欢迎访问爱发表,线上期刊服务咨询

管道结构设计8篇

时间:2023-08-01 09:23:00

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇管道结构设计,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

管道结构设计

篇1

关键词:支墩 土压力 地下水

中图分类号: S611 文献标识码: A

受场地条件、工艺要求等因素限制,核电站室外场地管线布置错综复杂,同时支墩会受到场地条件限制,在设计时应具体问题具体分析。水平弯头、堵头以及水平三通对支墩产生水平方向的力;在改变管道标高的上弯或下弯管处,支墩除水平分力外,还有垂直向分力;当有支墩高度范围内有地下水的影响时,还应该考虑地下水的影响。

1、支墩水平受力状态

支墩的水平抗推力,主要由土压力,支墩和地面摩擦力FF组成。

支墩可以近似的看成挡土墙。根据现有的土力学理论,土压力根据挡土墙位移方向和墙后土体的受力状态,分为三种不同的土压力,即静止土压力P0、主动土压力Fa和被动土压力Fp。当挡土墙静止不动,土体处于弹性平衡状态时,土对墙的压力为静止土压力;当挡土墙向离开土体方向偏移至达到极限平衡状态时,土对墙的压力为主动土压力;当挡土墙向土体方向偏移至土体达到极限平衡状态时,土对墙的压力为为被动土压力。土压力和墙身位移的位移关系如图1所示。相同土体的情况下,被动土压力Fp大于主动土压力Fa,而被动土压力所需的位移δp大大超过了δa。

当管道对位移有严格要求时,支墩不允许产生位移,此时位移δ=0,支墩两侧均受到静止土压力P0,大小相等,方向相反。此时,水平抗推力为支墩和地面摩擦力FF。FF与支墩自重以及上部覆盖土的重力G以及支墩和地面的摩擦系数f有关。

当管道的水平力大于摩擦力FF时,支墩将向抗推力侧产生位移δ。在当位移δ为δa时,支墩迎推力侧的土体达到极限平衡状态,产生主动土压力Fa,而支墩抗推力侧位移尚未达到δp;当位移δ为δp时,支墩迎管道侧土体已经被破坏产生滑动面,抗推力侧土体达到极限平衡状态,产生被动土压力Fp。此时水平抗推力最大。

经相关研究,被动土压力的位移δp往往要达到2%~10%H(H为支墩高度)是才能产生被动土压力。当土体达到被动土压力时,位移δ可能已经远远大于管道接头设计允许值,故设计时应对被动土压力Fp乘以一个折减系数来进行折减,折减系数可根据具体情况区取0.4~07。

土压力的计算理论常用的有朗肯土压力理论和库仑土压力理论。朗肯土压力理论是根据半空间的应力状态和土单元体的极限平衡条件而得出,假设墙背光滑、直立、填土面水平;库仑土压力理论是以整个滑动体上的力系平衡条件来求解土压力的理论。由于每种理论都有各自的试用条件和局限性,也就没有一种统一且普遍适用的压力计算方法。由于朗肯土压力理论是建立在半无限土体假定的基础上,在有边界条件时不符合这一假定;库仑土压力理论在计算主动土压力时比较接近,对于被动土压力偏差较大,不应用于被动土压力的计算。对于支墩水平力的计算,迎推力面土对支墩产生被动土压力,该侧土体往往设计成竖直面,以保证产生相对最大的被动土压力,符合朗肯土压力假设条件,可以用朗肯土压力理论计算;而管道方向产生主动土压力,此方向截面可以设计成斜面,以节省材料,可采用库仑土压力理论计算。《给排水水工工程管道结构设计规范》给出了主动土压力和被动土压力的简化计算公式,可以在简化计算时采用。

2、支墩垂直方向受力状态

在管线布置过程中,往往需要用上下弯头对管道的标高进行调整。在弯头处,除了产生水平向分力以外,还产生垂直分力N(在本文中N不表示方向)。向上弯弯头产生垂直向下的分力N,N同支墩自重以及上部覆盖土的重力G方向相同;向下弯弯头将产生垂直向上的分力N,N与G方向相反,应该保证G大于N才能保证支墩稳定。

垂直分力向下的上弯弯头的支墩,可以通过扩大基础面积,提高基础承载力等方法解决。垂直分力向上的下弯弯头,当管道直径和压力、弯头角度都比较大时,向上分力N很大,需通过加大支墩本身自重和上部覆土重的方式来满足稳定验算。在实际工程中,下弯弯头一般埋深比较浅,如果按照常规做法,采用矩形实心混凝土支墩的体积较大,浪费材料。可以采用倒梯形或者井形支墩设计,可以充分利用回填土自重,减少混凝土用量。

3、地下水的影响

当有支墩高度范围内有地下水的影响时,还应该考虑地下水的影响。计算垂直向稳定性时,因水的浮力作用,土和支墩有效重度G减小,对结构产生不利影响;计算水平抗力时,地下水面以下的土重度要按照有效重度来计算,主动土压力和被动土压力都将减小,其中被动土压力相对减小更多,摩擦力FF也因重力G减小而减小。因此,当支墩高度范围内有地下水时,应充分考虑地下水的不利影响。

结语

由于管线布置错综复杂,各种管线交错布置,支墩受力状态复杂;同时受到场地条件限制,具体设计时不能不考虑周边管线、构建筑物的影响,增加了设计难度。因此设计时应具体问题具体分析,分析清支墩的受力状态,充分利用现有条件,采用安全合理的安全系数,才能保证支墩的安全性和经济性。

参考文献:

1 陈希哲,叶菁.土力学地基基础 清华大学出版社

2 GB 50332-2002,给水排水工程管道结构设计规范

篇2

关键词 管道泵;完全胀型;冲压焊接;水力性能

中图分类号TG453 文献标识码A 文章编号 1674-6708(2012)69-0121-02

1 完全胀型成型蜗壳模具的设计

蜗壳模具是生产蜗壳的重要设备之一。不锈钢冲压焊接管道泵及单级离心泵的工艺制造难度很大,至今只有日本EBARA公司、美国ITT公司能够生产。由于水力设计和工艺设计不尽完善,产品涡室的胀型不到位,泵的性能并不好。水力性能上,主要表现为偏工况运行,俗称“大马拉小车”或高比转速低用,电机配置功率大,泵的运行效率低,时有电机超载损坏的情况发生。

