时间:2023-08-04 09:19:15
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇自然灾害危险性分析,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
【关键词】地质灾害;风险评价;方法
中图分类号:F407.1 文献标识码:A 文章编号:
一、前言
目前我国有许多方法可以进行地质灾害评价,在传统的成因机理分析和统计分析方法外,破坏损失评价、危险性评价、风险性评价、防治工程效益评价等方法也是进行地质灾害评价的主要方法。地质灾害风险评价的应用前景良好,其发展方向也走向评价定量化、综合化,管理空间化。作为风险管理和减灾管理基础的风险评价,其成果可广泛的在国土资源规划,工程选址,地质灾害方面以及制定救灾应急措施和保护环境上进行运用。
二、地质灾害风险定义及其主要特征
目前对灾害风险这一概念有不同的定义和解释。大部分权威性辞典的定义为“面临的伤害和损失的可能性”;“人们在生产劳动和日常生活中,因自然灾害和意外事故侵袭导致的人身伤亡、财产破坏与利润损失”。1984年,联全国教科文组织UNESCO将其定义为:由于某特定的自然灾害对经济、社会、人口所可能导致的损失。
基于自然灾害风险的普遍意义和地质灾害减灾需要,将地质灾害风险定义为:地质灾害活动及其对人类造成破坏损失的可能性。它所反映的是发生地质灾害的可能机会与破坏损失
程度。
地质灾害风险具有一般自然灾害风险的主要特点,主要表现在下述二个方面。
一是风险的必然性或普遍性。地质灾害是地质动力活动、人类社会经济活动相互作用的结果。由于地球活动不断进行,人类社会不断发展,所以地质灾害将不断发生。从这一意义上说,地质灾害乃是一种必然现象或普遍现象。
二是风险的不确定性或随机性。地质灾害虽然是一种必然现象,但由于它的形成和发展受多种自然条件和社会因素的影响,所以具体某一时间,某一地点,地质灾害事件的发生仍是随机的,即在什么时候、什么地点发生何种强度(或规模)的灾害活动,将导致多少人死亡或造成多大损失,都具有很大的不确定性。
地质灾害风险特征是构建地质灾害风险评价理论与方法的基础或出发点。基于地质灾害风险的复杂性,对地质灾害风险认识与评价是一个不断深化、完善的理论研究与技术方法的创新过程。
三、地质灾害风险构成与基本要素
地质灾害风险程度主要取决于两方面条件:一是地质灾害活动的动力条件———主要包括地质条件(岩土性质与结构、活动性构造等)、地貌条件(地貌类型、切割程度等)、气象条件(降水量、暴雨强度等)、人为地质动力活动(工程建设、采矿、耕植、放牧等)。通常情况下,地质灾害活动的动力条件越充分,地质灾害活动越强烈,所造成的破坏损失越严重,灾害风险越高。二是人类社会经济易损性,即承灾区生命财产和各项经济活动对地质灾害的抵御能力与可恢复能力,主要包括人口密度及人居环境、财产价值密度与财产类型、资源丰度与环境脆弱性等。通常情况下,承灾区(地质灾害影响区)的人口密度与工程、财产密度越高,人居环境和工程、财产对地质灾害的抗御能力以及灾后重建的可恢复性越差,生态环境越脆弱,遭受地质灾害的破坏越严重,所造成的损失越大,地质灾害的风险越高。上述两方面条件分别称为危险性和易损性,它们共同决定了地质灾害的风险程度。基于此,地质灾害的风险要素亦由危险性和易损性这两个要素系列组成。危险性要素系列包括地质条件要素、地貌条件要素、气象条件要素、人为地质动力活动要素以及地质灾害密度、规模、发生概率(或发展速率)等要素。易损性要素系列包括人口易损性要素、工程设施与社会财产易损性要素、经济活动与社会易损性要素、资源与环境易损性要素。
四、地质灾害的主要评价方法、内容及目的
1、成因机理分析评价。以定性地评价地质灾害发生的可能性和可能活动规模为目的的成因机理分析评价,主要内容是分析历史地质灾害的形成条件、活动状况和活动规律,造成地质灾害的确定因素,以及可能造成地质灾害的因素,根据地质灾害活动建立模型或者模式。
2、统计分析评价。统计分析评价的目的是对地质灾害危险区的范围、规模、或发生时间采用模型法或规律外延法进行评价。其内容包括是造成历史地质灾害原因、灾害的活动状况以及活动有何规律,对地质灾害的活动规模、频次、密度进行统计,以及分析地质灾害的主要影响因素,对地质灾害活动建立相关的数学模型或周期性规律。
3、危险性评价。危险性评价是对以往的地质灾害活动和将来发生地质灾害的概率进行评价,以及对地质灾害发生时将产生的危险的程度的给予评价。其主要内容包括以下两个方面:
(一)对包括大小、密度、频次在内的以往地质灾害活动的程度进行客观评价。
(二)对可能影响地质灾害的地形地貌条件、地质条件、水文条件、气候条件、植被条件以及人为活动等地质灾害的可能影响因素进行评价。
4、破坏损失评价。破坏损失评价其目地在于对灾害的历史破坏进行评价,并对损失程度以及期望损失程度进行分析。其评价的内容主要指以下两个方面:
(一)在结合地质灾害危险性评价和易损性评价的之后,综合地质灾害活动概率、破坏范围、危害强度和受灾体损失等内容进行评价。
(二)对由地质灾害带来的的人口、经济以及资源环境的破坏损失程度进行评价。
5、风险性评价。风险性评价包括了危险性评价和易损性评价的全部内容,对地质灾害发生的概率进行分析,并对不同条件下反生的地质灾害可能造成的危害进行分析。风险性评价的目的是对发生在不同条件下的地质灾害给社会带来的各种危害程度进行评价。
6、防治工程效益评价。不同于以上各种评价方法,防治工程效益评价是评价已选定的防治措施的效果,同时对措施进行经济评价和评价其在技术上的可行性。优化分析多种防治预案并存的项目,提高防治方案的经济合理程度,使得措施在技术上可行,达到最优化效益。而防治工程效益评价的根本目的是对地质灾害防治措施的效果是否符合经济合理性和科学性进行评价。
五、地质灾害风险评价实施过程以及其评价方法的发展趋势分析
1、实施过程分析
一是根据评价区具体条件和风险评价的目的,建立关于地质灾害风险评价的评价系统,制定风险分区的原则和和评价应用方法,建立指标体系以及评价模型。
二是对基础数据进行全面调查,并结合风险评价需要进行统计分析,对各种基础图件进行编制,建立地质灾害风险评价表。
三是将危险性构成、易损性构成及防治能力三者结合,进行危险性分析、易损性分析,并在此基础上,对期望损失加以分析。
四是对地质灾害可能造成的人口伤亡、经济损失以及资源环境的破坏综合进行风险评价。
五是对评价区风险的分布特点和形成条件进行分析,在兼顾社会发展需要的前提下,提出能减少灾害的建议和对策。
2、发展趋势
作为当前国际地质灾害研究领域的重点课题——地质灾害风险评价研究,是对地质灾害活动与人类社会关系进行全面分析、对地质灾害的破坏效应定量化评价的关键问题之一。其发展的基本趋势是:评价上向定量化,综合化、管理空间化的方向发展。主要表现为:
一是由过去的历史与现状分析转变为预测与研究相结合的方式。二是从单独个体分析走向个体与区域研究相结合分析。三是由以往的定性分析发展为定量分析四是将单项要素分析发展为综合要素评价。五是风险评价与减灾管理相结合取代以往单纯的风险评价理论,风险评价与防治不再独立存在,使得风险评价更好的为社会经济建设和减灾管理而服务。
六、结束语
综上,地质灾害的风险评价有利于对环境进行保护和贯彻我国的可持续发展。地质灾害一方面是自然因素导致,另一方面则是由于人类开发利用资源环境的不合理性,因此,对资源环境进行合理开发利用、避免地质灾害的发生或降低地质灾害带来的损失是保持国民经济可持续发展的重要方面。因此,应该不断的加强对地质灾害的风险评价的分析和研究。
参考文献:
[1]陈毓川,赵逊,张之一等.世纪之交的地球科学 ———重大地学领域进展[M] .北京:地质出版社,2000.
[2]向喜琼,黄润秋.地质灾害风险评价与风险管理[J] .地质灾害与环境保护, 2000 ,11 (1) :38 - 41.
关键词:模糊综合评判法;公路;崩塌;危险性;评价
Abstract:highway collapse hazard is the result of many factors. This paper, according to the cause of the disaster has collapse mechanism and the main influence factors, from regional geological structure, features and regional environmental characteristic slope three choices risk evaluation of master control factor, and eventually selected joints spacing, slope lithology, slope body structure, slope height, slope, rainfall (24 hours quartile rainfall 25 mm number of days), and the vegetation coverage and strong earthquake of eight main control factors, creating the highway collapse hazard evaluation index system. Based on the fuzzy comprehensive evaluation method, establishes a highway collapse hazard evaluation model. USES ahp evaluation index system of each attribute weights. Based on risk index proposed evaluation standard. The last two highway project example for empirical research.
