欢迎访问爱发表,线上期刊服务咨询

欧姆定律的实验结论8篇

时间:2023-08-11 09:14:06

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇欧姆定律的实验结论,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

欧姆定律的实验结论

篇1

关键词:物理定律;教学方法;多种多样

关键词:是对物理规律的一种表达形式。通过大量的观察、实验归纳而成的结论。反映物理现象在一定条件下发生变化过程的必然关系。物理定律的教学应注意:首先要明确、掌握有关物理概念,再通过实验归纳出结论,或在实验的基础上进行逻辑推理(如牛顿第一定律)。有些物理量的定义式与定律的表式相同,就必须加以区别(如电阻的定义式与欧姆定律的表式可具有同一形式R=U/I),且要弄清相关的物理定律之间的关系,还要明确定律的适用条件和范围。

(1)牛顿第一定律采用边讲、边讨论、边实验的教法,回顾“运动和力”的历史。消除学生对力的作用效果的错误认识;培养学生科学研究的一种方法——理想实验加外推法。教学时应明确:牛顿第一定律所描述的是一种理想化的状态,不能简单地按字面意义用实验直接加以验证。但大量客观事实证实了它的正确性。第一定律确定了力的涵义,引入了惯性的概念,是研究整个力学的出发点,不能把它当作第二定律的特例;惯性质量不是状态量,也不是过程量,更不是一种力。惯性是物体的属性,不因物体的运动状态和运动过程而改变。在应用牛顿第一定律解决实际问题时,应使学生理解和使用常用的措词:“物体因惯性要保持原来的运动状态,所以……”。教师还应该明确,牛顿第一定律相对于惯性系才成立。地球不是精确的惯性系,但当我们在一段较短的时间内研究力学问题时,常常可以把地球看成近似程度相当好的惯性系。

(2)牛顿第二定律在第一定律的基础上,从物体在外力作用下,它的加速度跟外力与本身的质量存在什么关系引入课题。然后用控制变量的实验方法归纳出物体在单个力作用下的牛顿第二定律。再用推理分析法把结论推广为一般的表达:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。教学时还应请注意:公式F=Kma中,比例系数K不是在任何情况下都等于1;a随F改变存在着瞬时关系;牛顿第二定律与第一定律、第三定律的关系,以及与运动学、动量、功和能等知识的联系。教师应明确牛顿定律的适用范围。

(3)万有引力定律教学时应注意:①要充分利用牛顿总结万有引力定律的过程,卡文迪许测定万有引力恒量的实验,海王星、冥王星的发现等物理学史料,对学生进行科学方法的教育。②要强调万有引力跟质点间的距离的平方成反比(平方反比定律),减少学生在解题中漏平方的错误。③明确是万有引力基本的、简单的表式,只适用于计算质点的万有引力。万有引力定律是自然界最普遍的定律之一。但在天文研究上,也发现了它的局限性。

(4)机械能守恒定律这个定律一般不用实验总结出来,因为实验误差太大。实验可作为验证。一般是根据功能原理,在外力和非保守内力都不作功或所作的总功为零的条件下推导出来。高中教材是用实例总结出来再加以推广。若不同形式的机械能之间不发生相互转化,就没有守恒问题。机械能守恒定律表式中各项都是状态量,用它来解决问题时,就可以不涉及状态变化的复杂过程(过程量被消去),使问题大大地简化。要特别注意定律的适用条件(只有系统内部的重力和弹力做功)。这个定律不适用的问题,可以利用动能定理或功能原理解决。(5)动量守恒定律历史上,牛顿第二定律是以F=dP/dt的形式提出来的。所以有人认为动量守恒定律不能从牛顿运动定律推导出来,主张从实验直接总结。但是实验要用到气垫导轨和闪光照相,就目前中学的实验条件来说,多数难以做到。即使做得到,要在课堂里准确完成实验并总结出规律也非易事。故一般教材还是从牛顿运动定律导出,再安排一节“动量和牛顿运动定律”。这样既符合教学规律,也不违反科学规律。中学阶段有关动量的问题,相互作用的物体的所有动量都在一条直线上,所以可以用代数式替代矢量式。学生在解题时最容易发生符号的错误,应该使他们明确,在同一个式子中必须规定统一的正方向。动量守恒定律反映的是物体相互作用过程的状态变化,表式中各项是过程始、末的动量。用它来解决问题可以不过程物理量,使问题大大地简化。若物体不发生相互作用,就没有守恒问题。在解决实际问题时,如果质点系内部的相互作用力远比它们所受的外力大,就可略去外力的作用而用动量守恒定律来处理。动量守恒定律是自然界最重要、最普遍的规律之一。无论是宏观系统或微观粒子的相互作用,系统中有多少物体在相互作用,相互作用的形式如何,只要系统不受外力的作用(或某一方向上不受外力的作用),动量守恒定律都是适用的。

