡镇卫生院工作,也有部分毕业生在地(市)级以上医院就业。目前,《医学影像成像原理》、《医学影像检查技术学》、《医学影像诊断学》等三门专业主干课程都是由普通X线、CT、MRI、超声四大影像学内容的横向组合而成,显然,上述课程设计与毕业生就业单位及职业岗位能力需求不适应。
1.2 专业主干课程设计与教学进程安排不适应
从专业主干课程内容前后关联性看,各种影像技术的成像原理、检查技术、诊断学三者之间是纵向联系的。因此,在教学进度安排上,应该先学《医学影像成像原理》,再学《医学影像检查技术学》,最后学《医学影像诊断学》。然而,三年制高职学生在校内学习时间仅为两年(毕业实习一年),上述三门课程只能同时安排在第三、四学期开课,这样就难免出现课程前后衔接有“错位”现象。于是,部分师生“责怪”教务处课程安排不合理,教师认为“难教”,学生也觉得“难学”,教学效果无疑会受到一定影响。
1.3 专业主干课程设计不适合于职业教育课程改革的要求
目前,医学影像技术专业主干课程过分地强调了学科的完整性和系统性,而忽视了各级医院影像科职业岗位的相对独立性。譬如《医学影像诊断学》课程囊括了X线、CT、MRI、超声等各种影像诊断学内容,其希望让学生全面掌握各种影像诊断的综合应用能力,适合于在地(市)级以上综合性医院职业岗位就业的部分学生。但这不能满足于不同层次医院、不同职业岗位能力的需求,尤其是不适合于县级医院及乡镇卫生院职业岗位能力的要求,也不能使学生个性发展(选择职业岗位)得到充分实现,这与实用性医学影像技术人才的培养目标是格格不入的。
因此,医学影像技术专业主干课程设计要紧密结合各级医院影像科职业岗位能力的要求以及毕业生择业的意向。当务之急是要按照不同职业岗位(群)的任职要求进行改革,构建满足医院影像科职业岗位能力要求的主干课程体系,以达到培养适用性技术人才的目的。
2 医学影像技术专业主干课程模块化教学改革的思路和目标
2.1 实施模块化教学是高职教育教学改革的发展方向
依据职业岗位设计课程体系及教学内容,实施模块化教学,是高职教育教学改革的发展方向。20世纪90年代以来,我国引用的国外职教课程模式主要有世界劳工组织的MES模式、德国“双元制”模式、加拿大CBE模式等,这三种模式统称为“能力本位模式”。它们各有所长,特点各异,其本质都体现了核心课程理念、课程结构模块化和课程综合化,体现了教学内容的取舍决定于职业岗位对从业者的要求。这些模式对我国高等职业教育教学改革的影响,主要体现于其课程开发方法已成为改造传统职业教育弊端的有力武器[1]。
模块化教学是一种新的教学理念,也是职业教育界追求的一个目标[2]。近十年来,国内许多高职院校工科类专业做了类似的课程模块化改革,收到了很好的效果。近几年来,部分院校医学影像技术专业也进行了某些教学改革工作[3],但至今尚无主干课程模块化改革的研究报道。
2.2 依据不同的职业岗位设计模块化课程,有利于实现零距离上岗
综合性医院影像科内部主要有四个部门(普通放射科、CT室、MRI室、超声室),每个部门就是一个职业岗位,各职业岗位工作既互相联系,又相对独立。假设将每一个职业岗位设计为一个总的课程模块(即为一门课程),然后,再根据这个职业岗位的具体工作内容进一步分成许多更小的二级、三级课程模块(称为子模块),即是各个章、节的课程内容。这样,针对每一个职业岗位设计一门课程,那么各门课程之间的衔接上就不会出现“错位”现象。学生在学习掌握好一门课程后既可胜任医院影像科的某一个职业岗位工作,学校也可根据各级医院影像科不同的职业岗位需要培养学生的岗位职业技能。这样,既便于教务处安排各门课程的教学进程,又可让学生根据自己的个性发展及就业岗位意向重点选择一个或几个课程模块,毕业后能很快适应工作。
2.3 主干课程模块化教学改革的目标
