时间:2023-08-24 09:27:45
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇化学反应的过程,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
关键词:电厂 化学反应 还原 氧化 措施
一、氧化
如氨氧化制硝酸、甲苯氧化制苯甲酸、乙烯氧化制环氧乙烷等。
(1)氧化的火灾危险性
①氧化反应需要加热,但反应过程又是放热反应,特别是催化气相反应,一般都是在250~600℃的高温下进行,这些反应热如不及时移去,将会使温度迅速升高甚至发生爆炸。
②有的氧化,如氨、乙烯和甲醇蒸气在空中的氧化,其物料配比接近于爆炸下限,倘若配比失调,温度控制不当,极易爆炸起火。
③被氧化的物质大部分是易燃易爆物质。如乙烯氧化制取环氧乙烷中,乙烯是易燃气体,爆炸极限为2.7%~34%,自燃点为450℃;甲苯氧化制取苯甲酸中,甲苯是易燃液体,其蒸气易与空气形成爆炸性混合物,爆炸极限为1.2%~7%;甲醇氧化制取甲醛中,甲醇是易燃液体,其蒸气与空气的爆炸极限是6%~36.5%。
④氧化剂具有很大的火灾危险性。如氯酸钾,高锰酸钾、铬酸酐等都属于氧化剂,如遇高温或受撞击、摩擦以及与有机物、酸类接触,皆能引起着火爆炸;有机过氧化物不仅具有很强的氧化性,而且大部分是易燃物质,有的对温度特别敏感,遇高温则爆炸。
⑤氧化产品有些也具有火灾危险性。如环氧乙烷是可燃气体;硝酸虽是腐蚀性物品,但也是强氧化剂;含36.7%的甲醛水溶液是易燃液体,其蒸气的爆炸极限为7.7%~73%。另外,某些氧化过程中还可能生成危险性较大的过氧化物,如乙醛氧化生产醋酸的过程中有过醋酸生成,过醋酸是有机过氧化物,性质极度不稳定,受高温、摩擦或撞击便会分解或燃烧。
(2)氧化过程的防火措施
①氧化过程中如以空气或氧气作氧化剂时,反应物料的配比(可燃气体和空气的混合比例)应严格控制在爆炸范围之外。空气进入反应器之前,应经过气体净化装置,消除空气中的灰尘、水汽、油污以及可使催化剂活性降低或中毒的杂质,以保持催化剂的活性,减少着火和爆炸的危险。
②氧化反应接触器有卧式和立式两种,内部填装有催化剂。一般多采用立式,因为这种形式催化剂装卸方便,而且安全。在催化氧化过程中,对于放热反应,应控制适宜的温度、流量,防止超温、超压和混合气处于爆炸范围之内。
③为了防止接触器在万一发生爆炸或着火时危及人身和设备安全,在反应器前和管道上应安装阻火器,以阻止火焰蔓延,防止回火,使着火不致影响其他系统。为了防止接触器发生爆炸,接触器应有泄压装置,并尽可能采用自动控制或调节以及报警联锁装置。
④使用硝酸、高锰酸钾等氧化剂时,要严格控制加料速度,防止多加、错加,固体氧化剂应粉碎后使用,最好呈溶液状态使用,反应中要不间断搅拌,严格控制反应温度,决不许超过被氧化物质的自燃点。
⑤使用氧化剂氧化无机物时,如使用氯酸钾氧化生成铁蓝颜料,应控制产品烘干温度不超过其着火点,在烘干之前应用清水洗涤产品,将氧化剂彻底除净,以防止未完全反应的氯酸钾引起已烘干的物料起火。有些有机化合物的氧化,特别是在高温下的氧化,在设备及管道内可能产生焦状物,应及时清除,以防自燃。
⑥氧化反应使用的原料及产品,应按有关危险品的管理规定,采取相应的防火措施,如隔离存放、远离火源、避免高温和日晒、防止摩擦和撞击等。如是电介质的易燃液体或气体,应安装导除静电的接地装置。
⑦在设备系统中宜设置氮气、水蒸气灭火装置,以便能及时扑灭火灾。
二、还原
如硝基苯在盐酸溶液中被铁粉还原成苯胺、邻硝基苯甲醚在碱性溶液中被锌粉还原成邻氨基苯甲醚、使用保险粉、硼氢化钾、氢化锂铝等还原剂进行还原等。
还原过程的危险性分析及防火要求:
(1)无论是利用初生态还原,还是用催化剂把氢气活化后还原,都有氢气存在(氢气的爆炸极限为4%―75%),特别是催化加氢还原,大都在加热、加压条件下进行,如果操作失误或因设备缺陷有氢气泄漏,极易与空气形成爆炸性混合物,如遇着火源即会爆炸。所以,在操作过程中要严格控制温度、压力和流量;车间内的电气设备必须符合防爆要求。电线及电线接线盒不宜在车间顶部敷设安装;厂房通风要好,应采用轻质屋顶、设置天窗或风帽,以使氢气及时逸出;反应中产生的氢气可用排气管导出车间屋项,并高于屋脊2m以上,经过阻火器向外排放;加压反应的设备应配备安全阀,反应中产生压力的设备要装设爆破片;安装氢气检测和报警装置。
(2)还原反应中所使用的催化剂雷氏镍吸潮后在空气中有自燃危险,即使没有着火源存在,也能使氢气和空气的混合物引燃形成着火爆炸。因此,当用它们来活化氢气进行还原反应时,必须先用氮气置换反应器内的全部空气,并经过测定证实含氧量降到标准后,才可通人氢气;反应结束后应先用氮气把反应器内的氢气置换干净,才可打开孔盖出料,以免外界空气与反应器内的氢气相遇,在雷氏镍自燃的情况下发生着火爆炸,雷氏镍应当储存于酒精中,钯碳回收时应用酒精及清水充分洗涤,过滤抽真空时不得抽得太干,以免氧化着火。
(3)固体还原剂保险粉、硼氢化钾、氢化铝锂等都是遇湿易燃危险品,其中保险粉遇水发热,在潮湿空气中能分解析出硫,硫蒸气受热具有自燃的危险,且保险粉本身受热到190℃也有分解爆炸的危险;硼氢化钾(钠)在潮湿空气中能自燃,遇水或酸即分解放出大量氢气,同时产生高热,可使氢气着火而引起爆炸事故;氢化锂铝是遇湿危险的还原剂,务必要妥善保管,防止受潮。保险粉用于溶解使用时,要严格控制温度,可以在开动搅拌的情况下,将保险粉分批加入水中,待溶解后再与有机物接触反应;当使用硼氢化钠(钾)作还原剂时,在工艺过程中调解酸、碱度时要特别注意,防止加酸过快、过多;当使用氢化铝锂作还原剂时,要特别注意,必须在氮气保护下使用,平时浸没于煤油中储存。前面所述的还原剂,遇氧化剂会猛烈发生反应,产生大量热量,具有着火爆炸的危险,故不得与氧化剂混存。
关键词:TSR;油气藏;FT-ICR MS;有机硫化物;形成