篇2

(1)牛顿第一定律。采用边讲、边讨论、边实验的教法,回顾“运动和力”的历史。消除学生对力的作用效果的错误认识;培养学生科学研究的一种方法——理想实验加外推法。教学时应明确:牛顿第一定律所描述的是一种理想化的状态,不能简单地按字面意义用实验直接加以验证。但大量客观事实证实了它的正确性。第一定律确定了力的涵义,引入了惯性的概念,是研究整个力学的出发点,不能把它当做第二定律的特例;惯性不是状态量,也不是过程量,更不是一种力。惯性是物体的属性,不因物体的运动状态和运动过程而改变。在应用牛顿第一定律解决实际问题时,应使学生理解和使用常用的措词:“物体因惯性要保持原来的运动状态,所以……”教师还应该明确,牛顿第一定律相对于惯性系才成立。地球不是精确的惯性系,但当我们在一段较短的时间内研究力学问题时,常常可以把地球看成近似程度相当好的惯性系。

(2)牛顿第二定律。在第一定律的基础上,从物体在外力作用下,它的加速度跟外力与本身的质量存在什么关系引入课题。然后用控制变量的实验方法归纳出物体在单个力作用下的牛顿第二定律。再用推理分析法把结论推广为一般的表达:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。教学时还应请注意:公式F=Kma中,比例系数K不是在任何情况下都等于1;a随F改变存在着瞬时关系;牛顿第二定律与第一定律、第三定律的关系,以及与运动学、动量、功和能等知识的联系。教师应明确牛顿定律的适用范围。

(3)万有引力定律。教学时应注意:①要充分利用牛顿总结万有引力定律的过程,卡文迪许测定万有引力恒量的实验,海王星、冥王星的发现等物理学史料,对学生进行科学方法的教育。②要强调万有引力跟质点间的距离的平方成反比(平方反比定律),减少学生在解题中漏平方的错误。③明确是万有引力基本的、简单的表式,只适用于计算质点的万有引力。万有引力定律是自然界最普遍的定律之一。但在天文研究上,也发现了它的局限性。

(4)机械能守恒定律。这个定律一般不用实验总结出来,因为实验误差太大。实验可作为验证。一般是根据功能原理,在外力和非保守内力都不做功或所做的总功为零的条件下推导出来。高中教材是用实例总结出来再加以推广。若不同形式的机械能之间不发生相互转化,就没有守恒问题。机械能守恒定律表式中各项都是状态量,用它来解决问题时,就可以不涉及状态变化的复杂过程(过程量被消去),使问题大大地简化。要特别注意定律的适用条件(只有系统内部的重力和弹力做功)。这个定律不适用的问题,可以利用动能定理或功能原理解决。

(5)动量守恒定律。历史上,牛顿第二定律是以F=dP/dt的形式提出来的。所以有人认为动量守恒定律不能从牛顿运动定律推导出来,主张从实验直接总结。但是实验要用到气垫导轨和闪光照相,就目前中学的实验条件来说,多数难以做到。即使做得到,要在课堂里准确完成实验并总结出规律也非易事。故一般教材还是从牛顿运动定律导出,再安排一节“动量和牛顿运动定律”。这样既符合教学规律,也不违反科学规律。

(6)欧姆定律。中学物理课本中欧姆定律是通过实验得出的。公式为I=U/R或U=IR。教学时应注意:①“电流强度跟电压成正比”是对同一导体而言;“电流强度跟电阻成反比”是对不同导体说的。②I、U、R是同一电路的3个参量。③闭合电路的欧姆定律的教学难点和关键是电动势的概念,并用实验得到电源电动势等于内、外电压之和。然后用欧姆定律导出I=ε/(R+r)(也可以用能量转化和守恒定律推导)。④闭合电路的欧姆定律公式可变换成多种形式,要明确它们的物理意义。⑤教师应明确,普通物理学中的欧姆定律公式多数是R=U/I或I=(1/R)U,式中R是比例恒量。若R不是恒量,导体就不服从欧姆定律。但不论导体服从欧姆定律与否,R=U/I这个关系式都可以作为导体电阻的一般定义。中学物理课本不把 R=U/R列入欧姆定律公式,是为了避免学生把欧姆定律公式跟电阻的定义式混淆。这样处理似乎欠妥。

篇3

关键词:物理定律;教学方法;多种多样

关键词:是对物理规律的一种表达形式。通过大量的观察、实验归纳而成的结论。反映物理现象在一定条件下发生变化过程的必然关系。物理定律的教学应注意:首先要明确、掌握有关物理概念,再通过实验归纳出结论,或在实验的基础上进行逻辑推理(如牛顿第一定律)。有些物理量的定义式与定律的表式相同,就必须加以区别(如电阻的定义式与欧姆定律的表式可具有同一形式R=U/I),且要弄清相关的物理定律之间的关系,还要明确定律的适用条件和范围。