主干课程模块化教学改革的目标是提高毕业生适应职业岗位的能力,促进毕业生就业。根据医学影像技术专业主干课程模块化改革的设想和职业岗位的要求,由(医)院、(学)校合作共同编写医学影像技术专业主干课程模块化改革教材及配套实验实训指导书,并共同承担专业课程(含理论课、实训课)教学工作,创新医学影像技术专业课程教学模式,最终目标是提高学生专业技能水平,为毕业生在各级医院就业做好更充分的岗位适应准备。
此外,模块化课程改革取得成功后,要逐步推广应用于全国相关高职高专院校,为新一轮全国医学影像技术专业卫生部规划教材的改革提供依据。
3 医学影像技术专业主干课程模块化教学改革工作的初步成效
3.1 (医)院、(学)校合作,共同编写模块化课程改革教材
以人民卫生出版社出版的全国高职高专院校医学影像技术专业规划教材《医学影像成像原理》、《医学影像检查技术》和《医学影像诊断学》等三门课程为基础,以综合性医院影像科四个职业岗位工作要求为依据,重新编写专业主干课程模块化教材,分别确定为《X线检查与诊断技术》、《CT检查与诊断技术》、《MRI检查与诊断技术》和《超声检查与诊断技术》四门课程。新编教材每一门课程均包含成像原理、检查技术和诊断三方面内容,各门课程内容是相对独立的。参加教材编写人员都是具有较丰富工作经验的专业课教师和医院临床一线的专业技术人员,同时又是实施模块化教学改革的理论课和实验实训课授课教师。此外,还为本套改革教材编写了配套的《实验实训指导》。
3.2 设计实验班与常规班对照,组织实施模块化教学
每年将同年级的三年制高职医学影像技术专业学生分成两个班,分别使用不同的教材进行专业课教学。其中一班学生(简称常规班)使用现有高职高专院校医学影像技术专业规划教材《医学影像成像原理》、《医学影像检查技术》和《医学影像诊断学》,二班学生(简称实验班)使用学校自编的模块化改革教材《X线检查与诊断技术》、《CT检查与诊断技术》、《MRI检查与诊断技术》和《超声检查与诊断技术》。两个班的授课总学时数是相同的,各课程均安排在第三、四学期上课。按照学校统一制定的教学质量考核评价方案,分别对两个班的教学情况进行教学考核,比较其教学效果和教学质量的差异性。考核的结果反映:实验班的课程安排有一定的灵活性,各门课程之间不会出现前后衔接“错位”现象,模块化课程教学容易被学生所接受,学生技能操作考核成绩优于常规班,教学效果好,教学质量高。
3.3 通过对毕业生实习医院调查反馈,评价教学改革成效
自2008年6月以来,学校对三年制高职医学影像技术专业学生所在的实习医院进行问卷调查和访谈,听取了带教老师和实习学生对模块化教学改革的评价,比较两个班级学生在专业知识、操作技能及岗位适应能力的差异性。总体评价是:模块化改革教材是一种成功的尝试,实验班学生在掌握专业基础知识、专业操作技能和岗位适应能力等方面比常规班学生要强一些。
4 有待进一步探索的问题
我校医学影像技术专业主干课程模块化课程改革的研究与实践时间还不长,各门模块课程的教学内容有待于进一步整合;职业岗位能力的指标体系及考核测评方案有待于进一步完善;模块化课程教学方式有待于进一步研究。
为进一步完善和推广医学影像技术专业模块化课程教学,教师问题是根本。首先,教师要不断更新高职教育理念,建立高等职业教育模块化课程的课程观,加强模块化教学的培训,尽快适应模块化课程的教学方式;第二,要根据模块化课程内容和教学方式配置相关的教学仪器设备;第三,要不断探索,进一步完善医学影像技术专业的模块化课程教材。
[参考文献]
[1]搂一峰.高等职业教育课程模块化设计探讨[J].职业技术教育,2006,27(7):43-44.
[2]周新源.现代职教课程观与模块化教学[J].职教通讯,2007,6:37-38.