碳酸盐岩层系中常伴有硫酸盐岩的沉积,在一定温度和压力下,硫酸盐岩跟干酪根降解生成的烃类接触会发生热化学还原反应(Thermochemical Sulfate Reduction,简称TSR)。TSR是油气藏中有机流体-岩石相互作用的核心研究内容之一,对于油气藏的次生变化具有重要的影响。目前有资料表明[1-5],TSR可能会在油气藏生成和运移过程中发挥加硫作用生成有机硫化物,这些有机硫化物蕴含丰富的地球化学信息,对于油气对比,确定油气成熟度方面具有重要意义。
近年来,随着对碳酸盐岩油气藏中有机硫化物结构、组成及TSR成因研究的深入,尤其是对噻吩类、苯并噻吩类和二苯并噻吩类化合物的研究发现[6-8],在较高的温度下,噻吩系列化合物可以转换成苯并噻吩和二苯并噻吩系列化合物。二苯并噻吩由于具对称的分子结构,热稳定性很高,因此具有较宽的热成熟度范围[9-12],如果二苯并噻吩类化合物随热演化而发生规律性的变化,则不失为一个良好的热成熟度指标[13]。但是,作为高-过成熟阶段的碳酸盐烃源岩噻吩系列、苯并噻吩系列和二苯并噻吩系列化合物的TSR成因及机理方面的研究国内外鲜有报道。
原油与硫酸盐发生TSR反应油相产物中有机硫化物的种类和结构较复杂,尤其是稠环硫醚和噻吩类性质不活泼,与大量存在的饱和烃及芳香烃相似[14];同时这类物质沸点高、分子量大,超过气相色谱的气化极限(500℃),不能通过气相色谱进行分离,因此传统的方法难以研究有机硫化物的组成和分布。傅里叶离子回旋共振质谱仪(FT-ICR MS)是一种超高分辨能力的新型质谱仪,可以从分子元素组成层次上研究有机硫化物的组成。有机硫化物经甲基化反应衍生为甲基锍盐,然后通过正离子电喷雾(ESI)FT-ICR MS分析,得到硫化物的信息。锍盐类化合物在质谱图中表现出明显的规律性,可以实现对质谱峰的鉴定,以等效双键值(DBE)进行统计,DBE为双键和环烷数之和。
文章利用FT-ICR MS分析原油与硫酸镁反应油相产物中的有机硫化物分布,并初步探讨了有机硫化物的地质成因。
1 实验部分
1.1 实验装置和主要试剂
选用胜利原油与硫酸镁的反应体系进行热压模拟实验,实验装置主要由200mL高压反应釜、气路和取样分析系统组成。反应釜为江苏海安石油科研仪器有限公司WYF-1型高压釜,控温精度为±1℃。将20g原油、10g无水硫酸镁及10ml去离子水依次加入到石英杯中,然后将石英杯置于高压反应釜内抽真空。
无水硫酸镁、1,2-二氯乙烷、二氯甲烷 碘甲烷、四氟硼酸银、正己烷、甲苯和甲醇均为分析纯,胜利原油的性质见表1。
表1 胜利原油的性质
1.2 实验条件与分析方法
热模拟反应温度点为350℃、375℃、400℃、425℃、450℃,由于低温时反应较难进行,室温到250℃时对反应釜采取满负荷直接加热的方法。250℃到最终的反应温度采取程序升温的方法: 250℃~350 ℃,40h;250℃~375℃,35h;250℃~400 ℃,30h;250℃~425℃,25h;250℃~450℃,20h。程序升温结束后,待高压釜冷却至室温时,打开釜盖,用移液管抽出釜中油水混合液,用微型分液漏斗对油、水两相混合液进行油、水分离。用库仑仪对油相产物的总硫进行分析,利用FT-ICR MS分析油相产物中有机硫化物的分布。
1.3 甲基衍生化反应及样品制备
油样经甲苯萃取脱水后取200mg,进行三次重复反应。单次反应步骤如下:油样由2mL二氯甲烷完全溶解后,加入50μL碘甲烷、2mL0.5mol/L的四氟硼酸银的二氯乙烷溶液(g・L-1),超声振荡使其混合均匀;避光条件下静置48h。将反应后的混合物离心分离碘化银沉淀后,得到甲基化产物。油相甲基化产物10mg溶于1mL二氯甲烷中,取5μL用1mL甲苯/甲醇/二氯甲烷(3:3:4)稀释,进行正离子ESI FT-ICR MS 质谱分析。
1.4 仪器工作条件
使用中国江苏科苑仪器公司XY-101 库仑仪对油相产物总硫含量进行分析,炉温入口 500℃,炉温出口 850℃,汽化室温度60℃,燃气流速40mL・min-1,氮气流速160mL・min-1,试样气体流速30mL・min-1。
使用美国Bruker公司Apex-Ultra 9.4T型FT-ICR MS质谱分析油相产物中有机硫化物的分布,进样流速150μL・h-1,极化电压-2500V,毛细管入口电压-3000V,毛细管出口电压320V,离子源六极柱直流电压2.4V,射频电压300Vpp;四级杆Q1=250Da,射频400Vpp;碰撞池氦气流量0.3L・s-1,碰撞能量-1.5V,贮集时间4s,离子导入分析池飞行时间1.3ms;采集质量范围200-750Da,采集点数4M,采集64次,激发衰减11.75db。
2 实验结果分析
图1是胜利原油与硫酸镁发生TSR反应油相产物中总硫含量与温度的关系。从图1可知,随着温度的增加,油相产物中总硫含量先增加后降低,375℃以前,反应后的油体产物中总硫含量均高于反应前原油中的硫含量,原因可能是胜利原油中的硫化物多为硫醚、噻吩系列的相对较稳定的硫化物,在较低温度下这类硫化物很难分解,同时TSR产生的硫化氢会继续与原油中的一些烃类发生加硫反应,生成一部分硫化物,导致反应后油相中的硫含量增加。当反应温度达到一定程度后,油相中相对稳定的硫化物开始裂解,硫化物的生成速率弥补不了其分解速率,导致总硫含量降低。400℃以后,总硫降低的趋势变缓,可能此时油相中的硫化物主要以在高温下也较难分解的苯并噻吩系列为主。
图2是胜利原油在450℃油相甲基化产物正离子FT-ICR MS质谱图,从图中可知,质量分布主要集中在200Da-500Da之间,质量重心在280Da附近,选择m/z=339的质量点,在N1S1>O1S1>S2≈O2S1。虽然反应后的油相化合物中含有很多含硫杂原子类型化合物,但S1类化合物的丰度仍然占绝对优势。不同杂原子及缩合度类型化合物的DBE及碳数分布图见图4。
图3 油相甲基化产物不同杂原子类型化合物相对丰度