(1)牛顿第一定律采用边讲、边讨论、边实验的教法,回顾“运动和力”的历史。消除学生对力的作用效果的错误认识;培养学生科学研究的一种方法——理想实验加外推法。教学时应明确:牛顿第一定律所描述的是一种理想化的状态,不能简单地按字面意义用实验直接加以验证。但大量客观事实证实了它的正确性。第一定律确定了力的涵义,引入了惯性的概念,是研究整个力学的出发点,不能把它当作第二定律的特例;惯性质量不是状态量,也不是过程量,更不是一种力。惯性是物体的属性,不因物体的运动状态和运动过程而改变。在应用牛顿第一定律解决实际问题时,应使学生理解和使用常用的措词:“物体因惯性要保持原来的运动状态,所以……”。教师还应该明确,牛顿第一定律相对于惯性系才成立。地球不是精确的惯性系,但当我们在一段较短的时间内研究力学问题时,常常可以把地球看成近似程度相当好的惯性系。

(2)牛顿第二定律在第一定律的基础上,从物体在外力作用下,它的加速度跟外力与本身的质量存在什么关系引入课题。然后用控制变量的实验方法归纳出物体在单个力作用下的牛顿第二定律。再用推理分析法把结论推广为一般的表达:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。教学时还应请注意:公式F=Kma中,比例系数K不是在任何情况下都等于1;a随F改变存在着瞬时关系;牛顿第二定律与第一定律、第三定律的关系,以及与运动学、动量、功和能等知识的联系。教师应明确牛顿定律的适用范围。

(3)万有引力定律教学时应注意:①要充分利用牛顿总结万有引力定律的过程,卡文迪许测定万有引力恒量的实验,海王星、冥王星的发现等物理学史料,对学生进行科学方法的教育。②要强调万有引力跟质点间的距离的平方成反比(平方反比定律),减少学生在解题中漏平方的错误。③明确是万有引力基本的、简单的表式,只适用于计算质点的万有引力。万有引力定律是自然界最普遍的定律之一。但在天文研究上,也发现了它的局限性。

(4)机械能守恒定律这个定律一般不用实验总结出来,因为实验误差太大。实验可作为验证。一般是根据功能原理,在外力和非保守内力都不作功或所作的总功为零的条件下推导出来。高中教材是用实例总结出来再加以推广。若不同形式的机械能之间不发生相互转化,就没有守恒问题。机械能守恒定律表式中各项都是状态量,用它来解决问题时,就可以不涉及状态变化的复杂过程(过程量被消去),使问题大大地简化。要特别注意定律的适用条件(只有系统内部的重力和弹力做功)。这个定律不适用的问题,可以利用动能定理或功能原理解决。

(5)动量守恒定律历史上,牛顿第二定律是以F=dP/dt的形式提出来的。所以有人认为动量守恒定律不能从牛顿运动定律推导出来,主张从实验直接总结。但是实验要用到气垫导轨和闪光照相,就目前中学的实验条件来说,多数难以做到。即使做得到,要在课堂里准确完成实验并总结出规律也非易事。故一般教材还是从牛顿运动定律导出,再安排一节“动量和牛顿运动定律”。这样既符合教学规律,也不违反科学规律。中学阶段有关动量的问题,相互作用的物体的所有动量都在一条直线上,所以可以用代数式替代矢量式。学生在解题时最容易发生符号的错误,应该使他们明确,在同一个式子中必须规定统一的正方向。动量守恒定律反映的是物体相互作用过程的状态变化,表式中各项是过程始、末的动量。用它来解决问题可以不过程物理量,使问题大大地简化。若物体不发生相互作用,就没有守恒问题。在解决实际问题时,如果质点系内部的相互作用力远比它们所受的外力大,就可略去外力的作用而用动量守恒定律来处理。动量守恒定律是自然界最重要、最普遍的规律之一。无论是宏观系统或微观粒子的相互作用,系统中有多少物体在相互作用,相互作用的形式如何,只要系统不受外力的作用(或某一方向上不受外力的作用),动量守恒定律都是适用的。

篇4

一、教材分析

《欧姆定律》一课,学生在初中阶段已经学过,高中必修本(下册)安排这节课的目的,主要是让学生通过课堂演示实验再次增加感性认识;体会物理学的基本研究方法(即通过实验来探索物理规律);学习分析实验数据,得出实验结论的两种常用方法――列表对比法和图象法;再次领会定义物理量的一种常用方法――比值法。这就决定了本节课的教学目的和教学要求。这节课不全是为了让学生知道实验结论及定律的内容,重点在于要让学生知道结论是如何得出的;在得出结论时用了什么样的科学方法和手段;在实验过程中是如何控制实验条件和物理变量的,从而让学生沿着科学家发现物理定律的历史足迹体会科学家的思维方法。

本节课在全章中的作用和地位也是重要的,它一方面起到复习初中知识的作用,另一方面为学习闭合电路欧姆定律奠定基础。本节课分析实验数据的两种基本方法,也将在后续课程中多次应用。因此也可以说,本节课是后续课程的知识准备阶段。

通过本节课的学习,要让学生记住欧姆定律的内容及适用范围;理解电阻的概念及定义方法;学会分析实验数据的两种基本方法;掌握欧姆定律并灵活运用.

