线上期刊服务咨询,期刊咨询:400-808-1701 订阅咨询:400-808-1721

航空航天的关系8篇

时间:2023-08-03 09:20:04

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇航空航天的关系,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

航空航天的关系

篇1

关键词:航空航天业;技术溢出;因子分析

一、研究背景

技术溢出(Technology Spillover)是指先进技术拥有者在从事生产、贸易或其他经济行为时,有意识或无意识地输出技术而引起的技术水平的提高[1]。航空航天业的技术溢出则指航空航天业的先进技术通过一定渠道自愿或非自愿地传播到其他工业领域,进而带动这些工业领域技术水平的整体提升。航空航天业是我国战略性高技术产业,属于技术密集型行业,技术装备多、投资费用大,是国家经济实力与科技水平的综合体现。自20世纪50年代以来,我国航空航天业经历了从无到有、从小到大的发展历程,逐步建立起平台化、系统化、专业化的研发与应用体系。它技术内涵高、产业链长、辐射面宽、连带效应强,对众多高技术产业以及传统产业的发展起到了举足轻重的拉动作用。研究表明,内涵科技因素越高的行业部门对其他部门的贡献效应越大[2]。航空航天技术是高科技领域的前沿,航空航天业必然对其他部门具有较大的贡献效应,其技术溢出也应该是显著的,本文正是基于这一前提条件进行的研究。因此,探究影响航空航天工业技术溢出的显著性因素,充分利用其技术溢出作用,对于加快我国科技进步与经济发展有着重要的战略意义。然而,目前对此问题的研究并不深入,多数学者从理论层面分析技术溢出的问题,也有学者较为系统地对技术溢出是否存在、影响技术溢出的因素以及技术溢出的机理进行了实证分析,但这些研究都局限于外商直接投资(FDI)这一领域,没有从行业层面上分析该行业部门对其他行业部门的技术溢出,并且没有在理论上形成统一的认识。本文利用我国航空航天业的数据,采用因子分析的方法,提取影响技术溢出的关键因素,进而对促进我国航空航天业技术溢出及产业自身发展提供理论支持与政策建议。

影响技术溢出的因素有很多,根据现有文献的研究将其大致归纳为:(1)人力资本因素。Keller(1996)研究发现人力资本积累的差距导致技术吸收效果与经济增长率的不同[3];Borensztein等(1998)认为人力资本存量是影响技术溢出效应的关键因素[4];王成岐,张建华,安辉(2002)得出人力资本存量与技术溢出效应不相关的结论,但他们认为人力资本投入以及人才素质是技术溢出的影响因素[5]。(2)技术差距因素。Findlay(1978)和Wang and Blomstorm(1992)的研究表明技术差距越大示范模仿空间越大,吸收技术溢出的潜力也就越大[6];Kokko(1994)的研究发现低技术水平严重阻碍技术溢出效应的产生[7];Perez(1997)从吸收能力角度考虑,认为过高的技术差距会影响示范模仿机制发挥其应有作用。(3)经济开放程度。Blomstorm and Sjoholm(1999)、认为经济开放度高的企业由于竞争压力大而进行更多的研发投入以提高自身吸收能力[8];Kokko(1994)发现经济开放程度与技术溢出效应之间的关系是不确定的[7];包群,许和连,赖明勇(2003)用出口依存度等来衡量经济的开放程度,发现我国经济开放程度的提高、基础设施的建立与完善等都是促进技术溢出的有利因素[9]。(4)研发投入因素。Kathuria(2000)指出技术溢出效应并非自动产生,技术吸收方要想从中获利,须对学习活动进行投资;田慧芳(2004)的研究则表明工业部门研发投入水平与技术溢出效应呈负相关关系。此外,市场结构、工资水平、产业关联、基础设施、经济政策等都作为影响因素引入了技术溢出的相关研究中,本文在前人研究的基础之上对此进行探讨。

二、指标构建与分析方法

目前,对技术溢出进行实证研究时,学者们通常首先选择一个影响因素,然后确定与该影响因素内容相关的指标体系,最后采用一定的计量方法(如多元回归、分组回归等)来分析这些指标。本文在分析技术溢出时,也采用了这种研究思路:选取航空航天业为研究对象,根据技术差距等影响因素建立与之相关的量化指标体系,采用因子分析的方法对这些指标与技术溢出之间的关系进行研究,并用线性回归的方法对提取出的公因子进行显著性检验。

(一)技术溢出指标体系

航空航天业是一个以现代科学为基础的高新技术产业,包括机、光、电、液综合能力的精密机械加工工业,是我国国民经济和国防建设的重要组成部分[10]。其研发成本高、风险大、周期长,具有科技含量高、连带效应强的产业特点,能够带动诸多产业的发展。理论上讲,研究技术溢出影响因素需要建立一套完整的指标体系,但为了避免信息重叠,本文根据国内外现有文献的研究成果并综合考虑我国航空航天业技术溢出的实际情况,选取如下表所示指标体系:

(二)分析方法和数据来源

因子分析是一种研究从变量群中找出共性因子的统计技术,它通过分析众多变量之间的依赖关系,探寻观测样本的内部基本结构,提取并描述隐藏在一组显性变量中无法直接测量的隐性变量,很好地发挥了降维和简化数据的作用。因子分析中的共性因子是不可直接被观测却又客观存在的重要影响因素,每一个变量都可以表示为共性因子的线性函数与特殊因子之和,即,式中为的共性因子,为的特殊因子。若满足以下条件:(1);(2),即共性因子和特殊因子不相关;(3)各共性因子不相关且方差为1;(4)各特殊因子不相关且方差不要求相等。那么,每个变量可由个共性因子和自身对应的特殊因子线性表出,因子分析的数学模型可表示为:

本文采用因子分析和线性回归相结合的方法,研究我国航空航天业技术溢出问题。用于分析的数据主要来源于《中国高技术产业统计年鉴》(1999~ 2009)中航空航天业相关数据,以及《中国统计年鉴》(1999~2009)中工业企业相关数据,统计口径为我国国有及规模以上非国有工业企业。

三、技术溢出实证研究

(一)因子分析

从《中国高技术产业统计年鉴》(1999~2009)与《中国统计年鉴》(1999~2009)整理出构建量化指标体系所需数据,并按定义计算出各指标对应值,如下表所示:

利用SPSS17.0软件做出相关系数矩阵,通过指标之间的相关系数初步判断各指标相关性较高。从已建立的量化指标体系中提取公共因子,找出影响我国航空航天业技术溢出的主要因素。因子矩阵和旋转因子矩阵如表3、表4所示:

由表3、表4可知,旋转后公共因子F1、F2的方差贡献率分别为4.803和2.795,累积方差贡献率为84.424%,进一步判断公共因子F1、F2能够代表本文所设计的衡量我国航空航天业技术溢出的量化指标体系。由表4还可知公共因子F1在X1、X2、X3、X4、X5的载荷值均大于0.7,能够反映我国航空航天业科技活动经费投入能力、研发经费投入能力、新产品研发经费投入能力、科技活动人员投入能力以及科学家与工程师投入能力,因此可将F1视为影响航空航天业技术溢出的因素之一――技术投入能力;公共因子F2在X6、X7、X8、X9的载荷值均大于0.65,能够反映我国航空航天业的新产品销售收入、新产品出口能力、新产品劳动生产率以及新产品产值比重,因此可将F2视为影响航空航天业技术溢出的因素之二――技术产出能力。

(二)线性回归

本文根据该检验模型,以公共因子F1、F2的因子得分作为自变量,以其他工业企业的全员劳动生产率LP作为因变量(具体数据见表5),构建如下回归模型:

(1)

其中LP即除航空航天业之外的其他工业企业的全员劳动生产率,是全国国有及规模以上非国有工业企业增加值与我国航空航天企业增加值的差值同全国国有及规模以上非国有工业企业全部从业人员年平均人数与我国航空航天企业从业人员年均人数差值之比。其计算公式为:

全员劳动生产率=工业增加值/全部从业人员平均人数(2)

通过回归得到人均产出变量与公因子变量之间的关系方程为:

(3)

t值:(6.240)(2.886) ( 3.320)

P值: 0.001 0.028 0.016

R2=0.749AdjR2=0.666F=8.967

由模型估计到的参数可知,我国航空航天业的技术投入能力以及技术产出能力与其他工业企业的全员劳动生产率均存在着显著的正相关关系,技术投入能力的因子得分每提高1%,其他工业企业的全员劳动生产率将上升17.541%,技术产出能力的因子得分每提高1%,其他工业企业的全员劳动生产率将上升15.9%。

四、结果分析与政策建议

航空航天业是我国国民经济的先导产业,在人才、资金、技术等方面都有着相当大的优势,产业结构具有一定的特殊性,技术溢出也不同于其他产业。因此,本文在参照前人研究成果与研究方法的基础上,构建了一个衡量技术溢出的量化指标体系,采用因子分析的方法从中提取出最为显著和最具代表性的两个因素,即航空航天业的技术投入能力及技术产出能力。科学分析这些影响因素,有效利用技术溢出效应,有利于提升传统产业的自主创新能力、推动国家整体技术进步。对此,提出如下建议:

(1)加大航空航天业技术投入力度,保障科技研发能力的领先。2007年颁布的《深化国防科技工业投资体制改革的若干意见》等政策,明确指出国防科技工业投资体制的改革思路。2009年提出的《关于加快国家高技术产业基地发展的指导意见》等政策,也明确提出鼓励高新技术产业的发展思路。因此,同时作为我国国防科技工业和高新技术产业的航空航天业,应构建以政府投资为主、社会投资为辅的多元投资渠道,注重人力资本存量的积累和人力资源结构的优化,切实加大航空航天业的技术投入力度以保证其领先的科技研发能力。