关键词:医学;标准化;影像诊断;设备软件
【中图分类号】R285【文献标识码】A【文章编号】1674-7526(2012)08-0373-01
随着我国经济的飞速发展,我国的科学技术取得了不断的发展,一些全新的数字化影像技术开始应用于临床,比如CR,PET,MRI,DSA等等,医学影像诊断设备的电脑化已经逐步成为影像科室的必然发展趋势,医学影像设备的网络化也已逐步成为影像科室的必然发展趋势。影像技术的不断发展对影像诊断设备的操作管理软件所提出的要求越来越高。新的影像诊断设备软件应该是满足所有医学的影像任务,满足医学影像应用,满足医学影像系统设置,最终覆盖整个医学影像应用的全面软件解决方案,而不再仅仅是一种设备的操作控制平台。所以,对医学影像诊断设备软件的标准化进行分析具有一定的理论意义和实践意义。
1软件系统的标准化
在最终用户端,软件的标准化则体现为一致的用户界面设计,为用户在不同的诊断工作站上提供一致的工作环境,为用户在不同的影像设备上提供一致的工作环境。针对整个医学诊断影像软件领域,软件设计提供全面的解决方案。西门子公司的“新沟通”(syngo)软件在这一方面走在医学诊断影像软件领域的最前列。下面,本文简要地阐述了syngo的四个方面的特点:
1.1支持临床工作流程:“以人为本”是标准化软件设计的中心思想,其设计是按照临床工作的流程进行的。以前,大都是从数据处理的角度来设计影像软件的,没有将医院工作的整体流程考虑在内,只是单一地完成影像设备本身应具备的功能,是单立式的设计,所以,其不能通用于不同的影像设备,不能满足临床工作不断增长的需要。Syngo软件的设计则是一体化的设计,从而可以将病人从送检到缴费的整个过程集成到影像设备软件,从而提供了一种满足所有医学影像任务的全面软件解决方案,提供了一种满足所有医学影像应用的全面软件解决方案,提供了一种满足所有医学影像系统设置的全面软件解决方案。
1.2适用于各种医学影像任务、应用和系统:病人登录、图像评价、通用三维图像后处理、数据管理以及网络传输等是影像设备软件的公共功能,同时,其又能为不同的设备设置不同的配置,比如,病人做CT检查时,需要输入身高,而做MR检查时则需要输入病人的体重。
1.3简单易用的用户界面:标准化的影像设备软件将Windows的操作扩展到医学影像的应用上,Windows的操作使用惯例是用户界面操作的基础,这样有利于用户尽快地掌握基本的操作技能,方便用户进行操作,为用户减少很多不必要的麻烦。
1.4完善的软件功能:3D图像评价和后处理、通用的病人登录、图像胶片打印、图像胶片排版、各种图像评价、各种图像的后处理、图像网络传输、图像存档以及病人数据浏览等是设备完善的软件功能,同时,设备还有CT检查、BOLD图像后处理、心脏功能分析以及MR检查等特有的软件功能。
2网络互连与互操作
在网络化的工作环境中,一方面,数字化影像设备和医院信息管理系统之间在局域网内实现信息、图像的传输交换,数字化影像设备和医院放射科信息管理系统之间在局域网内实现信息、图像的传输交换,数字化影像设备和医学影像存储传输系统之间也在局域网内实现信息、图像的传输交换。另一方面,影像设备设备还通过广域网与远程计算机实现信息传输。
医学图像网络存储的标准需要规范,医学图像网络通信的标准也需要规范,因为只有这样,才能有效地实现各个厂家的各种数字化影像设备的集成。经过多年的发展,国际影像设备厂商公认接受DICOM3.0,其成为医学数字成像的国际性统一信息标准,成为医学通讯的国际性统一信息标准。其为在标准网络框架内不同来源的医学影像设备间影像相互交流提供了技术实现的可能性,为在标准网络框架内不同来源的医学影像设备间影像相互操作提供了技术实现的可能性。
3设备远程维护和支持
随着科学技术的不断发展,医学影像诊断设备越来越复杂,设备的维护越来越重要,设备的应用支持越来越重要。通过远程维护可以预先监控系统,通过远程支持也可以预先监控系统,从而有效地解决潜在的问题,降低系统的故障率;在系统需要维修时,通过远程诊断可以准确地分析和解决问题,通过远程修复也可以准确地分析问题和解决问题,从而使得维修时间得到了缩短。所以,远程维护成为大型医学影像诊断设备软件的发展方向之一,远程支持成为大型医学影像诊断设备软件的发展方向之一。
