时间:2023-07-28 09:18:57
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇多层住宅结构设计,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
从住宅建筑的发展来看,钢结构住宅具有强度高、自重轻、抗震性好、施工污染少、可循环再生、使用率高等一系列优点,发展钢结构住宅可提高住宅的产业化水平和居住功能水准。本文就高多层钢构住宅最新发展中的问题进行探讨。
1结构体系选择与结构布置
多层钢结构住宅可以选用的建筑结构体系主要有纯框架体系、框架一支撑体系、交错桁架结构体系等。
1.1框架体系和框架―支撑体系
框架体系是由基础、柱、梁、板结构件组成。框架结构体系平面布置灵活,可提供较大的室内空间,结构各部分刚度均匀,结构有较好的延性,自振周期较长,延性较好;但框架结构的侧向刚度较小,在水平荷载作用下位移较大,易引起非结构构件破坏。在房屋层数较多时,为增加横向抗侧移刚度,同时减小柱子的计算长度,增强稳定性,可采用框架一支撑体系。框架一支撑体系在梁柱框架基础上沿竖向布置抗剪支撑构件,水平剪力主要由腹杆轴力的水平分量承担而不是由柱承受。
多层住宅框架体系和框架一支撑体系的梁柱截面可采用轧制或焊接H形截面、方钢管等,支撑构件多采用角钢或部分T型截面,在7°抗震设防区多层住宅的用钢量多在35~40Kg/m2。在结构平面布置上宜采用大柱网、大开间的结构布置形式,柱距5~8m较常见。框架柱在房屋横向、纵向成列布置、不宜错开太多,若设置支撑构件时,应注意避让门窗洞口或设在无孔口的分户墙中。
1.2交错桁架结构体系
交错桁架结构体系的基本组成是柱子、桁架、梁和板。柱子仅布置在房屋周围,不设中间柱。
桁架跨度等于建筑全宽,高度等于楼层高度,桁架两端支承在柱上,在相邻柱轴线上为上、下层交错布置。而楼板一端支承在桁架的上弦杆,另一端悬挂在相邻桁架的下弦杆。建筑纵向各柱通过连梁连接。建筑水平荷载主要被桁架中斜腹杆轴力的水平分量所平衡,水平荷载最终通过落地桁架的斜腹杆或底层斜撑传至基础。桁架杆件截面可采用角钢、焊接T型、H型或方管截面。柱截面通常采用H型、钢管等。交错桁架结构体系中杆件受力合理,大部分杆件以受轴心力为主,用钢量节约,在7°抗震设防区,其用钢量较框架结构节约10%左右,当建筑横向尺寸较大,这一优势将更明显;桁架结构抗侧移刚度大,位移也较小,柱强轴可布置在纵向,以加大结构纵向侧移刚度。交错桁架结构体系结构布置时注意使一层桁架的斜腹杆落地(与基础梁连接)或通过底层斜撑传至基础,否则结构水平位移过大,难以满足规范要求。还应注意水平、竖向结构布置要做到规则对称。从结构布置上说,交错桁架结构体系可以提供两倍于框架结构体系的更大开间,进深也大大增加。可以提供更大的使用面积。此外,交错桁架结构体系柱子数目较少,所以基础数量较少,能够进一步节约材料。
在设计中采用何种结构体系,应综合考虑多种影响因素。除分析建筑高度、受力特点、合理柱网尺寸等结构因素外,还应该考虑施工的难易程度、用钢量、施工速度、造价、宜改变布置的大空间更适应现代生活等因素的影响。
2节点设计及结构计算