篇2

关键词:航空航天专业;人才培养模式;课程体系

中图分类号:G641 文献标志码:A 文章编号:1002-2589(2015)30-0145-02

引言

航空航天代表了科技和工业发展的最前沿,是促进国家科技发展、满足经济建设、增强国防安全和加快社会进步的重要力量。加强航空航天类高校教育,培养一批具有高素质、创新能力的航空航天类专业人才是服务我国战略发展的必然需求。航空航天类本科人才是高层次航空航天类人才的基础,培养适应国际竞争的航空航天类本科人才,是我国航空航天科技发展的关键。当前,以美、俄为代表的航空航天大国都建设了自己特色的航空航天专业院系,开展了多年的教学实践,具有丰富的经验。论文旨在通过材料的梳理,了解国外航空航天专业人才培养模式,对国际一流大学航空航天类专业设置、课程安排、学生培养特点等方面进行研究,从中总结经验,为国内航空航天类专业教学教改提供参考。

一、国外著名航空航天院系

(一)美国著名航空航天院系

美国是世界上航空航天类研究最发达、人才培养最成功的国家,其人才培养主要依赖其国内的大学。比较有代表性的有麻省理工学院和斯坦福大学。

麻省理工学院航空航天类教学与科研由航空航天系负责,下设三个部门,分别是信息部、航空系统部、飞行器技术部。信息部分主要研究航天系统有关的信息获取、处理、传输技术,如卫星通信、高空侦察、空中通信、集成防御系统等,负责教授导航、制导、控制、通信、网络、实时软硬件系统等课程。航空系统部门主要研究航空航天高复杂性系统的设计、制造、操作方法,教授最优化方法、故障诊断、系统容错等课程,建有人机实验室、空间系统实验室、国际空运中心、操控台研究中心、复杂系统研究实验室等。飞行器技术部门负责计算方法、流体力学、推进技术、材料科学、结构技术等的研究和教学,建有宇航计算设计实验室、空气涡轮实验室、宇航微小结构协会、空间推进实验室、先进材料和结构技术实验室等。

斯坦福大学航空航天系隶属于工学院,承担航空专业的教学科研任务。该系的研究领域包括空气弹性变形及流体仿真、飞行器设计与控制、应用航空动力学、空气声学计算、流体动力学计算、动态系统计算、机器人控制、复杂材料与结构、湍流模拟、推进、高超声速流体、导航、控制系统辨识与优化、卫星工程、湍流与燃烧等。

(二)俄罗斯著名航空航天院系

俄罗斯也是航空航天强国,开设航空航天专业的主要学院有莫斯科国立航空学院、西伯利亚国立航空航天大学。莫斯科国立航空学院建于1930年,拥有12个学院,56个系,128个实验室,3个设计局,几个计算机中心,一个实验工厂,一套运动航空训练设施,一个莫斯科附近的飞机场,两个科研机构(应用力学和电气力学,低温研究)。该学院通常以数字编号代替学院名称,从一院到十二院分别为航空工程院、发动机院、控制系统院、信息与电力院、无线电电子学院、经济与管理院、航空航天院、机器人与智能系统院、应用数学和物理院、应用力学院、人文科学院、预科院。西伯利亚国立航空航天大学拥有空间研究及高技术学院和航天技术学院,设置了飞机制造系、航空发动机与能源装备系、飞行器管理系统系、航空导弹技术系、飞行器无线电技术系统系。

(三)欧洲著名航空航天院系

英国帝国理工学院在其工学院设置了航空系,主要负责飞机设计制造方面的研究与人才培养,包括航空动力学与航空结构学两个研究方向。航空动力学方向包含流体基础、航空飞行器设计、控制、生物医学、环境与工业关系等方面的研究。航空结构学方向包括计算力学、冲击与损伤、复合材料等方面的研究。

法国国家高等航天航空学院已经有90多年的历史,它位于欧洲航天业发展的中心地带,致力于培养顶尖的技术工程师,在研制协和式客机的工程师当中,有许多就是从法国高等航天航空学院毕业的。学院下设5个系和一个研究中心,分别是空气动力学、能源、推进系、结构与材料力学系、光电子与信号系、语言文化艺术系、航空宇航中心。

二、国外著名航空航天院系专业设置与课程体系

(一)学位与专业设置

国外著名航空航天院系多数是本科四年,研究生二年,英国有本科3年,研究生1年。俄罗斯不同,如莫斯科国立航空学院预科1年、本科4年、硕士2年、博士3年。在学位设置上,各个院校有所不同,归纳起来,主要有工学学士、航空航天工程学士、航空工学学士、航空航天工学学士、航空工程理科硕士、航空航天工程学士、航空与宇航工程学士、航空学理科硕士、航空与航天学理科硕士、机械与航天工程理科硕士。

(二)国外著名航空航天院系课程体系

麻省理工学院(MIT)航空与航天专业是美国同领域中最有名的专业,其人才培养理念和课程设置世界闻名。MIT航空与航天系设有两个本科专业方向:航空与航天科学工程专业和航空与航天信息科学工程专业,两个方向的课程设置都建立在航空航天基础(核心)课程上,下面分别以A和B代指这两个专业。课程主要包括全校统一要求课程和系课程构成。全校统一要求课程包括基础科学课程(6门)、人文、艺术、社会科学课程(8门)、科学与技术限选课程(2门)、实验课程(1门);系课程包括系核心必修课程、专业课程、试验与进展课程,其中系核心必修课程包括一体化工程I、II、III、IV,计算机和工程问题求解引论,自动控制原理、动力学、随机系统分析、微分方程;专业课程中专业A包括空气动力学、结构力学、推进系统引论、航天工程中的计算方法,专业B包括航天系统的评估与控制、数字系统实验室介绍、实时系统与软件、交互系统工程、人为因素工程、自主决策原理;试验与进展课程包括飞行器工程、空间系统工程、试验项目I、试验项目II、飞行器进展、空间系统进展I、空间系统进展II。

(三)学时学分要求

1.学分组成。课程学分组成考虑教学环节,如MIT飞行动力学课程,总学分12分,构成包括课堂3分、实验1分、预习和复习8分。另外还有无学分课程,课程必修但无学分,如普林斯顿没有学分制、强调上课门数,斯坦福大学基础课程要求5门航空航天基础课程,专业课程4选3。英国大学一般不设立学分制,所有学生都按部就班完成规定课程的学习。

2.学分要求。美国大部分学校有明确的毕业学分数要求。如MIT航空航天工程系根据培养计划设课程学分,又分成4类,分别是核心课(core)108、专业领域课(professio-

nal area)48、实验和综合应用(experiment and Capstone)30、非限制性选修课(unrestrictived elective)48,总学分大于234学分。但是在学分数量并不统一,差异很悬殊,如密歇根128学分、MIT大于234学分、宾州州立132学分。航空航天专业必修课比例很高,有的高达90%以上,如斯坦福、佐治亚理工、普渡。另外还有只要求课程而不要求学分的,如普林斯顿毕业要求共36门课。

3.学时要求。有些大学要求学时达到一定数量,如悉尼大学本科至少192学时,研究生核心课程和选修课程,至少144学时。斯坦福大学研究生基础课程设置门数要求,其他按学时要求,数学(6个学时)、技术选修(12学时)、人文社科类选修(45学时)。

三、国外著名航空航天院系专业培养特色

归纳起来,国外著名航空航天院系在专业培养上具有如下特色。一是国外著名大学航空航天专业设置宽、窄各有特色。美英等专业设置以宽口径、大类培养为主,基本不针对特定航空航天器划分专业,学生专业方向只是体现在个别课程的选择上。俄罗斯、乌克兰等的专业划分细而精,如莫斯科国立航空学院几乎整个大学的院系专业就代表了航空航天器的各个不同部分,专业面向具体而明确。二是国外著名大学航空航天专业课程体系具有少而精且多样化特色。美英等课程每学期课程数量相对较少,但课业工作量不少。学生毕业所需学时学分也不少。美英等航空航天专业的课程必修多、选修少,完全学分制的作用并不明显,反映了航空航天专业的特殊性。课程学习课内外并重,还有较多实践环节、交流讨论、项目设计等。课程的环节丰富多样(如剑桥)。教授授课。三是注重通识教育与专业教育的结合。在通识教育上,在课程设置中有重视科技写作、科研道德规范、表达与交流、团队协作、人文素质培养和工程师就业指导。在专业教育上,强化多样化实践环节、注重专题课程和生产实习。四是注重综合素质和个性化培养。例如南安普敦大学设置有工程管理与相关法律的必修与选修课程,让学生学习在工程实践中如何领导团队、进行项目管理与风险评估、做出决策以及熟悉与之相关的法律知识。还会从工业部门请来客座教师来协助授课,并安排有相应的实践环节。针对个性化培养需求,在课程设置上具有较大的选择基数。

四、总结

航空航天类本科人才是高层次航空航天类人才的基础,是航空航天类研究生人才的后备军。论文主要对国际一流大学航空航天类专业学位与专业设置、课程体系、学时学分要求点等方面进行了梳理,总结了人才培养特色,为国内航空航天类专业建设和教学教改提供参考。

参考文献:

[1]田正雨,李桦.麻省理工学院航空航天类本科生课程体系分析[J].高等教育研究学报,2010(1).

[2]MIT航空航天系战略计划[Z].北京航空航天大学高教所译.1991.