Keywords: fuzzy comprehensive evaluation method; Highway; Collapse; Risk; evaluation
中图分类号:X734文献标识码:A 文章编号:
1、前言
我国公路建设成就辉煌,公路总量持续增长、路网结构进一步改善、公路技术等级和路面等级进一步提高。但同时,由于我国地域广阔,自然条件差异明显,各类自然灾害频发,使公路在建设和运营过程中遇到了一系列的灾害问题,其中,崩塌作为公路地质灾害主要类型之一,给国家和人民造成了巨大的损失。
以陕西省为例,2007年7月4日上午12时至7月5日晚11时,汉中市普遍降暴雨,暴雨导致国道108线的佛坪至洋县段塌方118处/102905.3m3,冲毁挡护墙44处/20768.55m3,直接经济损失1079.38多万元。2010年7月16至18日,安康市出现的持续强降雨过程,致使全市10县全面受灾,岩石坍塌854处/405463m3,直接经济损失达8.809亿元。
因此,开展公路崩塌类灾害风险评价研究工作对提高公路灾害管理和整治效率,最大限度地减少灾害损失具有重大的现实意义。
2、公路崩塌灾害危险性主控因子分析
2.1公路崩塌灾害概述
崩塌是指陡峻山坡上岩土体在重力和其他外力(地震、水、风、冰冻、植物等)共同作用下,发生的急剧的倾落运动。多发生在大于60°~70°的斜坡上。崩塌体与坡体的分离界面称为崩塌面,崩塌面往往就是倾角很大的界面,如节理、片理、劈理、层面、破碎带等。崩塌体的运动方式为倾倒、崩落。崩塌体碎块在运动过程中滚动或跳跃,最后在坡脚处形成堆积地貌——崩塌倒石锥。崩塌倒石锥结构松散、杂乱、无层理、多孔隙;由于崩塌所产生的气浪作用,使细小颗粒的运动距离更远一些,因而在水平方向上有一定的分选性。
崩塌灾害具有速度快(一般为5~200m/s)、规模差异大(小于1m3~100m3)及崩塌下落后,崩塌体各部分相对位置完全打乱,大小混杂,形成较大石块翻滚较远的石堆等特征。
2.2主控因子
公路崩塌灾害是众多因素综合作用的结果,影响其危险性因素涉及区域地质条件、地形地貌特征、气象水文条件、公路工程建设与运营以及人类活动等诸多方面。这些影响因素有宏观层面的,也有微观层面的;有自然的,也有人为的。在前人研究成果的基础上,依据分主次、分层次、共性与个性兼顾、简明实用、可操作性和针对性强等原则,按照崩塌类灾害的致灾机理和主要影响因素,从区域地质构造、边坡特征和区域环境特征三个方面选择危险性主控因子[1-3]。
区域地质构造方面
论文选择节理间距、边坡岩性和坡体结构三方面作为危险性评价主要因子。
(2)边坡特征方面
论文选择边坡高度和边坡坡度两方面作为危险性评价主要因子。
(3)区域环境特征方面
论文选择降雨(24小时降雨量≥25mm的天数)、植被覆盖度和地震强烈度三方面作为危险性评价主要因子。
3、评价方法
3.1模糊综合评判法
模糊综合评判(Fuzzy Comprehensive Evaluation)最早是由我国学者汪培庄提出的,它的实质就是应用模糊变换原理和最大隶属度原则,考虑被评价目标的主要因素或多个影响因素,对其所作出的综合评价。可分为单级模糊综合评判和多级模糊综合评判。
(1)基本理论
①单因素评判矩阵
假设有两个区域分别为:
因素集:,为评价因素或称为评价指标;
评语集:,为评语等级或类别。
对单个因素的评判,得到上的模糊集,所以从到的一个模糊映射 。根据模糊映射可以确定一个模糊关系矩阵称其为单因素评判矩阵。
②隶属度与隶属函数
一般。表示某个评价对象按第个评价指标衡量对第个评语等级的隶属度。
③综合评判结果集
即为综合评判结果集,为某个评价对象属于第个评语等级的隶属度,根据最大隶属度读取原则,可初步确定某个评判对象的归属。
⑤最大隶属度原则:其数学表达式为:设。若有,使则认为相对隶属于。
3.2权重确定
层次分析法(简称AHP法)是美国运筹学家萨蒂(T.L.Saaty)在20世纪70年代提出的一种多目标、多准则的决策分析方法,是一种定量分析与定性分析相结合的有效方法。
“风险”一词起源于保险业,包含有多种含义,最常用的含义有两种:一种是指某个客体遭受某种伤害、损失、毁灭或不利影响的可能性,二是指某种可能发生的危害。因此,自然灾害风险也包括两种含义:一是不同程度自然灾害发生的可能性,二是自然灾害给人类社会可能带来的危害。近些年有学者对自然灾害风险概念进行了新的讨论。黄崇福对目前国际上较有影响的灾害风险定义归为三类:①概率类定义。②期望损失类定义。③概念公式类定义。并指出此三类风险定义均不能或无法表达风险的内涵,又进而提出了以情景为基础的自然灾害风险的定义,即自然灾害风险是一种未来不利事件的情景,而该情景是由自然事件或力量为主因所导致的。倪长健认为该定义仍有未能充分揭示自然灾害风险和自然灾害系统之间的关系、未能充分表征自然灾害风险的基本内涵、不便于为定量风险评估提供明确依据等不足之处,并提出了自然灾害风险的新定义:自然灾害风险是由自然灾害系统自身演化而导致未来损失的不确定性。总体上讲,灾害风险评估是一项在灾害危险性、灾害危害性、灾害预测、社会承载体脆弱性、减灾能力分析及相关的不确定研究的基础上进行的多因子分析工作。自然灾害风险评估常常存在在实例分析时存在界定不清、集成模式滥用等诸多问题,而其理论基础至今仍比较薄弱是导致以上现象的主因。要想找到科学有效的自然灾害风险评估方法,就必须对自然灾害风险系统的结构及其作用机制有清晰的认识和把握。
2自然灾害风险系统要素和风险形成机理
自然灾害风险系统主要由承灾体、孕灾环境、致灾因子等要素组成。承灾体系自然灾害系统的社会经济主体要素,是指人类及其活动所组成的社会经济系统。承灾体受致灾因子的破坏后会产生一定的损失,灾情即是其损失值的大小,而之所以会有损失,根本原因是承灾体有其核心属性———价值性。通常脆弱性是指承灾体对致灾因子的打击的反应和承受能力,但学术界目前对于脆弱性的认识并不统一。孕灾环境主要包括自然环境与人文环境,位于地球表层,是由大气圈、水圈、岩石圈等自然要素所构成的系统。孕灾环境时时刻刻都在进行着物质和能量的转化,当转化达到一定条件时会对人类社会环境造成一定影响,称之为灾变,这种灾变即为致灾因子,基于致灾因子的相关研究称之为风险的危险性分析,故危险性其实是表达了致灾因子的强度、频率等因素,比较有代表性的是地震安全性评价,在对孕灾环境和历史灾情的分析研究后以超越概率的形式给出地表加速度来表达某一地区或某一场地的致灾因子危险性。相比于孕灾环境和承灾体之间的复杂关系,影响致灾因子的危险性大小的来源相对单一,完全由孕灾环境决定。因此,由孕灾环境、承灾体、致灾因子等要素组成的自然灾害系统,是一个相互作用的有机整体,揭示的是人类社会与自然的相互关系,承灾体可以影响孕灾环境,孕灾环境通过致灾因子影响承灾体,三者不仅存在因果关联,在时间、空间上也相互关联,密不可分。而关于自然灾害风险机理的表达,20世纪90年代以来,1989年Maskrcy提出自然灾害风险是危险性与易损性之代数和;1991年联合国提出自然灾害风险是危险性与易损性之乘积,此观点的认同度较高,并有广泛的运用;Okada等认为自然灾害风险是由危险性、暴露性和脆弱性这三个因素相互作用形成的;张继权等则认为:自然灾害风险度=危险性×暴露性×脆弱性×防灾减灾能力,该观点亦被引入近年的多种灾害风险评估。
3数学方法在灾害风险评估中的应用
国内外学者对风险评估中使用的数学方法做过系统的总结。张继权等曾对国内外气象灾害风险评价的数学方法做了较系统的总结,葛全胜等亦对自然灾害致险程度、承灾体脆弱性及自然灾害风险损失度等方面的评估方法做过评述。尽管这些方法因针对的灾种不同而不尽相同(如用于地震灾害的超越强度评估法、构造成因评估法等,用于洪灾的水文水力学模型法、古洪水调查法等),但总体而言,数学方法应用及风险定量化表达已成趋势:
①概率统计:以历史数据为基础,考虑自然灾害的随机性,估计灾害发生的概率,应用多种统计方法(极大似然估计、经验贝叶斯估计、直方图估计等)拟合概率分布函数。由于小样本分析结果稳定不好,为避免与实际相差过大,故要求历史样本容量较大,常应用于台风、暴雨、洪灾、泥石流、地震等灾害的风险评估。
②模糊数学:以社会经济统计、历史灾情、自然地理等数据为数据源,从模糊关系原理出发,构造等级模糊子集(隶属度),将一些边界不清而不易定量的因素定量化并进行综合评价,利用模糊变换原理综合各指标,能较好地分析模糊不确定性问题。该方法在多指标综合评价实践中应用较为广泛,但在确定评定因子及隶属函数形式等方面具一定的主观性,现主要应用于综合气象灾害、洪灾、泥石流、地震、综合地质灾害等等风险评估。
③基于信息扩散理论:以历史灾情、自然地理、社会经济统计等数据为数据源,是一种基于样本信息优化利用并对样本集值化的模糊数学方法,遵循信息守恒原则,将单个样本信息扩散至整个样本空间。该方法简单易行,分析结果意义清楚,虽然近年来受到较多学者推崇和研究,但对扩散函数的形式及适用条件、扩散系数的确定等尚待进一步探讨。该方法已有运用于低温冷害、台风、暴雨、洪灾、旱灾、地震、火灾等灾害的风险评估。