图1是日本EBARA公司的3M40-160/4.0不锈钢冲压焊接单级离心泵的性能曲线。设计流量为25m3/h,但最高效率点的流量在40m3/h以上。图2是前期仿制产品CYB65-50-160型不锈钢冲压焊接单级离心泵的性能曲线,流量加大到50m3/h时效率仍不下降,偏工况现象均十分严重。成型工艺上为保证水力性能,要求蜗壳必须360°全断面完全胀型,并且蜗壳出口弯颈要求扩散回收动能。日本产品的蜗壳采用的是半螺旋式的部分断面不完全胀型,弯颈用圆管断面进行过渡。而美国ITT公司3500型不锈钢冲压焊接单级离心泵蜗壳根本不胀型,为一圆筒,出口管为一段直管,所以EBARA和ITT的冲压焊接泵的水力性能均不理想。主要原因是蜗壳的成型工艺十分困难,一种蜗壳需要48套模具,工装夹具费100多万元。最后不得不用较为容易制造、成本也较低的不完全胀型或不胀型替代,但影响了水泵的效率和汽蚀性能。

不均匀、不对称、360°全断面完全胀型是粘性设计的技术特征,但这种技术特征冲压成型非常困难,日本专利是部分断面的不完全胀型。

图3是日本专利产品的成型原理,利用这种对半式、部分断面不完全胀型不仅生产效率低,而且也不能满足粘性流技术特征要求的全断面完全胀型。

图4所示为荷花瓣式的自动分合的组合模具,从上部加力,利用侧向力使模具收拢,由于分成4瓣~8瓣,蜗壳涡线为全断面渐开线凹模,能够准确加工。底部有导杆及底板模,向下继续加力时,导杆下移,上盖板下压,聚氨酯橡胶在上下盖板挤压下侧向变形,使不锈钢钢板紧贴凹模成型,泄压时模瓣中弹簧使模瓣自动分开,胀型的壳体自动弹出,生产效率很高,质量达到要求。

2 管道泵的结构设计

现一般的管道泵普遍存在流部件结构复杂,产品笨重,材料消耗大;泵的水力性能也不够理想,偏工况运行,效率低等问题。经分析认为:低比转速离心泵,流道窄长,粘性产生的水力损失大,效率低。而粘性增大必将引起进、出口流道堵塞,从而偏离设计工况。

图5 泵结构示意图

针对上述问题,本文在传统的管道泵的结构基础上,设计一种蜗壳完全胀型的,能有效提高泵水力性能的高效泵结构,如图5所示。

其特征在于:泵体由呈桶状结构的内、外缸构成,内缸连通进水管,外缸连通出水管,内缸同轴设于外缸内通过在内、外缸底部互相固定连接,内缸开口端低于外缸开口端,内缸开口端向上依次同轴设有导流部件、叶轮、排气部件及安装在外缸开口端的泵后盖。

所述的叶轮为轴向吸入、径向排出的离心叶轮,导流部件为一整体冲压成型的盘状结构,盘底与内缸开口端密封,盘底中心设有与叶轮前端入口对应密封的进水口,叶轮同轴设于盘状的导流部件内,导流部件周壁设有与叶轮的径向排出口对应的导流叶片。

所述的导流部件周壁均匀冲压为多段,各段周壁为沿圆周同一方向径向向外增大的弧形导流叶片,每两相邻导流叶片之间由径向差形成一沿轴向向下的出水孔,盘状的导流部件开口处向外冲压有盘沿。该弧形导流叶片弧线分布与叶轮转动方向对应,提高出水效率。

所述的外缸内壁对应导流部件盘沿设有凸台,盘沿放置于凸台上以支撑导流部件,该凸台与内缸开口端的轴向距离等于导流部件的轴向深度。

3 产品应用情况

该产品在北京科技发展有限公司水处理回收,环保节能应用等方面,广州雅韶泵业有限公司食品行业水处理方面,张家港市东晨物资有限公司高纯度净水系统方面,杭州德士比泵业有限公司水供应系统的技术应用等方面到得到了很好的应用,直接或间接产生了较好的经济效益。

4 结论

1)由于底座、泵体、导流部件与叶轮等全部过流部件都是通过冲压焊接成型的,因而与铸造泵相比,整体结构轻巧,重量大大减轻,节省材料效果明显;水泵运行的可靠性大大提高。铸造泵相比,整体结构轻巧,重量减轻75%,节省材料效果明显;水泵运行的可靠性大大提高,效率提高3%~8%;

2)采用在叶轮径向出口的导流方式,并对导流部件的进行特殊设计等措施,使得传送的液体流动更通畅,水力性能好,效率高。外缸的周壁上及底部分别设置外缸和内缸的排水孔、密封圈、螺钉,可以把内缸的水完全放空;

3)导流部件为一体冲压结构,与现有的冲压泵相比,保证了导流部件具有足够的强度、刚度和精度,安装方便,提高了产品的可靠性,同时也延长了产品的使用寿命;

4)叶轮入口处采用密封环活动密封结构,不仅密封效果好,提高了泵的水力效率;而且降低了制造、安装难度,提高了生产效率;

5)外缸的周壁上及底部分别设置外缸和内缸的排水孔、密封圈、螺钉,可以把内缸的水完全放空。

参考文献

[1]申延鹏,常金唱.三元流技术在循环水泵节能改造中的应用[J].河南化工,2011(6).

篇3

关键词:市政工程;给排水管道;结构设计

中图分类号:TU99文献标识码:A

市政排水管道是城市基础设施非常重要的组成部分。在城市的日常运行和发展建设中有着举足轻重的作用。近些年来,由于降雨造成的突发事件渐渐引起了人们的关注,比如2012年7月的北京暴雨,造成的损失非常严重,引起了全国对排水设施的思考。

1排水体制的选择

排水体制主要有合流制和分流制两种。排水体制的选择,应根据城镇的总体规划,结合当地的地形特点、水文条件、水体状况、气候特征、原有排水设施、污水处理程度和处理后出水利用等综合考虑后确定。同一城镇的不同地区可采用不同的排水体制。除降雨量少的干旱地区外,新建地区的排水系统应采用分流制。现有合流制排水系统,有条件的应按照城镇排水规划的要求,实施雨污分流改造;暂时不具备雨污分流条件的,应采取截流、调蓄和处理相结合的措施。