篇3

关键词:航空航天;产业法;产业政策5月23日,在商飞集团参观了研制中的国产C9飞机,并在讲话中指出,“我们要做一个强国,就一定要把装备制造业搞上去,把大飞机搞上去,起带动作用、标志性作用。中国是最大的飞机市场,过去有人说造不如买、买不如租,这个逻辑要倒过来,要花更多资金来研发、制造自己的大飞机。”这为我国航空航天产业的发展指明了方向,航空航天产业被称为21世纪的朝阳产业,集中了当今世界大量的高新科技成果,无论在产业规模.整体带动还是科研发展的角度都有着极为重要的意义,笔者认为制定航空航天产业促进法,以法规的形式明确航空航天产业政策极为必要,本文笔者将从必要性、可行性和建议三个部分着手阐释本观点。

一、制定航空航天产业促进法的必要性

航空航天产业是一个投资数百上千亿元的庞大国家项目,是一项庞大的系统工程,其具有投资规模大、持续时间长、科研推动力高等特点,应该说我国自70年代成功研发“两弹一星”成果的后就已经开始进入航空航天领域,系列火箭的研发,国际卫星发射业务,再到新世纪神州系列飞船升空、商飞集团组建等,我国在航空航天产业领域也开始了自己的布局与发展,三四十年来我国的航空航天产业从无到有,从小到大蓬勃发展,但是不可否认的是,当前我国的航空航天产业还是政策主导型,政策为主,法规为辅是当前主要的情况。政策作为行政决策的结果有着高速反应,灵活机动的特点,能够较好的切合每个时期的情况。但是航空航天产业自身研发周期长,投入大的特点,又恰恰需要明确目标坚定不移,如果太多受政治经济因素的制约只会产生更多的运十悲剧。

在过去的几十年中我国的航空航天产业的发展中两个重大的问题一直在困扰,其一是我国曾经未把航空工业技术列入国家高科技领域;二是航空工业要不要有强大的科研工作体系,预先研究在航空工业发展中占有什么样的位置①。而这些问题本身就与政策的不断变化有关系。而相比较于其他航空航天产业大国,我国在航空航天产业方面的立法相当滞后,有学者做过统计,截止2011年,美国现有《美同联邦航空条例》等法律法规,同时还有国家航天政策等产业政策及专项措施,已基本形成了以法律法规为主,产业政策为辅,专项措施为补充的呈“倒金字塔”型的航空航天产业政策体系,不仅体系健全,而且具有较强的权威性、强制性和针对性,极大地推动了美国航空航天产业发展②。与此相对应我国从法规的角度来说只有《民用航空法》,其他的绝大部分都是类似于指导意见,白皮书,中长期规划等政策性文件,整体缺乏稳定性、权威性和强制性,与美国的状况相类比的话可以称之为“正金字塔”型,这样的布局和特点对于航空航天产业的发展显得助力不足,因此为了更好地布局航空航天产业发展,推动该领域的进步,有必要制定规范明确的航空航天产业促进法。

二、航空航天产业促进法制定的可行性

事实上,提出制定航空航天产业促进法(振兴法)这样的动议并不是今天才有的话题,资料显示,早在1991年七届人大四次会议期间,110名人大代表联名提案,要求国家尽快制定《航空工业振兴法》,人大财经委和国务院法制局把该法(条例)列入国家立法计划③。但是上世纪九十年代正是我国由计划经济向市场经济转型的时候,无论是产业规模,国家经济科技实力或者是国际环境都还不成熟,因此在当时虽有必要性,却无可行性。时至今日,我国经济总量已经跃居世界第二位,一大批科研院所已经建立,特别是在比较薄弱的航空领域组建了商飞集团公司,积聚了大批有生力量,航空航天产业立法具备了条件。关于航空航天产业促进法立法的可行性,总体而言笔者认为有以下三条:

(一)、国际通行惯例是立法先行;虽然说立法总体具有滞后性,是对已经产生的规则的总结,但是产业促进法本身具有特殊性,产业促进法本身就是为了指导和促进航空产业的发展,例如美国在上世纪二十年代,飞机刚刚发明运用不久就制订了航空邮件法和商业航空法为新生的航空产业指明了发展方向,极大的促进了该产业的发展,我国目前流行的立法模式可以总结为成熟一个,总结一个,归纳一个,制定一个。

(二)、我国航空产业具备一定的条件;在政治经济学中有一个基本定理就是经济基础决定上层建筑,航空航天产业是基础,产业立法是上层建筑,上世纪九十年代,虽然也有很多人大代表提出要立法,要促进,但当时我国几乎所有的民族工业无论是规模还是实力都有所缺失,此时需要的不是统一的法律,而是全面发展,寻找出路,因此在当时立这个法不合适,但到如今,我国航空航天产业的发展初具规模,正在进入一个高速发展的时期,此时全面开花各行其是的发展模式已经不适合于需要,制定航空航天产业促进法指明产业整体的发展方向有现实的需求。

(三)、经济社会发展提出现实需要;随着交通的日益发展,通用航空和外层空间旅游走入寻常百姓家有了现实的期待,正如同汽车的普及催生了汽车产业的发展一样,通用航空及外层空间旅行的普及必要也会推动航空航天产业的发展,但是必须指出的是航空领域及外层空间与国防安全息息相关,企业能做什么,不能做什么不能指望企业家能够在各类繁杂的法律文告中寻找规定,制定统一的航空航天产业促进法能够有效的为企业指明规范。

三、关于产业促进法立法的建议

对于制定航空航天产业促进法,笔者有以下三条建议:

(一)、立足于兼顾产业管理和组织运行;从国外实践的经验来说,政府对于产业扶持对于产业的促进具有十分重要的意义,因此我国的航空航天产业促进法不能撇开产业管理,而从现代企业管理制度的角度而言规范组织运行同样十分重要,因此笔者建议我国的航空航天产业促进法应当兼顾产业管理与组织运行。

(二)、制定法规而不是部门规章;当前关于是否应该制定航空航天产业促进的相关法律在业界依然趋于共识,但是具体制定什么位阶的法律意见分歧较大,有部分学者提出根据《立法法》制定一部法律要经过四个步骤:提出法案、审议法案、表决和通过法案、公布法律。

如果制定一部具有航空工业基本法地位的法律的话,那么短时间内恐怕难以完成,因为我国目前的客观情况还未达到制定这样一部法律的时机④。

(三)产业促进法要有足够的前瞻性;正如上文所讲述到的,产业促进法不用于传统意义上的民商法、刑法,它不是对已经形成的价值规范的总结,它最大的作用是为产业的发展加油助力,因此它必须具备前瞻性,具有超前立法的思维,对于规则的制定应当是整体性的或者可推演性的,而不是具体的规则。这样能够保证法律的稳定性。

航空航天产业的发展对国计民生有着至关重要的作用,我们必须以谨慎的态度,十足的热情,百分的努力驱动产业的发展,促进产业的进步,而笔者认为产业促进法将在其中发挥了至关重要的作用,产业促进法的制定势在必行。

参考文献

[1]吴大观,对航空工业两个重大历史问题的思考,航空发动机,2001.1

[2]王先林,产业政策法若干基本问题初探,经济法前沿问题研究,中国检察出版社,2004

[3]覃北云,李卫东等著,叩“关”指南――关贸总协定与商贸实务咨询.广西师范大学出版社,1994

注解

①吴大观,对航空工业两个重大历史问题的思考,航空发动机,2001.1:2

②张敏 肖冰,关于航空航天产业法几个问题的思考,西北工业大学学报(社会科学版),2011年第4期

篇4

关键词:计算力学;多物理场耦合;先进复合材料;有限元技术(FEM)

中图分类号:V211 文献标识码:A 文章编号:1671-2064(2017)12-0252-02

1 力学在航空航天领域的支柱地位

作为与材料科学、能源科学并肩的航空航天领域三大基础学科之一,力学在航空航天领域拥有无可辩驳的支柱地位。航空航天技术的发展与力学学科的发展有着举足轻重的关系。同样,力学学科的发展也推动了航空航天技术的发展。从航空航天的历史开端,力学便扮演着开天辟地的角色:莱特兄弟发明飞机前的时代,人类的航空器长期停留在热气球与飞艇的水平,人们普遍认为任何总密度比空气重的航空器是无法上天的;而随着流体力学的发展,越来越多总密度大于空气的航空器被发明出来进行试验,而莱特兄弟的飞机即为第一个成功的尝试,莱特兄弟的L洞也成为一个经典(图1)。从此,航空器的发展步入了快车道,各种结构的飞机翱翔于蓝天,从不到一吨的轻型飞机到上百吨的运输机,直至今天我们对机已经习以为常。

时至今日,航空航天的总体设计已由庞大的力学各分支支撑起来,从最基本的方面分类,可包括:飞行器整体气动外形归属于空气动力学;整体支承结构归属于结构力学以及材料力学;复合材料归属于复合材料力学;材料疲劳性能归属于疲劳分析;结构动力特性归属于振动力学;缺陷结构分析归属于损伤力学以及断裂力学。而对于具体的问题细分,则还有如:针对超高速飞行器的高超空气动力学;针对紊流等大气不稳定情况的非定常空气动力学;针对流固耦合问题的气动弹性力学;以及针对非金属材料的粘弹性力学等。此外,还有众多与力学相关的技术被发展起来,如有限元技术(FEM)等。

展望未来,力学发展的源动力在于航空航天综合多学科的交叉与技术。被誉为“工业之花”的航空航天工业,其研发生产涵盖了目前已知的所有工科门类,如此多的学科交叉下,力学的发展势必会与其他学科进行技术交流,这会带来问题的进一步复杂化,同时也丰富了力学的研究内容。

2 航空航天领域力学发展新挑战

航空航天的发展,给力学带来了新的挑战。结构的日趋复杂,给力学计算带来困难;繁琐的理论公式,需根据工程需要进行必须的简化;新材料的应用在航空航天领域最为敏感,在为飞行器降低结构重量的同时,也带来诸多的不利因素如耐热性能差、环境敏感度高等;而在某些关键部件的多物理场耦合问题也将成为重要的研究方向。

2.1 程序化

航空航天器和大型空间柔性结构的分析规模往往高达数万个结点、近十万个自由度的计算量级,这些问题包括但不限于:飞行器的高速碰撞间题,如飞机的鸟撞, 坠撞,包容发动机的叶片与机匣设计,装甲的设计与分析,载人飞船在着陆或溅落时的撞击等。为了解决这种计算量庞大的问题,上世纪50年代初,力学便发展出一门崭新的分支学科――计算力学。伴随着电子计算机以及有限元技术的发展,计算力学取得辉煌的成绩,这也说明了其本身发展潜力巨大。