④层次分析:该方法来源于决策学,是一种将定性分析与定量分析结合的系统分析方法,以历史灾情、社会经济统计、自然条件等数据为数据源。它利用相关领域多为专家的经验,通过对诸因子的两两比较、判断、赋值而得到一个判断矩阵,计算得到各因子的权值并进行一致性检验,为评估模型的确定提供依据。该方法系统性强、思路清晰且所需定量数据较少,对问题本质分析得较透彻,操作性强。该方法已经应用于综合地质灾害、洪灾、滑坡、草原火灾等灾害的风险评估中。
⑤灰色系统:以历史灾情、自然地理等数据为数据源,以灰色系统理论为基础,应用灰色聚类法划分灾害风险等级。算法思路清晰,过程简便快捷而易于程序化,但争议较大,故在国外研究中运用较少,在国内综合地质灾害、风暴潮、洪灾等灾害的风险评估中有所应用。
⑥人工神经网络:以历史灾情、自然地理、社会经济统计数据为数据源。选定典型评估单元(训练样本),将经过处理后的风险影响因子的数值作为输入,通过训练获得权值和阀值作为标杆;然后将其余单元的数据输入训练后的神经网络进行仿真,进而获得各个单元的风险度。其特点和优势是基于数据驱动,可较好地避免评估过程中主观性引起的误差,但因收敛速度对学习速率的影响会导致训练结果存在差异,且其“黑匣子”般的训练过程难以清楚解释系统内各参数的作用关系。该方法目前已经应用于洪灾、泥石流、雪灾、地震、综合地质灾害等灾害的风险评估工作中。
⑦加权综合评价:同样以社会经济统计、历史灾情、自然环境等数据,对影响自然灾害风险的因子进行分析,从而确定它们权重,以加权的、量化指标的指标进行综合评估。该方法简单易行,在技术、决策或方案进行综合评价和优选工作中有广泛运用,但需指标赋权的主观性仍是难以回避的问题。该方法目前应用于台风、暴雨、洪灾、综合地质灾害、生态灾害、草原火灾等自然灾害风险评估工作中。(以上几种方法的综合比较参考叶金玉等总结)各种数学工具的引入不仅为自然灾害评估方法注入了新的活力,同时也让人看到各具特色的数学方法是对应着不同的自然灾害种类,这也是一种提示:针对不同的自然灾害可以且应当有不尽相同的评估方法和研究途径,但这并不影响自然灾害风险评估走向定量化的步伐。
4多灾种综合风险评估
简单的说,自然灾害具有群发链发的特点,单一一种自然灾害往往伴随或者引发其他伴生(或次生)的灾害,对灾害链的研究,马宗晋等组成的研究小组曾给予高度的关注,史培军将其定义为某一种致灾因子或正态环境变化引起的一系列灾害现象,并将其划分为群发灾害链与并发灾害链两种,而群发的灾害或灾害链所引发的灾情必然是几种不同灾害与承灾体脆弱性共同作用所产生的结果,同时,还需认识到,不同自然灾害之间相互也会产生一定的影响,因此,对于这样的情况做单一灾种自然灾害风险评估显然是不合适的,自然灾害综合风险的评估就显得更有现实意义。综合自然灾害评估是风险和灾害领域的研究热点和难点,直到21世纪,学术界的研究方向才逐渐转向多灾种的风险评估。高庆华等认为,自然灾害综合风险评估是在各单类灾害风险评估基础上进行的,它的内容与单类灾害风险分析基本一致,所以采用的调查、统计、评估方法与单类灾害风险评估中用的方法基本相同,与单类灾害风险评估的根本区别是把动力来源不同、特征各异的多种自然灾害放到一个系统中进行综合而系统的评价,以此来反映综合风险程度;Joseph和Donald基于田间损失分布,提出以年总损失的超越概率来表示综合风险;而薛晔等却认为,在复杂的灾害风险系统中各个风险并非简单相加,对目前基本是单一灾种的简单相加的研究成果提出质疑,认为其缺乏可靠性,并以模糊近似推理理论为基础,建立了多灾种风险评估层次模型,对云南丽江地区的地震-洪水灾害风险进行了综合评估。
国内自然灾害综合风险评估研究成果不多,且模型也相对较简单,更好的评估方法也还有待探索,有待更多数学方法的引入。此外,在建立评估模型的同时,也要考虑到自然灾害风险的时空特性,即时间和空间上的分辨率,赵思健认为,同任何事物一样,风险也存在着时空差异,不同的灾种在不同时间、空间尺度上评估的方法和内容应有所区别,这个问题直接影响到该评估的时间有效性和适用范围。因此,由于在某一确定的评估方法下各单一灾种在同一时间空间尺度上的时间有效性并不一定一致,如何考虑这种不一致对评估结果所造成的影响是多灾种综合风险评估中亟待解决的难题之一。尽管有诸多问题困扰着多灾种自然灾害风险评估的发展,但相比单一灾种的风险评估,多灾种风险评估更符合实际生活中灾害群发的特点,其发展是防灾减灾工作的现实需要,决定了多灾种风险评估是风险学科发展的必然趋势。
5小结、展望
关键词 PRECIS;干旱致灾危险性;时空格局;SRES B2情景;西南地区
中图分类号 X43 文献标识码 A 文章编号 1002-2104(2013)09-0165-07
全球气候变化将给人类社会和自然系统带来诸多风险。气候变化风险源主要包括两个方面:一是平均气候状况(气温、降水、海平面上升等);二是极端天气事件(热带气旋、风暴潮、干旱、极端降水、高温热浪等)[1]。研究极端天气事件的潜在变化是评估未来气候变化对人类社会和自然系统影响的基础[2]。预估极端天气事件的方法之一是利用气象观测资料进行趋势外推[3-4]。尽管历史气象资料有很大的参考价值,但过去的气象统计信息只能部分地反映未来极端天气事件的发生概率。气候模式的不断改进为利用大气环流模式(GCMs)和区域气候模式(RCMs)预估极端天气事件及其影响提供了更可靠的工具[5-6]。已有一些学者应用气候模式来评估气候变化对洪水[7-8]、干旱[9]、风能[10]及水资源[11]可能造成的影响。但GCMs过粗的分辨率对于分析气候变化对区域尺度的潜在影响是不够的,而RCMs却能很好地反映影响局地气候的地面特征量和气候本身未来的波动规律,被认为是获取高分辨率局地气候变化信息的有效方法[12]。
伴随着20世纪下半叶的持续增暖,全球陆地大部分地区存在着干旱化的趋势。与全球干旱化一样,中国部分地区的干旱强度也呈现增加的趋势,干旱问题日益凸显,特别是进入21世纪以来,我国频繁出现了多个破历史记录的极端干旱事件。近些年,国内不少学者在干旱灾害方面进行研究[13-15],取得了大量成果,为区域防灾减灾提供了依据。但这些评估研究都是利用气象观测数据或历史灾情资料来开展的,并未考虑气候变化对未来极端干旱事件发生频率、强度和空间格局的影响。翟建青等[16]利用ECHAM5/MPI-OM气候模式输出的2001-2050年逐月降水量资料,选取标准化降水指数预估了3种排放情景下中国2050年前的旱涝格局,但其所使用的气候情景数据分辨率较粗(1.875°),且未能从灾害风险角度分析未来干旱致灾危险性变化。
未来我国西南地区干旱致灾危险性时空格局进行预估,以期为全球气候变化背景下该地区干旱灾害风险管理和区域发展规划提供科学依据。
1 研究数据与研究方法
1.1 数据来源
本研究所使用的气候情景数据来自中国农业科学院农业环境与可持续发展研究所气候变化研究组。该研究组应用英国Hadley中心开发的PRECIS模式,模拟了IPCC《排放情景特别报告(SRES)》中设计的B2情景下中国区域的气候变化(1961-2100年),其水平分辨率在地理坐标下为纬度0.44°×经度0.44°,在中纬度地区水平格点间距约为50 km。关于PRECIS物理过程的详细介绍可参阅文献[17]。许吟隆[12,18]等人利用ECMWF再分析数据和气象站点观测数据验证PRECIS对中国区域气候模拟能力的研究表明:尽管一些气候要素的模拟值存在一定偏差,但总体上PRECIS具有很强的模拟温度和降水的能力,基本能够模拟出各气象要素年、季的大尺度分布特征。因此,本文不再对PRECIS模式进行验证。
1.2 研究时段划分
本研究包括以下四个时段:现阶段为1981-2010年,未来分为近期(2011-2040年)、中期(2041-2070年)和远期(2071-2100年)三个时段。文中所选指标均以各时段30年的平均值进行探讨。
1.3 干旱致灾危险性评估方法
关于干旱的指标已有大量研究,但很多干旱指标只考虑了降水这一个变量(如连续无雨日数,SPI指数,降水Z指数,降水距平等),在全球变暖背景下,仅仅考虑降水因素是不够的。陆地表面干湿变化主要受降水和蒸发的影响,降水减少是干旱可能发生的一个重要方面;同时,地表温度的升高会大大增加水分的蒸发散,使得干旱更容易发生。因此,干旱指标应该能够衡量地表水分收支大小,本研究综合考虑降水和蒸发两个因素,采用地表湿润指数(降水量/潜在蒸散量)作为变量来评价旱灾危险性。
本文将干旱致灾危险性分为5个等级。具体的分级方法如下:首先,对现阶段西南地区各县域单元旱灾危险性指数从小到大进行排序,再按1∶2∶4∶2∶1的大致比例将487个县域单元分为5级;之后,提取现阶段两个相邻等级县域单元的旱灾危险性指数,以其平均值作为旱灾危险性的分级标准(如1、2级的分级标准是,将现阶段1级县域单元中最大的旱灾危险性指数与2级中最小的旱灾危险性指数求平均值所得);最后,按照此分级标准对未来三个时段干旱致灾危险性进行分级。
2 结果与分析
2.1 年均潜在蒸散量时空格局变化
