时间:2023-08-15 09:26:43
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇机电一体化的具体内容,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
一、任务驱动法的含义
任务驱动,就是以目标或问题为导向,实施探究式教学活动,教师在教学过程中不再是以往“灌输式”、“填鸭式”的教育,而是更加重视学生学习积极性的提升。具体而言,就是教师在上课前对课程内容进行分析,并在上课时先讲解课程的基本原理与知识重点难点,然后在课堂中设置一个任务或者多个任务,由学生进行自由分组进行讨论,得出问题的具体答案,完成任务设计。机电一体化课程的理论性与实践性往往较强,课程中每一个章节都能够设置一个或者多个任务,比如在学习机械的传动部件设计中,包含了各种各样的传动方式,比如齿轮传动、丝杠螺母机构、滚珠丝杠副传动、间歇传动机构等,在进行任务设置时可以考虑让学生进行传动优劣比较,最终获得最佳的方案。任务驱动法的关键在于培养学生自主探索与创新能力,这对学生专业能力的提升有重要帮助。
二、任务驱动教学法在机电一体化教学中的实践
(1)呈现任务。呈现任务指的是教师在讲解相应课程前,必须整合与分析课程的具体内容与教学目标,编制相应的教学大纲,找出课程的重点与难点,然后设置一个或多个任务,多个任务设置应凸显层层递进的趋势,使学生从易到难对课程知识点进行掌握。在具体设计上,首先,要求教师正确理解任务与教学目标的关系,认识到教学目标旨在帮助学生掌握课程相应理论,机电相关技能与能力,这也是任务设置的主要依据。其次,教师应了解到任务是有学生来完成的,因此要根据学生的实际情况,对任务进行分层,可以设置为“了解、理解、掌握”三个层次,使班级的每名学生都能获得知识的相关理解。例如在微机控制系统这一章节,因其包含了微机原理、单片机、PLC等几门课程,因此理论较多,难度也较高,教师在进行任务设置时就应做好分层,对学习能力一般的学生设置帮助学生掌握相关微机概念的任务,对学习能力较好的学生设置理论理解与基本操作型任务,对学习能力优异的学生设置理论掌握、实践与创新型任务,促使各层级学生的理论与实践水平都获得一定的提升。
(2)明确任务。明确任务是任务设计的关键,在具体实施上,任务的明确主要是分析任务驱动是否区别于传统教学形式,将总任务分解成多个小任务,通过对任务进行细化,可以让学生的学习方向更加明确,任务设置还应具有较高的联系性以及适当的重复,这样即便学生对某一知识概念不能获得较深刻的理解,在后续的任务探讨方面,由于重复了之前的理论,学生可以统一再次分析获得对理论的深刻理解。在任务细化过程中,让学生在还没接受新知识前就去完成小任务是不现实的,因此在该过程中需要教师给予适当的引导,要求学生通过小组讨论或者自我阅读新知识,发挥主观能动性。
(3)完成任务。学生完成任务是任务驱动法最重要的过程,具体表现在教师课堂教学与学生的实践上。在实际教学中,教师主要是根据课程的基本情况,将任务对应到相应学习能力的学生上。比如,在课堂小任务进行上,若任务的难度较大,可以由教师给予学生相应的引导,让学生理解起来更加容易,而如果难度较低,则由学生自我讨论完成,或者学生自主思维完成,实际教学中,由于学生刚接触机电一体化课程,对机电相关理论的认识有限,因此教学过程中教师依旧处于主导地位。而对于学生而言,任务的完成需要发挥主观能动性,以便获得相关知识内容的理论与实践技能,采取分组讨论的方式,可以使学生之间进行相互合作,探讨研究,这能够培养学生的团队合作精神。
(4)评价任务。任务完成后,对学生的完成情况进行客观的评估是非常有必要的,这对学生个性思维能力的成长意义显著,并且也促使教师与学生的沟通与交流更加明显,通过积极鼓励与评价,还有利于提高学生的创作激情。因此,在实际教学中,教师应重视任务评价环节,根据学生具体表现来评价每一个学生,评价标准依据机电一体化课程的相关教学目标,指出学生表现优秀的地方,并提示学生任务进行中的不足,督促学生积极更正。
关键词:机电一体化技术;军事装备;自动化技术;发展
1 引言
机电一体化技术有效地结合了机械技术和自动化控制技术,促进了现代军事装备的发展[1]。随着现代科技进步,军事装备设计及生产中要充分发挥机电一体化技术优势,推进相关领域的发展,使我国军事装备行业取得较好的发展态势[2]。由于军事装备有着特殊要求,在军事装备设计及制造中都对机电一体化技术有着诸多要求,这就需要加强机电一体化技术的研究,不断地的在军事装备行业推广该技术的应用[3]。本文主要结合现代军事装备的发展,结合机电一体化的基本原理,分析了军事装备一体化技术及其应用,为军事装备应用机电一体化技术提供指导。
2 现代军事装备机电一体化技术应用特点
现代军事装备在新世纪呈现出新的特点,对装备的各项指标有了新的要求。机电一体化技术能够提升军事装备的先进性,在军事装备领域有着广泛的应用。军事装备机电一体化技术应用特点:
(1)自动化
由于军事装备运行涉及复杂的操作过程,并且对于操作人员的操作技术有着严格要求。采用机电一体化技术避免了人为操作技术的影响,使军事装备在运行中采用预定设计的程序,达到自动化运转的效果。
(2)高可靠性
由于军事装备对可靠性有着严格要求,可靠性直接决定了军事装备的实战性能。应用机电一体化技术能够保证装备的正常运行,由于在操作中应用各种电子控制设备,改变了传统采用线路控制的局面,就可以在很大程度上简化军事装备的控制结构,提高其自身可靠性。
(3)高准确性
由于采用诸多辅助工作系统,例如弹道修正系统,自动瞄准系统和自动跟踪系统,大大提升了军事装备的准确性,保证其在工作中保持良好的准准确性。机电一体化技术为现代军事装备提供了模块化的功能辅助,增加其工作准确性。
3 现代军事装备机电一体化技术应用分析
机电一体化技术是在现代军事装备中应用主要包括装备生产控制和武器装备性能,具体内容如下:
3.1 军事装备生产机电一体化分析
装备生产水平决定了军事装备实际性能,加工生产也是现代装备的核心环节。为了提高生产设备的技术,机电一体化技术逐渐取代了传统的人为操控,具体包括:
(1)生产工艺控制分析
在进行生产先进装备零部件时,利用自动生产规划,建立自动化的生长线,实现物料的自动传输,在特定的位置进行监控物料传输,并相应的按照生产工序启动和停止相关操作。在生产系统组态、PLC配置、元器件选型等方面要准确合理,充分发挥PLC、计算机的功能,大力应用先进的计算机网络等先进技术。
(2)加工控制参数分析
机电一体化技术能够对系统参数进行监控,并执行相应的操作。具体包括:第一,温度控制。温度传感器能够收集温度信息,利用PLC的模拟量模块,通过PID调节输出信号给调功器;第二,液位控制。PLC通过液位变送器采集现场水位信号,将其传送给相应控制电磁阀。第三,真空控制。在线检测和LCD组态画面显示真空度,采用现场及远控操作方式实现真空泵的启/停控制。
3.2 军事装备功能机电一体化分析
现代军事装备呈现高度的自动化,这与应用机电一体化有着密切关系。在军事装备设计中应用机电一体化技术主要包括:
(1)弹药自动填充系统
现代军事装备强调弹药的自动填充,实现不同型号和不同数量弹药的快速传递,达到在战场把握战机的目的。在武器装备设计中就需要根据功能设计相应的执行机构,利用机电一体化技术进行弹药分类、传输和填充。
(2)自动导向系统
针对远程性打击武器,往往需要精确制导,这就要求导弹发射机构必须能够建立自动导向系统,依靠卫星发射信号执行相应的动作。武器自动导向系统应用机电一体化技术进行精密调节,控制各个机构的运转,达到精确打击的要求。
(3) 自动化装备
随着现代武器的发展,自动化装备成为部队发展的关键技术,例如,无人机侦探,自动化机器人,自动化运输装置等。这些装备均是依靠机电一体化技术,按照设计的功能完善部队作用,提高部队的战斗能力。
4 结束语
机电一体化技术促进了现代装备技术发展,使武器装备呈现高程度的自动化。同时,在生产现代装备中,机电一体化技术能够保证生产效率和质量。军事装备必须紧密结合机电一体化技术,将最新的研究成果应用到武器装备。
参考文献
[1]潘丽霞.论机电一体化技术的现状及发展趋势[J].山西科技,2010(4).