力学分析技术的发展,特别是对于各种非线性问题(几何非线性、材料非线性、接触问题等)分析能力,是长期存在的。然而在很长一段时间内,受到计算机能力的制约,以及模型建立本身的局限性,力学分析求解停留在解析方法和小规模数值算法中。这对于工程人员的设计工作是一个极大的限制,对于航空航天领域而言则尤甚如此。计算力学的发展,带来的效益是巨大的。首先其可以用计算机数值模拟一些常规的验证性试验和小部分研究型试验,这可以节省很大一笔试验费用。其次,其可以求解某些逆问题,逆问题的理论解往往无法通过非数值的手段得到。最后,从工程管理角度考虑,数值模拟方法大大节省了产品研发的周期,由此单位时间内产生了更多的经济收益。有限无技术分析机翼见图2。

上述计算力学给工程设计方面带来的种种好处,都基于一个很重要的前提。那就是力学问题程序化。如何将力学问题转化为一个计算机可以求解的程序,一直是计算力学研究的重点,比如有限元技术就是其中一个典型代表。目前,有限元技术已经涵盖了大部分力学问题,包括:静力学求解,动力学求解,各种非线性问题,以及多物理场耦合等。但值得注意的是,除了静力学以及相对简单的问题外,其余问题所用的算法目前精度仍然有限,相较于工程运用而言仍存在诸多壁垒。对于这些问题算法的更新,是力学问题程序化必须面对的挑战,仍需研究人员不断探索。

2.2 工程化

力学工程化依然是基于计算力学而讨论的。所不同的是,程序化是针对一项力学问题能不能解决,工程化关注的问题是如何使得力学问题的解决过程更符合工程需求。

21世纪的航空航天,已经越来越趋向于商业化,美国已有数家私有航天企业成立,我国的航天科技集团也在进行着一些商业卫星发射。而商业化的工程问题,所追求的目标永远是效益。因此,力学工程化发展也应基于这一要求。航空航天工程的研发工作,一直给人周期长的印象,动辄10年以上的研究周期,对于目前商业化的运营是不适用的。如何快速的给出解决方案,是今后力学工程化的重要考量。随着软件技术的发展,越来越多的数值计算可以通过可视化、图表化等快捷的交互式设计方法呈现出结果,这可以直观地给予工程师设计反馈,从而达到加快设计进程的目的。同时,直观的结果反馈,也能避免数据分析过程出现人为失误,起到规避风险的作用。

2.3 非均质化

新材料往往首先出现在航空航天领域,其中典型代表便是先进复合材料。先进复合材料具有高比强度、高比模量、耐腐蚀、耐疲劳、阻尼减震性好、破损安全性好以及性能可设计等优点。由于上述优点,先进复合材料继铝、钢、钛之后,迅速发展成四大结构材料之一,其用量成为航空航天结构的先进性标志之一。

复合材料的运用给力学提出了新要求,相比于传统各向同性的金属材料,其各向异性的力学特性使得非均质力学应运而生,代表便是复合材料力学的诞生。非均质化力学需要将材料的承力主方向设计为结构中的主承力方向,而非主承力方向则需要保证一定强度,不至于破坏,这是其主要的设计特点。相比各向同性材料,其理论模型更为复杂,相应的数值求解方法也没有那么完善。同时,实际中复合材料的性能分散性和环境依赖性相当复杂, 设计准则和结构设计值的确定还很保守,导致最终设计结果并没有理论中那么完美,很大程度上制约了工程领域大规模使用复合材料。对于国内而言,复合材料研究工作相比国外则更为落后,无论是设计经验还是试验数据积累都有不小差距。

建立完备的非均质化力学模型,积累足够的原始参数,大胆尝试提高复合材料的设计水平以及用量是今后力学非均质化的主要任务,需要研究人员付出更多的努力。

2.4 多物理场耦合

2.4.1 电磁与力学耦合

新时代下的航空航天材料,已不仅仅局限于提供简单的支承作用,功能化是航空航天器新材料发展的重点和热点,其最终目的是为了未来航空航天器发展智能化目标。

目前,越来越多的具有电-力耦合功能的新型材料正成为航空航天器结构材料的选择。因为在对飞行器的自我检测技术方面,具有电-力耦合功能的材料的受力状态与电磁性能存在特定的函数关系,由此系统能通过检测电磁性能达到检测受力状态的效果,这大大方便了对飞行器的健康监测,也有效保证了飞行器的安全。这其中耦合函数的准确性便成为关键,电-力耦合的发展能促进这些技术的健全,具有十分积极意义。

2.4.2 温度与力学耦合

温度场与力场的耦合主要体现在发动机上,对于发动机内部涵道的设计最优化一直是热力学着力解决的问题。

目前大部分飞机均采用喷气式发动机,包括:涡喷发动机、涡扇发动机以及涡桨发动机。上世纪40年代末,涡喷发动机出现,飞机飞行速度第一次能超过音速,带来了一场飞机发动机的技术革命。由此,包括进气道以及发动机涵道的设计成为发动机研发的一个关键点,早期的涡喷发动机,由于涵道上的设计缺陷,导致燃料燃烧产生热能转化为推进力的转化比很低,同时伴随着燃烧不充分,因此发动机耗油量很高且推力较小。经过几十年的发展,目前无论军用还是民用飞机发动机,大部分均采用涡扇发动机,通过优化得到的涵道形状最大化了单位燃油所提供的推力。图3为民用客机发动机涵道。

我国的飞机发动机工业水平距离世界领先水平仍有较大距离,特别是在大涵道比的商用发动机研发上。发展热力学,对热-力耦合问题进行更深入的研究,是发展我国飞机发动机事业的奠基石。

2.4.3 流固耦合

流固耦合是飞行器研制最基本的问题之一。几十年的发展历程中,基于流固耦合研究的飞机外形设计取得了诸多进展,包括整体机身外形的优化,翼梢小翼的出现等。随着飞机飞行速度的不断提高,特别是军用飞机机动性的要求,出现了许许多多新的流固耦合问题。比如针对飞机在大攻角飞行时(一般出现在军机上),传统小攻角气动表示法、稳定理论等均不再适用。因此,解决大攻角非定常问题,需要从飞行器运动以及流动方程同时出发,建立多自由度分析和数值模拟模型。这是典型的流固耦合问题。

同时,以往旧的流固耦合理论,在先进复合材料大量运用的今天,显然已经不再使用。对旧有理论进行必要的修正,也将成为流固耦合问题亟需完成的工作。

3 结语

当前,国家大力发展航空航天事业,作为高精尖产业,其所运用的理论与技术绝不能落后。力学作为一门古老而又应用广泛的学科,其对航空航天事业的发展起着举足轻重的作用。为符合未来航空航天领域发展,航空航天领域的力学应着力向着程序化、工程化、非均质化、以及多物理场耦合化综合发展。

参考文献

[1]杜善义.先进复合材料与航空航天[J].复合材料学报,2007(2):1-11.

[2]尧南.计算固体力学的发展及其在航空航天工程中的应用[J].计算结构力学及其应用,1993(3):199-209.

篇5

关键词:竞争力;比较优势;占有率

中图分类号:F74文献标识码:A文章编号:1672-3198(2008)12-0021-04

1 引言

我国航空航天器制造业从建国以来从无到有、从小到大,以惊人的速度不断发展。航空航天器制造业长久以来被誉为制造业之花,是因为其的技术含量远远高于一般机械制造技术,因此其技术状况成为衡量一个国家科技综合水平的一个重要标志。随着神五神六神七的成功,我国的航空制造业取得了很大的成就。是我国综合实力的标志性成果。2002年中国正式实施的《国民经济行业分类》国际标准,把航空航天器制造业分为飞机制造及修理、航天器制造和其他飞行器制造三部分。根据我国颁布的《高技术产业统计分类目录》,航空航天器制造业也是高技术产业的重要组成部分。此外航空航天器制造业更是关系国家安全 、国民经济发展的战略性产业。不仅在军用方面不可替代的地位,在商用和民用方面也是提高生活的科技水平的重要战略产业之一。因此,提高我国航空航天器制造业的国际竞争力,有着及其重要的意义。

2 我国航空航天器制造业国际竞争力的评价体系

2.1 出口竞争力

关于产业国际竞争力,我国学者金碚认为,产业国际竞争力的实质可以这样定义:在国际间自由贸易的条件下,一国特定产业相对于他国的更高生产率,向国际市场提供符合消费者或购买者需求的更多产品 ,并持续地获得盈利的能力。

(1)贸易竞争指数

贸易竞争指数是指某一产业或产品的净出口与其进出口总额之比。用公式表示:

TSC=(Ei-Ii)/(Ei+Ii)(1)

其中Ei为产品I的出口总额;Ii为产品I的进口总额。贸易竞争指数表明一个国家的I类产品是净进口国,还是净出口国,以及净进口或净出口的相对规模。贸易竞争指数为正,表明该国I产品的生产效率高于国际水平,对于世界市场来说,该国是I类产品的净供应国,具有较强的出口竞争力;贸易竞争指数为负则表明该国I类产品的生产效率低于国际水平,出口竞争力较弱;如果指数为零,则说明该国I类产品的生产效率与国际水平相当,其进出口纯属与国际间进行品种交换。

(2)显示性比较优势指数

巴拉萨(Balassa,1965,1989)提出的“显示性比较优势(revealed comparative advantage, RCA)”指数,认为,国家在I产业或产品贸易上的比较优势,可以用I产业或产品在该国出口中所占的份额与世界贸易中该产品出口占总出口的份额之比来显示出来,即:

RCAia=(xia/Yit)/(Xwa/Ywt)(2)

式中,Xia是国家A在产品I上的出口,Yit是国家A在T时期的总出口,Xwa是产品I在世界市场上的总出口,Ywt是世界市场上在T时期的总出口。这一指标反映了一个国家某一产品与世界平均出口水平比较来看的相对优势,自20世纪80年代开始进行国际竞争力的比较以来被广泛采用。一般而言,若RCAia1,则处于比较优势,取值越大比较优势就越大。

如果一个国家或地区的某类产品对这些工业发达国家或地区的出口具有优势或市场占有率高,则说明该国的这类产品确实具有很强的国际竞争力。这时,RCA指数可用公式表示为:

RCAkij=(Xkij/Xkij)/(Ykij/Ykij)(3)