如图1所示,在现阶段,我国西南地区年均潜在蒸散量平均为775.42 mm,最大值为1 100.21 mm,年均潜在蒸散量低于700 mm的地区占总面积的39.14%,主要分布在四川省、贵州省和重庆市,而高于1 000 mm的地区仅占6.91%,位于广西省南部和云南省的北部。到了近期,西南地区年均潜在蒸散量增大为819.78 mm,其最大值为1 149.45 mm,其中大于1 000 mm的地区面积增加到12.85%,约为现阶段的1.86倍。在中期,西南地区年均潜在蒸散量继续增加为854.99 mm,最大值增加到1 202.25 mm,年均潜在蒸散量低于700 mm的地区面积继续减小,而高于1 000 mm的地区则大幅增加为19.45%。到远期,西南地区年均潜在蒸散量增加到890.30 mm,最大值为1 265.00 mm,年均潜在蒸散量低于700 mm的地区仅占西南地区总面积的5.84%,主要位于四川省西北部,而高于1 000 mm的地区则扩展为26.06%,为现阶段的3.77倍之多,集中分布在广西和云南两省。可见,伴随着全球气温升高,未来我国西南地区年均潜在蒸散量将呈现持续增大的趋势,尤其是年均潜在蒸散量超过1 000 mm的面积将大幅增加。
2.2 年均地表湿润指数时空格局变化
从图2中可以发现,各个时段西南地区均呈现出“西干东湿”的格局,并且相对于现阶段,未来西南地区总体上将呈变干的趋势。在现阶段,西南地区年均地表湿润指数的平均值为1.51,其中地表湿润指数小于1.0的地区占总面积的12.79%,大于1.8的地区占26.66%。而在近期,西南地区年均地表湿润指数的平均值为1.46,小于1.0和大于1.8的地区分别占到总面积的14.68%和18.54%。中期阶段,西南地区年均地表湿润指数继续减小为1.42,大于1.8的地区缩小至总面积的12.48%。到了远期,西南地区年均地表湿润指数为1.39,其中小于1.0的地区占总面积的17.09%,大于1.8的地区占9.25%,分别较现阶段增加4.30%和减小17.41%。
2.3 干旱致灾危险性时空格局变化
在对降水和蒸发等各因素分析和数字化的基础上,依据评价模型(式3)在ArcGIS中对各因素图层进行计算并分级,得到西南地区县域尺度干旱致灾危险性评价结果(图3)。为详细了解西南地区干旱致灾危险性格局及其动态变化,表2列出了各时段旱灾危险性等级的县域个数和面积百分比。
可以发现,未来各时段西南地区干旱致灾危险性空间格局变化很大。相对于现阶段,未来西南地区旱灾危险性处于1、2级的县域个数和面积均呈现先减小后增大的趋势,而5级的变化趋势则与之相反,旱灾危险性明显增大。尤其在近期,处于旱灾危险性5级的县域个数由现阶段的49个快速增加为236个,面积也占到总面积的50.30%,分别是现阶段的4.82倍和6.24倍,是未来旱灾危险性最严重的时段。到中期和远期,西南地区旱灾危险性相对于近期总体有所减小,但处于5级的县域干旱致灾危险性值却有一定程度增大。需要指出的是,未来四川省西南部和云南省大部始终是西南地区旱灾危险性最高的区域,在今后的旱灾风险管理及防灾减灾规划中需尤为注意。
3 结 论
本文基于PRECIS区域气候模式,模拟了SRES B2情景下西南地区现阶段与未来时段潜在蒸散量和地表湿润指数的变化情况,并对该地区干旱致灾危险性的时空格局和变化趋势进行研究,得到以下主要结论:
(1)伴随着全球气温升高,未来西南地区年均潜在蒸散量将持续增大,尤其是年均潜在蒸散量超过
1 000 mm的面积将大幅增加;同时,未来西南地区年均地表湿润指数将逐渐减小,总体呈现变干的趋势。
(2)相对于现阶段,未来西南地区干旱致灾危险性明显增大,尤其是近期时段。在近期,西南地区旱灾危险性处于5级的县域个数和面积百分比分别为236个和50.30%,分别是现阶段的4.82倍和6.24倍。四川省西南部和云南省大部始终是该地区未来旱灾危险性最高的区域。
4 讨 论
自然灾害具有自然和社会双重属性,其中致灾危险性评估是从自然属性角度来评估干旱危险性。根据自然灾害风险分析理论[20],在危险性评价的基础上,进一步考虑社会经济因素,如人口、GDP、耕地、森林、草原、各种工程设施等的分布情况,以及遭遇干旱时这些承灾体的易损程度、社会防灾救灾能力等,就可以进行干旱灾害风险评价,辨识出高风险区,为各级政府开展风险管理提供科学依据。通过查阅《中国气象灾害大典》、《中国灾害性天气气候图集》以及近些年的灾情资料可以发现,本文对现阶段(1981-2010年)西南地区旱灾危险性的评价结果与实际灾情发生区域基本符合。但由于干旱灾害形成、发展及产生后果的复杂性,影响因子众多,目前的评价结果尚难以做到与实际情况完全吻合,有以下几方面原因:考虑因素的全面性、各干旱等级权重值的真实性、预估气候数据的误差以及评价模型的科学性等等,还需要不断深入研究,作出更符合实际、更加可信的干旱灾害风险评价。
本文只选取了SRES B2情景,虽然这一情景是比较符合我国中长期发展规划的气候情景,但仍然存在较大不确定性。在以后的研究中,需要进一步拓展降低不确定性的方法,在现有情景预估的基础上,进一步发展集合概率预测等技术手段,建立基于多情景多模式的集合概率预测情景方案。同时加强气候模式模拟研究,提高模拟数据精度,降低气候系统模式的不确定性[21]。
致谢:承蒙中国农业科学院农业环境与可持续发展研究所许吟隆研究员在论文数据方面提供的帮助,在此表示衷心的感谢!
参考文献
[1]IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability [M]. London: Cambridge University Press, 2007.
[2]Tebaldi C, Hayhow K, Arblaster J M, et al. Going to Extremes: An Intercomparison of Modelsimulated Historical and Future Changes in Extreme Events [J]. Climatic Change, 2006, 79(3-4): 185-211.
[3]徐新创, 葛全胜, 郑景云, 等. 区域农业干旱风险评估研究:以中国西南地区为例[J]. 地理科学进展,2011,30(7):883-890.
[4]周后福, 王兴荣, 翟武全, 等. 基于混合回归模型的夏季高温日数预测[J]. 气象科学, 2005, 25(5): 505-512.
[5]Zwiers R W, Kharin V V. Changes in the Extremes of the Climate Simulated by CCC GCM2 under CO2 Doubling [J]. Journal of Climate, 1998, 11(9): 2200-2222.
[6]贺山峰, 戴尔阜, 葛全胜, 等. 中国高温致灾危险性时空格局预估[J]. 自然灾害学报, 2010, 19(2): 91-97.
[7]Raff D A, Pruitt T, Brekke L D. A Framework for Assessing Flood Frequency Based on Climate Projection Information [J]. Hydrology and Earth System Sciences Discussions, 2009, 6: 2005-2040.
[8]贺山峰, 葛全胜, 吴绍洪, 等. 安徽省洪涝致灾危险性时空格局预估[J]. 中国人口・资源与环境, 2012, 22(11): 32-39.
[9]Blenkinsop S, Fowler H J. Changes in European Drought Characteristics Projected by the PRUDENCE Regional Climate Models [J]. International Journal of Climatology, 2007, 27: 1595-1610.
[10]Bloom A, Kotroni V, Lagouvardos K. Climate Change Impact of Wind Energy Availability in the Eastern Mediterranean Using the Regional Climate Model PRECIS [J]. Natural Hazards and Earth System Science, 2008, 8: 1249-1257.
[11]Zhu T J, Jenkins M W, Lund J R. Estimated Impacts of Climate Warming on California Water Availability under Twelve Future Climate Scenarios [J]. Journal of American Water Resources Association, 2005, 41(5): 1027-1038.
[12]许吟隆, 张勇, 林一骅, 等. 利用PRECIS分析SRES B2情景下中国区域的气候变化响应[J]. 科学通报, 2006, 51(17):2068-2074.
[13]卫捷, 陶诗言, 张庆云. Palmer干旱指数在华北干旱分析中的应用[J]. 地理学报, 2003, 58(增): 91-99.