Abstract: Starting from means of modern remote education, this article discusses the function and application strategy of informationalized remote education in the teaching reform of mechanical and electrical integration. At the same time it also shows that the application of modern remote education is the effective complementation of the construction of the vocational education practical teaching system.
关键词: 信息化远程教育;机电一体化;实践教学
Key words: informationalized remote education;mechanical and electrical integration;practice teaching
中图分类号:G643.2 文献标识码:A 文章编号:1006-4311(2014)02-0250-02
0 引言
信息化远程教育作为一种全新的教学模式,一直延续到到多媒体、计算机网络、卫星通信、电视直播、电子黑板等现代教学媒体及设备,用新的教育理念将教学信息资源共享、共建、共开发。一般而言,围绕教学活动为中心开展的信息化远程教育平台,学习任务可以不局限于教室内进行,随时随地都可以进行学习活动,对于教师而言还可以在平台上教学课件,实时更新学习内容,补充学生的知识容量,同时还可对学生的学习进行实时跟踪、检查、考核评估。对于学生而言,可以不局限于示教空间的学习,还能及时与老师在平台上沟通解惑。以下是一个远程培训课程的过程:
信息化教育远程平台是描述了一个完整的教育信息化系统。该平台以“纵横交错”的逻辑关系支撑整个教育信息化系统的平稳运行。所谓“横”指的是基础设施系统、应用集成,信息交换平台、教育信息化应用系统、电子校园信息门户,模块间相互关联,形成平衡的整体业务能力;而“纵”则指开发工具、安全管理,运营维护,提供了系统安全,管理和开发的能力。
1 信息化远程教育对“机电一体化技术”课程的教学构建
1.1 教学方法的改变 机电一体化技术是一门综合理论性、实践性很强的课程,涉及知识面广、容量大。传统的教学方法都是按照机电一体化系统的组成功能,将机电一体化系统分为若干个功能模块,逐一进行讲解,例如分别讲解机械本体功能模块,传感检测功能模块,自动控制技术、单片机技术、电气控制与PLC、传感器技术、液压与气压传动技术中央控制功能模块等等,传统的教学方法是将这些模块分割教学,割裂了机电一体化系统各个功能模块之间的有机联系,从而造成了学生学不能用,用不知所用等弊端。就教师而言,由于课程综合性强,对教师的整体知识贯通面要求较高,而模块分割的实践教学模式化,不能有机地衔接与贯穿,教学内容缺乏对学生的吸引力;就学生而言,学生认为本课程的学习是对前面所学课程知识的复习,缺乏机电一体化技术综合运用的能力。信息化远程教育采用远程实时多点双向交互式多媒体仿真系统,实现跨越时间和空间的信息传递过程,有效地结合各种教育资源的优势,让平台教学服务,更生动、更大质量的传递教师所要讲授的内容。因此,特别适合于在机电一体化教学中的应用。例如,在进行自动化流水线的教学中,可结合信息化远程教育中的共享课件资源展示企业自动化流水线生产的全过程,从自动上料、传输、加工、检测和入库等各环节了解机电一体化运用环境、机电一体化的分类、工作状态和系统组成,从情景上让学生认知机电一体化技术的学习领域,使学习过程具体化,克服传统教学中抽象化的描述,促进学生对机电一体化专业的学习热情。
1.2 构建新的教学模式 “机电一体化技术”知识面宽泛,在内容的选取上应紧紧围绕工作任务完成的需要展开,以技术应用能力的培养为核心,体现“做中学,学中做”的教学理念,将所有知识贯穿于子任务中。以工作任务为中心,以网络模拟仿真与实际操作为载体,让理论知识穿针引线,帮助学生掌握知识、技能、方法。融“教、学、做”于一体,提高学生的实践能力和动手能力,与社会接轨成为实用的职业技术人才。例如,在工业机器人子任务中,先从资源库中调取工业机器人在自动化流水线上的工作过程,从不同的行业了解机器人的种类;从机械手的运动轨迹分析机械手的自由度,熟悉机械手的结构;了解机械手的机械传动和电气驱动;传感器的类型及人机交互系统等,在此基础上用三维动态图像展示机器人的整个组装环节,这个时候教师使用一个称为“黑板”(Blackboard)的网络辅助教学工具平台提出子任务,分析说明任务中的技能要求目标,让学生在远程资源平台上找资料,小组间用BBS互相讨论,并且及时与教师在线交流,探讨方案,做出工作计划,教师审核通过。具体设施时学生用信息化远程平台上共享的仿真系统,通过仿真模拟再现完成整个任务的全过程,教师还可以通过仿真系统中的故障设置排除模块对学生进行考核,然后提交电子档的实验报告,自测,评估。实践证明这种教学模式激发了学生动手组装机器人的欲望,提高了到手能力。
2 拓展视野体会乐趣
机电一体化技术传统教学模式中为了加深学生对专业知识的理解,常在结束课之前布置作业,或者老师在最后做小结。而远程教育资源可以利用“声像并茂”的模拟仿真视频更能使学生加深对机电一体化技术课程的理解。如在机器人课题完成之后,让学生实时在线观看校企合作共同构建的网络传输视频,现场再现师兄师姐们进入企业的工作情况,便于学生理解自己所完成的课题在实际运用工作中的重要性,也加深了对课题中出现问题的掌握和理解。同时,在这个网络平台上,开放教学大纲、教学日历、讲义教案、习题、多媒体课件和图片视频等课程资料,学生可以随时上网查阅和下载。积极开展课程试题库和项目库建设,不断丰富和完善课程习题、试题、项目文档、项目图片和最新发展动态等学习素材,通过多种模式使学生深入了解课程具体内容,并通过网络实现师生互动,在BBS论坛上与同学老师共同探讨,用模拟仿真系统软件验证设想,提交电子版作业,老师对学生提交的作业进行检查和答疑,提高了效率和针对性。网络资源的丰富资料使学生可以充分利用课余时间自主学习,提高学生的自学能力,同时使学生了解机电一体化的最新发展情况,扩大学生的知识面,使学生真正吸收课程内容,掌握机电一体化领域知识和技能。
3 结束语
建设好信息化远程教学,且与传统知识讲授有机结合并融为一体,能有效地节约教学资源,提高教师的工作效率,充分调动学生的学习自主性和创新精神,提高学习效率和效果,实现工学一体化的培养目标。
参考文献:
[1]何龙,祁传琦.项目教学法在机电一体化专业综合实训中的应用[J].成都航空职业技术学院学报,2005(4):40-41.