式中,RCAkij表示在产品I上K国对J国的显示性比较优势指数,xkij表示在产品I上J国对K国的进口额,∑Xkij表示J国对K国的进口总额,∑Ykij表示J国在K产品上的进口总额,∑∑Ykij表示J国所有产品进口总额。

一般而言,RCA>2.5表示该类产品具有极强的出口竞争力;1.25

2.2 市场占有率

(1)国际市场占有率的定义为:

A国I产品的国际市场占有率=A国I产品出口额/世界I产品出口总额。(4)

该指标反映的是一个国家或地区出口的产品在国际市场上占有的份额或程度。一个产业的国际竞争力的大小,最终将表现在该产业的产品在国际市场上的占有率。在自由、良好的市场条件下,本国市场和国际市场一样,都是对各国开放的。一种产品在国际市场上的占有率,就可以反映出该产品所处产业的国际竞争力的大小。国际市场占有率越高,该产品所处产业国际竞争力就越强;国际市场 占有率越低,就说明该产品所处产业国际竞争力越弱。

(2)国内市场占有率:

Qi=(Si-Ei)/(Si-Ei+Ii)(5)

式中,Qi表示产品I的国内市场占有率,Si表示全国产品I的销售收入,Ei表示全国产品I的出口总额,Ii表示全国产品I的进口总额。

2.3 质量与附加值

(1)进出口价格比

同类产品出口价格与进口价格比较,可以间接地反映出一国产品的质量(附加价值)的差别。用公式表示如下:

价格比=出口商品单位价格/进口商品单位价格(6)

同类产品出口价格与进口价格比较,可以间接地反映出同类产品中出口品与进口品的质量或附加价值的差别。通过价格比这个指数,可以在一定程度上对我国出口商品的质量与国外商品的质量进行比较对本国而言,一种产品的进出口价格比越高。说明出口品的质量和附加价值高于进口品的质量和附加价值,那么该产品所处的产业国际竞争力就越强;反之则弱。

2.4 劳动生产率

市场竞争的实质主要不是数量的对比,而是效率的较量。劳动生产率是反映产业效益的重要指标,是衡量一个国家经济竞争力的关键尺度之一。我国是一个劳动力资源丰裕的国家,劳动生产率的提高对产业的发展,乃至经济增长极为重要。并且,劳动生产率不只是一个经济问题,而是很大程度上反映了一个民族素质的高低。因此,有必要对我国的航空航天器制造业的劳动生产率进行实证分析和国际比较。

全员劳动生产率的定义为:

A国i产业劳动生产率(元/人)=A国i产业增加值A国i产业从业人员平均人数

该指标反映的是劳动者的生产效率。它作为衡量产业国际竞争力的指标,研究的是产业技术进步与劳动生产率提高的关系。往往是产业技术进步越快,其产业劳动生产率越高,竞争力越强。为直观起见,我们用全员劳动生产率即各劳动者在一年内生产出来的产品价值总额来反映产业的竞争力大小。其值越高产业的竞争力越强;反之则弱。

3 中国航空航天器制造业 国际竞争力的实证分析

3.1 产品选择及数据来源

本文根据海关理事会(CCC)制定的《商品名称和编码协调制度》六位分类法“HS2002”的分类,采用联合国统计署历年的《国际贸易统计年鉴定》(Yearbook of international trade statistics(各类产品海关数据的详细汇总,由各国海关提供数据)。主要计算了下列所示主要航空制造业产品:

88011000滑翔机及悬挂滑翔机

88019000汽球、飞艇及其他无动力航空器

88021100空载重量不超过2吨的直升机

880212102吨<空载重量≤7吨的直升机

88021220空载重量>7吨的直升机

88022000小型飞机及其他航空器

88023000中型飞机及其他航空器

880240101025吨≤空载重量<45吨客运飞机

8802401090其他大型飞机及其他航空器

88024020特大型飞机及其他航空器

88026000航天器(包括卫星)及其运载工具

88031000飞机用推进器、水平旋翼及零件

88032000飞机用起落架及其零件

88033000飞机及直升机用其他零件

88039000其他未列名的航空器、航天器零件

88051000航空器的发射装置及其零件等

88052100空战模拟器及其零件

88052900其他地面飞行训练器及其零件

84071010输出功率≤298KW航空器内燃引擎

84071020输出功率>298KW航空器内燃引擎

84091000航空器发动机用零件

对于劳动生产率及利润指标两类数据的来源,本文采用了由中国统计局编制的《中国高技术产业统计年鉴--2004》及美国《财富(Furtune)杂志历年公布的全球企业500强的财务数据。

为了保持数据计算口径的统一,本文计算各指标的原始数据均来自于联合国统计属的comtrade.省略/网站。

3.2 出口竞争力

(1)贸易竞争力

从表5、6、7的比较优势指数来看,和发达国家相比我国航空制造业的优势很小,其中航空器发动机用零件类的产品表现最好,说明要赶超世界先进国家的水平,还有需要进一步的努力。

3.3 国际市场占有率

本文选用2000-2004年中国航空航天器制造业6位商品分类目录产品的国际市场占有率来进行中国航空航天器制造业国际竞争力的比较研究。

表8给出了2002-2006年我国航空制造业出口的6大类产品的国际市场占有率。从结果可以看出,从2002-2006年我国航空制造业在国际市场上的占有率非常低,国际市场占有率达到1%以上的产品只有航空器内燃引擎、航空器发动机用零件。从国际市场占有率的发展趋势上来看,我国航空航天器制造业的在浮动中都略有上升。

3.4 质量与附加值

为反映中国航空制造业产品相对于国外航空航天器制造业产品质量的国际竞争力,本文计算了02至06年航空制造业的进出口价格比

计算结果表示,这6大类产品中,没有产品的进出口价格比大于l。说明我国制造的这些产品的质量和附加值低于国际一般水平。尤其是无动力飞行器的进出口价格比都非常低,有的甚至接近于零。

从我国航空航天器制造业产品进出口价格比的发展趋势来看,零部件变化不大,航空发射装置及甲板停机装置及类似装置及零件06年显著下降,航空器发动机用零件逐年下降,其他的都在浮动中略有上升。说明我国的航空制造业产品的附加值普遍低于国际水平。

3.5 劳动生产率

本部分关于劳动生产率的数据表10表11为网上摘录特此声明

由于数据的可得性,表10中数据偏老,2003年我国高技术产业全员劳动生产率为航空航天器制造业全员劳动生产率的2.5倍,而我国航空航天器制造业全员劳动生产率只达到我国制造业全员劳动生产率的平均水平的60%,可见,我国航空航天器制造业的全员劳动生产率较低。从劳动生产效率的提高比率来看2000~2003年间,我国制造业全员劳动生产率从4.3万元/人提高到7.0万元/人,提高比率为162.8%,高技术产业全员劳动生产率从7.1万元/人提高到10.5万元/人,提高比率为147.9%,而我国航空制造业全员劳动生产率从2.3万元/人提高到4.2万元/人,提高比率为182.6%。可见我国航空航天器制造业劳动生产效率提高速度慢于高技术产业平均水平,也慢于制造业平均水平。

再看我国航空制造业劳动生产率与我国高技术产业劳动生产率平均水平的差距来看,2000年航空航天器制造业劳动生产率占高技术产业劳动生产率平均水平的32.4%,到了2003年,该比例下降到40%,上升了7.6个百分点。相对于我国制造业劳动生产率平均水平,2000年航空航天器制造业劳动生产率占制造业劳动生产率平均水平的53.5%,到了2003年,该比例下降到60%,上升了6.5个百分点。可见,我国航空制造业的生产效率在不断提升。

4 结语

本文通过对中国航空航天器制造业国际竞争力的比较分析,可以得出以下几点结论:

(1)在本文分析的21种6大类中国航空制造业产品中,没有一项产品的RCA指数大于1,说明我国航空制造业总体国际竞争力很弱,难以全面参与国际竞争。可见我国航空制造业虽然已经成绩卓著,但还有待进一步发展,尤其是先进科技向生产力的转化方面有待提高。这要求我们一方面努力研发的同时,积极参与国际竞争,提高科技转化能力和速度。

(2)从各项数据的表现可以看出,认识到不足的同时,可以肯定我国航空制造业正在逐步发展,某些产品已经初步具有了一定的国际竞争力。

(3)在产品层次方面,我国总体上技术层次还比较低、附加值也较低,这表明我国航空航天器制造业的科技竞争力与国际水平存在相当的差距,有待提高。这显然同样基于科技创新,更重要的是技术向生产力的转化。

(4)我国航空航天器制造业的劳动生产率与发达国家存在巨大差距,而且,我国航空航天器制造业劳动生产率的平均水平低于我国高技术产业平均水平及制造业平均水平。因此这从劳动效率的角度来看,我国航空航天器制造业的国际竞争力还很弱,需要进一步提高。

综上所述,虽然我国技术上的巨大进步已得到广泛的认可,但是还需提高的地方依然任务严峻,本文提出以下几个建议:

(1)改革现行中国航空航天事业政府管理体制,我国目前主要是政府主持投资的,这有利于资源的有效集中,而适度的引住竞争,也许更加有利于技术向生产力的转化,从而提高效率

(2)能够根据航空制造业总体发展状况,即使调整战略和相应的产业政策,支持航空制造业进行产业结构调整与优化,加快我国航空航天器制造业的高技术产业化进程,进一步是指形成具有显著经济效益的支柱产业。

(3)在国际竞争中,发挥我国的比较优势,进步是一个过程,而过程中积极参与国际竞争是必要的,在进步的同时,注意根据目前的实际情况,发挥比较优势,从而获得经济效益,将对我国航空制造业的发展起到极大的推动作用。

(4)金融方面的的支持。这不仅包括产业发展所必须的资本投入及资本配置效率的提高,还包括国际贸易中能有力提高竞争力的金融服务等,例如:在国际市场上购买飞机使用买方信贷或租赁经营已是惯例,为推动我国民机尽快批量进入市场,应该建立一个国内外用户都可以使用的买方信贷和租赁系统,这将对我国民机制造业发展发挥积极作用

(5)另外,我国航空制造业应该注意把握世界高技术发展趋势,努力在一些重要领域接近或达到国际先进水平,并能够不断发出具有自主知识产权的技术。

参考文献

[1]迈克尔•波特.竞争优势[M],华夏出版社,2002.