2现场踏勘

给排水管道距离相对较长,或穿越城镇密集区,或敷设在农田,或跨越山丘和河流,还有可能横跨铁路、公路及桥涵。一项管道工程同时会遇到上述几种或所有的地形和地貌,其复杂的地形和地貌若不现场查看,则很难全面完成设计。结构设计人员应会同给排水、概预算等专业设计人员共同进行现场踏勘和选线,了解管道线路拟通过的沿线地带地形地貌、地质概况,必要时应在施工图阶段对个别疑难地段重新踏勘。

3测量和地勘要求

要准确地反应管道沿线的地形地貌和水文地质情况,必须有测量和勘探部门提供的准确的地形和水文地质资料。

3.1勘探点间距和钻孔深度

勘探点应布置在管道的中线上,并不得偏离中线3m,间距应根据地形复杂程度确定的30~100m,较复杂和地质变化较大的地段应适当加密,深度应达到管道埋设深度以下1m以上,遇河流应钻至河床最大冲刷深度以下2~3m。

3.2提供勘探成果要求

划分沿线地质单元;查明管道埋设深度范围内的地层成因、岩性特征和厚度;调查岩层产状和分化破碎程度及对管道有影响的全部活动断裂带的性质和分布特点;调查沿线滑坡、崩塌、泥石流、冲沟等不良地质现象的范围、性质、发展趋势及其对管道的影响;查明沿线井、泉的分布和水位等影响;查明拟穿、跨河流的岸坡稳定性,河床及两岸的地层岩性和洪水淹没范围。

4结构设计内容

4.1结构形式

管道的结构形式主要由给排水专业确定,结构专业应根据管道的用途(给水还是排水,污水还是雨水)、工作环境(承压还是非承压)、口径、流量、埋置深度、水文地质情况、敷设方式和经济指标等从专业角度提出参考意见。一般情况下,承压管道常采用预应力钢筋混凝土管、钢管、铸铁管、玻璃钢管、UPVC管、PE管、现浇钢筋混凝士箱涵。非承压管常采用混凝土管、钢筋混凝土管、砌体盖板涵、现浇钢筋混凝土箱涵等。当污水管道口径较大时应采用现浇钢筋混凝土箱涵,特殊情况、特殊地段(过河渠、公路、铁路等)、局部地段非承压管也采用钢管等形式。大型给排水管道工程也有采用盾构结构形式的。

4.2结构设计

根据管道规格、埋置深度、地面荷载、地下水位、工作和试验压力对管道的刚度和强度进行计算及复核,提供管道壁厚、管道等级、或结构配筋图。对于一些必须采取加固方法才能满足刚度和强度要求的管道,应根据计算采用具体的加强加固措施。通常采用的加固措施有管廊、混凝土或钢筋混凝土包管等,当钢管计算出的壁厚不经济时,应采用加肋的方法处理。加固的具体方式和方法应根据实际情况和经济指标来确定。

4.3敷设方式

敷设方式的选择应根据埋置深度、地面地下障碍物等因素确定,一般有沟埋式、上埋式、顶管及架空,较为常用敷设方式采用沟埋式,当沟埋式有一定的难度时,可选择顶管和架空等敷设方式。不同的敷设方式,其结构设计亦不同。

4.4抗浮稳定

有些管道敷设的地段地下水位较高或者施工期间多雨,因而管道的抗浮稳定应引起结构设计人员的重视。设计时应根据计算采取相应的抗浮措施,避免浮管现象的出现。

4.5抗震设计

4.5.1场地和管材的选择

确定管线走向时应尽量避开对抗震不利的场地、地基,如不可避免而必须通过地震断裂带或可液化土地基时,应根据工程的重要性、使用条件综合考虑。给水管道应选择抗拉、抗折强度高且具有较好延性的钢管,并要求做好防腐措施。有抗震要求的排水管道应采用钢筋混凝土结构,并有相应的构造措施,尽量避免严重破坏。

4.5.2构造措施

承插管设置柔性连接;砖石砌体的矩形、拱形无压管道,除砌体材料应满足砖石结构抗震要求外,一般可加强整体刚度(顶底板采用整体式)、减少在地震影响下产生的变形,提高管道的抗震性能;圆形排水管应设置不小于l20度的混凝土管基,管道接口采用钢丝网水泥带,液化地段采用柔性接口的钢筋混凝土管;管道穿越构筑物时应在管道与套管的缝隙内填充柔性填料,若管道必须与墙体嵌固时,应在墙外就近设置柔性连接;管道附属构筑物应采用符合抗震要求的材料和整体刚度好的结构型式。

(1)地基处理。出图时应包含地基处理的平、纵断面图。扫描矢量化需要处理的地段的地勘资料纵断面,选择参考点并根据给排水专业的平、纵断面将管道基底轮廓线放在地质纵断面上,划分地质单元并注明桩号和基底高程,标明沟槽范围内和基底以下土层构造以及地下水位。根据纵断面地质单元的划分(桩号划分),确定需处理的范围,针对不同的地质情况和厚度分别采取相应的处理方法。具体的处理方法有:换填、抛石挤淤、砂石挤密、水泥搅拌桩、灰砂桩、木麻黄桩等方法。具体设计按地基处理规范规程执行。

(2)管道支墩及镇墩。对承插接口的压力管道,应设置水平和垂直支墩。设计时应根据管道转角、土的参数、工作压力和试验压力计算所需支墩的大小。埋地钢管可不设管道支墩。

5给排水管道设计中的其他问题

5.1在用户管线出口建立格栅中纤维、塑料等沉积物、悬浮物和漂浮物的大量存在,给管道的清掏和疏通维护作业带来了很大困难。特别是抽升泵站的格栅间,每天都会拦截到大量的漂浮物。有的漂浮物通过格栅进入泵房后,常导致水泵叶轮堵塞、磨损损坏现象的发生。尽管格栅栅条的间距一再减小,但仍有大量的漂浮物进入泵站造成堵塞。为了解决上述问题,建议在庭院或住宅小区的管道出口处设置简易人工拦污格栅,定期进行清理、清掏,从源头上控制漂浮物进入市政管网,以减轻市政管网维护管理的工作量。

5.2在检查井井底设置沉淀池中的沉积物在管道内水流量小、流速慢时会发生沉淀,造成管道淤积堵塞、通水不畅,而管道的疏通工作又费时费力。因此,针对传统的检查井做法,建议将其井底改为沉淀式的,井底下沉3O~50cm。这样中的沉积物多数会沉积在检查井中,不至于流人下游管段,只要定期清掏检查井内的沉积物即可,减少了管道维护作业的工作量。这种做法也可用于雨水检查井。