[2]蒋庆刚.浅谈高职教育“工学结合”模式下考试评价体系[J].河南教育(中旬),2009(4):21.
[关键词]机电一体化技术;国内现状;数控FMS;CIMS
20世纪80年代中期以来,计算机特别是微型计算机已日益广泛应用于机械产品和生产过程的控制,使机、电有机地结合,发展成机电一体化技术。此技术经历了三十多年的发展,其内涵随科技的发展不断更新。70年代主要是指机械与电子的简单结合机电一体化产品,也较简单主要涉及到高性能的伺服技术;在80年代高性能微处理器的出现立即在机电一体化产品中得到应用,大大提高了机电一体化产品的自动化智能化程度;进入90年代计算机网络和通讯技术的迅速发展使机电一体化系统向着智能化和自动化方向发展,此时机电一体化是机械电子控制光学信息和计算机等技术的相互交叉和融合。
机电一体化技术的应用,给机械行业带来了显著的效益,降低了原材料消耗,减轻了操作工人的劳动强度,增强了企业在市场中的竞争力。
1.机电一体化基本结构要素
1.1 机械本体部分
机械本体就像人体的身躯骨架它是系统所有功能元素的机械支持结构包括机身框架机械连接等。
1.2 动力部分
动力部分与人体内脏产生能量去维持生命运动一样为系统提供能量和动力功能驱动执行机构使系统按照控制要求正常运行。
1.3 传感部分
传感部分就像人的眼鼻耳口等感觉器官将系统运行中所需要的本身和外界环境的各种参数及状态进行检测变成可识别的信号传输到信息处理单元经过分析处理后产生相应的控制信息其功能一般由专门的传感器和仪器仪表完成。
1.4 驱动部分
驱动部分就像人体的肌肋腱接受大脑指挥驱动四肢运动一样在控制信息作用下驱动执行机构完成各种动作和功能。
1.5 执行部分
执行部分如同人的四肢由大脑支配完成各项工作任务一样根据控制信息和指令完成各种动作和功能执行机构是运动部件一般采用机械电磁电液等机构。
1.6 控制及信息处理部分
控制及信息处理部分犹如人的大脑指挥和控制全身运动并能记忆思考和判断问题一样将来自各传感器的检测信息集中存储分析加工并根据信息处理的结果按照一定的程序和节奏发出相应的指令控制整个系统有目的的运行它一般由计算机可编程序控制器数控装置以及逻辑电路A/D 与D/A 转换I/O 输入输出接口和计算机外部设备等组成。
2.机电一体化的具体内容
2.1 机电一体化技术是从系统工程观点出发,应用机械、电子等有关技术,使机械、电子有机结合,实现系统或产品整体最优的综合性技术。机电一体化技术,主要包括技术原理和使用机电一体化产品(或系统)得以实现、使用和发展的技术。机电一体化技术是一个技术群(族)的总称。
2.2 机电一体化系统产品由若干具有特定功能的机械和电子要素组成的有机整体,具有满足人的使用要求的最佳功能,机电一体化系统产品。主要是指机械系统或部件与微电子系统或部件相互置换和有机结合,从而赋予新的功能和性能的新一代产品,有良好的人机协作关系。一个机电一体化的系统主要是由机械装置、执行装置、动力源、传感器、计算机这5个要素构成。
2.3 机电一体化工程机械电子工程是机械工程与电子工程的综合集成,即给定机电一体化系统或产品“目的功能”与“规格”后,机电一体化技术人员利用机电一体化技术进行设计、制造的整个过程体系。
2.4 机电一体化思想体现了“系统设计原理”和“综合集成技巧”。系统工程、控制论和信息论是机电一体化技术的方法论。从某种意义上讲、机电一体化思想相当于“一体化”思想。
3.机电一体化技术的主要应用领域
3.1 数控机床
数控机床及相应的数控技术经过40年的发展在结构功能操作和控制精度上都有迅速提高,具体表现在:
1)总线式模块化紧凑型的结构即采用多CPU多主总线的体系结构;
2)开放性设计即硬件体系结构和功能模块具有层次性兼容性符合接口标准能最大限度地提高用户的使用效益;
3)WOP技术和智能化系统能提供面向车间的编程技术和实现二三维加工过程的动态仿真并引入在线诊断模糊控制等智能机制;
4)大容量存储器的应用和软件的模块化设计不仅丰富了数控功能同时也加强了CNC 系统的控制功能;
5)能实现多过程多通道控制即具有一台机床同时完成多个独立加工任务或控制多台和多种机床的能力并将刀具破损检测物料搬运机械手等控制都集成到系统中去;
6)系统的多级网络功能加强了系统组合及构成复杂加工系统的能力;
7)以单板单片机作为控制机加上专用芯片及模板组成结构紧凑的数控装置;
3.2 计算机集成制造系统(CIMS)
CIMS的实现不是现有各分散系统的简单组合而是全局动态最优综合,它打破原有部门之间的界线以制造为基干来控制物流和信息流实现从经营决策产品开发生产准备生产实验到生产经营管理的有机结合企业集成度的提高可以使各种生产要素之间的配置得到更好的优化各种生产要素的潜力可以得到更大的发挥。
3.3 工业机器人
第1代机器人亦称示教再现机器人它们只能根据示教进行重复运动对工作环境和作业对象的变化缺乏适应性和灵活性;第2代机器人带有各种先进的传感元件能获取作业环境和操作对象的简单信息通过计算机处理分析做出一定的判断对动作进行反馈控制表现出低级智能以开始走向实用化;第3代机器人即智能机器人具有多种感知功能可进行复杂的逻辑思维判断和决策在作业环境中独立行动与第5代计算机关系密切。
4.机电一体化的发展趋势
4.1 机电一体化的高性能化
高性能化一般包括高速化高精度高效率和高可靠性新一代CNC系统就是以此四高为满足生产急需而诞生的。
4.2 机电一体化的智能化趋势
人工智能在机电一体化技术中的研究日益得到重视机器人与数控机床的智能化就是重要应用。
4.3 机电一体化的系统化发展趋势
系统化的表现特征之一是系统体系结构进一步采用开放式和模式化的总线结构;表现特征之二是通信功能的大大加强一般除RS232外还有RS485DCS分布式计算机控制和FCS现场总线控制等多种功能;
关键词:智能控制;机电一体化系统;应用