远程诊断服务器对本地影像系统的访问是基于Internet/WWW协议进行的,某些授权操作的执行也是基于该协议,比如,调整系统参数,测试系统部件的功能等等,从而实现设备的远程诊断,实现设备的远程修复。
可以利用公用电话网构建远程网络,可以利用ISDN技术构建远程网络,也可以利用数字专线构建远程网络。
参考文献
[1]上官辉,王溶泉.现代医学影像专业人才培养实行“四・三”格局的实践与探讨[J].中国临床医学影像杂志,1995年01期
[2]DavidM.Hynes.数字X射线影像设备的技术升级――2K系统提高了数字视频荧光影像的质量[J].中国医疗器械信息,1997年02期
[3]赵亚舒.医院医疗设备维修社会化问题的深入思考[J].医疗设备信息,2006年04期
论文摘要:本文主要论迷了现代医学影像技术的迅猛发展时医院影像学科管理模式变革的决定性意义和作用,大型综合性医院通过组建医学影像中心在专业化、标准化、综合性基础上充分发挥全院医学影像科室的整体优势。
医院的医学技术装备建设是医疗、教学、科研的物质基础,也是提高医疗质量和服务质量、提升医院整体经济技术实力的重要前提和基本条件。医学影像学科体系是现代医院的一个重要组成部分。在医院中,医学图像信息量占医疗信息总量的70%左右,医院影像科室的组织结构、管理模式、设备配置、学术交流、人才培养以及与临床的分工协作问题对全院影像技术功能的发挥、医疗质量和服务质量的提高、科技实力的增强以及经济效益与社会效益的提高具有重要的作用。结构决定功能,效益取决于管理。对大型综合性医院来说,通过组建疗影像中心,从人才、设备、技术标准和管理效能等方面加强医学影像科室建设,在专业化、标准化、综合化的基础上充分发挥整体优势,逐渐成为主流趋势。
1.成立影像中心是现代医学影像技术飞速发展对影像科室管理模式的必然要求
技术决定战术,现代医学影像技术的迅猛发展对影像科室的管理模式发挥着决定性的作用。
近二十年来,伴随着影像技术的数字化、计算机化、网络化趋势和介人医学的兴起,医学影像学已经由传统的形态学检查发展成为组织、器官代谢和功能诊断及治疗为一体的,包括超声、放射性核素影像、常规X线机、PEI,一CI’, CT, MRI, DSA,CR, DR以及PACS、电子内镜等多种技术组成的现代影像学科体系,成为与外科手术、内科药物治疗并列的现代医学第三大治疗手段。医学影像学科已经是现代化医院的支柱之一,影像学设备占医院固定资产三分之一以上。医学影像技术的革命性变化必将改变医院对影像科室的管理模式,促进影像学科的发展。
1.1影像学科医技人员的专业化和临床实践的标准化将得到进一步的重视和加强,成为学科发展的立足之本。随着数字化、计算机化、网络化技术的广泛应用,在技术和设备进步的新形势下,影像学科的发展需要理、工、医的紧密结合,影像科医技人员按系统分专业将进一步强化,并且逐步向纵深专科领域扩展,影像科人员的工作模式也必须随之改变,向着人员专业化和临床实践标准化方向不断发展、完善、提高。这种专业化、标准化构成了医院医疗质量控制与管理的基础,也是影像学科发展的出发点和落脚点。
1.2随着影像学科医技人员的专业化进程,影像学科的亚专业与各临床学科之间的联系也更加紧密,临床与影像学科之间的互相渗透使彼此界限逐渐模糊,工作配合得更好,效率更高,使由于设立临床、影像科室和划分不同专业而引起彼此工作和知识脱节的问题得到解决。一方面影像学科医生的临床专业知识更加深人,另一方面临床学科医生对医学影像学知识的了解更好,或一人具有两个学科的行医资格,可以身兼两职。同时,影像学科亚专业各科在理论与实践上出现了许多交汇点,在诊断与治疗上相互借鉴、互相支持、密切配合,在一个新的、高层次上协作共进。
1.3数字化成像、存储、传输的实现,PADS系统的建立,使各种影像技术手段得以优势互补、扬长避短、资源共享,使诊断综合化的目标得以实现。