在钢结构住宅体系中,节点的设计相当重要。节点设计不仅应做到传力可靠连接方便,还应该注意节点的受力特征应和计算模型相吻合,这样才能保证结构的安全可靠。按传力特征来分,钢结构节点可分为铰接、刚接和半刚接节点。铰接节点构造简单,在受弯构件中引起跨中弯矩较大,用钢量增多;刚接节点连接可减小跨中弯矩,节约用钢,但构造较复杂。在框架结构多层住宅中,柱多采用H型截面,强轴布置在横向,横向梁柱通常为刚接节点。纵向腹板一般较薄,亦可采用铰接节点。框架―支撑结构中梁柱节点可以是铰接或半刚接。支撑与构件的连接、交错桁架结构中桁架杆件的连接、桁架与柱连接通常设计为铰接节点。交错桁架结构中纵向连梁与柱可设计为刚接。
在刚性连接中,应重视节点域的问题,节点域直接影响到节点的强度、刚度、变形及抗震性能。当节点域验算不满足时,不应该简单的调整构件截面尺寸,这样可能带来用钢量的大量增加,可以考虑采用在柱腹板处贴焊补强板、梁上下翼缘加楔形盖板、狗骨法等方法解决。
多层钢结构住宅设计计算可采用设计单位较普及的STS、MTS、SAP2000、ANSYS等钢结构设计软件。对计算结果要逐一审核,包含周期、位移、应力比等方面,应重视结构设计的优化以节约用钢量。
3围护墙体的选取
为突出钢结构自重轻、布置灵活、可改性好的特点,钢结构住宅不宜采用传统的“砖”类或其它自重较大的材料。而多采用“板”“块”类墙体。在多层住宅中,可选择加气混凝土砌块、压型钢板加轻质保温材料组成的复合墙体、蒸压轻质加气混凝土(ALC)板、钢丝网水泥增夹芯板等墙体,ALC板是目前应用较多的一种墙体材料。内墙也可采用纸面石膏板、纤维石膏板、玻璃纤维增强水泥板、纸面稻草板等。
4楼盖体系
多层钢结构住宅房屋的楼板不仅起着传递竖向荷载的作用;在水平荷载作用下,还起着保证抗侧力构件空间协调的作用。因此,楼板必须有足够的承载力、刚度和整体性。目前,钢结构住宅中较多地采用压型钢板混凝土组合楼板。由于组合楼板担负着传递水平力的作用,故而钢梁与压型钢板连接处应设置必要的栓钉,压型钢板组合楼板有蝶型压型钢板楼板、劲扣式压型钢板楼板等,对钢结构住宅可采用劲扣式压型钢板,其内口封闭,平整的板底外观不需要再做吊顶。
关键词:多层住宅;钢结构设计;结构体系;节点设计
从住宅建筑的发展来看,钢结构住宅具有强度高、自重轻、抗震性好、施工污染少、可循环再生、使用率高等一系列优点,发展钢结构住宅可提高住宅的产业化水平和居住功能水准。本文就多层钢构住宅最新发展中的问题进行探讨。
1结构体系选择与结构布置
多层钢结构住宅可以选用的建筑结构体系主要有纯框架体系、框架一支撑体系、交错桁架结构体系等。
1.1框架体系和框架―支撑体系
框架体系是由基础、柱、梁、板结构件组成。框架结构体系平面布置灵活,可提供较大的室内空间,结构各部分刚度均匀,结构有较好的延性,自振周期较长,延性较好;但框架结构的侧向刚度较小,在水平荷载作用下位移较大,易引起非结构构件破坏。在房屋层数较多时,为增加横向抗侧移刚度,同时减小柱子的计算长度,增强稳定性,可采用框架一支撑体系。框架一支撑体系在梁柱框架基础上沿竖向布置抗剪支撑构件,水平剪力主要由腹杆轴力的水平分量承担而不是由柱承受。
多层住宅框架体系和框架一支撑体系的梁柱截面可采用轧制或焊接H形截面、方钢管等,支撑构件多采用角钢或部分T型截面,在7°抗震设防区多层住宅的用钢量多在35~40Kg/m2。在结构平面布置上宜采用大柱网、大开间的结构布置形式,柱距5~8m较常见。框架柱在房屋横向、纵向成列布置、不宜错开太多,若设置支撑构件时,应注意避让门窗洞口或设在无孔口的分户墙中。