本节课的重点是成功进行演示实验和对实验数据进行分析。这是本节课的核心,是本节课成败的关键,是实现教学目标的基础。

本节课的难点是电阻的定义及其物理意义。尽管用比值法定义物理量在高一物理和高二电场一章中已经接触过,但学生由于缺乏较多的感性认识,对此还是比较生疏。从数学上的恒定比值到理解其物理意义并进而认识其代表一个新的物理量,还是存在着不小的思维台阶和思维难度。对于电阻的定义式和欧姆定律表达式,从数学角度看只不过略有变形,但它们却具有完全不同的物理意义。有些学生常将两种表达式相混,对公式中哪个是常量哪个是变量分辨不清,要注意提醒和纠正。

二、关于教法和学法

根据本节课有演示实验的特点,本节课采用以演示实验为主的启发式综合教学法。教师边演示、边提问,让学生边观察、边思考,最大限度地调动学生积极参与教学活动。在教材难点处适当放慢节奏,给学生充分的时间进行思考和讨论,教师可给予恰当的思维点拨,必要时可进行大面积课堂提问,让学生充分发表意见。这样既有利于化解难点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃。

通过本节课的学习,要使学生领会物理学的研究方法,领会怎样提出研究课题,怎样进行实验设计,怎样合理选用实验器材,怎样进行实际操作,怎样对实验数据进行分析及通过分析得出实验结论和总结出物理规律。同时要让学生知道,物理规律必须经过实验的检验,不能任意外推,从而养成严谨的科学态度和良好的思维习惯。

三、对教学过程的构想

为了达成上述教学目标,充分发挥学生的主体作用,最大限度地激发学生学习的主动性和自觉性,对一些主要教学环节,有以下构想:1.在引入新课提出课题后,启发学生思考:物理学的基本研究方法是什么(不一定让学生回答)?这样既对学生进行了方法论教育,也为过渡到演示实验起承上启下作用。2.对演示实验所需器材及电路的设计可先启发学生思考回答。这样使他们既巩固了实验知识,也调动他们尽早投入积极参与。3.在进行演示实验时可请两位同学上台协助,同时让其余同学注意观察,也可调动全体学生都来参与,积极进行观察和思考。4.在用列表对比法对实验数据进行分析后,提出下面的问题让学生思考回答:为了更直观地显示物理规律,还可以用什么方法对实验数据进行分析?目的是更加突出方法教育,使学生对分析实验数据的两种最常用的基本方法有更清醒更深刻的认识。到此应该达到本节课的第一次,通过提问和画图象使学生的学习情绪转向高涨。5.在得出电阻概念时,要引导学生从分析实验数据入手来理解电压与电流比值的物理意义。此时不要急于告诉学生结论,而应给予充分的时间,启发学生积极思考,并给予适当的思维点拨。此处节奏应放慢,可提请学生回答或展开讨论,让学生的主体作用得到充分发挥,使课堂气氛掀起第二次,也使学生对电阻的概念是如何建立的有深刻的印象。6.在得出实验结论的基础上,进一步总结出欧姆定律,这实际上是认识上的又一次升华。要注意阐述实验结论的普遍性,在此基础上可让学生先行总结,以锻炼学生的语言表达能力。教师重申时语气要加重,不能轻描淡写。随即强调欧姆定律是实验定律,必有一定的适用范围,不能任意外推。7.为检验教学目标是否达成,可自编若干概念题、辨析题进行反馈练习,达到巩固之目的。然后结合课本练习题,熟悉欧姆定律的应用,但占时不宜过长,以免冲淡前面主题。

四、授课过程中几点注意事项

1.注意在实验演示前对仪表的量程、分度和读数规则进行介绍。

2.注意正确规范地进行演示操作,数据不能虚假拼凑。

3.注意演示实验的可视度.可预先制作电路板,演示时注意位置要加高.有条件的地方可利用投影仪将电表表盘投影在墙上,使全体学生都能清晰地看见。

4.定义电阻及总结欧姆定律时,要注意层次清楚,避免节奏混乱.可把电阻的概念及定义在归纳实验结论时提出,而欧姆定律在归纳完实验结论后总结.这样学生就不易将二者混淆。