5.3在检查井内设置闸槽干管中的流量和流速均较大,有的检查井内的水位较高,管道维护作业或户线管接头时,需将管道内的水位降低或断流。为了方便维护作业,建议在干管的管道交汇处检查井、转弯处检查井或直线段的每隔一定距离的检查井内根据需要设置闸槽,通过闸槽的开闭控制水流,便于维护作业。同时为方便户线支管接头时的施工,建议能研制一种较轻便、实用的管道阻水设备。

6结束语

总之,市政排水管道工程结构设计应严格按照现行相关规范、标准、规定进行。设计人员应当掌握专业技能,了解行业动向,研究存在的问题,积极创新,尽可能地把设计做到经济、合理、适用、安全。

参考文献:

篇4

关键词:化工;设备和管道;绝热;结构设计

中图分类号: TU318 文献标识码: A 文章编号:

引言

绝热是保温和保冷的统称。为了防止生产过程中设备和管道向周围环境散发或吸收热量,绝热工程已成为生产和建设过程中不可缺少的一部分。我国已制订绝热工程的各种标准及规定,以便统一和应用。正确的选择绝热结构,直接关系到绝热效果,投资费用,能量耗损,使用年限及外观整洁美观等问题。

1.绝热结构的设计要求

①保证热损失不超过国家规定的允许最大热损失值,热损失取决于保温材料的热导率,热导率越小,保温厚度就越薄。.

②绝热结构应有足够的机械强度,能承受自重及外力的冲击,在受风力、雪载荷、空气温度波动及雨水的影响下不致脱落,以保证结构的完整性。

③要有良好的保护层,使外部的水蒸气、雨水以及潮湿泥土的水分不能进人绝热材料内,否则会使绝热材料的热导率增加,还会使其变软、腐烂、发霉,降低机械强度,破坏绝热结构的完整性,同时也增加了散热损失。

2.绝热结构的种类

化工、医药生产中所用的各类装置,其管道、容器、反应器、塔器、加热炉、泵和鼓风机等的绝热结构组成如下。根据采用保温材料的性质、保温层的结构形式和安装方法不同,保温结构通常有:胶泥涂抹结构、填充结构、包扎结构、复合结构、浇灌式结构、喷涂结构、预制块结构等。

3.绝热结构设计的规定和要求

(1)防锈层设计

对碳钢、铸铁、铁素体合金钢管道和设备,在清除其表面铁锈、油脂及污垢后,保温时应涂1~2道防锈底漆,保冷时应涂两道冷底子油。在使用非腐蚀性绝热材料和大气中不含腐蚀性气体的环境下,常年运行介质温度T0 >120℃时,可不涂防锈底漆(施工期超过一年者例外)。不锈钢、镀锌钢管、有色金属及非金属材料表面,不涂防锈漆。

(2)绝热层设计

绝热层厚度一般按10mm为单位进行分档。硬质绝热材料制品最小厚度为30mm,硬质泡沫塑料最小厚度可为20mm。

①绝热层分层规定

除浇注型和填充型外,绝热层应按下列规定分层。

a.绝热层总厚度大于80mm时,应分层敷设,当内外层采用同种绝热材料时,内外层厚度宜大致相等。

b.当内外层为不同绝热材料时,内外层厚度的比例应保证内外层界面处温度不超过外层材料安全使用温度的0. 9倍(以℃计算)。

c.需要蒸汽吹扫的保冷设备和管道的保冷层,其材料应在高温区及低温区内均能安全使用;在不能承受吹扫介质温度时,应在内层增设保温层,保温层与保冷层的界面温度应低于保冷材料的最高使用温度,在经济合理前提下,超高温和深冷介质管道及设备的绝热,可选用异材复合结构或异材复合制品。

d.采用同层错缝,内外层压缝方式敷设。内外层接缝应错开100~150mm;水平安装的管道和设备,最外层的纵缝拼缝位置应尽量远离垂直中心线上方,纵向单缝的缝口朝下。

e.保冷管道和设备的支座等凸出物,应按上述分层规定进行保冷,其保冷层长度为保冷层厚度的4倍或至垫座底部。

②绝热结构支承件对立式设备,管道和平壁面以及立卧式设备的底面上的绝热结构,应设支承件。支承件应符合下列规定。

a.支承件的支承面宽度应控制在小于绝热层厚度10~20mm以内。

b.支承件的间距立式设备和管道(包括水平夹角大于45°的管道)支承件的间距,保温时,平壁为1. 5~2m;保温圆筒,在高温介质时为2~3m,在中低温介质时为3~5m;保冷时,均不得大于5m。卧式设备应在水平中心线处设支承架,承受背部及兜挂腹部的绝热层。

c.立式圆筒绝热层可用环形钢板、管卡顶焊半环钢板、角铁顶焊钢筋等做成的支承件支承。

d.底部绝热层支承底部封头可用封头与圆柱体相切处附近设置的固定环或设备裙座周边线处焊上的螺母来支承绝热层,对有振动或大直径底部封头,可用在封头底部点阵式布置螺母或带环、销钉来兜贴绝热层。

e.保冷层支承件应选冷桥断面小的结构形式。若管卡式支承环的螺孔端头伸出绝热层外,应把外露处的保冷层加厚,封住外露端头。

f.支承件的位置应避开法兰、配件或阀门,对立管和设备支承件应设在阀门、法兰等的上方,其位置应不影响螺栓的拆卸。

g.不锈钢及有色金属设备、管道上的支承件,应采用抱箍型结构。

h.设备上的焊接型支承件,应在设备制造厂预焊好。

③绝热层用的钩钉和销钉设置保温层用钩钉、销钉,用直径6mm的低碳圆钢制作(软质材料用下限)。硬质材料保温钉的间距为300 ~600mm,保温钉宜根据制品几何尺寸设在缝中,作攀系绝热层的柱桩用。软质材料保温钉的间距不得大于350mm。每平方米面积上钉的个数:侧面不少于6个,底部不少于8个。保冷层不宜使用钩钉结构。对有振动的情况,钩钉应适当加密。

(3)防潮层设计

①保冷设备与管道的保冷层表面,埋地设备或管道的保温表面,以及地沟内敷设的保温管道,其保温层外表面应设防潮层。

②防潮层的材料应符合选材规定,防潮层在环境变化与振动情况下应能保持其结构的完整性和密封性。

③防潮层外不得再设置铁丝钢带等硬质捆扎件,以免刺破防潮层。

(4)保护层设计

绝热结构外层,必须设置保护层。保护层的设计必须切实起到保护绝热层作用,以阻挡环境和外力对绝热材料的影响,延长绝热结构的寿命。保护层应使绝热结构外表整齐、美观。

保护层结构应严密和牢固,在环境变化和振动情况下不渗雨(室内例外)、不裂纹、不散缝、不坠落。

4.结语

化工设备和管道结构的绝热设计涉及到的知识有很多,方方面面的问题需要考虑。如何才能设计出建设成本低、运行起来节约能源的好方法,是我们一直的追求。相信只要我们认真对待,总能设计出既节约成本又运行经济的好办法。由于本人知识的局限,文中难免会有不对的地方,还请读者指正。

参考文献:

[1] 时均,汪家鼎,余国综,陈敏恒主编.化学工程手册.第二版.北京:化学工业出版社,1996.