S1类化合物。S1类化合物等效双键DBE值分布在1-18范围内,主要集中在6-10之间,碳数分布在C6-C12相对丰度较强。由于油相在较高温度下受过热化学作用,异构化程度较低的链状烷烃消失,S1类化合物的等效双键DBE值最低为1,未鉴定出DBE=0的S1说明不存在链状硫醚。DBE=1、2的硫化物分别为一元环和二元环硫醚。DBE=3硫化物对应噻吩,DBE=6和9具有明显的丰度优势,分别对应苯并噻吩和二苯并噻吩。
S2类化合物。S2类化合物的DBE介于4-15之间,缩合度高于S1,传统的方法难以分析。由图5可知,DBE=5,8、11系列的相对丰度较高。DBE=5的硫化物可能是噻吩环上再并入一个环状硫醚,DBE=8的硫化物可能是苯并二噻吩,而在二苯并噻吩骨架上再并入一个噻吩其分子缩合度DBE值刚好为11。S2类化合物中存在大量的噻吩型和硫醚型结构在同一分子中的化合物。
O1S1类化合物。O1S1类化合物分布重心相对分散,缩合度分布范围较宽,在1-18之间,DBE值在3、4的化合物优势比较明显。DBE=3的硫化物可能是噻吩环上带有一个羟基的化合物,或者是带有羟基的三环环硫醚。DBE=4的硫化物可能是噻吩环上再并入一个带有羟基的环。
O2S1类化合物。O2S1类化合物在ESI质谱图中显示很强的丰度,对应的化合物主要是环烷酸[15,16],而含有一个硫原子的化合物又是原油中含量最多的硫化合物,所以O2S1类化合物是环烷酸分子中杂化一个硫原子或者含硫化合物被羧基取代形成的。在图4中DBE=8的化合物丰度最高。其结构可能是苯并噻吩分子结构中并入二元环的环烷酸。
N1S1类化合物。N1S1类化合物DBE介于4-15之间,DBE=4系列的丰度较高,可能是一元环硫醚接到吡咯骨架上形成的产物。
图5是胜利原油与硫酸镁反应体系油相产物在350℃-450℃下S1类化合物的各相对丰度。由图中可知,随着温度的升高,丰度较高的硫化物DBE值也升高。在350℃时,DBE=1、2、3和5系列的丰度较高,此时的硫化物主要是环状硫醚和噻吩系列。当达到400℃时,DBE=1、2、3、6和9系列的丰度较高,此时硫化物主要组成不仅有环状硫醚和噻吩系列,而且还有苯并噻吩系列和二苯并噻吩系列。当温度达到425℃时,DBE=6和9系列的硫化物丰度较高,DBE较低的硫化物含量逐渐失去优势。当温度达到450℃时,DBE= 9系列的硫化物丰度最高,说明此时油中硫化物主要是二苯并噻吩系列。因此,在模拟实验中随着反应温度的升高,油相产物中有机硫化物的演变过程是一个由噻吩系列逐渐到苯并噻吩系列再到二苯并噻吩系列的过程。
原油中含有大量的链状化合物和含有侧链的烃类化合物,这类物质与TSR产生的无机硫(S,H2S或HS-)作用会生成噻吩,夏燕青的实验已验证这一点[6]。硫是强电负性元素,可以将烷烃等饱和链状化合物逐步改造成烯烃、共轭双烯以及共轭多烯。共轭双烯与元素硫作用形成噻吩,共轭多烯形成后可以环化形成多种芳烃化合物。如果噻吩类化合物侧链上还有链状烃基或者带苯环的结构,在较高的温度下会继续向苯并噻吩类化合物转变,这就是在模拟实验中检测到高温油相产物中苯并噻吩和二苯并噻吩丰度占优势的主要原因。在沉积条件相同的情况下,油气藏中噻吩系列和苯并噻吩系列的相对含量可以作为成熟度的指标。
3 结论
利用高压釜反应装置,在高温高压含水条件下对胜利原油与硫酸镁热化学还原反应体系进行了模拟实验研究。利用傅里叶离子回旋共振质谱仪对反应后的油相产物的总硫变化和油相硫化物的组成分布进行了分析。
结果表明,总硫含量随反应温度的升高呈先增加后降低。FT-ICR MS鉴定出油相化合物中含硫化合物类型主要有S1、S2、N1S1、O1S1、O2S1,其中S1类化合物占绝对优势。随着反应温度的升高,TSR产生的无机硫将链状化合物和含有侧链的烃类化合物逐步改造成共轭双烯以及共轭多烯,共轭双烯与硫作用形成噻吩系列,噻吩系列继续与硫作用生成苯并噻吩系列。油相产物中有机硫化物的演变过程是一个由噻吩系列逐渐到苯并噻吩系列再到二苯并噻吩系列的过程,在沉积条件相同的情况下,油气藏中噻吩系列和苯并噻吩系列的相对含量可以作为成熟度的指标。
关键词: 学习成果 形成性评量 总结性评量 英语文化阅读 以学习为中心
一、课程简介
2016-2017学年第一学期开设的“英语文化阅读”课程是本校英专2016级学生的必修课程,开设一个学期,16周,每周2学时,授课32学时。该课程重视过程性评估和终结性评估相结合,总评成绩为平时50%、期末考试50%。课堂教学采用灵活多变的教学方法,以教师授课和学生讨论相结合的方式进行,课堂小组进行主题演讲、推断生词、分析句子和辨别主题与中心思想等阅读技能讨论,课后补充文学作品《华盛顿广场》阅读,并利用学校BB网络平成课外小说测试和自主阅读,为进一步学习打下扎实的语言基本功。
二、“英语文化阅读”课程学习成果评量
通过研习台湾铭传大学王丰绪教授的“创新教学:有效的教与学”(王丰绪,2014),笔者对教学实务内涵进行了总结反思,明确了如何系统反思查找教学评量中存在的问题,从而对课程内容重整,融入以学习为中心的教学原则,以促进高品质学习的发生。王教授首先提出以下四个总体教学反思议题:
这些问题促使教师对教学进行反思,是否达到了预期的效果:诸如学生是否掌握了本课程专业知识的核心结构,该课程教学是以传授知识技能为考量,还是以培养学生核心能力为成果导向,所采用的教学策略与方法是否适当,能否使教学生动活泼而富有变化,是否引发学生的学习动机与兴趣,等等,但是总体比较笼统。对照具体的学习成果评量表,笔者依据课程实际教学情况逐项一一填入:
1.请在这里写下你希望该课程结束后同学从该课程带走的主要成果(2项)和次要成果(1项)。
主要成果(1):系统掌握阅读技巧和阅读方法,提高阅读速度和准确率。
主要成果(2):扩大英语词汇量。
次要成果:培养文学和文化素养。
2.你认为该课程应该如何评量学习成果及评量的比例?
表1和表2填写须知:
①左侧栏位前四项加总为100,后两项加总为100。
②上方栏位请用数字表示1主要目标(1个),2次要目标(1个)。
3.你认为该课程如何设计学习目标和教学策略?