PACS,医学影像存储与通讯系统(Picture archiving and communication system, PALS)是医学影像技术与数字化图像技术、计算机技术和网络通讯技术相结合的产物,它是通过计算机和网络通讯设备对医学影像资料进行采集、存储、处理、传输和管理的综合性系统。它使得影像设备不再是孤立的一台设备,而是PACS网上的一个节点。科室间数据流的屏障被解除,以实现资源共享和医院内数据流的无缝连接。
诊断的综合化是影像学料发展的一个方向,即在诊断台上比较多种诊断设备的图像,发挥各种设备的综合优势,进而可以用工作站将不同检查设备的图像进行“图像融合”,大幅度提高诊断准确率。随着诊断综合化的实现,在影像学科内部管理模式上,必将改变目前以诊断设备为主的“分工”分组,转向以人体器官/系统为主的专业化分组,充分发挥影像技术人员和装备的系统性、整体性优势,进一步提高技术一经济效益。 与技术进步相适应,在管理模式上影像科室的发展也经历了三个阶段:专科化发展阶段~专科协作发展阶段~系统专业化发展阶段。
当前,国内外医院PACS的规模有四种类型:
1.4成立医学影像中心是优化医院诊疗工作流程,提高效率,实现“以病人为中心”的根本保证。在传统的影像科室管理模式下,医学影像信息在医院各影像输出科室之间以及影像输出与输人科室之间传输、存储、使用过程中,存在着流程环节多、周期长、通道狭窄、手工作业化程度高,经常发生诊疗工作的延误和堵塞,影像信息的丢失和误差率也居高不下(有关资料表明:即使一个管理制度十分完善的医院,由于借出、会诊等,X光片丢失率也会在10%一20%之间)。通过对全院医学影像(输出)科室的服务与管理模式调整与改革,组建全院医学影像中心后,就可以通过PACS网络改造和优化医院诊疗工作的作业流程,简化医学影像流通环节、提高效率,为临床一线提供快捷、优良的医学影像信息服务,可以有效地缩短平均住院日、手术待诊时间、提高住院病人的三日确诊率,降低病人的诊疗费用,“把时间还给医生、护士,把医生、护士还给病人”成为现实,力争实现以病人为中心、努力争取最佳诊疗效果、提高医疗质量和服务质量的目标。以先进的技术包装陈旧的医院影像科室管理模式是行不通的。
1.5组建医学影像中心可以大幅度提升医院的学术水平和整体实力,通过组建全院医学影像中心,实现“强强联合”,使医院影像学科体系更加完备、科学、合理,影像学科体系和影像技术装备体系良性互动、相得益彰,人才培养、科研实力和学术水平有大幅度的提升。医院医学影像(输出)学科实力的增强也将带动全院学科建设的发展,从整体上提高医院的医、教、研能力。
2医院组建医学影像中心要总体规划、分布实施、掌握标准、注重实效
【关键词】医学影像系统 差异化竞争
医学影像系统是医院医疗系统中不可分割的一部分,作为代表民生重要福利的行业,医疗正在随着科技的发展而成为社会各个阶层瞩目的焦点,一些新型病症的出现让人们开始迫切地需要一种能够探究疾病成病原理的重要手段,而医学机构和组织也急需要进一步对相关病症进行深入研究,利用前沿科技作为基辅的影像医学自然引起了人们的关注和追捧,因此我国医疗影像系统和相关设施设备在市场上的需求也急剧增长。可以说,医学影像系统开发成为了医疗领域必然也是必须研究的课题。
一、医学影像技术的现状
一百多年以前,伦琴发现了X射线,从而为后来医学影像的发展奠定了核心基础,这么多年以来,医学影像的发展速度非常迅猛,除了将X线应用到医学影像中以外,一些非X线的成像技术也逐渐被一一开发,包括人们耳熟能详的B超、核磁共振(MR)、PET(正电子发射断层扫描)、SPECT(单光子发射计算机断层照相机)等等。
1. 1常规X线成像
X线成像作为发展最早、最基本的成像方式,一直以来都是应用最多、推广范围最广的技术,但科技发展让数字化技术成了X线成像的新突破,包括影像板技术(CR)和电子板成像技术(DR)。影像板技术是让影像板取代了传统的X线胶片成为了影像载体,影像板通过X线照射感光后经过激光扫描就得到了数字化的影像,其主要特点是便于进行携带、储存,且影像板可以重复利用。电子板成像技术是指曝光利用多个微小的X线感光元件排列形成的电子成像板,可直接形成数字化影像。