1.2交错桁架结构体系
交错桁架结构体系的基本组成是柱子、桁架、梁和板。柱子仅布置在房屋周围,不设中间柱。
桁架跨度等于建筑全宽,高度等于楼层高度,桁架两端支承在柱上,在相邻柱轴线上为上、下层交错布置。而楼板一端支承在桁架的上弦杆,另一端悬挂在相邻桁架的下弦杆。建筑纵向各柱通过连梁连接。建筑水平荷载主要被桁架中斜腹杆轴力的水平分量所平衡,水平荷载最终通过落地桁架的斜腹杆或底层斜撑传至基础。桁架杆件截面可采用角钢、焊接T型、H型或方管截面。柱截面通常采用H型、钢管等。交错桁架结构体系中杆件受力合理,大部分杆件以受轴心力为主,用钢量节约,在7°抗震设防区,其用钢量较框架结构节约10%左右,当建筑横向尺寸较大,这一优势将更明显;桁架结构抗侧移刚度大,位移也较小,柱强轴可布置在纵向,以加大结构纵向侧移刚度。交错桁架结构体系结构布置时注意使一层桁架的斜腹杆落地(与基础梁连接)或通过底层斜撑传至基础,否则结构水平位移过大,难以满足规范要求。还应注意水平、竖向结构布置要做到规则对称。从结构布置上说,交错桁架结构体系可以提供两倍于框架结构体系的更大开间,进深也大大增加。可以提供更大的使用面积。此外,交错桁架结构体系柱子数目较少,所以基础数量较少,能够进一步节约材料。
在设计中采用何种结构体系,应综合考虑多种影响因素。除分析建筑高度、受力特点、合理柱网尺寸等结构因素外,还应该考虑施工的难易程度、用钢量、施工速度、造价、宜改变布置的大空间更适应现代生活等因素的影响。
2节点设计及结构计算
在钢结构住宅体系中,节点的设计相当重要。节点设计不仅应做到传力可靠连接方便,还应该注意节点的受力特征应和计算模型相吻合,这样才能保证结构的安全可靠。按传力特征来分,钢结构节点可分为铰接、刚接和半刚接节点。铰接节点构造简单,在受弯构件中引起跨中弯矩较大,用钢量增多;刚接节点连接可减小跨中弯矩,节约用钢,但构造较复杂。在框架结构多层住宅中,柱多采用H型截面,强轴布置在横向,横向梁柱通常为刚接节点。纵向腹板一般较薄,亦可采用铰接节点。框架―支撑结构中梁柱节点可以是铰接或半刚接。支撑与构件的连接、交错桁架结构中桁架杆件的连接、桁架与柱连接通常设计为铰接节点。交错桁架结构中纵向连梁与柱可设计为刚接。
在刚性连接中,应重视节点域的问题,节点域直接影响到节点的强度、刚度、变形及抗震性能。当节点域验算不满足时,不应该简单的调整构件截面尺寸,这样可能带来用钢量的大量增加,可以考虑采用在柱腹板处贴焊补强板、梁上下翼缘加楔形盖板、狗骨法等方法解决。
多层钢结构住宅设计计算可采用设计单位较普及的STS、MTS、SAP2000、ANSYS等钢结构设计软件。对计算结果要逐一审核,包含周期、位移、应力比等方面,应重视结构设计的优化以节约用钢量。
3围护墙体的选取
为突出钢结构自重轻、布置灵活、可改性好的特点,钢结构住宅不宜采用传统的“砖”类或其它自重较大的材料。而多采用“板”“块”类墙体。在多层住宅中,可选择加气混凝土砌块、压型钢板加轻质保温材料组成的复合墙体、蒸压轻质加气混凝土(ALC)板、钢丝网水泥增夹芯板等墙体,ALC板是目前应用较多的一种墙体材料。内墙也可采用纸面石膏板、纤维石膏板、玻璃纤维增强水泥板、纸面稻草板等。
4楼盖体系