表4 实际教学中评量的比例
表3和表4填写须知:
①左侧栏位加总为100。
②左侧栏位每项设计至少20%以上才填写。
③上方栏位请用数字表示1主要目标(1个),2次要目标(1个)。
三、课程反思
对照学习成果评量表发现学习成果评量理想(表1和表3)与现实(表2和表4)的比例确有差距,尤其在应用方面效果不甚理想,主要问题是课程注重过程性评估和终结性评估相结合,平时分和期末考试各占50%,这是理想的状态,但是实际操作中平时50分的评量并不够客观,分数比例不合理。例如:学生演讲能锻炼思辨能力,来自于观察、体验、思考、推理或交流所得信息,通过概念化、运用、分析、综合或评估,以指导观念和行为。但在实际教学中,学生文化主题的演讲分偏低,并且缺乏学生回馈与改善机制。网络作业完成量达到了,但质量不理想。课堂上的小组讨论学生参与程度差异较大,探究式学习能激发学生自主思考,但是学生的能力掌握程度参差不齐。
找到问题所在,就可以结合课程内容制定如何协助学生发展本课程有效的学习策略。例如:关于文化主题的小组演讲汇报比例从课程的主要成果和次要成果分析比例是偏低的,关于文化主题的小组演讲汇报,实际教学评量的5%至少要提高到10%~15%,因此在下一学年的教学中要改进评分的权重分配,考虑m当增加分数比例。
笔者计划在下一年的教学中尝试教学改革,将学习成果评量应用到实际教学过程中,教学改进明确了目标:就学生的小组汇报制定一个从内容、结构、语法、口语流畅度四个方面的学习成果评量标准,并且引入同侪互评(Peer Assessment)的评量方式。同侪互评就是学习者评估学习者,而非自评或教师评估。其定义和解释有多种(Davies 2006;Brown 2004),但学者们都一致肯定了同侪互评在教学中的重要价值:同侪互评可以让学习者具体参与到评估的过程中,给予学习者机会参与和评价其他学习者的学习过程和产出。同侪互评:(1)可以发展学习者的思辨能力、交际能力、终身学习能力和协作能力;(2)可以推动高层次思维(Nilson 2003);(3)可以增强参与度,能够增强学习者的责任感,从而提高学习者的自主性(Sivan 2000);(4)可以推动学生合作学习(Brown 2004)。通过同侪互评,让学生参与到打分中,激励学生,从内容、结构、语法、口语流畅度四个方面评量小组演讲汇报的情况,教师评分和学生评分各占一半。通过关注过程促进结果的提高,评价的重心在于过程(刘宁,王晓典,2012),使得教学有正向的结果,引领学生的心智发展,达到培养文学、文化素养和提高语言能力的目的。
参考文献:
[1]Brown, Douglas. Language assessment: Principles and classroom practice[M].New York: Longman,2004.
[2]Davies,Phil. Peer assessment:Judging the quality of students’ work by comments rather than marks[J].Innovations Education and Teaching International,2006,43(1):69-82.
[3]Nilson,Linda,B. Improving student peer feedback[J].College Teaching,2003,51(1):34-38.
[4]Sivan,Atara. The implementation of peer assessment:An action research approach[J].Assessment in Education:Principles,Policy & PracticeⅡ,2000,7(2):193-213.
认识化学反应中能量变化并不等同于化学反应中热量的释放与吸收。化学反应中的能量变化,可以以不同的能量形式呈现,如热、光的释放和吸收,电能、电磁波的释放和吸收等。许多化学反应伴随有热量的放出和吸收,在这些反应中,能量的变化也不一定全都以热量的形式呈现。注意帮助学生区分吸热反应与需要加热引发的化学反应。认识可逆反应的正反应和逆反应在能量变化上的区别。不要求学习热效应、燃烧热、中和热、焓变等概念。利用热化学方程式进行有关化学反应中热量的计算时,不涉及盖斯定律的内容。教材通过“你知道吗”栏目,让学生交流和讨论,利用日常生活中观察到的现象认识物质能量转化四处可见、形式多样。在探讨化学反应放热、吸热本质时,要使学生明确三点:1.热量变化是化学反应中能量变化的主要表现形式;2.化学反应过程中的能量守恒;3.化学反应在发生过程中是吸热还是放热,决定于反应物的总能量与生成物的总能量的相对大小。引导学生从能量变化的高度来学习节内容。
【学习目标】
1、认识化学键的断裂和形成是化学反应中能量变化的主要原因;
2、了解化学反应中热量变化的实质;
3、通过生产生活中的实例,了解化学能和热能的相互转化;
【重点】
化学能与热能之间的内在联系以及化学能与热能的相互转化。
【难点】
从本质上(微观结构角度)理解化学反应中能量的变化,从而建立起科学的能量变化观。
【教学方法】学生自学阅读、教师归纳
【课时安排】
第1课时
【教学过程】
〖导入〗1、化学反应按反应物和生成物的种类分可分为:化合反应、分解反应、置换反应、复分解反应
2、化学反应按是否有电子转移可分为:氧化还原反应、非氧化还原反应
3、化学反应按是否有离子参加可分为:离子反应、非离子反应
4、化学反应按是否有热量的放出和吸收可分为:放热反应、吸热反应
〖引导阅读〗课本32页
〖提问〗“你知道吗?”
〖板书并讲解〗一、化学反应中的热量变化
1、化学反应的基本特征
(1)都有新物质生成,常伴随能量变化及发光、变色、放出气体、生成沉淀等现象发生。
(2)能量的变化通常表现为热量的变化。
2、化学反应的本质(实质)
旧化学键的断裂和新化学键的形成
〖指导阅读〗课本33页活动与探究
3、化学反应按热量的变化分类
(1)概念
放热反应:有热量放出的化学反应;
吸热反应:吸收热量的化学反应;
(2)分类
放热反应:放出热量的反应〔∑E(反应物)>∑E(生成物)〕
化学反应
吸热反应:吸收热量的反应〔∑E(反应物)<∑E(生成物)〕
〖补充讲解〗化学反应遵循着能量守恒定律:反应物的总能量+断键时吸收的总能量=生成物的总能量+成键时放出的能量
〖练习一〗判断下列反应是放热反应还是吸热反应
C(s)+CO2(g)2CO(g)
Ba(OH)28H2O(s)+2NH4Cl(s)=BaCl2(aq)+2NH3(g)+10H2O(l)
Zn+H2SO4=ZnSO4+H2
C(s)+H2O(g)CO(g)+H2(g)
〖板书〗4、常见的放热、吸热反应
(1)放热反应:a、所有燃烧反应;b、酸碱中和反应;c、金属与酸生成气体的反应;d、大多数的化合反应
(2)吸热反应:
a、C(s)+CO2(g)2CO(g);
b、Ba(OH)28H2O(s)+2NH4Cl(s)=BaCl2(aq)+2NH3(g)+10H2O(l)
c、C(s)+H2O(g)CO(g)+H2(g)
d、大多数的分解反应
〖练习〗关于吸热反应和放热反应,下列说法中错误的是(A)
A、需要加热才能进行的化学反应一定是吸热反应
B、化学反应中能量变化,除了热量外,还可以是光能、电能等
C、化学反应过程中的能量变化,也服从能量守恒定律
D、反应物的总能量高于生成物的总能量时,发生放热反应
〖指导练习〗课本33页“问题解决”