1. 2CT成像
CT成像早在1972年就被应用在了临床诊断和治疗上,其基本原理是利用X线束从多个不同的角度对需要进行检查的人体部位(且要求具有一定厚度的层面)扫描,探测器在接收到信号之后将其转变为可见光,再通过光电转换器将光信号转换为电信号,最后转换为数字信号进行储存和进一步处理。现今螺旋CT技术的应用让传统CT成像在质量、速度和成像方式等多个方面都上了一个新台阶,也让CT诊断技术有了长足进步。
1. 3 磁共振成像
磁共振成像技术主要应用于脑血管疾病、关节病、脊髓病等病症上,该技术在这些病症上的独特优势令其成为近年来发展最快、技术成果最多的成像技术。成像速度从最初的几分钟每层到后来的几十分之一秒每层,再到后期的3D、4D处理影像和核磁共振透视等,目前的磁共振成像因为抗血管生成因子辅助MR功能成像等多个新技术的持续开发与应用,已经将磁共振成像仅用于大体解剖水平向分子水平甚至基因迈进。
1. 4正电子发射断层扫描(PET)
PET技术是指利用人体或生物代谢所必需的某一种物质,例如蛋白质、葡萄糖、核酸等,用短寿命的放射性核素进行标记,通过观察该物质在代谢过程中的聚集和分解等活动情况来反映生物代谢的情况,以此为依据进行诊断。一般临床应用较多的是氟代脱氧葡萄糖,用于观测恶性肿瘤方面具有较高的准确性和针对性。
1. 5图像储存与传输技术(PACS)
PACS技术是医学影像数字化的典型代表,主要分为图像获取系统、控制系统、显示工作站三大部分,如果只是医院或者科室内几台放射设备的联网则称为mini PACS(微型),若是整个放射科的设备联网则被称为radiology PACS(放射科),另外还有全院PACS,其未来还有可能发展至区域乃至全球PACS。
除以上几类医学成像外,还有超声成像、介入放射学等也是医疗领域应用较多、发展较为成熟的医学成像技术。每一种成像技术都根据自身不同的成像原理应用于相同或不同的医学领域,随着科技的不断发展,这些成像技术还会有显著的进步甚至会有新的成像技术诞生。
二、医学影像数字化带来的挑战
经过多年的发展,医学影像为国家医疗实力的提升提供了卓越的贡献,显著提高了人们的医疗水平,互联网和科技的发展让医学影像数字化成为了必然趋势,但同样医学影像数字化也带来了许多现实性的挑战。
2. 1思维方式的变化
对于传统的医学影像工作人员而言,对于医学影像的思维方式很多还停留在二维图像、单纯诊断以及反映真实大体机体状态等层面上,事实上医学影像已经从反映大体病理转向了分子和基因水平,图像维度也早已从二维发展为了三维甚至四维,从单纯诊断发展成为了以诊断为辅助的治疗方向。因此利用医学影像进行诊断和治疗的医务人员乃至科研人员应当及时完成思维方式的过渡和转变,用动静结合、宏微观结合、结构功能结合等多个方面来看待和学习研究医学影像,将医学影像前沿技术应用到医疗中去,发挥其应有的医学价值。
2. 2工作流程变化
在上文所提到的图像储存与传输技术(PACS)不仅已经实现了过去胶片向数字化信息的转变,更是医学影像数据信息从“硬拷贝”向“软拷贝”的转变。在形成医学报告时,未来甚至现在的工作流程必然会发生相应的变化,而已经习惯于传统阅片形式的老医生们在操作流程上会不够顺利,加上对电脑技术的应用不熟练,更难以实现“纯熟经验”与现代先进技术的融合。
2. 3医学影像技术手段的选择和费用问题
相对于传统的X线检查、超声波检查、CT检查等方式,现下的CR、DR、螺旋CT、磁共振成像(MRI)、PET、PACS等技术虽然能够获取更多地医疗信息数据,图像更为清晰,使诊断更为精准和方便。但对于一些较易观察和诊断治疗的病症如急性脑出血等利用CT技术就已足够,其相对螺旋CT等技术所消耗的医疗费用更低,检测结果由一张或几张图像反映反而要优于其他方式形成的几百张图像分析。因此影像学医师不仅要熟知各类技术的应用操作方法,也要学会分辨病变的特征,采取最合理的检查手段,缩短诊断时间的同时也降低费用消耗。