[14]武建军, 刘晓晨, 吕爱峰, 等. 黄淮海地区干湿状况的时空分异研究[J]. 中国人口・资源与环境, 2011, 21(2): 100-105.
[15]He B, Lv A F, Wu J J, et.al. Agricultural Drought Hazard Assessing and Spatial Characters Analysis in China[J]. Journal of Geographical Sciences, 2011, 21(2): 235-249.
[16]翟建青, 曾小凡, 苏布达, 等. 基于ECHAM5模式预估2050年前中国旱涝格局趋势[J]. 气候变化研究进展, 2009, 5(4): 220-225.
[17]Jones R G, Noguer M, Hassell D C, et al. Generating High Resolution Climate Change Scenarios Using PRECIS [M]. Exeter: Met Office Hadley Centre, 2004.
[18]许吟隆, Jones R. 利用ECMWF再分析数据验证PRECIS对中国区域气候的模拟能力[J]. 中国农业气象, 2004, 25(1): 5-9.
[19]Allen R G, Pereira L S, Raes D, et al. Crop EvapotranspirationGuidelines for Computing Crop Water RequirementsFAO Irrigation and Drainage Paper 56 [M]. Rome: United Nations Food and Agriculture Organization, 1998.
关键词:管道运输 预先危险性分析(PHA) 管道泄漏 对策措施 安全性
中图分类号:TG172 文献标识码:B
The Enlightenment of the PHA on the pipeline leakage accident
Zhang Xiaodie1, Lin Yihong1, Ji Lili2, Cai Lu2, Ying Zhiwei3, Song Wendong4*(1.School of Port and transportation engineering, Zhejiang Ocean University;
2.Innovation & Application Institute, Zhejiang Ocean University;3.Zhoushan SLT Ocean Technology Co.,Ltd;4.School of Petrochemical & Energy Engineering, Zhejiang Ocean University , Zhoushan 316022, Zhejiang, China)
Abstract: In recent years, oil and gas pipeline accidents occur frequently, resulting in huge economic, environmental and human losses. In this article,through the analysis of pipeline storage and transportation of oil and gas in the accident, the use of pre-hazard analysis analyzes the relationship between the specifi c reasons for the understanding of pipeline leakage and various reasons. Finally make the fi nal list of pipeline leakage accident risk analysis table, to prevent the pipeline of oil and gas transportation and the relevant departments of the leakage are discussed. Through the pipeline leakage risks which exists in the analysis, this article which puts forward specifi c measures to prevent leakage accidents, has an important role on the safety of pipeline transportation.
Key words: pipeline transportation; pre-hazard analysis(PHA); pipeline leakage; countermeasures; safety
油夤艿涝耸涫且恢掷用管道作为主要载体的以运输石油和天然气为主的长距离的运输方式,专门将石油与天然气从生产地输向市场或者使用地的运输方式。如今的油气运输产业广泛采用管道运输作为主要方式,这已经成为国家能源运输管网中不可或缺的重要组成部分。管道运输的优点较多,不仅运输总量较大,连续性强,速度快,相对比较安全并且运输的效率比较高,同时管道运输投资较小,占地面积较少,对环境的污染比较小,比较节约资源并且较容易控制,因此也就相对词较安全。但与此同时,油气管道的危险隐患也是存在的,一旦发生事故,必将造成不可挽回的人员损伤以及重大的经济损失。近年来,油气管道泄漏事故频频发生,分析油气管道泄漏事故发生的背景以及具体原因,并且通过总结,提出针对油气管道泄漏事故具体有效的预防措施和方法,将会对管道的安全运输体制有重要以及深远的意义,本文将采用预先危险性分析的方法,对油气管道泄漏事故进行分析。
1.预先危险性分析
1.1定义
预先危险性分析是一种定性的系统安全分析方法,也是安全评价的一种方法。是在每项工作具体开展之前,特别是在生产活动的初始阶段,对系统可能存在危险的种类、造成危险出现环境条件、危险发生后可能会出现的后果等进行大体的分析,尽可能识别出潜在的危险。主要是在还未对系统有全面的了解之前,辨识可能出现或者已经存在的危险源,并且努力找出可以预防或者进行补救的相关措施[1-4]。
1.2预先危险性分析的步骤以及流程
步骤:确定系统并完成资料收集调查 系统功能分解 危险性分析以及识别 确定危险等级 制定措施 实施措施。
1.3危险等级划分
管道泄漏一般分为四个危险等级,详细划分见表1:
2.预先危险性分析法在油气管道泄漏事故分析中的应用实例
近年来,管道泄漏事故在全球频繁发生,给当地居民的生活以及环境造成了十分严重的破坏,本文就三起比较严重的输油管道泄漏事故,用预先危险性分析法来分析事故发生的原因以及提出相关的预防措施,希望对减少此类事故的发生有一定的积极意义。
2.1青岛中石化输油管道泄漏以及爆炸事故
2014年11月14号,中石化发生严重的管道泄漏事故,该事故造成了严重的人员伤亡以及经济损失。具体事故是输油管道发生泄漏,事故发生段管道是沿着开发区的方向东西向走线的,并且泄漏管道属于地埋管道。管道泄漏地点位于秦皇岛路桥涵东侧墙体外15厘米,泄漏处位于管道正下方,管道泄漏后原油进入市政排水暗渠。后抢修人员进入现场抢修,抢修时由于操作失误,用挖掘机工作,加上暗渠内油气浓度达到一定程度,挖掘机工作时产生火花发生了爆炸。
虽然在事故发生后的23分钟后关闭了输油,但还是导致斋堂岛街约1000平方米范围的路面被原油污染,并且部分泄漏的原油和雨水一起流入了胶州湾,污染了很大面积的海面,污染面积将近3000平方米[5,6]。随即黄岛区在海面上设置了两道油栏来防止原油污染的进一步扩散。
2.2加拿大本拿比市石油泄漏事故
2007年夏天,加拿大本拿比市的建筑工人由于施工失误,无意中将金德摩根公司的输油管道铲漏,导致原油泄漏,周边50多户居民被迫疏散,该事件中,双方都觉得责任在对方,摩根公司认为责任在施工方,由于其施工失误,施工方则认为责任在公司,由于其管道标记的位置是错误的。当地居民担忧泄漏会对环境造成长期的负面影响。
2.3 大连新港输油管线爆炸事故
2010年7月16日晚间18时左右,大连新港附近一艘30万吨级外籍油轮在卸油的过程当中,由于操作不当引发的输油管线爆炸。经过两千多名消防官兵的努力,大火于次日上午基本扑灭。虽然事故没有人员的伤亡,但是对大连附近大面积的海域造成不同程度的原油污染。辽宁省政府成立了专门的调查组调查事故原因,调查发现事故原因是储油区管线起火最终引爆了边上的储罐区。
2.2管道泄漏事故案例分析
通过对这三起事故的调查以及分析,研究发现,造成管道泄漏以及爆炸事故的原因是多方面的,没一个小的环节都有可能导致事故的发生,通过对以上事件的调查研究,对管道泄漏进行了预先危险性分析,分析结果显示,造成管道泄漏的因素主要分为管道本身,管道内的原油或者天然气,外部因素三类。
2.2.1管道本身因素
管道本身的问题是会造成管道泄漏的一个重要因素,其中管道本身的触发因素有以下几个。
管道腐蚀:所处区域为重盐碱区域或者氯化物含量较高。