〖总结〗化学反应伴随能量变化是化学反应的一大特征。我们可以利用化学能与热能及其能量的相互转变为人类的生产、生活及科学研究服务。化学在能源的开发、利用及解决日益严重的全球能源危机中必将起带越来越重要的作用,同学们平时可以通过各种渠道来关心、了解这方面的进展,从而深切体会化学的实用性和创造性。
〖作业〗预习热化学方程式的书写要求;完成巩固练习
【教后感】
①教师如何引导学生学会利用图表和设计实验探究化学反应中的热量变化;
关键词:化学反应速率;教学思考;对策
中图分类号:G632.0 文献标志码:A 文章编号:1674-9324(2015)04-0233-02
“化学反应的速率”是从化学动力学的角度研究化学反应进行快慢的一节课,课程重点是学习化学反应速率的定量表示方法以及浓度、温度、催化剂等外界因素对反应速率的影响。考试大纲对这节课的要求有:了解化学反应速率的概念、反应速率的定量表示方法;理解浓度、温度、压强、催化剂等外界条件对反应速率的影响,认识其一般规律;了解化学反应速率在生活、生产和科学研究领域中的重要作用。学生对“化学反应速率”这一知识点的认识发展过程可用图1来表示,通过必修2的学习已经知道化学反应有快慢之别,但不知道如何定量描述化学反应的快慢。已经知道浓度、温度、催化剂等外界条件的改变将对化学反应速率产生怎样的影响,但不知道为什么能产生这样的影响、影响程度如何。学生在本节课将学习化学反应速率的定量表示方法,并从定量的角度来探讨外界条件对化学反应速率的影响情况。现以鲁科版“化学反应原理”第二章第三节“化学反应的速率”为例,对教学过程中出现的问题进行思考并提出相应解决对策,本节教材的内容框架如图2所示。
一、化学反应速率
教材在这一部分通过一个探究活动,让学生尝试对化学反应速率进行定量的研究。在教学过程中易出现一个问题:由于在这个实验中直接测到的是镁条的质量和物质的量,所以在表示反应速率时,学生都是直接用单位时间内的镁条质量的变化量或物质的量的变化量来表示反应速率的。这与通常说的用单位时间内物质浓度的变化量来表示反应速率不同,因此探究活动设置了问题2“如果分别用单位时间内盐酸浓度的减小和氯化镁浓度的增加来表示反应速率,需要哪些数据?”来引导学生,为下文的速率方程做了铺垫。在学习过程中,学生容易犯一个错误,即将镁的物质的量的变化量除以溶液的体积,当作是镁的浓度的变化量,教师应指导学生,“一般来说,浓度只针对气体和溶液中的溶质,固体和溶剂的浓度看做常数,不能用来表示化学反应速率”。
在教师的教学和学生的学习过程中还应注意以下几点:第一,对于同一个化学反应,用不同的物质来表示的反应速率,在数值上是不同的,所以一般要指出是v(A)还是v(B)。第二,无论用反应物还是用生成物来表示的化学反应速率都是正值,但在课本中出现的两个公式的形式:会让学生以为,以单位时间内反应物浓度的变化量表示的反应速率是负的,容易给学生造成困惑,所以应强调Δc(A)就是浓度的变化量,不一定是“末减初”,即无论以什么物质来表示的化学反应速率都是一个正值。第三,上述的第二个公式较为复杂,学生理解和记忆时比较困难,在实际应用中也较少出现,只是为了说明同一反应用不同物质表示的反应速率都是相同的,所以在教学时应注意引导学生重点理解和掌握第一个公式,对第二个公式的理解应是:在同一个化学反应方程式中,以不同物质表示的反应速率之比等于其方程式系数之比。
在必修2的学习中,学生已经从定性的角度了解了什么是化学反应速率,在这节课中将进一步学习化学反应速率的定量表示方法,并从定量的角度来探讨外界条件对化学反应速率的影响情况,着重培养学生对问题进行定量研究的意识。
二、浓度对化学反应速率的影响
在浓度对速率的影响中,教材出现了速率方程:v=kc(A)c(B)。在教学中要注意把握这部分内容的深广度,与掌握具体知识相比,本节课更重视培养学生对问题进行定量研究的意识,所以在教学时应抓住的一个核心是:只需要知道化学反应速率与反应物浓度存在一定的定量关系,这种定量关系通常通过实验测定,与化学方程式中的系数并无确定关系。
在教学过程中遇到的问题主要有:第一,学生易把速率方程和上节的化学反应速率的计算公式混淆,对于两个公式所表达的意义也不清楚。对于这个问题的突破,可以通过将两个公式进行对比,指导学生对两者进行区分。第二,压强对化学反应速率的影响是学习过程中的一个易错点,应指导学生将压强对速率的影响转化成对浓度的影响,即压强改变时只有引起浓度的变化才会影响反应速率,否则不影响,如:恒容下充入与反应无关的气体问题、只涉及液体和固体的反应的问题等。
三、温度对化学反应速率的影响
这部分内容教学的重点是:温度与反应速率常数之间存在着定量关系;温度对反应速率的影响与活化能有关;活化能的定义。教学时应通过情境的创设,层层设问,将知识点一一引出。首先提问:温度如何影响化学反应速率?(通过影响反应速率常数来影响化学反应速率);其次提问:为什么升高相同温度对不同化学反应的速率影响程度不同?(不同反应的活化能不同,活化能越大改变温度对反应速率的影响程度越大);最后再解释什么是活化能。温度对速率的影响涉及到了化学反应动力学研究的问题,具有非常强的理论性。例如:教材提出了“基元反应”的概念,又对“化学反应式怎样进行的”这一问题进行了分析。如何在教学过程中做到既不增加学习难度、不引入过多概念,又可以帮助学生从本质上理解为什么化学反应速率会千差万别,为今后的学习打下初步的理论基础,就成为教学的一个难点。因此在进行阿伦尼乌斯公式的教学时,只要求学生知道对于一个确定的反应,温度对化学反应速率的影响与活化能有关。当Ea>0时,升高温度反应速率常数增大,化学反应速率加快。在教学过程中不宜追究其来龙去脉,更不宜进行公式推导。教材中的反应历程示意图应指导学生学习,借助图像有助于帮助学生理解活化能的意义。
四、催化剂对化学反应速率的影响
催化剂对速率的影响主要是让学生了解催化剂是通过参与反应改变反应历程、降低反应的活化能来提高化学反应速率的。教材中的“氯催化臭氧分解历程示意图”是教学的重点,可以帮助学生理解上述内容。
在教学过程中会遇到的问题是:学生常常将催化剂对化学反应速率的影响和对平衡移动的影响混淆。教师应帮助学生对这一内容进行对比和归纳,如:催化剂降低了反应的活化能,从而使反应速率常数增大,进而提高了化学反应速率;而催化剂不能改变化学平衡常数,从而不影响平衡的移动,不改变平衡状态,问题就能够得到解决了。
教材从“化学反应是怎样进行的”提出“反应历程”和“基元反应”等概念。这些概念的引入可从本质上揭示化学反应的复杂性,保证了教学内容的科学性,帮助学生从本质上理解为什么化学反应速率会千差万别,为今后的学习打下初步的理论基础。但是,高考对速率方程、阿伦尼乌斯公式、基元反应和碰撞理论等都没有要求,那么在教学中如何准确把握教学的深广度,就成为了一个重要的问题。例如对于“基元反应”,仅需知道基元反应即为一步完成的反应,而许多化学反应是由若干个基元反应组成的复杂反应即可。再如对于“速率方程”,需知道化学反应速率与反应物浓度存在一定的定量关系,这种定量关系通常通过实验测定,与化学方程式中的系数无确定关系。
与必修2相比,化学反应原理着重培养学生对问题进行定量研究的意识,因此如何准确把握教学的深广度,不给学生增加学习的负担也是教学过程需要解决的一个重要问题。在教学时,既要使学生对化学反应速率及其影响因素的认识在必修的基础上有所提高,又不过于定量化、抽象化,要注意使这部分内容区别于大学化学教学。重点培养学生分析处理数据的能力及解决问题的能力、逻辑思维的能力,这些能力的考察也是新课程高考中的一个重要方面。
参考文献:
[1]北京师范大学国家基础教育课程标准实验教材总编委会组.化学反应原理(选修)[M].济南:山东科学技术出版社,2011.