篇5

[关键字] 市政给排水管路、结构设计、勘察技术

市政给排水工程的质量直接关系着整个城市的给排水系统,对于城市的正常运行、道路建设、交通运输安全的作用巨大。因此,相关的从业单位要重视市政给排水管道工程的重要性,在设计结构方案时,综合考虑实际的工程状况,尤其是场地周围、气候变化、地下管线和电缆的情况,在保证工程施工质量的同时,避免其他因素影响给排水管路工程设计方案的实施。

一 现场踏勘

市政给排水管路工程的建设距离相对较长,需要穿过城市密集区,施工场地周围的周围车辆对施工带来了极大的不便,如果施工之前现场勘察工作不到位,就会对管道工程建设中可能面临的困难估计不足,进而影响了施工质量和施工进度。在市政给排水管路工程中,要综合考虑复杂的交通状况和城市地下电线的分布,结构设计人员应当和给排水施工人员、专业预算人员、市政交通人员一同进行实地的工程概况勘察,了解管道线路的通过地带的交通状况和地质概况,必要时在施工图上对于个别的疑难地段重新踏勘。

二 测量和地勘要求

测量和地勘要求是要准确的了解给排水管路沿线的地质状况、地形外貌和地下水水文状况,另外提供准确的地形和水文地质资料。

2.1 勘探点间距和钻孔深度

勘探点的应均匀的分布在管道的中线上,不得偏离中线,同时根据的地质的变化和施工现场的状况确定合理的间距,一般采用的间距是30到100米,对于地形较为复杂的地段,适当的缩小间距。此外钻孔的深度要达到管道埋设深度的1m以下,到管道周围的水位较高或者是河流周围时,要增加钻孔的深度,一般要求钻孔深度在河床冲刷深度以下2―3m。

2.2 提供勘探成果要求

查明管道埋设深度内的土层的特性、地层成因、岩石厚度等,并明确划分不同地质的分界线,同时调查的岩石强度和分化破碎程度对于给排水管道的影响,判断岩石是否会破坏管道的结构,调查管路沿线发生土层断裂、滑坡、崩塌、泥石流的概率以及发展趋势,并判断对于给排水管路的威胁指数;查明管道沿线的地下水位的水文状况,查明垮河流岸坡的稳定性,河床两侧的底层岩石和洪峰淹没范围。

三 结构设计内容

3.1结构形式

管道结构的设计形式应当由给排水专业机构完成,同时在结构设计汇总参考管道的用途,对于管道中输送的不同液体,确定是给水还是排水工程,选用不同的设计标准。而且管道的工作环境、管道的规格、输送液体的流量、埋设深度、地下水文状况、经济指标等方面的因素也是结构设计中必须要考虑的因素。铸铁管、玻璃钢管等;而非承压管道采用混凝土管、钢筋混凝土管、砌体盖板涵、现浇钢筋混凝土箱涵等;污水管路的结构设计选用的是大口径的管路,而且优先使用抗腐蚀能力强的管道,如玻璃钢管、UPVC 管、PE 管等。对于特殊的负荷承载较大的路段,要采用抗压能力强的管道,如桥梁、河渠、公路段等局部地段非承压管也采用钢管等形式。

3.2结构设计

根据管道施工中管道规格、埋设深度、地面承载力等工程条件,严格计算管道的强度和刚度,同时提供管道壁厚、管道等级、结构配筋图,对于特殊要求的管道,要进行加固处理,保证其强度和刚度符合实际的工程使用,并根据实际情况选用加固措施,确定加固的位置和程度,在给排水管道中,常采用的加固措施是混凝土包管。

3.3敷设方式

敷设方式的选择应当结合埋置深度、地面地下障碍物确定,通常采用的敷设方式有:沟埋式、上埋式、顶管及架空等,当工程的不便于采用沟埋式敷设方式时,可以用顶管和架空方式,总之,施工方式的选择要参照实际工程状况。

3.4抗浮稳定

部分市政给排水管路施工中,会出现地下水位较高的情况,尤其是在施工期间降水较多或者施工地区的气候多雨等,管道敷设的地段会出现漂浮现象,严重影响了管路施工的质量。因此在结构设计中要重视抗浮措施,避免这一现象的出现。

3.5抗震设计

3.5.1 场地和管材的选择

在结构设计中,管路基线的选择要尽量避开抗震性能不足的场地、地基,减少对管路结构完整性的破坏,如果是不可避免,则必须要对这一地段的地基进行特殊处理,同时选用抗震性强、抗拉性强、延展性强的管道,并做好管道的防腐蚀工作,避免由于土层振动、位移对管路结构产生影响。

3.5.2 构造措施

在管道结合处设置柔性连接,砌体材料要满足管道结构要求的抗震强度,增强整体的抗震性能和结构刚度,减少地震的影响形变。对于圆形给排水管设置不小于120度的混凝土管基,管道接口采用钢丝网水泥带,管道穿越构筑物时应在管道与套管的缝隙内填充柔性填料。

3.5.3 地基处理

对于特殊地段的地基处理至关重要,首先要测定地段的工程参数,画出地基处理的平、纵断面图,注明桩号、基底高程、沟槽范围、地下水位等,确定需要处理的地基范围,然后根据测量的数据,根据不同的地质情况和厚度采用合理的处理方法,如:换填、抛石挤淤、砂石挤密、水泥搅拌桩、灰砂桩、木麻黄桩等方法。

四 给排水管道设计中的其他问题

除了加强市政给排水管路的结构设计工作,还要采取一些措施,避免给排水管路中出现堵塞现象,具体的措施如下:

4.1在用户管线出口建立格栅

工程建设中出现的纤维、塑料等沉积物、悬浮物、漂浮物的存在给管道建设、维修、疏通等作业带来了极大的困难,特别是抽升泵站中如果进入漂浮物就会造成水泵叶轮堵塞、磨损损坏现象的发生,虽然已经采取了减小格栅条之间的间距 ,但是还是不能避免更小的杂质进入。为了解决上述问题,建议在庭院或住宅小区的管道出口处设置简易人工拦污格栅,定期进行清理、清掏,从源头上控制漂浮物进入市政管网,以减轻市政管网维护管理的工作量。

4.2在检查井井底设置沉淀池

要革新传统的检查井方法,将井底改为沉淀式,井底下沉 30~50 cm。这样中的沉积物多数会沉积在检查井中,不至于流入下游管段,只要定期清掏检查井内的沉积物即可,减少了管道维护作业的工作量。这种做法也可用于雨水检查井。

4.3在检查井内设置闸槽

给排水管路中的流量和流速均较大,对管道的维修工作带来诸多不便,为了方便维护作业,建议干管的管道交汇处检查井、转弯处检查井或直线段的每隔一定距离的检查井内根据需要设置闸槽,利用闸槽控制水流的流量,当有施工需要时,便利用闸槽切断给排水管路的水流,为维修施工带方便。

五 总结

市政给排水工程质量好坏直接影响到了整个城市的发展状况,对城市运作、道路建设、交通安全等多个方面都有显著的作用,但是在实际的工程中,市政给排水管道建设中存在着较多的结构问题,所以在工程结构设计中,要综合考虑施工周围环境、地下电网铺设等因素,保证管道结构设计的科学性,全面性。以上是本人的粗浅之见,由于本人知识水平有限,文中如有不当之处还望不吝赐教。

[参考文献]

[1] 童新国.给排水管道工程中的结构设计[J].工程结构与施工技术,2008年12月.

篇6

关键词:直埋式供热管道固定墩

中图分类号:TU833文献标识码: A

1固定墩主要受力

固定墩作为管道的支撑结构埋于地下,除了自重外,受到各种外力作用。

1.1 水平力

1.1.1 管道水平推力

管道水平推力F(单位为kN)根据管道的敷设、管径、运行温度、安装温度、工作压力的变化及与土的摩擦力计算可得出。此项数据在设计过程中由暖通专业计算并提供,用于结构计算。

1.1.2 主动土压力、被动土压力

管道支墩前后侧面的土体对支墩产生主动土压力及被动土压力,计算公式如下:

粘性土:

Pa=γhtan2(45°-φ/2)-2ctan(45°-φ/2)

Pp=γyhtan2(45°+φ/2)+2ctan(45°+φ/2)

砂土等无粘性土:

Pa=γhtan2(45°-φ/2)

Pp=γhtan2(45°+φ/2)

式中:Pa――主动土压力,kPa

Pp――被动土压力,kPa

γ――土的重度,水土分算时,取浮重度;水土合算时,取天然重度,kN/m3

h――固定墩埋深,m;

φ――土的内摩擦角

C ――土的粘聚力,kPa

1.1.3 固定墩与土的摩擦力

固定墩底面、侧面及顶面与土壤接触,都会产生摩擦力,但在计算中,上面及侧面的作用力可忽略不计,只计算底面产生的摩擦力。

Ff=G

式中:Ff――摩擦力,kN。

――土与固定墩的摩擦系数:对粘土,0.25~0.45;对砂土,0.40~0.50;对碎石土,0.60。

G――固定墩自重及上面的覆土重,kN。

1.2 垂直力

1.2.1 固定墩自重G

G=γ0V

式中:γ0――固定墩的重度,一般取25kN/m3

V――固定墩的体积,m3

1.2.2 固定墩上部覆土的重量G1

G1=γh0S

式中:γ――固定墩上部土的重度,水土分算时,取浮重度;水土合算时,取天然重度,kN/m3;

h0――固定墩上部覆土深度,m;

S――固定墩底板面积,m2;

2固定墩的结构验算

2.1 抗滑移验算[1]

抗滑移验算公式

式中:Ks――抗滑移系数;

K――固定支墩后背土压力折减系数,取0.4~0.7;

EP――被动土压力作用力,kN;

Ea――主动土压力作用力,kN。

Ff――摩擦力,kN。

2.2 抗倾覆验算[1]

抗倾覆验算公式

式中:Kov――抗倾覆系数;

X2――被动土压力作用点至固定墩底面的距离,m;

L――固定墩底板宽度,m;

X1――主动土压力作用点至固定墩底面的距离,m;

h2――固定墩管孔中心至地面的距离,m。

2.3 强度验算

2.3.1 侧墙强度验算

侧墙受到横向作用力,按悬臂构件计算,在底部产生弯矩。此弯矩主要由主动土压力、被动土压力及管道水平推力三部分力产生的弯矩矢量叠加而得。根据《混凝土结构设计规范》,按此弯矩计算侧墙配筋。

图2 管线埋深对固定墩性能的影响

侧墙受到横向作用力,按悬臂构件计算,在底部产生弯矩。此弯矩主要由主动土压力、被动土压力及管道水平推力三部分力产生的弯矩矢量叠加而得。根据《混凝土结构设计规范》,按此弯矩计算侧墙配筋。

2.3.2 底板强度验算

底板受到上部作用的荷载,在与土壤接触的底面产生净反力。净反力作用下,底板可视为悬臂构件,在侧墙处产生最大弯矩。根据《混凝土结构设计规范》,按此处弯矩计算底板配筋。并应对侧墙在底板上的冲切进行验算。

2.4 地基承载力验算

固定墩受到上部的垂直力及弯矩作用,在底板底面对土体产生土压力,根据《建筑地基基础设计规范》,验算地基承载力。使满足

3影响固定墩结构设计的因素

3.1 管道埋置深度

管道埋置深度,即管道轴心到地面的深度。此值由管道设计确定,结构专业根据管道的埋置深度,设计固定墩的埋置位置。当管道推力及固定墩尺寸确定时,随着埋置深度的增加,固定墩的抗滑移系数及抗倾覆系数变化如图2所示。

从图中可知,当管道推力及固定墩尺寸确定时,随着埋置深度的增加,固定墩的抗滑移系数及抗倾覆系数线性增加的趋势,可见,埋置深度越深对固定墩的抗滑移性能及抗倾覆性能越有利。