管道设计:一是管道处于交通枢纽区域,长期受到道路承重;二是城市规划不合理,城市化进程加快,导致城市建设超负荷建筑物以及人口过度密集,地下管道陆续被占压,并且建筑物的密集导致建筑物离管道较近,在管道出现安全隐患时,无法对管道防腐层进行大修,存在一些安全隐患;三是油气管道铺设与排水暗渠交叉工程设计不合理,导致管道发生泄漏后易流入排水暗渠,难以抢修。工程设计不合理,导致管道发生泄漏后易流入排水暗渠,难以抢修。
管道附件:安全附件失效引起事故液化石油气球罐的安全附件包括安全阀、压力表、温度计、液位计、切水器及紧急切断阀等。安全附件造成的事故:一类是由于安全附件失灵造成储罐超装、超温或超压;另一类是安全附件本身损坏或与罐体结合部位连接不严,造成泄漏[7]。
管道检修:石油化工集团公司及下属企业或者生产部门部门职责不清,责任体系不落实,安全生产工作以及检查中存在盲区以及死角,导致在安全检查不够深入以及细致,没有及时消除事故的隐患。
由于管道本身原因造成的事故,危险等级属于Ⅲ级,后果主要分为两类,一类是因为管道腐蚀造成的后果:地埋管道长时间受腐蚀导致管壁变薄,管道破裂管道腐蚀造成的后果:地埋管道长时间受腐蚀导致管壁变薄,管道破裂。第二类是因为管道设计不合理造成的后果:
一是长期受道路承重,导致管道加速减薄导致破裂;二是规划不合理导致存在安全死角以及隐患,不方便检修,并且在管道发生泄漏时,无法在第一时间进行抢修;三是附件失灵,造成油气管道内部压力失去控制或者超温,导致管体发生破裂或者泄露,针对管道本身可能会产生的问题,提出了相关的防范措施:
第一,在重盐碱地区,加强地下管道材料的防腐蚀力度,选择具有高防腐性能的防腐涂料;第二,定期对地下油气管道进行检修,排除隐患;第三,加强对石油化工企业的监管力度,加强对失责行为的惩罚力度,落实责任体系以及部门职责;第四,进行合理的工程布局,与相关的城市规划相结合,结合考虑,充分保证建筑物与管道的距离;第五,定期对管道附件进行检修,防止由于附件失灵导致的故障;第六,管道建O尽量避开主要承重路段或者车流量大的路段。
2.2.2管道内的油气因素
管道内储存的石油和天然气也是会造成管道泄漏的一个重要因素,其中包含触发因素及间接后果。
第一,事故应急救援不力,现场应急处置措施不当,抢修之前未进行可燃气体浓度检测,并且用非防爆设备进行作业,严重违反相关条例,抢修中溢出的油气达到一定浓度,遇到明火或者静电引起的火花。
第二,对管道泄漏突发事件的应急预案缺乏演练,对应急救援人员的培训不够,导致应急救援人员对自己的职责和应对措施不熟悉。
第三,没有很好地贯彻落实国家安全生产法律法规,导致在事故发生时缺乏基本的安全意识
第四,对事故的风险等级判断失误,没有及时有效地提出对应的应急预案,扩大了原油以及天然气扩散和污染的面积。
第五,没有在第一时间采取警戒以及封锁措施,并且没有及时疏散群众。由于管道本身原因造成的事故,危险等级属于Ⅳ级,后果比较严重,分为直接后果和间接后果,直接后果:一是原油流入周边海域或者陆地,遇到明火或静电引起的火花引起火灾,造成人员伤亡以及经济损失;二是天然气泄漏达到一定浓度,遇到明火或者静电引起的火花造成爆炸,导致严重的人员伤亡以及经济损失。
间接后果:一是地面扩散;原油泄漏,向周边陆地以及海域扩散,污染周边路面以及海域,危害水生态环境;二是空气扩散;天然气泄露,向周边空气扩散,污染周边空气,导致周围居民或者工作人员中毒,伤害人体中枢神经系统以及呼吸道系统;三是土壤扩散,向土壤以及土壤更深层扩散,地下扩散使得土壤导水受阻,透水性降低,破坏土壤微生态环境,影响植物的正常生长,甚至造成地下水的污染。
针对管道本身可能会产生的问题,本文提出了相关的防范措施:
第一,在抢修前,要充分做好准备,并且进行各项检测,检测完毕确认没有危险时再进行抢修;检修时,要充分注意在通风环境下进行工作,并且在检修时要注意监测可燃气体的浓度,一旦达到危险状态,立即采取措施;第二,按规定用防爆设备并且采取防静电措施,避免产生静电或者火花,造成爆炸;第三,定期对应急救援人员进行培训和演习,加强对抢修人员的安全教育工作;第四,正确及时判断事故危险等级,采取相关警戒措施,及时通知并疏散周边群众;第五,加强对管道周边居民的安全教育,以便在事故发生时第一时间撤离,将损失降至最低
2.2.3外部因素
外部因素同样会造成管道泄漏,主要分为两种:人为因素和自然灾害因素,人为因素是指挖掘机或者其他挖掘工作时产生的破坏,部分石油盗窃行为造成的人为破坏导致的管道的破坏,自然灾害因素是指由于恶劣天气如飓风雷雨等自然灾害导致的管道的破坏。
由于管道本身原因造成的事故,危险等级属于Ⅲ级,后果主要是管道破裂,石油或者天然气溢出,造成进一步的破坏,针对管道本身可能会产生的问题,提出了相关的防范措施:一是对地下管道所在的地方进行醒目的标识,提醒施工作业的人员注意地下管道的安全;二是对石油盗窃行为进行严厉惩罚,杜绝此类现象的再次发生;三是对可能会发生的自然灾害采取通过预先危险性分析,管道泄漏的主要危险等级是Ⅲ― Ⅳ级,属于比较严重的安全事故,每一个环节的安全都应该受到重视,管道泄漏前应该尽最大的努力做好预防工作,防止管道泄漏事故发生,如果一旦发生管道泄漏,应及时准确采取相关处理方法,避免爆炸的产生。
总的来说管道事故极易造成严重的人员伤亡还有经济损失,造成的损失不仅仅只有直接的经济损失以及人员伤亡,更严重的是对环境造成的破坏,比如原油污染,很难进行清理,并且需要漫长的整治过程,所以要对油气管道运输进行预先危险性分析,熟悉油气管道运输的各个流程,直观详细得辨识容易产生危险的环节以及因素,分析其中可能会存在的安全隐患,提出预防措施,防患于未然,可以有效得避免许多油气管道泄漏事故的发生,从而避免许多不必要的人员伤亡以及经济损失[7]。
3.结束语
油气管道已经成为城市的生命线,特别是大城市,如上海、广州,一旦发生类似管道泄漏的事故,后果将极其严重,因此管道安全显得尤为重要。对油气管道采用预先危险性分析,可以有效地辨识事故发生的潜在危险环节,并且有针对性得提出相关安全对策措施,从而减少事故隐患、降低事故发生频率、保证油气运输过程的安全。
参考文献:
[1] 秦川.基于PHA的天然气集输管道安全风险分析[J].内蒙古石油化学,2015,(1):67- 68.
[2] 辛颖,王岩.预先危险性分析在加油站经营过程中的应用[J] .安全技术,2012,21(15):16- 13.
[3] 刘华炜,孙中元.预先危险性分析法在油库火灾爆炸事故分析中的应用[J].林业劳动安全,2008,21(23):27- 48.
[4] 刘铁民,张兴凯等.安全评价方法应用指南[M].北京:化学工业出版社,2005.
[5] 李晶晶.城市油气管道泄漏爆炸重大案例应急管理对比研究[J].中国安全生产科学技术,2014,10(11):11- 15.
[6] 牟雪江.举一反三“11・22”――反思反省东黄输油管线泄漏爆炸事故[M].中国石油企业,2013,12:30- 32
【关键词】LNG 管道输送 泄漏 控制 措施
0 引言
LNG是英文液化天然气(liquefied natural gas)的缩写,其主要成分为甲烷。改革开放以来,随着我国经济持续高速发展,对能源,特别是天然气等优质能源需求迅速增长。天然气几乎不含硫、粉尘和其他有害物质,燃烧产生的二氧化硫排放量几乎为零,氮氧化物和二氧化碳的排放量仅分别为燃煤的19.2%和42.1%。以福建为例,扩大引进LNG后,年消费LNG500万吨,产生的CO2为1173万吨,而燃用同等热值褐煤将产生CO2量2112万吨,引进LNG将实现每年减排CO2量941万吨,减排SO2量91.0万吨,减排NOX量16.7万吨。通过扩大天然气覆盖范围、普及程度与市场占有率,改善城乡居民的生活品质,促进全面小康社会建设进程。但LNG火灾危险性类别为甲类,爆炸极限范围(V%)为5.35%~15%,属易燃、易爆物质,存在很大的危险性。
1 LNG长输管线危险性分析
1.1 LNG长输管道输送流程
LNG长输管道输送上下游关系流程图,见图1。
1.2 LNG长输管道输送危险性分析
造成长输管道泄漏的主要原因有:第三方破坏、自然灾害和管道缺陷。其中第三方破坏主要包括:野蛮施工挖破管道、沿线违章占压管道、运移土层造成管道暴露或悬空,或在管道附近打桩、挖掘、定向钻、大开挖等;自然灾害破坏主要是在台风、暴雨、洪水、地基坍塌、地震等情况下导致泥石流、土层移动、坍塌等,造成管道外露、悬空及(或)位移;管道缺陷主要有:管道腐蚀穿孔、管道材料缺陷或焊口缺陷隐患等。
天然气管线发生泄漏时,泄漏气体的喷射、扩散后浓度在其燃爆极限范围内的铁路上通行的内燃机车、电力机车,公路上通行的机动车辆、沿途穿越、邻近的输电线路,管线沿途附近的工业区内企业的生产活动、居住区内居民的活动等,均有可能成为引起火灾爆炸事故的点火源。
由于天然气管道压力较高,泄漏时高速气体通过孔洞产生的静电,也可能成为引发火灾爆炸事故的点火源。
天然气泄漏时遇雷暴,可能引发火灾爆炸事故。
同时采用加压输送工艺(设计压力约7.5MPa),又加剧了发生火灾、爆炸的危险。
2 LNG管道输送泄漏模拟分析
2.1 模型建立