[2]金碚.中国工业国际竞争力--理论 、方法和实证研究[M].经济管理出版社,1997.

篇6

[关键词]核心技术领域测度社会网络分析中心度信息可视化航空航天

[分类号]G301 G358

1

引言

“核心技术”被认为是一种能够带来竞争优势的技术资源和能力,是一种难于模仿的、不可替代的技术竞争力。对核心技术进行测度将为产业R&D资金投入决策和科技人力资源配置提供辅助决策,具有重要的理论意义和现实意义。国内外学者对核心技术竞争力、核心技术创新、核心技术能力、核心技术的获取战略、核心技术的确认方法。等进行了一些研究,但这些研究成果主要采用定性研究方法进行,尚缺少实证支持;少量的定量研究成果也只是尝试探索核心技术领域的确认和识别等问题,未探讨核心技术领域的测度问题。

社会网络分析方法(Social Network Analysis,SNA),曾被普遍用于人际关系网络的研究,但运用SNA对技术进行研究的成果并不多,笔者尚未发现运用SNA方法测度核心技术领域的研究成果。本研究运用社会网络分析方法和世界权威专利数据库《德温特创新索引》的专利数据,以2009年全球航空航天产业技术为应用实例,进行实证分析和研究。

2 核心技术领域测度方法与指标选择

在世界权威专利数据库《德温特创新索引》中,到经过德温特专业技术人员的标引,具有逐级细分的技术分类体系,具体在专利文献中的表现是每条专利数据可以通过使用多个分类号详细描述专利的特质。如果一项专利涉及N个技术领域,数据库的技术标引人员就会在技术分类项目中同时标注N个技术领域,这就意味着这N个技术领域共现了一次。将技术领域视为节点,共现关系产生了边,有了节点和边,技术领域之间就形成了共现网络。专利所属的技术领域越多,技术共现网络就会越密集,《德温特创新索引》为技术共现网络的绘制提供了比较理想和规范的专业数据。

基于社会网络中心性原理,国内外学者曾将中心度指标用来测度科学引文网络中的核心文献或关键文献以及学科领域的核心人物或代表人物。笔者认为,社会网络中心性原理同样可以应用到技术网络的研究中。在技术网络中,代表技术领域节点的中心度越高,表明该技术领域与其他技术领域共现的次数越多,该技术领域的辐射能力也越强,这样的技术领域可以被认为代表了某个产业的核心技术。

3 核心技术领域测度方法与指标的应用

本研究数据来源于美国科学情报研究所IsI的网络检索平台Web of Science的《德温特创新索引》(DII)数据库,笔者选择了专利国际分类代码IPC,选择航空航天技术领域B64,检索时间范围是2009年。检索结果共得到3 660条专利数据,数据下载日期为2010年1月1日。

采用“德温特指南代码”(Derwent Manual Code,DMC)对2009年全球航空航天领域专利申请的热点技术领域进行可视化分析。DMC是由德温特的专业人员根据专利文献的文摘和全文对发明的应用和重要特点进行独家标引的代码,该代码可用于显示发明中的新颖技术特点及其应用,能提高检索的全面性和准确性。关于DMC代码的准确性和合理性,笔者于2010年11月20日在深圳大学城举办的“国内外专利文献的检索与分析”专题讲座过程中,请教了Thomson Reu―ters中国办公室科学解决方案顾问、“专利信息用户组(patent information user group,PIUG)”中国分会的发起者吴正先生,吴正先生解释说,由德温特专业人员细分的DMC代码,具有比《国际专利分类表》(IPC分类)更长的发展历史,其准确性和合理性是值得信赖的。通过对DMC进行分析,可以比较准确地掌握一个产业领域涉及到的、主要的热点产业技术集群。

通过运用瑞典科学计量学家Persson开发的大型文献处理软件Bibexcel ,对2009年全球航空航天领域专利文献的DMC进行处理,得到的专利申请共涉及1 435个不同技术领域,选取出现频次10次以上的87个技术领域,运用netdraw绘制出2009年全球航空航天领域技术网络图谱,如图1所示:

图1显示出2009年全球航空航天的专利技术主要分布在以下三个重点领域:通讯技术领域(w大类:Communications)、聚合物技术领域(A大类:Plasdoc)、计算与控制技术领域(T大类:Computing and Con―tro1)。图l的中心性分析结果显示,网络中节点中心度最高值为46.512,对科技成果产出数据的选取一般取3―5年为宜,评价时可以根据数据的可得性综合进行处理,一般年度越近的截面权重越高。512,该节点所代表的技术领域是2002年兴起的代码为T01-J07D1的“交通工具微处理系统”(vehicle microprocessor system)技术。中心度明显高于其他技术领域的前6位技术领域的DMC代码、中心度、频次和具体所代表的技术领域,如表l所示:

由表1可知,中心度最高的前6个技术领域中,w类占了5个,该结果与笔者所做的2008年波音公司技术前沿探测研究的结果是一致的,通讯技术已经成为当前世界航空航天领域重要的核心技术领域。

选择中心度作为测度核心技术领域的指标,是因为中心度高的技术领域与其他技术领域共现的机会多,对其他技术领域的影响也相对较大。在一个产业领域的技术网络中,一个对其他许多技术领域都有影响的技术领域,会成为该产业的核心技术领域。

4 结论与不足

本研究主要有以下初步结论:

・社会网络分析方法是一个比较好的对核心技术领域进行测度的可视化方法,可以用来绘制技术共现网络,并进一步对全球某一个产业或某企业的核心技术领域进行可视化分析。

・技术共现网络中心度指标,可以作为核心技术领域的测度指标。该指标可以测度一个技术领域与其他技术领域之间的关系,可以测度一个技术领域在技术共现网络中的地位和作用,中心度高的技术领域,会成为一个产业或企业的核心技术领域。但正如专家所言,核心技术和“中心度”不能完全画等号,“中心度”高的,也可能是因为技术的渗透性强。比如,信息技术具有较强的渗透性特点,因此,DMC图谱分析中,信息技术可能会有一定的优势。

篇7

关键词:航空航天产业;技术效率;SFA;影响因素

一、 引言

目前测度产业生产率的方法主要是总量生产函数、随机前沿生产函数(Stochastic Frontier Production Function Method,SFA)和数据包络分析(Data Envelopment Analysis,DEA),适用于不同的条件,其中DEA法要求较高的数据准确性,SFA法考虑了随机误差对经济增长的影响,也允许存在无效率,能较好的模拟经济状况。由于航空航天产业在发展中存在随机扰动和不可观测因素,采用SFA法应该更为适用。

技术创新要素是产业创新要素的核心,创新组织要素和创新环境要素围绕着技术创新要素发挥作用。因此,文章采用SFA的方法对我国航空航天产业1995年~2011年的技术效率进行了测度,并分析了时间、地区特征、人力资本素质、研发投入、企业规模及制度等对技术效率的影响,为航空航天产业的发展和技术提升提供借鉴。

二、 模型与数据来源

1. 航空航天产业生产效率基础模型。文章采用Battese&Coelli(1995)提出的SFA模型 ,假定我国航空航天产业生产函数为CD生产函数,则随机前沿生产函数模型为:

Yit=A(t)K?琢itL?茁itevit-uit i=1,…,I;t=1,…,17(1)

两边取对数,(1)式变为:

lnYit=?子+?仔?子+?琢lnKit+?茁Lit+vit-uit (2)

其中,Yit、Kit、Lit分别是i省t年产业总产出、资本投入和劳动投入,?琢、?茁是资本、劳动的产出弹性;A(t)=e?子+?子?仔为t年各省市前沿技术进步水平,其中e?子是基年即1995年产业初始技术水平,?仔是前沿技术水平进步速度;vit-uit是随机扰动项:vit是经济系统自身存在的随机误差,服从对称正态分布,即vit~N(0,?啄2v);uit是技术无效率项,服从单侧正态分布,即uit~N+(mit,?啄2u),mit是技术无效函数。

影响uit的因素很多,制度是重要的影响因素,此外还有企业规模、人力资本素质、研发投入、能源消耗状况、产业生命周期及产业密集度等。限于数据的可得性,将uit设定为人力资本素质、研发投入、企业规模和制度的函数,并考虑时间和地区因素:

mit=?渍+?兹t+?准1Locit+?准2Humit+?准3RDit+?准4Scaleit+?准5Systemit+wit i=1,…,I;t=1,…,17(3)

其中,?渍i(i=1,…,5)是技术无效率函数中第i个因素的截距项;t为时间趋势,系数?兹为正表明技术效率随时间的推移递减,反之亦然;Loc、Hum、RD、Scale和ystem是地区特征、人力资本素质、研发投入、企业规模和制度,系数?准i为正表明第i个因素对技术效率的作用是消极的,反之亦然。各个变量含义见表1。

(4)

式中?酌是指式(2)随机扰动项占技术无效率项的比重,?酌越趋近于1,前沿生产函数和技术无效函数的设定就越合理,采用随机前沿模型就更合适。

2. 数据来源与处理。文章主要数据来自《中国高技术产业统计年鉴》,航空航天产业的统计数据最早可至1995年,所以研究期间为1995年~2011年,样本是去除数据缺失较多的、海南、新疆、宁夏、云南、浙江、内蒙古以外的其他22个省市。此外,价格指数来自各年《中国统计年鉴》。

各指标数据选择及处理如下:

(1)总产出(Y)选取了能大体反映产业发展的当年价总产值,并采用以1995年为基期的各省市第二产业价格指数进行缩减以消除价格干扰。

(2)劳动(L)选取从业人员平均数,即年初就业人数与年末就业人数的均值。

(3)资本(K)的选取,1995~2005年为年末固定资产额,2006~2011年根据(5)式永续盘存法计算,即在上年折旧后加当年固定资产投资额。航空航天产业是高技术产业,资产提前报废、更新、淘汰的可能性较大,设备的技术损耗也会导致固定资产价值骤减,在借鉴会计上飞机、电子设备等折旧处理方式将折旧率取值15%。之后,用各省市固定资产投资价格指数将固定资产值统一折算到1995年不变价,其中广东缺乏的1995~2000年价格指数数据用地理和经济水平接近的福建替代。

Kit=Kit-1(1-)+Iit(5)

其中,Kit、Kit-1、、Iit分别是i省t年固定资本存量、i省 t-1年固定资本存量、固定资产折旧率和i省t年固定资产投资额。

(4)无效率因素:①地区特征,将22个省市分为东中西3个地区,分别取值1、2、3。②人力资本素质,是科学家和工程师占从业人员的比重。科学家和工程师知识水平高且实践经验丰富,是技术创新的主要贡献者,这一指标能大致反映产业人力资本水平。③研发投入,是R&D经费内部支出占主营业务收入的比重,涵盖了企业内部开展R&D活动的实际支出,能准确反映产业的R&D水平。其中,总产值以1995年为基期的第二产业价格指数进行了缩减。④企业规模,是产业总产值与企业数量的比值。产业内企业的数量是衡量市场结构和容量的重要指标,也能反映行业进入和退出的难度。⑤制度,用樊纲等(2011)的市场化进程指标来刻画,他从政府与市场关系、非国有经济发展、产品市场发育程度、要素市场发育程度、市场中介组织发育与法律制度环境5个方面综合测度了市场化进程,此外,用趋势外推法估算缺失的1995年、1996年、2010年及2011年的数据。

三、 实证结果及分析

利用Frontier4.1软件得出模型的参数估计值和检验结果,并得出各省市航空航天产业1995年~2011年的技术效率水平(见表2及表3)。

1. 航空航天产业生产函数分析。据表2的结果,LR统计检验值的显著性水平为1%,表明(1)式中误差项vit-uit复合结构明显, SFA法比OLS法更恰当;估计量?酌=0.612统计结果显著,表明技术无效率中随机误差项的影响高达61.2%、统计误差等不可控因素比例低,模型设定合理可靠,有必要分析技术效率未能充分发挥的原因。截距和时间趋势项系数为1.662和-0.061,表明1995年产业前沿技术进步水平为5.270(e1.662),之后以年均6.1%的速度下降。这可能的原因是:航空航天产业是国防科技工业中相对封闭、开放度小的行业,尽管十五大以来进行了改革,但科研、生产两张皮现象依旧存在,科技成果难以实现产业化;国防科技工业改革是渐进式的,这也有可能是改革过程中出现的无序状况。资本、劳动的弹性系数分别为0.350和0.712,表明劳动贡献度是资本的2倍。这也说明航空航天产业是知识密集型产业,科技人员在技术设备投入基础上进行产品的发明、实用新型和外观设计研发;重大技术R&D中需要大量科技人员长期持续的共同开发,劳动力及高科技人才作为稀缺要素发挥重要作用。此外,资本与劳动弹性系数之和大于1,表明产业具有容易形成规模报酬递增的特征。

技术无效函数中,时间趋势项系数值为-0.002,表明产业技术效率年均增加0.2%,但统计结果不显著。前沿技术下降伴随技术效率提高的原因可能是:①我国尚未形成自主创新的技术创新体制,还处于依赖国外先进技术的状态,如我国不具备生产涡轮风扇发动机或先进火控系统的能力;②产业部分是国防科技工业,具有公共产品的特征,会造成技术前沿下降的错觉。例如某些航空产品或军用航天器只是国防建设的需要,不参与市场流通,统计数据上无法显示。地区变量系数值为0.079,统计结果略微显著,表明东中西部地区产业技术效率呈现递减状态。

人力资本素质系数值为-0.010且统计结果较为显著,表明人力资本能积极提升产业技术效率,提高雇员中科学家和工程师人员的比重可以有效提高劳动生产率。Vandenbussche等(2006)的研究表明教育水平会使劳动力会对技术效率产生不同的影响,文章研究结果与其一致,表明科学家和工程师比重上升1%会提高1%技术效率水平,因为科学家和工程师具有较高的知识水平和丰富的实践经验。可见,航空航天产业吸收的劳动力具有较高的素质水平,对产业技术效率的提高做出了一定的贡献。

研发投入系数值为0.022且统计结果显著,表明研发投入对产业技术效率具有消极影响。研究期内各省市及全国水平的研发投入总体上涨,但研发绩效不高,这与钟卫等(2011)的研究结果一致,他认为在经济发展初期加大R&D投入能有效提高技术创新效率,但随着企业深入发展应重点调整经费投入结构。此外,航空航天产业企业大多由国家或国有控股,近年虽有下降但国有比例仍高达50%。虽然国有企业有规模、政府特许等优势,但激励却不充分。十五大以来中央对国防工业做出的多次部属是对改革的进一步延伸。

企业规模系数值为-0.134且统计结果显著,表明企业规模是积极的影响因素。产业具有高投入、高技术和高风险等特点,进入的企业都有一定的规模。研究期内各省市企业规模变化起伏:相对来说,黑龙江、江西、辽宁的企业规模曾较高(≥6亿元/企业)但变化急剧;大多数省市都在0~2之间。产业中大型企业比重不到20%,大中型企业比重在50%左右,并未形成良好的企业规模;此外,《2012年财富世界500强》排行榜中有12家航空公司,其中我国虽然有2家但上榜的中国航空工业集团公司在排名、主营业务收入和利润方面都与排名第一的波音公司差距较大。

制度系数值为-0.148且统计结果显著,是影响最大的因素。研究期内各省市市场化程度逐年提高,东部优于中部优于西部;位于沿海的广东、江苏、福建、上海等省市的市场化程度最高,而西部陕西、甘肃等省市只有发达地区的一半。1964年推行的三线建设将44项中的21项国防工业企业投放在西部,可见产业半数左右企业在西部地区;2001年实施的西部大开发政策一定程度上提高了西部省市的市场化程度,为产业发展提供良好的市场环境。

2. 航空航天产业技术效率分析。根据计算结果(见表3-1及表3-2)对产业技术效率从区域角度进行分析。

(1)航空航天产业技术效率总体分析。依据测算结果(表3),表明研究期内技术效率均值离效率前沿面较远,仅为0.472,即实际产出水平只占最优随机产出水平的47.2%(表明既定产出水平下能节约52.8%的投入)。可见,产业未能发掘现有科技资源和技术潜力,资源使用效率、管理水平及产业技术实际利用率低。尽管产业平均技术效率不高,但总体是逐年增长的。

(2)航空航天产业技术效率区域分析。由于地域禀赋、国家政策不同造成我国东中西部经济发展呈现东强西弱。产业区域技术效率的具体情况(见表4):各个区域技术效率存在显著差异;东西部增长较快,中部略微增长,所以2000年前原本领先的中部被东部赶超。各省市技术效率排行中,中部的黑龙江和江西排在第一和第三,技术效率值分别为0.85和0.75;大部分东部省市排名都很靠前;西部省市排名全部靠后,甘肃和山西技术效率值最低只有0.23。

航空航天产业区域技术效率差异显著,最高省市和最低省市相差高达0.62。黑龙江、广东、江西高效利用了现有技术,效率值都在0.75以上;吉林、甘肃和山西效率最低;9省市技术效率不足0.4。从各省市的变动趋势来看:高效率省市(≥0.60)除辽宁2003年前增长快速外的变化起伏;陕西、四川、甘肃、贵州、河北等低效率省市(≤0.3)正逐步释放内部潜力保持低速持续增长。

黑龙江研发投入处于中等且逐年增长、企业规模领先,产出水平很高,因而技术效率最高。黑龙江是工业发展的摇篮,产业全国影响大,其中哈尔滨民航产业发展也很突出。广东位于沿海地区,能吸引众多外资和高技术人才,企业规模虽然递减但处于全国领先,即使研发投入不高但产出规模大。尽管广东没有被纳入军事航空制造业布局,但在航空关联制造业相关领域国内市场占有率名列前茅,并在2010年推行《广东省航空产业发展规划(2010~2025年)》促进产业发展。

山西、甘肃位于内陆或经济不发达地区,产业发展相对较为缓慢,技术效率值偏低。山西技术效率值总体下降;吉林技术效率大致维持在同一水平;甘肃的技术效率逐年缓慢提高;这些变化一部分是由于受当地经济发展的影响,一部分也与国家政策支持力度和国防科技工业布局有关。

四、 结论和建议

航空航天产业发展过程应重点关注技术效率问题。文章用SFA法实证测度了1995年~2011年航空航天产业的技术效率,并对时间、地区特征、人力资本素质、研发投入、企业规模和制度等技术无效率因素进行了分析,得出如下结果:

1. 我国航空航天产业技术效率水平较低,研究期内均值只有0.472。技术效率各年均值波动增长,虽然从0.374上升到0.539,但仍有46%的上升空间。从无效率因素来看,时间趋势不是很显著;人力资本素质、企业规模、制度因素对技术效率具有积极的影响,应适当加大或提高这部分的水平;研发投入作用消极,应对投入结构进行调整。

2. 航空航天产业技术效率存在区域差异,区域效率均值排序为东部>中部>西部,黑龙江、广东、江西技术效率值排名前三,吉林、甘肃和山西排名最末。值得注意的是,研究期间内西部技术效率持续稳定的增长,中部是早期处于领先的情况下后期被东部赶超。

综上所述,人力资本素质、企业规模和制度等因素对航空航天产业技术效率具有积极影响,研发投入的作用是消极的。为了加快我国航空航天产业的增长,不仅需要完善教育、培训和人力资源开发体系,也应当扩大企业规模、使之形成规模效应,并推进市场化改革,保证所需人才、基础设施和制度支撑条件,此外也应改革国防科研体系,在改革研发投入结构的基础上提高研发投入,最终促进产业发展。

参考文献:

1. 丁兆浩.中国地区经济发展差异性.东方企业文化,2011,(14):82-83.