2. 4保密与安全性问题
对于传统的医学影像技术而言,所有针对病患的医学数据信息都是处在相对封闭的环境中,由医学影像设备进行储存,或者所有实质性的资料、电子信息资料等都由档案科一并封存归档。但现代的医学影像设备尤其是诸如PACS等技术设备实现了设备之间的联通功能,相当于打破了传统的封闭式管理和储存方式,这种功能虽然相对外部社会只是属于医院的内部使用,但不能否认其有被盗取、损坏的可能性。因此,在使用医学影像设备时必须利用数字认证或其他保密手段以确保医患的隐私权不被侵犯。
2. 5影像科管理问题
由于各类医学影像技术还在不断地被开发和更新,医疗机构对于设备以及人员的如何配置成为影响医疗机构技术水平高低以及资产合理利用与否的关键问题。经调查发现,与其他科室相比较,医学影像科是占医疗机构固定资产三分之一的大科,人员与设备重组和搭配关系到医疗机构科室建设以及相关技术教研工作。如果不能正确合理进行配置,很容易造成人员或设备浪费,且对于医疗机构来说,控制项目费用成本也是维持机构生存的重点之一。
三、医学影像系统的差异化竞争
差异化竞争包括多个方面,例如市场差异化、价格差异化、功能差异化、包装差异化等等,医学影像作为一种产品,且是未来市场前景强大的产品,要想以自身独特的个体特征赢得市场自然也不能排除利用差异化竞争策略进一步打开市场。根据现代医学影像系统数字化、网络化、标准化、小型化、诊断与治疗相结合等特征,其差异化竞争策略主要应从以下几点入手考虑:
3. 1市场定位的差异化
当下绝大多数正规医疗机构都已经配备了基本的医学影像系统和相关设备,如X线成像设备、CT成像设备、磁共振成像设备、超声波成像设备等,虽然PET、PACS等技术仍然是医疗机构购置热点,但我们必须清晰地认识到市场已经由生产者主宰转变为了消费者主宰,医学影像系统的开发在满足民生医疗基本需要的大众化需求之后,更应该转向攻克一些顽固病症所在的个性化市场,也就是由大众化市场向定制市场以及细分市场进军,利用更有个性特征的市场群进行医学影像系统的功能性提升。
3. 2模版开发的差异化
虽然不同医疗机构所开设的科室基本相同,但不同医院所擅长的医学领域并不一定相同,且对于不同的医疗机构,医学影像系统所具备的应用功能也不同,有以医疗为目的的,也有以研发为目的的,还有以教育为目的的。因此,医学影像系统必须对不同的应用功能有针对性地进行开发应用。医学影像系统通过对系统流程的更改,可以令线上编辑处理、图像数据上传速度等功能进行改善,同时为避免大部分系统模板存在功能单一、分类混乱等问题,还应该拓宽思路和方法,研究开发更多特色功能和高级功能。
3. 3产品种类和层次的差异化
目前所开发的、经由医疗机构普遍应用的多是一些发展较为成熟的医学影像系统设备,即使是一些利用了前沿科技所开发出来的产品正常情况下在一般的医疗机构中应用价值并没有很明显的体现,一方面是由于一般性的医学影像系统能够满足人们日常医疗所需,另一方面也是由于缺乏具有与设备相匹配知识及操作水平的医疗人员所造成的。因此未来医学影像系统的开发必须打破概念模糊、定位不清晰、产品种类多但技术不精的难点,从产品本身性能以及市场定位层次出发提升医学影像系统的核心竞争力。
与普通影像设备不同,医疗影像系统属于专业性较强、功能性明显的系统技术,因此医疗影像系统在宏观层面来看不仅要平均着力,提升民生医疗水平,也要从微观层面体现其在细分市场和客群之中的价值,既要做大做全,也要做优做细,不仅是为了产业盈利性质,更是为了社会安全和进步。
【关键词】 医学影像;临床诊断;应用价值
1895年,X射线被德国物理学家伦琴发现,并在不久后在人体疾病的检查中得以应用,由此开创了一门全新的医学学科——放射诊断学。发展到如今,已经形成了包括多种诊断方法在内的更为全面的医学影像检查技术。特别是近30年来,在传统的X线检查基础上,CR、DR、CT、钼靶X线摄影、CT、MRI、USG以及核素显像设备都在不断地改进并完善,影响诊断已从单一依靠形态变化进行诊断发展成为集形态、功能和代谢改变诊断为一体的综合诊断系统。与此同时,诸如心脏和脑的磁源成像等新技术以及如分子影像学等新的学科分支也在陆续涌现,影像诊断学的范畴还在继续不断充实和扩大。然而,在临床诊断中,面对众多的检查方法,如何科学选择则具有了更重要的临床意义。笔者根据自己多年的工作经验,对医学影像检查在临床中的应用进行了一定探索。