[2]中华人民共和国教育部考试中心.2013年普通高等学校招生全国统一考试大纲(理科)[M].北京:高等教育出版社,2013.
[3]中华人民共和国教育部.普通高中化学课程标准[M].北京:人民教育出版社,2003.
[4]周小山,严先元.新课程的教学设计思路与教学模式[M].成都:四川大学出版社,2005.
[5]王锦化.实验创新活动中高师本科生选题刍议[J].化学教育,2006,(5).
一、“化学反应与能量”主题在不同学段的教学目标
1.义务教育阶段
在义务教育阶段,没有对化学反应与能量形成独立的主题,而只是将其纳入到“化学与社会发展”的一级主题之下,命名为“化学与能源和资源的利用”,属于二级标题.在这一教学阶段,要求学生宏观感受化学反应体系和环境之间的能量转化,初步形成感性认知,知晓通过化学反应可以获取能量,同时化学反应也会受通电、加热、缓慢氧化、爆炸等条件的影响而发生变化.
2.高中必修阶段
在高中阶段,“化学反应与能量”是一级主题,要求学生深入理解化学反应与能量之间的相互关系,具备利用化学反应获得能量,以及通过能量改变化学反应的意识和能力.具体要求如下:能够从化学键的角度分析化学反应中能量变化的主要原因;能够从实际生产生活中举例说明化学反应中能量变化的常见形式,即化学能转化为热能、电能;认识提高燃料燃烧效率、开发高能清洁燃料、研制新型电池的重要性;通过化学实验认识化学反应的速率和化学反应限度,了解控制反应条件在科学研究和生产中的作用.
3.高中选修阶段
在高中选修阶段,将“化学反应与能量”这个一级主题纳入了“化学反应原理”模块中,要求学生对化学反应与能量的学习达到定量、系统的认识水平.具体要求如下:能够理解化学反应体系中焓变与反应热的关系;运用盖斯定律计算简单的反应热,对有关化学反应进行评价选择;了解原电池与电解池的工作原理,能够写出电池反应与电极反应的方程式;掌握金属发生电化学腐蚀的原因,探究防止金属腐蚀的措施;认识浓度、温度、压强、催化剂对化学反应速率的产生影响的一般规律;利用焓变、熵变判断化学反应方向;通过改变能量的方式,调控化学反应速率和限度.
二、“化学反应与能量”主题教学设计
本文以高中必修阶段的“化学反应与能量”主题教学为研究对象,对该主题教学进行设计.在高中必修阶段,“化学反应与能量”主题的教学主旨在于:使学生对化学反应中能量变化的认识达到定性水平,能够利用化学键对化学反应中产生的能量变化进行定性分析,并且能够简单计算能量变化的多少.其具体包括以下三方面的教学核心活动.
1.化学反应与能量关系的教学
在该教学核心活动中,具体可分为如下两个方面的活动内容:一方面是对化学反应中的能量变化进行感知.例如,让学生借助温度计对化学实验前后实验对象的温度变化情况进行测量,以此来感知其能量变化.同时,也可利用相关的化学概念,如,中和热、燃烧热等,对化学反应中的能量变化进行分析;另一方面是对化学反应中的能量变化进行解释.通过对化学反应中实验对象能量变化的原因进行分析,对能量变化进行定性.由于能量变化的基础是物质变化,所以,可在对物质变化进行分析的基础上对实验对象的能量变化进行系统分析.在这一过程中,教师可从化学反应体系的角度进行教学,主要包括反应物与生成物体系的总能量有哪些,而能量变化则等于生成物体系与反应物体系总能量的差.在教学过程中,为了逐步提高学生对化学反应与能量关系的认识水平,可设计以下问题:解释氢气与氧气燃烧生成水,为什么是放热反应?教师要引导学生分别从化学键的角度、分子原子的角度以及总能量的角度进行解释.
2.基于化学反应获得能量的教学
具体可将该教学核心活动分为以下两个部分:一部分是从化学反应当中直接获得能量并进行具体应用.由于物质在化学反应过程中的能量变化主要是吸热或放热,换言之,通过化学反应可以使物质释放出一定的热量,可对这部分热量进行收集和利用.教师可向学生提出自热式饭盒的实例,并让同学们对其原理进行解释.同时,也可让同学举出一些能够提供热量的化学反应,借此来培养学生应用化学反应获得能量的意识;另一部分是对化学反应中能量转化的应用.例如,通过装置原电池将电子转移的能量变化存储下来,使化学能转化为电能.在这一过程中,可以使学生体会到能量的转化,并使他们明白化学反应除了能够提供物质以外,还能提供所需的能量.此外,教师可布置学生设计水果电池的任务,进一步提高学生转化和应用能量的能力.
以“化学能与热能”为例进行教学设计,其具体教学过程如下.
(1)创设教学情境,引入新课内容.教师向学生展示一瓶“自加热罐头”和普通罐头,将“自加热罐头”底部的锥刺上移,让学生比较两瓶罐头的温度差异.为了激发学生的探索欲和求知欲,教师可提问:①“自加热罐头”为什么会自己加热?②在没有电或火的情况下也能够加热吗?③“自加热罐头”里面装了什么东西?④是什么能量促使它的温度发生了变化?
(2)引导学生探究,组织学生交流.主要分为两个教学部分:一是放热反应教学设计.教师可利用PPT展示蜡烛燃烧的过程,让学生感受生活中的放热反应,并引导学生思考什么是放热反应.而后,组织学生进行铝与稀盐酸的化学反应实验,让学生进一步探索放热反应.最后,通过学生归纳、教师总结,对放热反应进行定义;二是吸热反应教学设计.组织学生进行化学实验,观察Ba(OH)2・8H2O与NH4Cl晶体混合的反应过程,通过对比放热反应与吸热反应,使学生自主归纳出吸热反应的定义.
(3)归纳总结教学重点.在学生初步认识放热反应和吸热反应的基础上,教师可利用视频展示H2与Cl2的反应过程,并引导学生思考以下问题:H2的键能为436 kJ/mol,Cl2的键能为243 kJ/mol,从旧键断裂、新键生成的能量变化角度思考化学反应为什么会伴随能量的变化?通过师生一起讨论,总结出放热反应(能量释放)和吸热反应(能量贮存)中的能量变化规律.
(4)探究“自加热罐头”的原理.教师要引导学生自主解决导课环节留下的问题,并让学生根据已学知识自行制定出几套切实可行的“自加热罐头”方案.在此之后,教师要向学生讲解“自加热罐头”的内部构造,并请一名学生在讲台上演示氧化钙与水反应的实验,让其他学生思考这个反应能够使罐头加热的原因.通过引入“自加热罐头”这一教学实例,不仅拓展了学生的课外知识,而且还调动起了学生思考化学现象、学习化学知识的兴趣.
(5)深化递进所学知识.教师要让学生了解在现代社会中,绝大多数能量均来自于化学反应,尤其是石油、煤、天然气等燃料的燃烧是主要的能量来源.同时,引导学生思考在什么样的条件下能使这些燃料充分燃烧,提高燃料的利用率.