伴随着中国社会主义科学技术及市场经济快速发展,有关机电一体化系统的建造也进入了一个快速成长的黄金阶段,机电一体化的技能也逐步老练成熟。由于相关系统所处外部环境在不断变化,在机电一体化的系统中开始广泛使用智能系统,其在机电一体化技术的成长过程别是在现时期有着举足轻重的地位,同时也将进一步促进机电一体出现飞跃的发展。本文从机电一体化及智能系统的视点动身,将这两部分进行融合,剖析研究机电一体化体系中智能操控的使用。需注意的是,虽然中国机电一体化系统在农业领域及工业领域中起着举足轻重的作用,但其在实际工程过程中面临的对象存在不确定性、多层次及非线性等特点,从而给该系统的发展造成了很多阻碍。伴随着智能控制系统的使用给该系统带来了良好的外部环境,有利于其科学发展。所以在机电一体化系统中智能控制逐步受到各领域的关注重视,对其进行相关分析研究是需要的。
1机电一体化系统的概述及定义
1.1机电一体化系统的含义
机电一体化系统又被称作机械电子学,其具体内容是由多种技能进行有机结合,且在实际工作生活中进行归纳综合应用的一种综合性技能。其所有机融合的多种技术主要包括以下几种:信号改换技能、传感器技能、电工电子技能、接口技能、信息技能、微电子技能及机械技能等。
1.2机电一体化系统的基本内容原则要求组成要素
该系统的基本内容主要包括6个环节,即:a)计算机与信息技能;b)自动操控技能;c)机械技能;d)系统技能;e)伺服传动技能;f)传感检查技能。机电一体化系统的基本原则要求主要包括4个方面,即:a)能量变换;b)构造耦合;c)构造耦合;d)运动传递。机电一体化系统的基本构成要素主要包括4个方面,即:a)感知构成要素;b)结构构成要素;c)运动构成要素;d)功能构成要素[1]。
2机电一体化在煤矿机械上的应用和前景
2.1煤矿机械
增加机电一体化技术含量,提高煤矿企业生产能力。机电一体化可把有关煤炭生产的各种机械与技能科学的进行有机结合,同时将其在煤炭企业生产过程中进行综合应用。这些机械与技能有很多种,主要包括:微电子技能、传感器技能、信息变换技能、电子电工、接口技能等。在煤矿机械上的应用机电一体化可依据煤炭企业生产关键点及技能要求对相应机械设备进行设计,或对某些技术技能进行改革完善。同时,应用机电一体化还可借助智能化的操控系统从而不断增加机电一体化技术含量,有效提高煤矿企业生产能力。
2.2有效提高煤矿企业实际的生产效益
机电一体化本身具有很多特性,采煤机械具备良好的牵引能力便是其中之一。在煤矿的采煤过程中,采煤机行走时可为其提供较大的牵引力,帮助其有效攻克移动前进过程中遇到的阻力,同时还可在采煤机变频降速时进行有效制动。在煤矿机械上的应用机电一体化可把煤矿企业的能量、物流及信息融为一体,从而进一步提升整个煤矿企业实际的生产能力,有利于煤矿企业在不久的将来走向高效、安全及可持续发展道路[2]。
3智能控制的概述及定义
3.1智能控制的含义
智能控制其本质指的是在没有人进行干预的状况下,可自主自立地驱动相关智能机械做到对目标进行有效操控的一类自动操控技能。其是借助计算机进行人类智能拟的一类重要范畴,主要针对比以往传统控制更加复杂多样的操控任务和目的,给目前中国社会各大领域的发展提供了更加广泛的适应空间,同时有效解决了传统操控不能完成的复杂体系的操控。以往传统的操控仅归属于智能操控的一个简单环节,是智能操控最底层的组成部分。智能操控的理论基础有很多,如主动操控论、信息论、人工智能及运筹学等。其属于一项由多种学科彼此相互穿插所构成的学科。
3.2智能控制的基本特征
智能控制的基本特征主要包括以下7个方面,即:a)其具有组织性特点,核心主要是由高层来进行有效控制的;b)智能操控具有变构造特色;c)其智能控制器具备非线性的特点;d)智能操控系统可达到多样性方针的高性能要求;e)智能操控系统具备总体自寻优的特点;f)智能操控系统属于一种新兴的研讨课题;g)智能操控系统归属于一种边缘交叉的学科。
3.3智能控制的基本类型
智能控制的基本类型主要包括以下7个方面,即:a)专家操控体系(ExpertSystem);b)进化核算与遗传算法;c)人工神经网络操控体系;d)组合智能操控办法;e)分级递阶操控体系;f)复合(混合)或集成操控;g)学习操控体系。
3.4智能控制的发展趋势
这些年,智能操控技能在世界上很多国家都取得了较大的发展,甚至很多已进入实用化及工程化的时期。不过智能操控技能作为一种新式的理论技能,目前依然处于发展阶段。但伴随着计算机技能及人工智能技能的快速成长,智能操控也一定会在不久的将来走进一个属于它的新时期。机电一体化系统中往往会应用很多技能,其中最常用的便是神经网络、专家体系及遗传算法等相关技能,这些技能彼此之间相辅相成、相互依存。而目前机电一体化方面未来的主要发展趋势便是广泛使用智能控制系统,因为其具备很多良好的特性,有利于机电一体化健康发展,如其具备极强的适应性、组织及学习功能等[3]。
4智能控制在机电一体化系统中的应用
自20世纪90年代后期开始,机电一体化系统开始往智能控制方向发展,从而打开了机电一体化系统应用智能控制的新时代,该系统将来发展的主要方向一定是以智能化为主,其将直接影响到机电一体化系统的全体水平。
4.1智能控制在机电一体化系统机械制造过程中的应用
机电一体化系统中包括很多环节,其中机械制造便是重要的环节之一,把计算机辅佐技能和智能操控技能进行有机融合的技术便是目前最领先的机械制作技能,往智能控制方向发展,借助科学的计算机技能来代替部分脑力劳动,来模仿人们有关机械制作的行动,这是其最终的意图目标。同时,智能操控技能可借助神经网络体系的核算方式来动态模拟制作机械的详细过程。对所搜集到的数据经过传感器融合技能来进行预处理,然后操控修正模式中的有关参数数据。智能操控在机械制作中的应用环节有很多,其中主要包含以下几种:智能学习、智能监控与检查、智能诊断机械故障及智能传感器等。
4.2智能控制在机电一体化系统数控领域中的应用
伴随着中国社会主义科学技术的快速发展,各大领域对机电一体化系统的数控技能也逐渐有着越来越高的要求标准,不但需要其实现很多智能功能,还需要其具有模仿、延伸及拓展等新的智能功能,从而促使其数控技能完成智能监控、建立智能数据库及智能编程等意图,在机电一体化系统中的科学应用智能操控技能就可完成这些任务。例如借助专家系统能综合解决数控领域里的很多问题,如难以确定及结构不明确的算法等;使用推理规则可有效推理数控现场的部分数控故障熟悉信息,得到某些指导性建议从而有利于数控机械的维修等。