3.2 覆土性质

3.2.1 固定墩底部土性质

固定墩底部土的性质,决定固定墩与土层的摩擦系数μ,影响固定墩所受摩擦力Ff的大小。进而影响固定墩的抗滑移系数。在固定墩尺寸及埋深不变时,不同性质的固定墩底部土,对固定墩的抗滑移系数的影响如表1所示。

表1 固定墩底部土性质对抗滑移系数的影响

可见,随着土摩擦系数的增加,抗滑移性能得到提高。将固定墩下部土层换填为碎石土可改善固定墩的抗滑移性能。

3.2.1 固定墩周围土性质

固定墩周围土的性质,则决定了土层的内摩擦角φ及土的粘聚力c,影响土对固定墩的主动土压力及被动土压力的大小。进而影响固定墩的抗倾覆性能和抗滑移性能。在固定墩尺寸及埋深不变时,不同性质的固定墩周围土,对固定墩的抗滑移系数及抗倾覆系数的影响如表2所示。

表2 固定墩周围土性质对抗滑移及抗倾覆系数的影响

可见,当固定墩周围土粘性越小,抗滑移系数及抗倾覆系数越高。将固定墩周围土层换填粘性较小的砂土可改善固定墩的抗倾覆性能和抗滑移性能。

4结语

由以上分析可得到以下结论:

1、管道深埋对固定墩的结构设计有利;

2、当固定墩尺寸受到限制时,可将固定墩墩底土换填成摩擦系数较高的碎石土,或将固定墩周围土换填成粘性较小的砂土,以达到改善固定墩抗滑移性能及抗倾覆性能的目的。

参考文献

篇7

摘要:城市河道一般都担负着防洪、排涝的重要任务,但随着城市的发展,人民生活水平日益提高,河道越来越多地成为人们亲近自然、生活休闲的场所。本文以某商业广场的狄泾河和沙浦河治理为例,介绍了城市河道护岸新的设计理念及结构设计特点,为类似工程提供点滴经验。

关键词:河道整治;城市

河道的治理多以满足行洪、排涝、以确保两岸人民的安全为重点,而后根据河道受工业生活污染的加剧,河道治理的目的又转变为消除河道黑臭、治理污染,还河水清澈。根据我国社会经济的发展和人们生活的提高,关于河道治理所提出的新的要求,不能只考虑行洪、排涝等安全问题,更要注重人与自然的亲近和谐。

1 设计基本条件

商业广场内沿荻泾河及沙浦河布置有大小不一、错落有致的点式商业及民用建筑,建筑物及岸坡之间布设景观带及交通道路。亲水平台及生物景观主要布设在堤坡上,为节省空间,亲水平台为外挑式,沿线间断布设,生物景观则结合护坡采用草皮及灌木。

座落在岸坡顶部及邻近的商、民用建筑物荷载由自身基础承担,在荷载分析中不必考虑。因此,结构设计中要考虑的荷载主要有交通车辆、人群荷载、景观平台及其基础结构自重。

2 方案设计

一期商业广场内部高程约为5.50 m,荻泾河道护岸坡顶现状高程为4.50 m。根据建筑景观设计,河岸坡顶需加高至5.35~5.45 m高程。该段堤岸土体多为粉质粘土及淤泥质粘土,经复核,如堤顶采用直接填土加高,河道边坡不满足整体稳定要求。为减小荷载,同时加高岸坡,该工程采用换填挤塑聚苯乙烯板方案。挤塑板换填区位于岸边地面以下,宽约7.3 m,厚0.8 m,3.90~4.70 m高程之间,挤塑板上覆厚约35 cm粘土,再铺混凝土路面地坪,为分散地表面的车辆荷载及人群荷载对挤塑板局部挤压破坏。为减轻地下水对挤塑板的浸泡,在挤塑板底部设置厚10 cm的粗砂垫层,采用准100 mmPVC排水管将垫层中积水引入河道中。

外挑式亲水平台高程为4.25 m,采用灌注桩基承担其平台荷载。典型布置方式主要为2种:1)毗邻广场为换有挤塑板的交通道路,临河依次为独立基础的观景平台(平台下为堤岸坡面)、设有独立基础的钢筋混凝土导梁及低于常水位的堤坡;2)毗邻广场为换有挤塑板的交通道路,临河依次为采用生态绿化的坡面、人行步道、生态防护的堤坡、设有独立基础的钢筋混凝土导梁及低于常水位的堤坡。

商业广场二期内部地面高程约为6.50 m,沙浦河及狄泾河岸坡顶现状高程为4.3~4.50 m,需加高至6.40 m高程,采用增加L型挡墙,墙后填土的直立加高结构方案。为满足河道边坡整体稳定,需对河岸的粉质粘土及淤泥质粘土采用加固、减载等措施进行处理。经技术经济比较确定采用水泥搅拌桩加固堤身及堤基方案。在河道边坡常水位至广场建筑物外边缘之间宽约12 m范围内均匀分布水泥搅拌桩,单桩直径0.6 m,桩心间距1.2 m,置换率约为20%。桩底穿过淤泥质粘土层1 m。

亲水休闲平台高程为4.80~5.40 m,平台板厚40 cm,采用灌注桩作为基础。沿狄泾河典型布置方式主要为3种:1)毗邻广场为原地面高程以下采用水泥搅拌桩加固基础的交通道路,临河依次为直立混凝土矮墙、生态绿化的坡面、独立基础的观景平台(平台下为堤岸坡面)、设有独立基础的钢筋混凝土导梁及低于常水位的堤坡;2)毗邻广场为原地面高程以下采用水泥搅拌桩加固基础的交通道路,临河依次为L型墙、生态绿化的坡面、独立基础的观景平台(平台下为堤岸坡面)、设有独立基础的钢筋混凝土导梁及低于常水位的堤坡;3)毗邻广场为原地面高程以下采用水泥搅拌桩加固基础的交通道路,临河依次为与独立基础的观景平台刚性连接的混凝土挡墙、观景平台(平台下为堤岸坡面)、设有独立基础的钢筋混凝土导梁及低于常水位的堤坡。

沿沙浦河典型布置方式主要为2种:1)毗邻广场为交通道路,临河依次为独立基础的观景平台(平台下为绿化带)、生态绿化的坡面、浆砌石导墙及低于常水位的堤坡;2)毗邻广场为原地面高程以下采用水泥搅拌桩加固基础的交通道路,临河依次为L型墙、生态绿化的坡面、浆砌石导墙及低于常水位的堤坡。