3.基于能量调控化学反应的教学
使学生理解浓度、压强、温度和催化剂等条件对化学反应速率的影响;
使学生能初步运用有效碰撞,碰撞的取向和活化分子等来解释浓度、压强、温度和催化剂等条件对化学反应速率的影响。
能力目标:
培养学生的观察能力及综合运用知识分析解决问题、设计实验的能力,培养学生的思维能力,阅读与表达能力。
情感目标:
通过从宏观到微观,从现象到本质的分析,培养学生科学的研究方法。
教材分析
遵照教学大纲的有关规定,作为侧重理科类学生学习的教材,本节侧重介绍化学反应速率和浓度、压强、温度、催化剂等条件对化学反应速率的影响,以及造成这些影响的原因,使这部分知识达到大纲中所规定的B层次或C层次的要求。本知识点,按最新教材来讲。
教材从一些古代建筑在近些年受到腐蚀的速率大大加快等事实引出化学反应速率的概念,并通过演示实验说明不同的反应具有不同的反应速率,以及浓度、温度等对化学反应速率的影响。教材注意联系化学键的有关知识,从化学反应的过程实质是反应物分子中化学键的断裂、生成物分子中化学键的形成过程,以及旧键的断裂和新键的形成都需要通过分子(或离子)的相互碰撞才能实现等,引出有效碰撞和活化分子等名称。并以运动员的投篮作比喻,说明只有具有足够能量和合适取向的分子间的碰撞才能发生化学反应,教材配以分子的几种可能的碰撞模式图,进一步说明发生分解反应生成和的情况,从中归纳出单位体积内活化分子的数目与单位体积反应物分子的总数成正比,也就是和反应物的浓度成正比,从而引导学生理解浓度对化学反应速率的影响以及造成这种影响的原因。接着,教材围绕着以下思路:增加反应物分子中活化分子的百分数增加有效碰撞次数增加化学反应速率,又进一步介绍了压强(有气体存在的反应)、温度、催化剂等条件对化学反应速率的影响以及造成这些影响的原因,使学生对上述内容有更深入的理解。
教材最后采用讨论的方式,要求学生通过对铁与盐酸反应的讨论,综合运用本节所学习的内容,进一步分析外界条件对化学反应速率的影响以及造成这些影响的原因,使学生更好地理解本节教材的教学内容。
本节教材的理论性较强,并且具有一定的难度。如何利用好教材中的演示实验和图画来说明化学反应发生的条件,以及外界条件对化学反应速率的影响是本节教材的教学关键。教师不可轻视实验和图画在本节教学中的特殊作用。
本节教学重点:浓度对化学反应速率的影响。
本节教学难点:浓度对化学反应速率影响的原因。
教学建议
化学反应速率知识是学习化学平衡的基础,学生掌握了化学反应速率知识后,能更好的理解化学平衡的建立和化学平衡状态的特征,及外界条件的改变对化学平衡的影响。
浓度对化学反应速率的影响是本节教学的重点。其原因是本节教学难点。这部分教学建议由教师引导分析。而压强、温度、催化剂的影响可在教师点拨下由学生阅读、讨论完成。
关于浓度对化学反应速率的影响:
1.联系化学键知识,明确化学反应得以发生的先决条件。
(1)能过提问复习初中知识:化学反应的过程就是反应物分子中的原子重新组合成生成物分子的过程。
(2)通过提问复习高中所学化学键知识:化学反应过程的实质是旧化学键的断裂和新化学键的形成。
(3)明确:旧键的断裂和新键的生成必须通过反应物分子(或离子)的相互接触、碰撞来实现。
2.运用比喻、图示方法,说明化学反应得以发生的必要条件是活化分子发生有效碰撞。
(1)以运动员的投篮作比喻。
(2)以具体的化学反应为例,让学生观看HI分子的几种可能的碰撞模式图(如制成动画教学软件加以模拟会收到更好的效果),进一步说明化学反应得以发生的必要条件。
使学生理解浓度、压强、温度和催化剂等条件对化学反应速率的影响;
使学生能初步运用有效碰撞,碰撞的取向和活化分子等来解释浓度、压强、温度和催化剂等条件对化学反应速率的影响。
能力目标
培养学生的观察能力及综合运用知识分析解决问题、设计实验的能力,培养学生的思维能力,阅读与表达能力。
情感目标
通过从宏观到微观,从现象到本质的分析,培养学生科学的研究方法。
教学建议
化学反应速率知识是学习化学平衡的基础,学生掌握了化学反应速率知识后,能更好的理解化学平衡的建立和化学平衡状态的特征,及外界条件的改变对化学平衡的影响。
浓度对化学反应速率的影响是本节教学的重点。其原因是本节教学难点。这部分教学建议由教师引导分析。而压强、温度、催化剂的影响可在教师点拨下由学生阅读、讨论完成。
关于浓度对化学反应速率的影响:
1.联系化学键知识,明确化学反应得以发生的先决条件。
(1)能过提问复习初中知识:化学反应的过程就是反应物分子中的原子重新组合成生成物分子的过程。
(2)通过提问复习高中所学化学键知识:化学反应过程的实质是旧化学键的断裂和新化学键的形成。
(3)明确:旧键的断裂和新键的生成必须通过反应物分子(或离子)的相互接触、碰撞来实现。
2.运用比喻、图示方法,说明化学反应得以发生的必要条件是活化分子发生有效碰撞。
(1)以运动员的投篮作比喻。
(2)以具体的化学反应为例,让学生观看HI分子的几种可能的碰撞模式图(如制成动画教学软件加以模拟会收到更好的效果),进一步说明化学反应得以发生的必要条件。
3.动手实验,可将教材中的演示实验改成边讲边做,然后据实验现象概括出浓度对化学反应速率影响的规律。有条件的学校,也可由学生动手做,再由学生讨论概括出浓度对化学反应速率的影响规律---增大反应物的浓度可以增大化学反应速率。
4.通过对本节所设铁与盐酸反应的讨论,并当堂课完成课后“习题二、2”,综合运用本节所学内容反馈学生掌握情况,巩固本节所学知识。
教材分析
遵照教学大纲的有关规定,作为侧重理科类学生学习的教材,本节侧重介绍化学反应速率和浓度、压强、温度、催化剂等条件对化学反应速率的影响,以及造成这些影响的原因,使这部分知识达到大纲中所规定的B层次或C层次的要求。本知识点,按最新教材来讲。
教材从一些古代建筑在近些年受到腐蚀的速率大大加快等事实引出化学反应速率的概念,并通过演示实验说明不同的反应具有不同的反应速率,以及浓度、温度等对化学反应速率的影响。教材注意联系化学键的有关知识,从化学反应的过程实质是反应物分子中化学键的断裂、生成物分子中化学键的形成过程,以及旧键的断裂和新键的形成都需要通过分子(或离子)的相互碰撞才能实现等,引出有效碰撞和活化分子等名称。并以运动员的投篮作比喻,说明只有具有足够能量和合适取向的分子间的碰撞才能发生化学反应,教材配以分子的几种可能的碰撞模式图,进一步说明发生分解反应生成和的情况,从中归纳出单位体积内活化分子的数目与单位体积反应物分子的总数成正比,也就是和反应物的浓度成正比,从而引导学生理解浓度对化学反应速率的影响以及造成这种影响的原因。接着,教材围绕着以下思路:增加反应物分子中活化分子的百分数增加有效碰撞次数增加化学反应速率,又进一步介绍了压强(有气体存在的反应)、温度、催化剂等条件对化学反应速率的影响以及造成这些影响的原因,使学生对上述内容有更深入的理解。