篇5

【关键词】欧姆定律 应用 初中科学 教学策略 探索

“欧姆定律及其应用”的教学目标是让学生理解欧姆定律,并应用欧姆定律进行简单计算;能根据欧姆定律及其电路的特点,更深刻理解串、并联电路的特点;通过计算,学会解答电学计算题的一般方法,培养学生逻辑思维能力,观察、实验能力以及分析问题、概括问题、解决问题的能力,并养成学生解答电学问题的良好习惯。通过实验探究等学习方法,激发和培养学生学习科学的兴趣,培养学生实事求是的科学态度以及认真谨慎的学习习惯。

近几年,中考对“欧姆定律及其应用”的考查非常多,归纳一下,主要是从这么几方面进行考查的。

1、以欧姆定律为基础,结合串、并联电路的电压、电流、电阻特点,解决一些简单的计算。

例1、如图3所示, ,A的示数为2.5A,V的示数为6V;若R1,R2串联在同一电源上,通过R1的电流为0.6A,求R1和R2的电阻值。

图3

解析:此题考查了学生对并联电路特点的掌握和对欧姆定律公式的理解。在解物理题中,数学工具的应用很重要。本题可先根据并联电路的特点,找出R1、R2和总电阻的关系。

2、结合伏安法测电阻的相关知识,更深刻的理解欧姆定律的生成,强化电学实验操作技能的考查。

例2、给出下列器材:电流表(0~0.6A,0~3A)一只,电压表(0~3V,0~15V)一只,滑动变阻器(0~10 )一只,电源(4V)一个,待测电阻的小灯泡(额定电压2.5V,电阻约10 )一个,开关一只,导线若干,要求用伏安法测定正常发光时小灯泡灯丝的电阻,测量时,两表的指针要求偏过表面刻度的中线。

(1)画出电路图;

(2)电流表的量程选 ,电压表的量程选 ;

(3)下列必要的实验步骤中,合理顺序是 。

A. 闭合开关 B. 将测出的数据填入表格中

C. 计算被测小灯泡的灯丝电阻 D. 读出电压表,电流表的数值

E. 断开开关 F. 将滑动变阻器的阻值调到最大

G. 对照电路图连好电路 H. 调节滑动变阻器,使电压表的示数为2.5V

解析:欧姆定律的得出是根据伏安法测电阻的电路图来进行探究的,而伏安法测电阻同时也是欧姆定律的一个应用。所以伏安法测电阻与欧姆定律的应用其实是相辅相成的。对伏安法测电阻的相关知识的考查,其实更能帮助学生理解欧姆定律的生成。并且通过自己画电路图的过程,考查了学生对电路连接的作图能力和实验设计能力。

3、应用“欧姆定律”判断电路中各电表的示数变化

例3、如图1所示,电源电压保持不变,当滑动变阻器滑片P由左端向右移到中点的过程中,下列判断正确的是( )

A. 电压表和电压表A1,A2和示数变大

B. 电流表A1示数变大,电流表A2和电压表示数不变

C. 电流表A2示数变大,电流表A1,电压表示数不变

D. 条件不足,无法判断

解析:本题考查了利用欧姆定中电压、电流、电阻的关系来判断电流表、电压表示数变化的同时,也考查了学生对复杂电路的判断能力,电表测哪个用电器的电压,测通过哪个用电器的电流等。R1和R2是并联关系, 测电源电压; 测干路电流, 测R2的电流。

答案: B

4、通过解方程的方法结合欧姆定律,解决由于电阻变化而引起电压、电流变化的题。

例4、 如图2所示,变阻器R0的滑片P在移动过程中电压表的示数变化范围是0~4V,电流表的示数变化范围是1A~0.5A,求电阻器R的阻值、变阻器R0的最大阻值和电源电压U。

图2

解析:在电路中由于电阻发生变化引起的电流、电压变化的题,如不能直接用欧姆定律和串、并联电路特点直接求解,可考虑用方程解题。在设未知数时,尽量设电源电压、定值电阻等电路中不会变化的量。首先分析一下电路图,弄清电流表测量对象,同时可看出电压表示数为0V时,电流表示数最大为1A,电压表示数为4V时,电流表示数最小为0.5A。但根据已知,用欧姆定律和串联电路的特点能直接求出的量只有R0的最大电阻值,别的再无法直接求出,因此这里必须要列方程来解。

5、“欧姆定律”和生活实际的结合,提高学生观察生活的能力和解决实际问题的能力。

例5、下图是新型节能应急台灯电路示意图,台灯充好电后,使用时可通过调节滑动变阻器接入电路的阻值R改变灯泡的亮度,假定电源电压、灯泡电阻不变,则灯泡两端电压U随R变化的图象是( )

解析:灯L和滑动变阻器串联,电源电压U、灯泡电阻 不变。当滑片向左移动时,滑动变阻器的电阻变大,即电路中的总电阻变大,由 知,电路中的电流I会变小,则灯泡两端电压 也会变小。