3 护岸结构稳定安全复核

3.1边坡稳定复核分析

岸坡整体稳定计算采用传统的瑞典条分法,按圆弧滑动计算。计算工况选择基本组合和特殊(地震)组合,基本组合选择设计低水位2.0 m情况为控制工况,地震工况组合时水位取2.3 m。

设计荷载主要为堤顶道路荷载,根据所在位置不同堤顶道路分为一般道路和消防通道,一般道路荷载取5 kN/m2,消防通道荷载按12 kN/m2计取,花坛荷载按2 kN/m2计取,亲水平台荷载按3.5 kN/m2计取。

所计算的滑动面通过水泥搅拌桩及灌注桩桩身且在滑动面上下的长度均大于5倍桩径,稳定分析计算时考虑桩的抗滑作用,抗滑力提高10%。

边坡整体稳定复核表明,一期护岸经采用轻质材料挤塑板换填减载,二期护岸经堤身堤基搅拌桩加固后,抗滑稳定全部满足规范要求。基本组合工况时安全系数在1.30~1.65之间,特殊组合工况时安全系数在1.13~1.44之间。

3.2挡墙结构稳定复核

该工程一期护岸断面中钢筋混凝土挡墙墙后回填大部分为轻质材料挤塑板,密度仅为一般土的1/40,挤塑板为块状结构,具有自稳性能,对墙体产生的水平推力极小,同时挤塑板上覆土及路面结构厚度较小,产生水平推力有限,因此挡墙按照构造设计,抗滑稳定、抗倾稳定及基地应力均可满足使用要求。

二期护岸断面钢筋混凝土挡墙后填筑一般土料,其抗滑、抗倾稳定及基底应力计算结果见表1,均满足规范要求。其余景观平台兼作挡土墙,采用桩基,满足相应结构要求。

4 结语

4.1 该工程护岸结构设计时充分考虑到与景观、环境条件相适应,给商业广场提供了极佳的临水场地,使商业、休闲、娱乐得到有机融合。

篇8

关键字:深水 喷射 导管 入泥深度 钻具组合

中图分类号:TE52 文献标识码:A 文章编号:1674-098X(2013)01(a)-00-01

在深水油气田勘探开发过程中,结构导管主要作用是为水下井口和水下防喷器等设备提供支撑作用。导管的入泥深度和钻具组合的设计是深水喷射成功的关键因素,该文对喷射钻入法的关键影响因素进行了研究,并结合深水现场作业实践经验进行了分析,对深水导管喷射钻入作业具有一定的指导作用。

1 喷射作业关键技术

1.1 入泥深度确定

一般要准确确定结构导管具体下深,需要对目标井位进行井场调查,经过土工试验分析确定海底浅层土体的抗剪强度,然后根据导管作业载荷,通过下式计算确定导管具体下深:

式中Q:导管承载的重量;Qf:导管表面摩阻力;TD:导管设计下深;x:导管单位长度;ML:泥面;f:单位面积摩阻力;As:导管侧面积;c:土壤剪切强度;fox:安全系数;a:喷射钻井后,受扰动土壤剪切强度的安全系数,一般取值10%~40%。公式中单位采用国际单位制。

经过井场调查地质取芯计算得出的土壤剪切强度往往是地层非扰动抗剪切强度,而实际作业过程中,由于喷射钻井导致结构导管周围土壤遭到破坏,受扰动土壤抗剪切能力往往比原土壤低很多,虽然抗剪切强度恢复很快,但实际计算时,往往取一个安全系数a,一般为原地层抗剪切系数的10%~40%。

1.2 钻具及钻头设计与选择

喷射钻具组合主要考虑喷射钻井作业结束后继续钻进的需求,与下一开钻具组合设计一样,只是在钻具组合上端安装与导管头连接工具,喷射到位后与导管脱开继续钻进。钻具组合中一般都安装随钻测量工具,一边随时监测井斜变化,根据工作需要有时也安装随钻测压工具,以便及时了解环空泥浆当量循环密度变化等。

喷射钻井钻头相对位置及尺寸的选择对喷射钻井的成功与否至关重要。目前深水作业,部分作业者习惯将钻头控制在导管鞋以内30.48~45.72 cm,也有很多作业者习惯将钻头伸出导管鞋15.24~25.40 cm。钻头在导管鞋以内还是伸出导管鞋,主要取决于地层的软硬,一般如果地层较松软,往往选择将钻头控制在导管鞋以内,如果地层相对较硬,则将钻头伸出导管鞋15.24~25.40 cm,目前世界上大多数作业者选择将钻头伸出导管鞋,但同时保持钻头水眼在管鞋以内。

2 导管下沉预防及处理办法

导管下沉是深水钻井的重要事故之一,主要原因是对该地区地层承载能力认知不足或由于操作不当引起,尤其在探井和评价井阶段更容易发生,主要是没有准确的井位土壤资料分析。

2.1 设计阶段导管下沉的预防措施

对于新区块第一口导管尺寸及喷射深度的设计要非常慎重,新区块一般要做重力取样,并要充分借鉴临近区块土壤数据或者喷射钻井实际情况,对于易出现导管下沉区块,增加导管尺寸比增加喷射深度要更好。如果已钻井导管尺寸较大,可以适当增加导管入泥深度,每增加一根导管则增加15%的支撑力,另外对于导管容易出现下沉的井,可以考虑安装泥垫,增加支持力,也可以增加设计浸泡时间。

2.2 喷射结束后发生导管下沉的技术措施

如果作业结束后,发生导管下沉至无法满足作业要求时,可通过上提导管或者重新接回连接工具并上提导管至设计预留高度,增加浸泡时间6~8 h,如果继续出现下沉可以考虑再尝试上提一次并进一步浸泡时间。该方法仍无法满足要求时,一般只能起出导管按照设计阶段预防措施执行或采用钻入+固井的方式下入导管。

3 结语

(1)导管入泥深度确定和钻具组合选择是影响深水表层喷射钻井成功与否的关键因素。对于新区探井,需要在考虑表层重力取样结果基础上,充分参考邻井资料来确定导管入泥深度。(2)为防止深水表层作业发生结构导管下沉事故,可采取的措施包括增加导管外径,在保证导管能顺利下入的前提下增加入泥深度,并可在井口头位置安装防沉板,增加导管喷射到位后的浸泡时间。

参考文献

推荐期刊