为了便于计算和说明问题,本文采用蒸汽云爆炸事故后果模拟分析法对某公司天然气管网二期工程LNG长输管道输送泄漏引发的火灾爆炸事故影响进行模拟分析。即:某天然气管网二期工程,全长约80km,线路用管直径813mm,全线共设置2座站场、3座阀室,输气量2.07×1008m3/a,管内输送介质为天然气。
2.2 LNG管道输送泄漏模拟分析
LNG管道输送过程中,泄漏最为危险,遇点火源进而发生火灾、爆炸事故。
LNG管道泄漏后延迟点火的概率比较高,取延迟点火时间为1min、5min,对孔泄漏方式进行蒸气云爆炸事故后果模拟;取延迟点火时间为1min,对管道完全断裂方式进行蒸气云爆炸事故后果模拟。
根据《基于风险检验的基础方法》(SY/T6714-2008)和《化工企业定量风险评价导则》(征求意见稿),泄漏情景可根据泄漏孔径大小分为完全破裂以及孔泄漏两大类,有代表性的泄漏场景见表1。
依据整个管道的直径将确定的有关数据输入安全评价与风险分析系统软件,得到的模拟结果见表2、表3、表4和表5。
3 结果分析及其控制措施
关键词:地质灾害;风险评估;GIS
中图分类号:F416.1 文献标识码:A
1概述
地质灾害是在地质作用下,地质自然环境恶化,造成人类生命财产损毁或人类赖以生存与发展的资源、环境发生严重破坏的过程或现象,是对人类生命财产和生存环境产生损毁的地质事件。因而,从该意义上来讲,地质灾害不仅是一种自然现象,而且带有明显的社会经济属性。
在以往工程地质领域对于地质灾害的研究中, 多考虑地质灾害的自然属性,评价预测也多从其内外影响因素入手,把地质灾害仅作为一种地质动力活动,着力于灾害形成机制与诱发条件、发展规律等自然特征的分析,度量的指标多为稳定性程度等。而对地质灾害的社会属性和与之密切相关当破坏效应等注意的不够。这种状况越来越不适应社会经济发展对减灾研究的需要。诚然,对于单体地质灾害而言,地质灾害自然属性研究必不可少,但如果从一个更深的层次来看,这显然没有考虑到地质灾害的社会经济属性。人类防治地质灾害的最终目的并不是杜绝引起地质灾害的地质现象或地质事件的发生,而是确保这些地质现象或地质事件不对人类造成不可接受的危害。所以从社会减灾防灾意义上讲,除了考虑其自然因素,更应该考虑其社会属性因素,由此才有了地质灾害风除评价的概念的产生。
2 对地质灾害风险概念的认识
目前对灾害风险和地质灾害风险还没有统一的认识。在联合国教科文组织的一项研究计划中,Varnes(1984年)提出了自然灾害及风险的术语定义,随后得到了国际地质灾害研究领域的普遍认同,成为了对地质灾害危险性、易损性和风险评估的基本模式。地质灾害的风险可定义为:在一定的区域时间限度内,特定的地质灾害现象对生命财产、经济活动等可能造成的损失,即地质灾害风险是潜在地质灾害危险性和社会经济易损性的函数,它可表示为:
式中:R(Risk):地质灾害的风险,指特定的地质灾害现象可能造成的损失;H(Hazard):一定地区范围内某种潜在的地质灾害现象在一定的时间内发生的概率,即地质灾害的危险性;E(Element):给定区域内受特定地质灾害威胁的对象,包括人口、财产、基础设施、经济活动等;v(Vulnerability):特定的地质灾害以一定的强度发生而对受威胁对象所造成的损失程度,即受威胁对象的易损性,它用0~1来表示,0表示无损失,1表示完全损失。
综上所述我们可以看出,地震灾害的危险性(H)和受威胁对象(E)的易损性(v)共同决定了地质灾害的损失大小,是控制地质灾害风险的(R)的基本条件。因此,地质灾害风验评价应从下述两方面进行:(1)地质灾害的危险性评价,其与历史地质灾害活动强度和周期性规律(即灾害发生的频次、规模、分布强度)以及地质灾害孕育的环境与形成条件(即地形地貌、地质背景、水文气象、植被和人类工程活动等影响因素)密切相关;(2)区域社会经济易损性评价,包括了直接易损性评价(受威胁对象分布与抗灾能力)和间接易损性评价(地区社会经济与防灾能力)2个方面内容。
由于实际情况的复杂性,在地质灾害风险评估中很难对H、E、V等进行精确的定量表示。在这种情况下,可以采用“等级”的概念,先对地质灾害的危险性、社会经济易损性进行分级,然后再采用适当的方法进行最终的风险评估。
3 地质灾害风险评价模型
目前有关地质灾害风险评价的模型有信息量模型、层次分析等模型,在这里简述信息量模型。
根据实际情况,将影响地质灾害风险因素的实测值转化为信息量值,并用信息量来表征地质灾害风险影响因素的“贡献”大小,进而评价地质灾害的风险程度。信息量用条件概率计算:
I(X,A)=lg(P(X/A)/P(X)) (3)
式中:I(X,A)为单因素(指标)X影响地质灾害风险A的信息量;
P(X/A)为地质灾害风险恶化条件下出现X的概率;
P(X)为研究区影响因素X出现的概率。具体运算时,总体概率用样本频率计算,即:
式中:I为某一单元P种因素组合情况下地质灾害风险恶化的总信息量;
S为样本区总单元数:
N为该区己知地质灾害风险恶化的单元总数;
S1为含有影响因素X的单元个数;
N1为含有影响因素X的地质灾害风险恶化单元个数。
用总信息量I值作为该单元多种因素共同作用下的地质灾害风险改善的综合指标。对I值进行统计分析(主观判断或聚类分析))找出突变点作为分界点,将区域分成若干个地质灾害风险等级,由此建立的信息量模型,将作为研究区的风险预测模型。只要查明研究区各因素的情况,根据样本区计算出的信息量值,并将各评价单元的诸影响因素的信息量值叠加便可预测地质灾害风险等级。
信息量模型适合于各地质灾害影响要素的信息量比较丰富的地质灾害风险评价,按统计方法对各影响要素进行聚类分析,按照一定的阈值,将评价区域进行地质灾害风险分区。
4 基于GIS技术的地质灾害风险分析
地理信息系统(GIS)是有效表达、处理以及分析与地理分布有关的专业数据的技术,它为人们提供了一种快速展示有关地理信息和分析信息的新的手段和平台。从20世纪80年代以来,GIS在灾害管理中得到逐步深入的应用。
各种地质灾害都是在地球表层一定空间范围和一定时间限度内发生的,尽管不同种类的地质灾害之间、同一种类的地质灾害的不同个体之间大都形态各异,形成机理也是千差万别,但它们都是灾害孕育环境与触发因子共同作用的结果,而这些都与空间信息密切相关,利用GIS技术不仅可以对各种地质灾害及其相关信息进行管理,而且可以从不同空间和时间的尺度上分析地质灾害的发生与环境因素之间的统计关系,评价各种地质灾害的发生概率和可能的灾害后果。
GIS与传统意义上的信息系统的根本差异在于:它不仅可以存储、分析和表达各类对象的属性信息,而且还可以管理空间(图形)信息,可以使用各种空间分析方法,从空间特征和属性特征两个方面对多种不同的信息进行综合分析,寻找空间实体间的相互关系,分析和处理一定区域内分布的现象和过程。GIS软件提供了一些基本的空间分析工具,如区域叠加分析、缓冲分析、矢量栅格数据转换、属性数据查询检索、数字高程模型、数字地面模拟分析等,但仅仅直接利用这些基本的工具进行地质灾害的风险分析显然是不现实的,还需要结合专业地质灾害风险评价模型,如将信息量模型与GIS平台相结合,应用于地质灾害风险评估分析中。
信息量法模拟和层次分析评价模型与GIS的结合可以从以下几个方面考虑:
(1)利用GIS采集数据及进行基础数据处理。GIS具有强大的数据采集与空间分析功能,可以利用它来采集评价所需的数据并进行管理。GIS对数据的预处理一是将定性数据按照一定的原则定量他;二是利用GIS的自动划分功能形成用于评价的图元区域。
(2)应用信息量法模型可扩充GIS的分析评价功能。利用GIS的二次开发功能,选定合适的信息量法模型对GIS进行二次开发,扩充GIS的分析评价功能,实现传统分析方法与GIS的结合。把GIS已经剖分的图元区域的各种信息存入预先确定的数据库,然后通过编写接口,信息量法模型就可以直接调用这部分数据供分析之用。
(3)利用GIS强大的成图功能,将信息量法模型分析结果返还到GIS处理成图,形成最终成果。
这样就可以在建立一个基于GIS技术的地质灾害风险评估系统,首先在建立评估区信息数据库的基础上,结合地质灾害风险评价分析模型(信息量模型),运用GIS的空间分析功能(缓冲区分析、叠置分析等)、数据融合技术以及高精度计算实现对多种不同类型的地质灾害(如滑坡、泥石流、岩溶塌陷等)进行危险性分析、易损性分析和最终的风险评估。整个地质灾害风险评估工作都是有序进行的,其基本程序见图1所示。
结论
(1)地质灾害风险评估包括地质灾害危险性评价、社会经济易损性评价两大内容。危险性评价应以历史危险性(灾害发生的频率、规模、程度)和影响灾害发生的主要因素(基于灾害发育机理研究)的综合分析进行;易损性评价应包括受威胁对象的易损性分析和受威胁对象的价值分析2个方面。
(2) 运用GIS开展地质灾害风险评估是必然趋势,国外已有许多成功的范例。GIS技术为地质灾害在专业评价模型(如信息量模型)条件下的风险评估提供了有效的技术支持。基于GIS技术的地质灾害风险评估系统较好的实现了GIS技术与地质灾害风险评价模型的结合,能够充分利用GIS的图形编辑、属性管理、空间分析、数字高程分析等功能优势,快捷方便的实现一般分析方法与手段难以解决的问题。它可以根据变化了的情况与资料,实时性的进行地质灾害风险分析,进一步缩减风险分析的模糊性与不确定性,具有较强的准确性与客观性,而这正是常规分析手段所难以比拟的。
参考文献
[1]罗元华,张粱.地质灾害风险评估方法[M].北京:地质出版社,1998.