4.3智能控制在机电一体化系统机器人领域中的应用
机器人在动力系统中存在很多自身的特点,如时变性、强耦合及非线性等,而多边变性及多任务性是机器人在控制参数的系统容易体现的特征。这些特点有利于智能操控技能的使用。现在机电一体化系统机器人领域中使用智能操控技能主要体现在下面四大环节:a)机器人在视觉处理及多传感器信息融合这两方面能实现智能操控;b)可智能控制机器人的手臂动作及相关姿态;c)经过专家操控体系可科学定位、建模、计划及监测机器人所处的运动环境,从而进行相关的控制及探究;d)可以智能控制跟踪机器人的行走轨迹及走路等。
4.4智能控制在机电一体化系统建筑工程中的应用
智能控制在机电一体化系统建筑工程中的使用主要体现在以下两个环节,即:a)能智能操控建筑物内的空调,例如能智能控制有关空调的风阀,不仅能有效保证建筑内空气质量,还能大幅度减少浪费能量的现象发生;同时还可经过比例积分来对其闭环方法进行调整,从而有效设置在冬季和夏季时空调的使用模式;b)可经过计算机联网和通信实现智能操控所有照明系统,如智能操控照明体系的节能、照明时刻及照明逻辑等。
4.5智能控制在煤矿机电一体化系统中的应用
煤矿机械所处工作环境一般情况下比较恶劣,往往都是在井下进行作业,从而导致煤矿机械容易被恶劣的环境侵袭,同时还可能会遭受各种采煤冲击及振动的干扰。由此可知,井下作业具有某种程度的危险性,同时还需要煤矿机械能适应各种环境并达到高产的要求。而应用智能控制技术就可将井下作业的危险性大幅度降低,从而在某种程度上确保其安全性。
5结语
由20世纪90年代后期以来,机电一体化系统已逐步开始往智能控制方向发展。针对智能控制在机电一体化系统中的应用做了详细讲解,阐述了有关机电一体化系统的概述定义、原则要求、基本内容及组成要素等。介绍了智能操控的概述及定义、基本类型、发展趋势及基本特征。在机电一体化系统中很多领域都可使用智能控制系统,如:煤矿机电、机器人领域、数控领域、统建筑工程及机械制造过程等。
作者:庞海龙 单位:同煤集团机电管理处
参考文献:
[1]田永利,邹慧君,郭为忠,等.基于DPAM-F的机电一体化系统广义执行机构子系统智能设计[J].上海交通大学学报,2005(1):66-70.
Abstract: By introducing virtual prototype technology into practice of mechatronics CDIO teaching, the paper investigates its idea, structure, and evaluating method, which is meaningful for modern engineering teaching methodology of mechatronics course.
关键词: 机电一体化;虚拟样机;CDIO
Key words: mechatronics;virtual prototype;CDIO
中图分类号:G42文献标识码:A文章编号:1006-4311(2011)02-0216-02
0引言
2001年,由美国麻省理工学院、瑞典查尔姆斯技术学院、瑞典林克平大学、瑞典皇家技术学院等4所大学合作开发了一个新的工程教育模式,称为CDIO(Conceive-Design-Implement-Operate)模式。CDIO大纲以构思、设计、实现、运作为主线,综合地考虑了专业基础知识、个人和职业的技能及团队协作与沟通的人际技能,及在整个企业、社会环境下进行CDIO的过程。近年来,东北石油大学机电工程系将CDIO模式引入到实践与工程应用性较强的“机电一体化”课程建设中,以提高课程教学质量和教学效果,本文就其实践教学过程中的一些认识作以探讨。
1现状分析
“机电一体化”是机械设计制造及其自动化专业的一门专业课程,它在培养学生的机电系统设计能力和创新能力所需的知识、能力和素质结构中,占有十分重要的地位。课程的任务是使学生以系统的角度理解和掌握机电一体化技术,包括机械、检测、控制、计算机软硬件等方面的基本理论、基本知识和基本技能,学会典型机电一体化系统的分析和综合方法,具备进行现代机电系统设计的初步能力。随着机械和电子工业发展到新的阶段,现代机械必然是由计算机控制的系统,理论性与实践性联系密切、工程实用性强是该课程最大的特点。近年来的教学实践表明:原有的课程结构、教学内容、教学方法、教学手段、教学实践等,已不能适应“宽口径、重实践、应用型”的现代工程教育发展潮流。究其原因,主要有以下几个方面。
1.1 课程内容繁杂。机电一体化技术是机械技术、检测传感技术、自动控制技术、伺服驱动技术、信息处理技术、系统总体技术等多种技术的融合。以系统的角度理解和掌握机电一体化系统的工作原理及其应用是教学的中心内容,这对教师和学生都提出了非常高的要求。但是针对具体系统进行分析和研究时,常会出现“一叶障目”,以偏概全之感,并无总体把握的能力和认识。
1.2 概念抽象,理论繁琐,并且插图多、公式多、叙述内容多,教师不易抓住教学重点,学生学起来也常感到力不从心,对某些理论问题似是而非、模糊不清、严重时会导致学不下去。
1.3 教材存在局限性。目前现有的教材虽然版本繁多,但各有局限,在多达几十种版本的有关教材中,内容的编排大致相似,框架相同。在选材上为了照顾到内容的完整性,主次不分明,重点不突出,尤其是典型机电一体化系统章节,往往虎头蛇尾,没有受到足够的重视,不能起到综合和系统总结的作用。
1.4 理论与实践环节脱节情况严重,实验内容少且针对性不强,学生不能感受到实践的趣味性、知识性和实验成功后的成就感,更不要说培养学生的创新意识。
针对上述这些情况,如何帮助学生以系统的观点深入理解知识、掌握知识,如何培养与增强学生动手操作能力,如何让学生学以致用,始终保持较高的学习兴趣和创新意识,是课程教学的难点所在。
2基于虚拟样机技术的CDIO教学理念