教材最后采用讨论的方式,要求学生通过对铁与盐酸反应的讨论,综合运用本节所学习的内容,进一步分析外界条件对化学反应速率的影响以及造成这些影响的原因,使学生更好地理解本节教材的教学内容。
本节教材的理论性较强,并且具有一定的难度。如何利用好教材中的演示实验和图画来说明化学反应发生的条件,以及外界条件对化学反应速率的影响是本节教材的教学关键。教师不可轻视实验和图画在本节教学中的特殊作用。
本节重点是浓度对化学反应速率的影响。难点是浓度对化学反应速率影响的原因。
教学设计示例
知识目标
1.使学生了解化学反应速率的概念及表示方法。
2.使学生理解浓度、压强、温度和催化剂等条件对化学反应速率的影响。
3.使学生能初步运用有效碰撞,碰撞的取向和活化分子等来解释浓度、压强、温度和催化剂等条件对化学反应速率的影响。
情感目标通过从宏观到微观,从现象到本质的分析,培养学生科学的研究方法。
能力目标培养学生综合运用知识分析解决问题的能力,培养学生的思维能力,阅读与表达能力。
重点浓度对化学反应速度的影响。外界条件对可逆反应的正逆反应速率的影响。
难点浓度对化学反应速率影响的原因。
教学方法诱思探究法
教学过程
第一课时
[阅读教材引入]本章的主要内容和学习本章的意义
两个问题:反应进行的快慢-化学反应速率问题。
反应进行的程度-化学平衡问题。
意义:是学习化学所必需的基础理论并能指导化工生产。
[录象]古代建筑物受到腐蚀的记录片。
[讲述]从片中我们知道,古代建筑物在本世纪所遭受的腐蚀比过去几百年甚至几千年所遭受的腐蚀还要严重的原因是酸雨。为什么会使腐蚀的速度变快呢?这就是我们第一节要研究的化学反应速率问题。
[板书]第一节化学反应速率
[指导实验][实验2-1]等浓度的盐酸和醋酸分别与大理石反应。
现象:在加入盐酸的试管里,大理石与盐酸迅速反应,有大量气泡产生。而加入醋酸的试管里,反应缓慢,只有少量气泡产生。
[讲解]不同的化学反应进行的快慢不一样,如何表示化学反应速率呢?
结论:不同的化学反应有快有慢。
[板书]一、化学反应速率
1、定义:化学反应速率是用来衡量化学反应进行快慢程度的,通常用单位时间内反应物浓度的减少或生成物浓度的增加来表示。
2、表达式:略
[设问]对于同一化学反应,用不同物质表示化学反应速率,数值是否一样呢?让我们看下面的练习。
[投影]练习:在给定条件下,氮气与氢气在密闭容器中合成氨。起始时加入氮气和氢气且浓度分别为1.0mol/L和3.0mol/L,2秒后,氮气的浓度为0.8mol/L,氢气的浓度为2.4mol/L,氨气的浓度为0.4mol/L。分别用氮气、氢气和氨气的浓度变化表示的这2秒内的化学反应速率是多少?有什么关系?
[计算、思考]
3H2+N2=2NH3
起始3.01.00
浓度mol/L
2S后2.40.80.4
浓度mol/L
[总结]同一反应,用不同物质浓度表示化学反应速率,数值之比等于方程式中系数比,应指明是用那种物质的浓度变化表示的速率,化学反应速率实质是平均反应速率。
[过渡]下面来研究影响化学反应速率的因素。
补充实验:
在三只试管里分别放入5mL相同浓度的稀盐酸,分别加入长短、粗细大致相同的铜丝,铝丝,铁丝。
[讲解]铜是氢后金属,不能置换酸中的氢,铝的金属活动性比铁强,铝的反应速率快,说明物质的性质即内因是决定化学反
应速率的重要因素。那么,外界条件对化学反应速率是如何影响呢?
现象:铜丝与稀盐酸不反应;铝丝比铁丝溶解的快,气体生成的快。
[板书]二、外界条件对化学反应速率的影响
[指导实验][实验2-2]大理石与不同浓度的盐酸反应,并给其中一个加热。
[实验2-3]H2O2的分解反应
(2-2)现象:在加入1mol/L盐酸的试管中有大量的气泡冒出,在加入0.1mol/L盐酸的试管中气泡产生得很慢。加热后,反应速率明显加快。
(2-3)现象:在H2O2中加入MnO2粉末时,立即有大量气泡产生,在没有加入MnO2粉末的试管只有少量气泡。
[提出问题]通过以上实验,说明影响化学反应速率的外界条件有那些?是如何影响的?
[回答]
影响化学反应速率的外界条件有浓度、温度和催化剂。浓度越大、温度越高、使用催化剂,则化学反应速率越快。
[板书]1、浓度对化学反应速率的影响
当其它条件不变时,增加反应物的浓度,可以增大化学反应速率。
[设问]对于有气体参加的反应压强对化学反应速率也有影响,为什么?
[回答]
对于气体来说,当其它条件不变时,体积与所受的压强成反比。如果气体的压强增大,体积就缩小,则浓度就会增大,化学反应速率就加快。
[板书]
2、压强对化学反应速率的影响
对于有气体参加的反应,增大压强,可以增大化学反应速率。
3、温度对化学反应速率的影响
当其它条件不变时,升高温度,可以增大化学反应速率。
4、催化剂对化学反应速率的影响
使用催化剂可以加快化学反应速率。
[阅读]P35最后自然段。影响化学反应速率的外界条件还有什么?
[设问]为什么在补充实验中选择长短、粗细大致相同的金属?
[回答]因为固体颗粒的大小对化学反应速率也有影响。
[追问]怎样影响?
[回答]颗粒越细,接触面积越大,化学反应速率越快。
[留疑]外界条件对化学反应速率的影响的原因是什么?
[课堂练习]
1、反应4NH3(g)+5O2(g)==4NO(g)+6H2O(g),在10L的密闭容器中进行,半分钟后,水蒸汽的物质的量增加了0.45mol,则此反应的平均速率v(x)(反应外物的消耗速率或生成物的生成速率)可表示为()
A.v(NH3)=0.010mol/(L·s)
B.v(O2)=0.0010mol/(L·s)
C.v(NO)=0.0010mol/(L·s)
D.v(H2O)=0.045mol/(L·s)
2、在四个不同的容器中,采用不同条件进行合成氨反应,根据下列在相同时间内测定的结果判断,生成氨的速率最快的是()
A.用H2表示的反应速率为0.1mol/(L·min)
B.用NH3表示的反应速率为0.3mol/(L·min)
C.用N2表示的反应速率为0.2mol/(L·min)
D.用H2表示的反应速率为0.3mol/(L·min)
3、增大压强,能使下列反应速率加快的是()
A.Na2SO4溶液与BaCl2溶液反应
B.CO和水蒸气在一定条件下反应生成CO2和H2
C.将CO2通人石灰水中
D.Na2O溶于水
4、在带有活塞的密闭容器中发生反应:Fe2O3+3H2=2Fe+3H2O,采用下列措施不能改变反应速率的是()
A.增加Fe2O3投入量
B.保持容器体积不变,增加通人H2的量
C.充入N2,保持容器内压强不变
D.充入N2,保持容器内体积不变
[答案]
1、C;2、C;3、B、C;4、A、D
[作业]P36一、二