答案:选C。

结论:授之以鱼不如授之以渔,以上总结的题目类型可能并不完全,但只要学生能掌握并真正理解欧姆定律的内涵,就能很好的应用它来解决生活实际中真正出现的问题,把理论转化为实践才是学习的真正目的。

参考文献

[1] 谢妮.欧姆定律教学的优化设计[J]. 职业

[2] 邹冠男.欧姆定律知识梳理[J]. 中学生数理化(八年级物理)(人教版)

篇6

关键词:欧姆定律;电流;电压;电阻

中图分类号:G633.7 文献标识码:A 文章编号:1992-7711(2014)02-0086

实验是从感性到理性认识的过程,是从具体到抽象、从简单到复杂的思维形成过程,符合学生的身心特点和认识过程。因此,实验既是学习物理的重要基础,又是物理教学的重要内容、方法和手段。利用实验可以培养学生多方面的能力,通过对实验原理的理解、观看或亲自动手进行操作、信息(现象或数据)的获取、分析综合等过程,可以培养学生的多种能力。

欧姆定律是初中物理电学的重要定律之一,它把电流、电压和电阻三者融为一体,它在电学中起到桥梁和纽带的作用,同时欧姆定律的探究能力培养、考查学生的综合能力,所以对欧姆定律的探究也是中考中的高频考点。

例:某实验小组的同学探究电流与电压的关系时,用到如下器材:电源为2节干电池,电流表、电压表各1只,定值电阻(5Ω、10Ω、15Ω各1只),滑动变阻器1只(标有“10Ω,2A)字样,开关1个,导线若干(如图1所示);设计的电路如图2所示,

(1)在这个实验中,电压表应选用的量程为 ,电流表应选用的量程为 。

(2)这个实验的探究方法是 ,其中被控制的变量是 ,下面是他们获取的几组实验数据。

(3)实验中他们选用的定值电阻为 Ω。

(4)请在图3的坐标系上画出电流随电压变化的图象。

(5)请根据电路图用笔画线代替导线,将图1中的元件连成电路.要求:滑动变阻器的滑片向左移动时,电流表的示数变大。

(6)分析表中的数据或图象,可得到的初步结论是:

解析:(1)根据题目中给定的条件可知:电路中的电源为2节干电池,所以最大电压为3V,因此电压应选量程为0~3V(或3V);当滑动变阻器的滑片在最左端时,电路中的电阻最小,由欧姆定律得电路中的最大电流:I最大=■=■=0.6A,所以电流表应选量程为0~0.6A(或0.6A)。

(2)由于电路中的电流与导体导体两端的电压有关,也和这段导体的电阻有关,所以要探究电流与电压、电阻三者关系时应采用的探究方法是控制变量法。这个实验是探究电流与电压的关系,所以应控制的变量是电阻。

(3)在这个实验中所给的定值电阻有三个,那究竟用的那个电阻呢?这就要根据表中的实验数据,通过计算来确定。I=■,R=■=5Ω。所以他们选择的定值电阻应该为5Ω。

(4)根据表中的实验数据,在坐标系上将对应的电流值、电压值进行描点,再用笔画线将这些点连接起来,便画出了电流随电压变化的图象,如图答案⑷所示。

特别注意:在I-U图象中,当电压为0时,电流也为0,所以坐标原点为0。但根据电流、电压值所描绘的线表示电阻,而电阻是导体的一种属性,它的大小由导体的长度、横截面积、材料和温度决定,而与电流、电压无关,所以这条线不能以过坐标原点,如果经过坐标原点,那就会得出电压为0,电流为0时,电阻也为0的这种错误结论。

(5)电流表要串联在电路中,电压表要并联在被测电阻两端,又因为滑动变阻器的滑片向左移动时,电流表的示数变大,即说明当滑片向左移动时,电路中的电阻减小。所以滑动变阻器电阻丝上的两个接线柱应接左端那个(无论金属杆上的两个接线柱接哪个),金属杆上的两个接线柱可任意接,如图答案⑸所示。

(6)不论是从表中的数据还是从图象分析都可以得出结论:在电阻一定时,导体中的电流与导体导体端的电压成正比。

答案:(1)0~3V(或3V),0~0.6A(或0.6A)。(2)控制变量法,电阻。(3)5Ω。(4)如图答案(4)所示。(5)如图答案⑸、⑹在电阻一定时,导体中的电流与导体导体端的电压成正比。

点评:本题从器材的选择、元件的使用方法、电路的连接、滑动变阻器的使用方法、数据的分析与处理、作I-U图象及分析归纳得出科学合理的实验结论等进行了一系列的考查。这是一道欧姆定律探究题最全面的题,难度较大,综合性也很强的实验题目,考查了学生的实验技能,很好地体现了新课程标准理念。