2. 栾春娟,王贤文,梁永霞.世界航空航天技术领域专利竞争.科技管理研究,2008,(12):429-433.

3. 霞飞.与三线建设.党史纵览,2004,(11):10-15.

4. 徐杰,杨建龙.全要素生产率研究方法述评.现代管理科学,2010,(10):3-5.

5. 张政治,谢毅梅,张文强.我国航空航天产业创新能力提升路径分析.科技管理研究,2011,(5):7-10.

6. 诺思.制度、制度变迁与经济绩效.上海:上海三联书店,1994:3.

7.钟卫.中国区域R&D投入绩效的统计评价.统计与决策,2011,(7):91-93.

8. 赵富洋.我国国防科技工业军民结合创新体系研究.哈尔滨工程大学,2010:33.

篇8

关键词:航空航天材料;专业英语;教学;改革

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)40-0092-02

航空航天材料是指飞行器及其动力装置、附件、仪表所用的各类材料,是航空航天工程技术发展的决定性因素之一,也是材料科学中富有开拓性的一个分支。飞行器及其装置的设计,不断地向材料工程提出新的课题,推动了航空航天材料科学的进步。各种先进材料的出现也为飞行器及其装置的设计提供更多的可设计性,极大地促进了航空航天技术的发展。因此,先进航空航天材料的开发、研究与应用反映了一个国家的工业水平与航空航天技术,关系到一个国家的综合实力与国际影响力。因此,各国都把先进材料的研究和开发放在重要地位。尽管我国近年来在航空航天材料的研发方面取得了巨大进展,但仍然与发达国家存在较大的差距。因此,需要不断学习和引进国外的先进技术和经验。而国外相关资料都是英文出版,这就需要航空航天材料方向的学生具有较高的材料科学与工程专业英语的听、说、读、写能力,以完成获取专业所需信息等任务。

材料科学与工程专业英语是一门语言应用与材料专业知识紧密结合的课程。它不但涉及英语科技文体的语法特征和材料专业技术文献的语言特点,而且涉及一定的专业技术内容及科技信息交流。课程目标是培养学生具有较强的专业文献的阅读能力,进一步提高学生的听、说、写、译能力,使学生能够熟练应用英语交流、获取知识。同时促进学生掌握良好的语言学习方法,提高文化素养,以适应社会发展和航空航天技术进步的需要。课程的教学目标是:掌握一定量的与材料科学与工程专业有关的常用单词和常用词组,并掌握一定的构词法知识,具有识别生词的能力,能顺利阅读专业相关的英文原版教科书、参考书及专业论文。但现行的教学模式在教学管理与培养方式中存在许多问题亟待解决,目前也没有针对航空航天方向的材料科学与工程专业英语教材。因此,迫切需要完善教学内容,优化教学方式,改编教材,以全面提高材料科学与工程专业英语的教学质量。

一、改编现有专业教材,扩展学生专业视野

浏览现有大部分的《材料科学与工程专业英语》教材可发现,内容基本是《材料科学概论》或《材料科学基础》的英文版本的改编,实际是英文版的专业教材,不具专业英语教材特点。而且教材内容的更新速度慢,与国际上材料科学的快速发展不相适应,学生阅读起来单调、枯燥。因此,在现有教材的基础上,急需编写新版实用性教材。新版教材需兼顾英语的语法特点和材料专业技术知识,既强调专业基础理论知识又涵盖国际研究前沿趋势。

从提高学生的听、说、读、写及翻译的综合能力着手,按照从难到易的教材内容顺序,突出航空航天行业背景及新技术特点,完成《材料科学与工程专业外语》教材的设计与撰写。从教材章节编排上,按照先介绍语言知识后介绍材料专业的顺序布局。可以在开始的章节介绍科技英语的构词、语法的特点以及专业学术文章的撰写规则。随后的几个章节,简单介绍材料的基础理论知识,学生可以结合以前学习的材料专业知识进行这部分的学习。目的是给学生介绍英文专业词汇,让学生逐渐熟悉专业英语的阅读。随后,在材料学的专业知识内容上,结合专业基础课程,着重介绍和航空航天技术紧密相关的材料研究内容,例如飞机结构复合材料、高温材料、隐身材料、非晶材料、太阳能材料等。同时,为了进一步提高学生阅读和理解专业文献资料的能力,提高学生从专业文献中获取重要信息和跟踪学术研究前沿的能力,教材还可以向学生介绍利用互联网站和相关的学术期刊网站获取最新专业文献的方法。并且,从材料专业高质量的国际期刊上精心选取一些难度适中的综述性和研究型的论文作为课堂教学内容。由于这些论文内容新颖且紧密跟踪本领域的研究前沿,学生也易于接受。这样,既提高了教学效果,也使学生对专业英语的重要性有了更深地认识和理解。

二、丰富课堂教学内容,夯实学生基本功

调研各高校材料专业的本科生教学计划,发现专业英语课程设置在第七至第八学期,大四学生对英语学习逐渐变得陌生,如果直接面对专业英语的学习,势必会造成学生学习的困难。因此,教师除了教授教材的内容外,可以适当拓展相关内容的英语学习,提高学生的学习兴趣。

从知识结构设置上,可以根据学生毕业后学习、就业及工作的实际需要,突出对学生专业英语实际应用能力的培养和训练。为了突出实际应用能力培养及常用交流,可按照先读后写,先听后说的思路,来对学生进行专业英语实际应用能力的训练。通过由学习模仿到实际应用的教学模式,重点培养撰写英文摘要、写推荐信、求职信、会议常用发言以及模拟求职对话等能力。除此而外,还可以就学生即将面临的毕业设计论文撰写,展开介绍和讲评。“学以致用”,而实际应用是学生学习的动力。学生一旦体会到能从专业外语的学习中获益,便会提高学习的积极性,促进专业英语的教学。

为了增加教学内容的趣味性,在实际教学过程中增加一些与课文内容相关的最新外文视频。材料科学与工程是一个大专业,其中又有金属材料、高分子材料及陶瓷材料等二级专业,因此除了完成教材的教学内容外,还应针对不同专业分门别类地介绍材料的最新的实际应用。介绍时,可以从互联网上搜索最新的文字资料,也可以搜索最新的视频资料,其中视频资料更生动,因此受到学生们的欢迎。比如在讲解金属材料和复合材料时,可以给学生播放波音、空客等制造飞机发动机及机身结构的最新技术视频。还可以通过播放如太阳能电池、风力发电技术及3D打印技术等视频,加深学生对陶瓷材料、功能材料及复合材料在新能源及新技术领域的应用认识。因此,通过利用多媒体技术的视频资料,不但可以提高学生的英语听力,扩充学生的词汇量,还可以使学生在轻松的学习氛围中了解相关技术的应用前沿,深化在学生对航空航天材料科学与工程的认识。

三、改革课堂教学方法,提高课堂教学质量

材料专业英语是一种正规的书面体,专业词汇多词形复杂、句子长,且与专业知识结合紧密,相对于基础英语来说,缺少文学作品中的韵律、节奏感,读起来抽象、枯燥,造成教师讲授、学生学习的兴趣不高。如果采用传统的专业课程的讲课为主的教学方法,势必不能有良好的教学效果。因此,应该结合英语课堂教学和专业课的教学特点,采取多元化的教学方法,对学生进行课堂教学。

可以采取英语课堂的教学,让学生随堂朗读教材内容,学生在读的过程中,既熟悉了教材内容,又对英语的“说”有提高。随后,对学生进行分组,讨论分析教材内容,或者也可以提出一个小话题,学生可进行问题的分析并提出解决方案。这样,既提高了学生的英语口语技能,也加强了学生分析专业问题的能力。课后布置适量的课后翻译作业,可以是对教材内容的翻译也可以是对课堂增补内容的翻译,通过英汉互译的环节,巩固课堂教学内容。在课程结束前,还可以穿插学生就自己的毕业设计方向,做一个简短的英文讲座,既可以对课堂教学效果进行测试,也可以提高同学们的口头表达能力,增加同学们英语交流的信心。

在进行课堂教学的时候,如前所述,可以围绕课堂教学时的内容,充分利用互联网技术,为学生补充国际上航空航天材料的最新研究成果和先进的应用实例,可以是文字资料也可以是视频文件的学习。进行文字资料的学习时,可以采用先朗读后分析、翻译的方法,逐步分解。进行视频资料的学习时,教师应提前将语音资料转换成文本资料,课堂上可以进行边视听边进行讲解,让学生在愉快的氛围中进行学习,进而达到良好的课堂效果。

四、结语

我国航空航天技术的发展对航空航天材料的研究提出更高要求。航空航天材料的研究人员必须及时关注国际发展,密切和国外学术交流,才能保障材料领域的不断进步,这就对科技人员的专业英语要求也不断提高。因此,通过对航空航天材料专业英语教材、课堂教学内容与方法的改革与优化,来全面培养学生的读、听、说、写、译的综合能力,增强学生的国际竞争力,为航空航天材料技术领域输送优秀人才。

参考文献:

[1]李成功.航空航天材料[M].国防工业出版社,2002.

[2]鲁红典,邵国泉,谢劲松.对材料科学与工程专业英语教学的思考[J].贵州师范学院学报,2013,(04).

[3]马彦青,魏忠,陈凯.《专业英语》课程的教学探索――以材料科学与工程专业为例[J].教育教学论坛,2015,5(21).

[4]陆江银,王春晓.化工专业英语教学方法探讨[J].黑龙江教育学院学报,2011,(01).

[5]孙丽丽,毕凤琴,张旭昀.金属材料工程专业英语教学改革实践的认识与思考[J].时代教育(教育教学),2010,(05).

[6]徐征,陈利生,余宇楠.关于高职院校冶金工程专业英语教材建设的思考[J].中国校外教育,2011,(11).

[7]董世艳.石油相关专业研究生专业英语词汇学习策略研究[D].长江大学,2013.

推荐期刊