目前全国有近百所高校开展了CDIO项目的实践和探索工作,汕头大学、成都信息工程学院等院校已经取得了显著的成绩。调研发现,实施CDIO战略是一项庞大的系统工程,需要很大资金投入和人员投入。根据自身实际情况,我们确立首先以虚拟样机技术为载体,按照CDIO战略对“机电一体化”课程的教学进行了探索和实践。
虚拟样机技术是近年来普遍应用的一种全新的机械设计方法,它作为一项计算机辅助工程技术于上个世纪80年代随着计算机技术的发展而出现,在90年代特别是进入21世纪以后得到了迅速发展和广泛应用。CDIO标准明确指出采用产品和系统生命周期的开发及使用这一工程教育方法论,它强调它作为知识和能力培养的载体及环境,即知识和能力之间的关联,而不是具体内容。从这一角度出发,虚拟样机技术可以为开展CDIO战略提供适合的载体及环境。具体表现在如下几个方面:
2.1 面向产品全生命周期的设计、仿真、分析是虚拟样机技术的核心,这在某种程度上与CDIO战略产品和系统生命周期的开发及使用标准不谋而合。
2.2 CDIO强调“做中学”教学模式,“做”具有广泛的含义,既可以是在实验室亲自制作模型、样机,也可以通过数字化工具在设计和仿真层面全面展开。
2.3 在市场竞争日益激烈的今天,为了达到时间、质量、成本、服务、环境等多方面要求,必须以最短的时间、最好的质量和最低的价格推出产品。采用虚拟样机技术既可以减少模型样机的试制,降低投入成本,又可以帮助学生在短时间内掌握产品开发的全部过程。
2.4 虚拟样机技术支持并行设计,便于设计团队之间的沟通和交流,这也正是CDIO战略重点强调的一种基本能力。
3机电一体化课程的CDIO架构
CDIO强调学生的工程能力不是单纯的理论知识或直观的技能,而是两者的有机融合,这对学生的创新能力、学习能力、对新技术的敏感能力都提出了更高要求。机电一体化技术的先修课程除了力学、模电数电等基础课程外,还包括机械设计、微机与接口技术、控制工程等专业基础课程,同期学习课程有单片机、可编程控制、机电传动系统等。该课程有着鲜明的技术基础和工程背景,因学时有限,包含的内容较多,所以在教学中把握一个基本原则:了解机电一体化技术的发展动态,掌握其核心思想和技术,运用现代工程设计方法中的虚拟样机技术,完成机电一体系统的创新设计与仿真分析。基于CDIO的思想,我们对“机电一体化技术”课程教学分成三个部分:课堂讲授、小组项目、自选实验。
课堂讲授。以教师主讲形式进行,以传授基础知识。授课时采用模块化方式对教学内容进行了重新编排,侧重于通过实例分析加深对重要知识点的理解。主要内容包括:①概论模块:主要讲解机电一体化技术的内涵、体系结构、特点、发展趋势、典型系统(本田机器人、大狗、数控加工中心)分析,学时数为4学时。②系统部件模块:主要讲解执行装置的工作原理、驱动方法、对比分析与选用原则;机械传动部件的种类、特点、对比分析与选用原则;检测装置工作原理、特点、对比分析与选用原则,学时数为6学时。③系统集成模块:主要讲解单片机、PLC、接口电路结构及特点,通过典型实例分析理解系统集成的内涵与相关技术,学时数为4学时。④系统控制模块:主要讲解机电一体化系统的设计方法与步骤、系统数学模型、现代控制方法简介、典型反馈控制和状态控制系统分析与设计,学时数为4学时。⑤虚拟样机技术概论模块:主要讲解虚拟样机的概念、原理、方法。通过典型实例领会基于虚拟样机技术的机电一体化系统的设计思想和方法,学时数为4学时。小组项目以3-5人为单位自发形成设计小组。该阶段需要完成下述内容。①项目调研:查阅资料,拟定项目范畴和设计内容。②项目申报:功能、原理、创新性、可行性论证。③项目开展:制定研究计划,分配设计任务,选择设计工具和仿真工具,开展项目设计。④项目汇报:提交项目日志、设计报告。在此期间,教师采取跟踪方式对学生进行辅导,每个阶段项目小组都要作公开汇报,并且需要回答指导老师和其它项目小组提出的问题,及时改进,完善设计。小组项目部分不占用教学学时,教师和学生利用课余时间开展该项内容。自选实验阶段,项目小组根据设计需要,可以提出自选实验项目,用以加强对机电一体化系统典型部件和单元的理解与认识。该部分工作由实验教师配合完成,学时数为10学时。
4课程考核与评价
学生的工程能力等素质很难通过传统的教学测试方法进行考核与评价。在CDIO模式下,课程的考核与评价不再是一个孤立的行为。在“机电一体化技术”课程中,我们根据课程教学的三个部分―课堂讲授、小组项目、自选实验分别进行测试,然后与学生讨论考核与评价体系,综合学生的意见,再适当修正,尽可能做到灵活多样。课程教授的理论部分采用传统的试卷测试形式,小组项目部分根据学生的自我评价、公开汇报、虚拟样机完成的质量等情况进行综合评价,自选实验部分根据学生完成实验过程中体现出的创新性、实验内容的连续性和执行完成情况等做出判断。
按照上述规划,近几年在我校机自专业进行了CDIO实践教学活动。学生表现出极高的热情,围绕机器人、数控机床等设计主题共提交了众多项目报告和虚拟样机产品,许多项目小组还额外提供了自己开发的仿真控制程序。在参与同学中展开了问卷调查发现,多数同学认为课程项目对于帮助理解机电一体化系统非常有用。在问到课程项目是否有必要继续在下一年级开展时,绝大多数同学认为应该继续开展。总体来看学生对该项活动抱有足够的信心,提出了很多具体意见,如提前在低年级开展设计工具类项目,这样可以在后续项目中有更多时间完成系统的仿真、分析、实验验证等深层次的设计内容,提高设计质量。
5结束语
机电一体化技术课程博大精深,具有内容多、原理深奥的特点。根据国际工程教育CDIO理念进行教学实践,既能使学生巩固所学基本知识,抓住主次,又能锻炼学生的观察能力、设计能力、分析问题的能力、书面表达能力和交流能力,使学生的积极主动性得到最大程度的发挥。本文将CDIO模式引入到“机电一体化”的课程建设中,从教学理念、课程架构、课程考核与评价等方面展开探讨,为“机电一体化”课程的教学提供了新的思路,这些对于提高教学质量和效果,培养学生的实践与创新能力具有积极意义。
参考文献:
[1]查建中.工程教育改革战略“CDIO”与产学合作和国际化[J].中国大学教学,2008,5.