1 影像检查方法的特点和适用性
1.1 X线成像检查
X线成像检查是医学影像中应用历史最长、操作最简单方便且价格相对低廉的检查方法,其检查范围包括透视、X线平片检查以及对比剂造影检查等几个方面,对检查部位通常要求具有较好的组织密度对比性,比如骨骼、胸和胃肠道等,当然有时候也用于全身各个系统的检查。其特点主要表现在以下几点:①结构层次显示比较丰富,有利于整体观察受检部位的组织结构,具有较高的空间分辨率;②检查相关操作方法比较简单,其费用相对低廉;③可灵活变换进行动态病变观察,但由于影像难以长时间保留图像,所以不利于以后治疗过程中的对比分析,同时对细微的病变发现比较困难,而且患者需要接受较大照射量的X线,最好在检查之前应做到目标明确;④密度分辨率较低,对组织密度差别较小的部位不能显示足够清晰的图像;⑤CR和DR虽在图像的清晰度方面较传统X线检查更好,对某些结节性病变具有更高的检出率,但对肺间质和肺泡病变的显示效果仍与传统胸片差别明显,而且该方法的成本也会更高;⑥钼靶X线摄影是根据各种组织对X线存在不同吸收量的原理,可将脂肪、肌肉和腺体等密度差距不大的组织在X线片上形成良好对比的影像,该方法多用于对软组织形态及病理变化的观察
1.2 CT成像检查
CT成像检查是X线与计算机技术联合形成的医学影像系统,具有较高的密度分辨率,可对人体进行断层扫描并重建非常清晰的图像,在临床上多用于头颈部、胸部、肝肾胰脾、腹盆腔、四肢关节以及软组织的病变影像检查。主要特点有以下几个方面:①在进行不用对比剂的普通扫描情况下,在不同病例的病变发现以及定位定性诊断方面都可作为对X线检查的可靠补充,可为多种疾病的诊断提供依据;②在快速静脉注射碘对比剂之后进行的动态增强扫描或CT灌注扫描,可对疾病是否属于血管性病变做出鉴别,同时对了解在病变状态下的供血情况以及鉴定病变的良、恶性情况也很帮助,具备较高的诊断价值;③高分辨率CT扫描技术是集合了薄层扫描和高空间分辨率图像重建算法的医学影像检查技术,在对病灶细微结构的观察方面具有比较突出的价值;④高分辨率多层面螺旋CT扫描即是在运用X线进行扫描的过程中,通过旋转一并获得多层面图像数据的医学影像系统,该技术实现了对病灶的多角度观察,而且具有一定的结构分析功能和成像功能。
1.3 核磁共振成像
磁共振成像(MRI)是根据人体组织含水量的不同而开发出的一种非介入性的探测技术,对人体无电离辐射影响,所获得的图像非常清晰,能更客观更具体地显示人体内的解剖组织和相邻关系,更好地对病灶进行定位和定性,对人体多系统疾病的诊断,尤其对早期肿瘤的诊断具有很高的临床价值。
1.4 超声成像(USG)
该技术利用了声波的穿透和界面反射特性,无创伤和辐射,操作简便,并可获得患者器官的任意断面图像。随着该成像技术的发展,目前来看,其超声造影、谐波成像以及多普勒组织成像技术已在临床广泛应用。该技术对于胸部表浅部位的病变诊断有一定价值,在与X线摄影结合检查的情况下,可提高乳腺癌的早期检出率。
2 医学影像综合应用讨论
以上对几种常见的医学影像技术进行了阐述,综合来看,每一种检查方法都各具特点和优势,同时也都存在一定的局限性。在具体的临床诊断过程中,应充分考虑各方面的因素,做到优势互补。虽然CT、MRI、超声等医学影像检查都具有一定的优越性,但作为多种影像检查的基础,X线检查依旧是众多方法的首选。另外,在临床应用中,需避免检查的盲目性,尽量遵循效果价格的比值原则进行成像方法的优选,让患者在疾病诊断的环节中少走弯路,及时获得快速而准确的诊断。
参考文献
[1]夏泽民. X射线在医学影像诊断中的发展与应用[J].中国医药指南,2012,6:420.