篇7

关键词:欧姆定律;学习能力;培养

中图分类号:G633.7 文献标识码:A 文章编号:1992-7711(2016)12-0057

《欧姆定律》作为重要的物理规律,不仅是电流、电阻、电压等电学知识的延伸,还揭示了电流、电压、电阻这三个重要的电学量之间的必然联系,是电学中最基本的物理规律,是分析解决电路问题的金钥匙。在利用欧姆定律进行计算时,强调电流、电压、电阻这三个物理量的同时性和同一性;加强学生对于这些问题的理解,对于后续课程测量电阻、电功、电功率的学习,起到良好的促进作用。因此,对于电学中的第一个规律的学习,教师应该注重学生学习能力的培养。

一、在教学中发现学生容易存在的问题分析

1. 进行电学实验探究时,往往要求学生设计电路图,很多学生在设计时不能一次将电路图设计完整。

2. 从学生做题情况来看,学生不容易弄清楚控制变量法的作用。在历年中考题中,常有这样的题目:在探究电流与电阻的关系时,如将电路中的定值电阻从5欧姆换成10欧姆,将怎样保证电压不变?如何移动滑动变阻器?此类题目的得分率不高。

3. 在运用欧姆定律进行计算时,对于复杂一点的电路,如电路中的用电器不止一个时,学生往往容易将公式写出,数据生搬硬套,乱算一通。这样的习惯对于后续课程――电功、电功率的计算也产生了不良的影响。

针对学生的以上问题,笔者认为原因主要出在以下几个地方:(1)对问题的分析缺乏全面的考虑。(2)对于控制变量法的应用不够熟练,但电路分析有待加强。(3)对于各个物理量之间的因果关系没有弄清楚。没有理解到电阻或电压的变化引起了电流的变化。(4)没有理解欧姆定律的同时性和同一性。

二、结合教科版教材,如何在教学中培养学生的学习能力

笔者认为,结合教材情况以及学生的学习情况,我们可以在以下几个地方做好细节处理,让学生养成良好的学习习惯,培养学生学习能力的目的。

1. 实验设计:分步探究,尝试错误,完善设计,培养学生养成缜密的思维能力

在第一课时的教学中,教学重点在于如何通过实验探究得出电流与电压、电阻之间的关系。教师在提出电流大小与什么因素有关的问题时,学生根据以往的学习经验,猜想出电压、电阻会影响电流的大小。教师应引导学生用控制变量法探究它们之间具体有什么关系。从而将所探究的问题分为两个小课题来进行,即电流与电压的关系和电流与电阻的关系。在进行第一个小课题:探究电流与电压的关系时,学生在设计电路图的时候,容易根据自己的经验将电流表、电压表接入电路,而没有接入滑动变阻器。

教师不必及时指出不足,可以进行展示以后,再提问怎样改变电路中定值电阻两端的电压?这时学生可能会想到要用改变电源电压的方法,但是这样做不够方便。如果用滑动变阻器来调节是最方便的。这时才设计出准确的电路图。学生根据之前所学的串联分压的知识,很容易理解当滑动变阻器的阻值发生变化的时候,电路中定值电阻两端的电压会发生变化,而电流也会随之发生改变。同样,设计好的电路图也可以用于第二个课题的探究。这种不断地让学生对问题作出反应,不断调整自己的设计方案,最后走向完善,这样做符合学生的认知规律。

2. 重视实验探究的过程,培养学生的动手能力以及发现问题后寻找解决方法的能力

对于两个课题的实验,必须由学生自己在教师的引导下完成。绝不能因为赶教学进度而由教师代劳,让学生只是简单记下数据,分析数据得出规律。学生只有在实验过程中才会发现问题。如课题二:在电压不变时,探究电流与电阻的关系中,学生就会发现没有移动滑动变阻器,而将定值电阻改变时,电压表的示数也会随之发生改变。那如何保证电压表的示数不变呢?学生才会自己去想办法通过移动滑动变阻器来完成。那滑动变阻器的移动是否有规律可循?学生通过自己的实验,才会发现其中的规律。有了这样的经验以后,进行理论分析问题也就变得容易了。而具备了动手能力及解决问题的能力后,在后续课程测电阻、测电功率的学习中,也就较为轻松了。

3. 对于实验结论的得出,要把握其中的因果关系,培养了学生的逻辑思维能力

虽然在之前的学习中,学生已经认识到了电压是形成电流的原因。同时也认识到了导体对电流有阻碍作用,也即是导体存在电阻这样的观念。但是放到欧姆定律的学习中,尤其是对公式R=U/I的理解上,学生容易认为电阻与电压成正比,电阻与电流成反比,也就是认为电压和电流的大小会改变电阻的大小。学生会单纯从数学的角度来理解物理公式,而不能把握三者之间的因果关系。也就是电流变化引起了电阻变化还是电阻变化引起了电流变化?这也是我们之前做实验的过程中,让学生分析的根本目的。教师应该要进行提问,由学生来思考变形公式的意义,可以培养学生的逻辑思维能力。对于物理规律的理解,要引导学生理解规律所反映的逻辑关系。

4. 对于欧姆定律内容的学习要注意抓住关键字词,培养学生阅读能力

笔者认为,对于欧姆定律的内涵的讲解,教材上介B是不够的,还需要做补充。我们可以教会学生,从规律或者基础概念中抓住关键字词进行分析。从而到得欧姆定律的适用范围以及应用条件的同时性和同一性原则。

篇8

⑴请在方格纸上画出电流随电压变化的图象(应为“图像”,下同)。

⑵分析图象,可得出什么结论?