关键词:工程机械;机电液;一体化
中图分类号:F407文献标识码: A
引言
机电一体化是集机械、电子、计算机和信息技术等多种技术有机结合的一门交叉综合技术。其具有智能化、程序化、信息化的特点,以及设备体积小、操作、维护方便、保护齐全、性能可靠等优点。液压技术具有大转矩、无级调速、运转平稳等特点。机电液一体化是结合了液压技术和“机电一体化”技术的一门新兴技术,在水泥生产中具有十分重要的应用。
1、机电一体化的发展历程
机电一体化的发展历程流经几个重要时期,这几个重要历程对以后机电一体化的持续发展影响很大。第一,数控机床的问世。1949年,沈阳第一机器厂,出产中国第一台车床―六尺皮带车床。第二,微电子技术在机电一体化技术方面的促进。第三,数控技术的发明,也就是可编程序控制器和电子电力的发明,这些技术的发明给后来实现机电一体化打下了厚实的基础。第四,信息技术,模糊技术、激光技术等相关技术的相继问世,使正在慢慢发展的机电一体化技术更上了一层楼。
2、机电一体化的内容分析
2.1、机械技术
机械技术是机电一体化实现的根本。机械技术与机电一体化技术结合,实现工程机械的高性能、安全性和可靠性。机电一体化技术应用于工程机械,可以减少机械的重量,减小机械的体积,提高机械的运作效率。
2.2、信息通信技术
信息通信技术包括信息的交换、信息的存储、信息的决策和人工智能技术。
2.3、系统控制技术
系统控制技术是从整体的角度对相关的技术进行组织,然后将技术分成若干个单元。接口技术是系统控制技术的关键,其可以保障系统的各个部分有机地连接。
2.4、自动化技术
自动化技术是在系统控制的基础上,对系统进行分析和设计,对系统进行调试,自动化技术包括定位自动化、速度控制自动化、自我诊断、校正和检索的自动化。
2.5、自动检测技术
自动检测技术是实现自动控制和自动调节的基础,自动检测技术的性能越好,系统的自动化程度就越高。自动检测技术已经实现了在不同的环境下的运作,使机电一体化的水平越来越高。
3、工程机械机电液一体化技术发展
3.1、国际先进的机电液一体化发展
德国某制造公司生产的自动控制压实系统,具有高智能特性,实现了自动控制可变振幅功效。这款机械利用两个相对旋转的偏心轴,对压实轮进行振动,通过对双轴的布置,可以灵活的改变振动作用力大小以及方向,并且可以利用液压系统灵活调整双轴之间的角度。这款压实机,利用电子控制器,将机械运行过程中的相关数据输入到机械计算机中,通过对数据的计算分析,发出相应的指令,保证压实强度。国际上对超级路面压实具有相应的规定,超级路面压实系统需要选用粗粒骨料和含量低的沥青,只有这样,压实路面的过程中,才能在保证路面具有高承重能力基础上,有效的控制环境污染。国外一家公司开发了IQ2系统,能够有效的记录并实时显示路面压实情况,对系统振幅、速度、频率等及时的进行调整,保证机械在短时间内完成路面压实工作。电子监控技术也是机电液一体化系统中的主要表现,在机械中关键部位设置传感器,对机械运行过程中,机械的燃油系统、路面压实情况、机械振动频率、行走速度、机械温度等进行实时监控。并通过微电脑控制器,对这些参数进行统计、分析,能够避免发生机械故障,降低故障的发生频率。机电液一体化技术在国际上得到了广泛的应用,利用机电液一体化技术,能够提高机械的运行效率,降低运行成本以及维修成本,还能控制环境污染,具有社会效益、经济效益、生态效益等多种功效。
2.2、工程机械的发展
2.2.1、液压技术
19世纪崛起的石油工业推动近代液压蓬勃发展,最早实践成功的液压传动装置并不是民用,而是用于军事,其后才在机床上应用。工程机械工作装置的种类繁多,作业形式多种多样,需要实现各种各样的复杂运动。而液压传动具有布置简单方便,结构紧凑,易实现各种运动形式的转换的特点,能满足复杂的作业要求,为工程机械提供了极好的传动装置。因此随着液压传动技术的完善,工程机械开始飞速发展,产品走向多样化,出现了形形以完成各种施工要求的工程机械。
2.2.2、电子技术
电子技术是根据电子学的原理,运用电子元器件设计和制造某种特定功能的电路以解决实际问题的科学。电子技术有以下的功能:①高效节能:对发动机和传动系统等进行控制,根据工况合理分配功率,使系统处于最佳工作状态。②智能操作:采用半自动,全自动控制,实现自动化。以完成高技能的作业。③安全监控:进行运行状态进行全程监视,故障自动报警;在某些十分恶劣的地方代替工作人员对运行过程进行监控。操纵与控制是工程机械的先进技术的中心。解决操纵与控制问题,仅依靠机械和液压技术是很难使工程机械有质的飞跃,电子技术、传感器技术和电液转换技术等为工程机械插上了翅膀。
2.2.3、传感器与检测技术
随着信息时代的到来,国内外已将传感器技术列为优先发展的科技领域之一。国家标准GB7665-87对传感器的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。”传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。
2.2.4、信号处理和I/0接口技术
“信号”是信息的表现形式,“信息”则是信号的具体内容。电子技术和电子电路技术已发展成为以微处理器为中心的硬、软件相结合的计算机技术。可将传感器检测出来的各种信息存贮、运算、逻辑分析、判断、变换,进而向执行机构发出控制指令,若加入自诊断功能,便可实现产品的智能化。I/0接口技术的优点是现实信息全部、准确、可靠地在系统中传输,同时还可通过显示、应答、音响等实现人机交互。工程机械机电液一体化产品,通过计算机(单片机)进行数据采集、传递和处理,其运行速度极快,这就要求有实现信号变换和电平转换的电子线路,即接口电路。
3、我国通用机械机电液一体化技术应用方向
3.1、高压化
我国在发展过程中,大型、特大型机械越来越多的应用到工业等生产过程中,机械液压系统的输出功率也越来越大,这就需要机械液压系统向着高压方向发展。液压输出功率越高,对其安全性要求也就越高,在开发过程中,系统元件寿命以及人机安全问题成为了主要的制约因素。机械化生产在我国已经逐渐普及,通用机械也逐渐向着智能化、一体化、多元化的方向发展,这就要求机械对相关数据由相对完善的处理系统。微处理器、传感器等原件,可以满足上诉要求,还能增强机械的各项性能,提高运行效率,提高机械应对紧急情况的应对能力。在机电液一体化发展过程中,一定要坚持可持续发展的原则,对机械燃油功率实施自动化控制,保证机械具有高效的节能效果。在节能的同时,还应该考虑提升机械的运行效率,充分的利用新技术、新工艺、新材料,保证运行效率稳步提升前提下,发挥节能效果。在机电液一体化在通用机械上应用方面,利用先进的通讯媒体、微处理器、传感器等,都需要有一个功能强大的软件做支持,才能发挥其应有的效果。目前软件开发市场中,各种汇编语言以及高级语言的应用,使得机械应用软件开发具有了广阔的前景。
3.2、智能化
智能化为工程机械装上了大脑,主要有以下几个的发展方向:①自动化。我国机械企业目前普遍存在需要调整产品结构的问题,而在调整产品结构时,都要选择自动化作为发展的方向,例如:矿山隧道挖凿便采用了许多半自动、全自动的挖掘机。②故障检测。智能化提高工程机械的安全性和可靠性,减少例如矿难这些灾难性事故的发生;保证工程机械设备能够发挥最大的设计能力;同时通过检测监视故障分析性能评估,为设备结构优化设计改造优化设计各理论制造及生产过程提供数据和信息。
3.3、绿色化
随着机电液一体化的技术的日趋完善,我们往往利用具有良好控制性能和信息处理能力的电子技术,实现输出功率和能耗的最佳匹配。例如在深井勘探器、液压静力压桩机或挖掘机上安装电子监控系统、紧急制动系统等,便可以增加机器使用寿命,同时耗油量也会大幅减少。
4、结语
机电液一体化是许多科学技术发展的结晶,是社会生产力发展到一定阶段的必然要求。机械技术、电子技术和液压技术的融合必将使工程机械发生战略性的变革,使传统的机械设计方法和设计概念发生着革命性的变化。大力发展新一代机电液一体化产品,不仅是改造传统机械设备的要求,而且是推动机械产品更新换代和开辟新领域、发展与振兴机械工业的必由之路。与机电液一体化相关的技术还有很多,并且随着科学技术的发展,各种技术相互融合的趋势将越来越明显,机电液一体化技术的广阔发展前景也将越来越光明。
参考文献
[1]曾亿山.工程机械中的机电液一体化技术[J].煤矿机械,2005,07:9-11.