关键词:地质灾害;灾害防治;区划;崇州市
近年来,随着社会经济日益发展,地质灾害与社会经济发展矛盾越来越严重,保护地球、保护我们的家园已成为当前社会一项重要任务,研究与防治地质灾害是地质工作者应尽的义务,减灾与可持续发展已成为当前各区域研究及全球关注的焦点[1]。
崇州市属于四川盆地山地向中心平原的过渡地段,因此在地质环境上具有复杂性特点,地质灾害在边缘过渡带具有高发性、危害性大的特点。对崇州市地质灾害发生规律、特点进行研究有助于了解山地与平原过渡带地质特点,灾害孕育机理,在该区域进行地质灾害危险性区划对于类似区域的地质灾害研究与防治可以提供借鉴。
1.崇州市地质环境特点
崇州市地处四川盆地西南边缘,背靠龙门山,面向成都平原,在四川盆地和龙门山构造带中南段,以北东向的龙门山隆起褶带、雾中山褶断带和成都凹陷为主,龙门山隆起褶带是褶皱、断裂活动强烈,多期复合、规模巨大的构造带,由一系列北东向隆起、坳陷、单式和复式褶皱,压性、压扭性断裂组成。地势西北高,东南低,呈阶梯状逐渐降低,山地、丘陵、平原兼有的地貌类型,全境以街子镇、三郎镇、怀远西山为一线,线之西北为山地,线之东南为平原、丘陵地区,西北部多有海拔2000m以上的山峰,海拔最高处为苟家乡境内大雪塘主峰,达5364m。丘陵和平原地区的平均海拔高度为560m,最低点为三江镇境内之蒙渡,海拔高度仅480m。海拔1000m以上的中山、高山区占了全市总面积的38.4%,低山和丘陵为8.7%,平坝为52.9%。市境内河流稠密,水系完整,属岷江流域水系,主要河流有3条:西河、黑石河和金马河。
2.崇州市地质灾害发育特征
2.1 地质灾害概况
表1 崇州市主要地质灾害统计表
崇州市地处四川盆地西南,中西部为丘陵区,东南部为平原,广大的西部地区为低山―高山地貌,西部低山区断裂褶皱的影响,节理裂隙发育,岩体破碎,因地形切割深,相对高差大,此类地质环境条件为地质灾害发生提供基础条件。加之本区降水量丰富,多暴雨天气,以及强烈的人类工程活动,为地质灾害的产生提供了引发条件。受前述自然条件的控制,人为因素的影响,地质灾害类型以滑坡、崩塌为主,不稳定斜坡次之,泥石流灾害较少。各类地质灾害主要分布于崇州市西南和中西部山地和丘陵地区,特别是西部区域为地质灾害频发区。崇州市主要地质灾害区域及类型见表1.
2.2地质灾害发育特征
由于崇州市西南部、中西部和东南部地质、地貌不一致,因此造成崇州市地质灾害具有明显的地域性,主要受区域地貌特征、岩土性质及水文条件的控制,各类地质灾害主要发生于地形变化大,切割深的各乡镇。综合分析崇州市地质灾害发育和分布特点,具有以下规律:
2.2.1地域性规律
地质环境条件的不同,造成灾害类型的差异。崇州市特殊的地理位置,既有高山、丘陵也有平原地区。位于西南部的高山、丘陵地区地质构造上属于龙门山隆起褶皱带、雾中山褶皱带,该地质构造带构造活动活跃,断裂较多,该区域地层破碎严重,节理极为发育。加之区域内岩层复杂,三大岩类分布其中,其中尤以沉积岩中软硬岩层互层区域,地质灾害极为发育。另外在高山、丘陵区域由于大部分区域存在坡陡、上覆岩层岩石破碎、表层坡积物厚度大,且较为松散,在外在条件诱发下,极易发生滑坡等地质灾害。如崇州市主要地质灾害滑坡和崩塌,主要分布在西部的山区和中西部丘陵区。尤其是西部山区的鸡冠山乡、文井江镇灾害点最多。
2.2.2 相关性规律
主要指气候和人类活动等相关性,如各类灾害与降水和冰雪 融水密切相关;人类各种社会经济活动也在很多程度上诱发了多种地质灾害。地质灾害的类型、发育程度与地貌特征、岩土类型密切相关。崇州市属四川盆地亚热带温润季风气候,四季分明,春秋短、冬夏长,雨量充沛,日照偏少,无霜期较长。该区域年平均降雨量为1012.4mm,但时间分布上不均匀,大部分降雨量都集中于夏季,特别是6-9月为降雨集中期。这一时期也是崇州市地质灾害高发期。崇州市属于经济发达地区,人类经济活动频繁,特别是近年来,随着经济持续发展,人类工程活动越来越多,但由此也改变工程活动区域地质平衡。根据调查结果显示,在人类工程活动频繁区域,地质灾害相较其它区域发生概率要大的多。
2.2.3 诱发性规律自然因素的不平衡性、突发性以及人类不贵发的社会经济活动都是诱发或加重地质灾害发生的直接因素。如每年夏季的强降水、地震的突发性、人类开挖坡脚修建道路形成的人工边坡都是诱发地质灾害发生的直接因素。如统计数据显示,崇州市与人类工程活动有关的地质灾害点为43处,约占总地质灾害的37.07%。
3.地质灾害易发区划分及防治分区
根据崇州市在2008年后地质灾害现状及自然条件、地质环境以及人类各项活动基础上,建立地质灾害危险性评价模型,对评价区域地质环境、人文环境进行地质灾害危险性区划和防治。
3.1 地质灾害危险性划分
3.1.1 危险性评价模型
地质灾害危险性评价模型的建立采用统计分析方法―信息量评判法。该方法通过某些因子对所提供的研究对象的信息量的计算所得的综合评价值来实现,亦即用信息量的大小来评价影响因子与研究对象关系的密切程度,其评价模型为[2]:
3.1.2 层次分析法
层次分析法最早由美国运筹学家Saaty教授于20世纪70年代初期提出的一种对指标进行定性定量分析的多准则决策方法。它的主要优点就是定性和定量相结合、系统化、层次化的多目标决策方法,并能将数据、专家意见和分析者的客观判断直接有效地结合起来的一种灵活、适用的方法。它的基本思路是:利用该领域多位专家的经验对每个因子进行比较判断和赋值得到一个判断矩阵,经过计算得到每一因子的权重值,并进行一致性检验。通过对指标进行一对一的比较,可以连续进行并能随时改进,是比较方便有效的计算方法,其确定权重的工作程序如下[3,4]:
首先选定有丰富经验的专家对各因素的相对重要性进行评估打分,根据打分表,构造判断矩阵T:
式中:为评价因素集。
若因素ui与uj比较判断得uij,则因素uj与ui比较判断得uji=1/uij。
根据判断矩阵,利用线性代数知识,求出T的最大特征值所对应的特征向量,将特征向量进行归一化处理,即可求得权数的分配。
3.2 地质灾害危险性分区
地质灾害要真正做到以防为主,则首先必须明确认识到灾害的风险所在,风险程度如何,在此基础上提出防治的具体方案、措施,真正做到少投入、避风险、少损失[5]。地质灾害风险评估是在地质灾害空间预测评价的基础上综合考虑人员、社会经济要素和抗灾能力的综合预测评价[6]。本文在地质灾害评价模型计算结果基础上,结合实际调查资料,将崇州市划分为4类区域,分别为地质灾害高危险性、中危险性、低危险性以及无风险区域,见图1。
由于崇州市特殊的地理位置特点,区域范围内既有高山、丘陵也有平原地区,因此其地质灾害分布与地质、地形地貌具有较强相关性,因此,地质灾害治理要根据实际情况,一是要尽量考虑到地质灾害对自然环境的破坏;二是要重点考虑对当地人文环境及经济破坏;三是要统筹兼顾地区经济发展。在地质灾害防治中,尽量集中财力、物力对重点灾害进行重点防治,做到有重点、分层次、分批次的地质灾害防治。
图1 崇州市地质灾害风险分区图
4.地质灾害防治建议
崇州市是地质灾害易发的区域、特别是西南部的高山与丘陵地区由于特殊地质环境与地貌形态,是滑坡、崩塌灾害的易发区。从人文发展而言,该地质灾害易发区较其它区域人口密度较小,经济欠发达,因此,对于该区域灾害防治,一方面要尽力采取各类预防与治理措施;另一方面,要考虑实际情况(包括有限的财力与物力)及长久有效的防治效果,可适当将部分山区地质灾害严重区域居民搬离原址,在平坦区域重新选址建新的居民定居点。在地质灾害防治上,要预防为主,建立完善的地质灾害预警系统,做到灾害发生前能提取发出预警;灾害治理上,要重点突出,合理分配有限的财力和物力,尽最大努力保护当地人民生命财产安全。
参考文献:
[1]史培军.再论灾害研究的理论与实践[J].自然灾害学报.1996,5(4):6-15.
[2]杨君,唐红梅,罗红.南山风景名胜区地质灾害危险性分区评价[J].重庆交通大学学报
(自然科学版).2010,29(1):93-97.
[3]王以彭,李结松,等.层次分析法在确定评价指标权重系数中的应用[J].第一军医大学学
报,1999,19(4):377-379.
[4]蔡宪林,周爱国.地质环境质量评价中的专家-层次分析定权法[J].地球科学-中国地质
大学学报,1998,23(3):229-302.
[5]孙锡年.地质灾害风险评估研究[J].资源环境工程,2009,23(4):436-439.
[6]吴树仁,石菊松,张春山,等.地质灾害风险评估技术指南初论[J].地质通