⑶小明在与其他实验小组同学交流时,又得到了电压为6 V时的相关数据如下表(作者又补写了“表2:U=6V”)所示:分析这些数据,可得出什么结论?

说明:该题没有给出答案。推测的答案应为:

⑴图像如右所示;

⑵电阻一定时,导体中的电流跟导体两端的电压成正比。

⑶电压一定时,导体中的电流跟导体的电阻成反比。

浅见1:分析图像或“表1:R=5Ω ”中的6组对应的3个数据,不仅能够得出教科书里编写的“结论”内容:“电阻一定时,导体中的电流跟导体两端的电压成正比”,而且还可以得出教科书里没有编写的、更具有普遍意义和实用价值的如下3条结论:

对于同一段导体均有:⑴U=IR;⑵I=U/R;⑶R=U/I=定值!

浅见2:我们强调“R=U/I=定值”的意义在于:

⑴它能简明、正确、完整的“表达出:某段导体中的I 跟 U 与 R三者之间的定量关系.”!正如西德5―9(10)年级(国民学校)《物理》课本(塞尔肖夫―乌劳贝尔著、安文铸译,文化教育出版社1982.7.第1次印刷本)第189页里写的:“在一个通电导体上的电压和导体中的电流强度之比是一个固定的值(常数),这个关系叫欧姆定律”!众所周知:欧姆是德国人!对照一下我国物理课本里欧姆定律的条文,应该有所质疑吧!

⑵在常规教学中,人们总把“R = U / I”说成是欧姆定律公式“I = U / R”的变形式或称“导出式”。从上面的分析可知:“R = U / I”与“I = U / R”、同样都是“实验结论表达式”、是并列关系!“R = U / I = 定值”、更是医治“I = U / R,R = U / I(因受“欧姆定律”不科学表述的误导)R跟U 成正比、R跟I成反比”错误观点的灵丹妙药(注:参看课本第29页第6题。欧姆定律的表述,不能丢掉前提条件、只讲实验结果!正确的表述应为:

①“某段电路中的电流,等于这段电路两端的电压除以这段电路的电阻”;或简化为“电路中的电流,等于它两端的电压除以它的电阻”;或“导体中的电流,等于它两端的电压与其电阻的比值”。

②假若非“要保留成什么比”,那么欧姆定律内容只能这样表述:“导体中的电流,当电阻一定时,跟这段导体两端的电压成正比;当两端的电压不变时,跟这段导体的电阻成反比”;或简化为“导体中的电流,跟这段导体两端的电压与这段导体电阻的比值成正比”;或“导体中的电流,跟它两端的电压与其电阻的比值成正比”)。

⑶承认“R = U / I”是一条独立的科学结论,那就为“用伏安法测电阻”的实验原理又提供了一条简明的理论依据:勿须再书写“I = U / R ”(R = U / I)。

浅见3:该探究实验设计的最大错误是:5Ω定值电阻“允许通过的最大电流是1.5A”!通过2.4A电流,它将变成P=UI=I2R=28.8w≈30w的电烙铁啦!此时温度对金属电阻变大的影响可以忽略不计吗?由此可知:“表1:R=5Ω ”里的6组对应的的数据,纯属凭空想象填写的,根本不是真实的实验记录!

浅见4:该探究实验为什么不能采用“低电压、弱电流的设计原则”呢?比如:U值顺次取0.2、0.4、0.6、0.8、1.0、1.2V……,1节干电池足够用啦!则对应的I值依次为:0.04、0.08、0.12、0.16、0.20、0.24A……。而且完全可以避免表A要选用“0~3A”、表V要选用“0~15V”的大量程!从而能够提高测量的精确度(注:实验室使用的2.5级直流电表,本身允许误差多达“±0.75个分度值”。所以探究时勿须考虑表针偏转多大误差最小)。

浅见5:分析“表2:R=5Ω ”表中前6组数据,不仅能够得出“电压一定时,导体中的电流跟导体的电阻成反比。”――教科书里编写的“结论”内容,而且仍然可以得出教科书里没有编写的、更具有普遍意义和实用价值的如下3条结论:

对于同一段导体均有:⑴U=IR;⑵I=U/R;⑶R=U/I=定值!