[2]龙水根.机电液一体化技术在工程机械上的应用与发展[J].工程机械与维修,2001,04:38-39+26.
[3]梁国文.机电一体化在工程机械上的应用与发展[J].建筑机械,1999,08:35-38+4.
关键词: 机电一体化;设计方法;步骤
机电一体化系统设计是多个学科的交叉和综合,涉及的学科和技术非常广泛,其技术发展迅速,水平越来越高。由于机电一体化产品覆盖面很广,在系统的构成上,有着不同的层次,但在系统设计方面有着相同的规律。机电一体化系统设计是根据系统论的观点,运用现代设计的方法构造产品结构、赋予产品性能并进行产品设计的过程。
整个开发设计过程按步骤可划分为四个阶段:
1 设计筹划阶段
1)在筹划阶段中要对设计目标进行机理分析,对客户的要求进行理论性抽象,以确定产品的性能、规格、参数。在这个阶段,因为用户需求往往是面向产品的使用目的,并不全是设计的技术参数,所以需要对用户的需求进行抽象,要在分析对象工作原理的基础上,澄清用户需求的目地、原因和具体内容,经过理论分析和逻辑推理,提炼出问题的本质和解决问题的途径,并用工程语言描述设计要求,最终形成产品的规格和参数。对于加工机械而言,它包括如下几个方面:
① 运动参数:表征机器工作部件的运动轨迹和行程、速度和加速度。
② 动力参数:表征机器为完成加工动作应输出的力(或力矩)和功率。
③ 品质参数:表征机器工作的运动精度、动力精度、稳定性、灵敏度和可靠性。
④ 环境参数:表征机器工作的环境,如温度、湿度、输入电源。
⑤ 结构参数:表征机器空间几何尺寸、结构、外观造型。
⑥ 界面参数:表征机器的人机对话方式和功能。
2)在这个阶段中要根据设计参数的需求,开展技术性分析,制定系统整体设计方案,划分出构成系统的各功能要素和功能模块,然后对各类方案进行可行性研究对比,核定最佳总体设计方案、各个模块设计的目标与相关人员的配备。系统设计方案文件的内容包括:
① 系统的主要功能、技术指标、原理图及文字说明。
② 控制策略及方案。
③ 各功能模块的性能要求,模块实现的初步方案及输出输入逻辑关系的参数指标。
④ 方案比较和选择的初步确定。
⑤ 为保证系统性能指标所采取的技术措施。
⑥ 抗干扰及可靠性设计策略。
⑦ 外观造型方案及机械主体方案。
⑧ 经费和进度计划的安排。
2 理论设计阶段
首先,根据系统的主功能要求和构成系统的功能要素进行系统要素进行主功能分解,划分出功能模块,画出机器工作时序图和机器传动原理简图;对于有过程控制要求的系统应建立各要素的数学模型,确定控制算法;计算出各功能模块之间接口的输入、输出参数,确定接口设计的任务分配。应当说明的是,系统设计过程中的接口设计是对接口输入输出参数或机械结构参数的设计,而功能模块设计中的接口设计则是遵照系统设计制定的接口参数进行细部设计,实现接口的技术物理效应,两者在设计内容和设计分工上是不同的。不同类型的接口,其设计要求有所不同。传感器是机电一体化系统的感觉器官,它从待测对象那里获得反映待测对象特征与状态的信息,监视监测整个设备的工作过程,传感器接口要求传感器与被测对象机械量信号源应有直接关系,保证标度转换及数学建模快速、准确、可靠,传感器与机械本体之间联接简洁、牢固,灵敏度高、动态性能好,抗机械谐波干扰性强,正确反映待测对象的被测参数。变送接口要满足传感器模块的输出信号与微机前向通道电气参数的匹配及远距离信号传输的要求,接口信号的传输要精确,可靠性强,抗干扰能力强,噪音容限较低;传感器的输出阻抗要与接口的输入阻抗相配合;接口输出的电平要与微机的电平一致;为方便微机进行信号处理,接口输入信号和输出信号之间的关系须是线性关系。驱动接口要能满足接口的输入端与微机系统的后向通道在电平上保持一致,接口的输出端与功率驱动模块的输入端之间电平匹配的同时,阻抗也要匹配。其次,为防止功率设备的强电回路反窜入微机系统,接口必须采取有效的抵抗干扰措施。传动接口是一个机械接口,要求它的联接结构紧凑、轻巧,具有较高的传动精度和定位精度,安装、维修、调整简单方便,传动效率高,刚度好,相应快。
其次,以功能模块为单元,依据以上接口设计参数的要求对信号检测与转换、机械传动与工作机构、控制微机、功率驱动及执行元件等进行各个功能模块的选型、组配、设计。在此阶段的设计工作量较大,既包括机械、电气、电子、控制与计算机软件等系统的设计,又包括总装图、零件图的具体模块选型、组配。一方面不仅要求在机械系统设计时选择的机械系统参数要与控制系统的电气参数相匹配,同时也要求在进行控制系统设计时,要根据机械系统的固有结构参数来选择及确定相关电气参数,综合应用微电子技术与机械技术,让两项技术互相结合、互相协调、互相补充,把机电一体化的优越性充分体现出来。为提高工效,应该尽量应用各种cad、PRO/E等辅助工具;整个设计应尽量采用通用的模块和接口,以利于整体匹配,利于后期进行产品的更新换代。
最后,以技术文件的方式对完整的系统设计采取整体技术经济指标分析,设计目标考核与系统优化,择优选择出综合性能指标最优的方案。
其中,系统功能分解应综合运用机械技术和电子技术各自的优势,努力使系统构成简单化、模块化。经常用到的设计策略有如下几种:
① 用电子装置替代机械传动,缩减机械传动装置,简化机械结构,减小尺寸,减轻重量,增强系统运动精度和控制灵活性。
② 在选择功能模块时要选用标准模块,通用模块,防止重复设计低水平的功能模块,采用可靠的高水平模块,以利于减少设计与开发的周期。