多层钢结构住宅房屋的楼板不仅起着传递竖向荷载的作用;在水平荷载作用下,还起着保证抗侧力构件空间协调的作用。因此,楼板必须有足够的承载力、刚度和整体性。目前,钢结构住宅中较多地采用压型钢板混凝土组合楼板。由于组合楼板担负着传递水平力的作用,故而钢梁与压型钢板连接处应设置必要的栓钉,压型钢板组合楼板有蝶型压型钢板楼板、劲扣式压型钢板楼板等,对钢结构住宅可采用劲扣式压型钢板,其内口封闭,平整的板底外观不需要再做吊顶。
关键词:多层建筑;异形柱;框架结构;结构设计;优化措施
中图分类号: TU318 文献标识码: A 文章编号:
1、引言
随着我国住宅建筑规模的不断扩大和住宅产业化的发展,建筑功能优于普通框架结构的钢筋混凝土异形柱框架结构应运而生。与传统砖混结构、框架结构相比,异形柱避免了房间边角因采用矩形柱时所产生的棱角突出,从而使房间平整、布置灵活,而且增加了使用面积,体现住宅的经济性。
异形柱指的是除了矩形、圆形以外的截面形式,如T形、十字形、L形等截面形式,它的优点是,柱肢基本与填充墙等厚,使室内不出现柱肢,便于室内灵活布置,又可增加使用面积。异形柱结构受力体系由异形柱或异形柱加剪力墙、框架梁组成,共同承受水平荷载和竖向荷载。目前,国标《混凝土异形柱结构技术规程》(JGJl49-2006)在总结地方规程的基础上已经正式实施,下面着重对多层建筑采用异形柱结构设计进行分析探讨。
2、异形柱结构的受力机理分析
2.1承载能力
异形柱的截面形式主要有T形、十字形、L形和Z形(较少采用)等,L形多用于墙转角,T形和十字多用于纵横墙交接处。由于截面的这种特殊性,其墙肢平面内外两个方向的刚度相差较大,各个方向的承载力也有较大差异。
2.2变形特征
异形柱的肢厚一般为200-250mm,为了获得足够的承载能力,异形柱的肢长一般不会太小,由此会容易造成剪跨比过小,形成短柱。由于肢厚较小,为薄壁构件,剪切中心与截面形心往往不重合,变形以剪切为主,构件的变形能力下降。由于异形柱属于薄壁构件,也会因截面曲率M/日较小,使弯曲变形性能有限,延性较差。
2.3破坏机理
异形柱由于是多肢的,其剪切中心往往在平面之外,受力时要靠各柱肢交点处核心混凝土的协调变形。这种变形协调,使各柱肢内存在比较大的翘曲应力和剪应力。国内外大量的试验资料和理论分析表明,异形柱的破坏形态为:弯曲破坏、小偏压破坏、压剪破坏等。影响其破坏形态的因素有:荷载角、轴压比、剪跨比、配筋率以及箍筋间距与纵筋直径D的比值等。
异形柱由于其截面的特殊性及受力性能的复杂性,在设计中必须通过可靠的计算分析和必要的构造措施,来保证其强度和延性。
3、工程实例
湖南某行政单位宿舍楼,地上5层,总建筑面积为15200m2,建筑物总高度自室外地坪箅起为16.78m,宽度12.8m,高宽比为1.31,标准层层高为2.9m。地震设防烈度按6度考虑,抗震等级为3级,场地类别为Ⅲ类,基本风压为0.4kN/m2。平面布置如图1所示。
根据建筑使用功能要求,本工程采用现浇钢筋混凝土异形柱框架结构,在两个方向均有拉结。柱网均在5m以内,局部设置矩形柱,异形框架柱、梁宽均为200mm。砖砌填充墙采用190mm×190mm kMl型多孔砖,内墙采用加气混凝土砌块。
4、多层异形柱框架建筑结构整体分析
4.1计算原理与参数
PKPM-SATWE采用数值计算原理和迭代方法,将受压区混凝土划分为若干个小单元,利用截面假定确定小单元各点的混凝土和钢筋应变,由混凝土和钢筋的应力应变关系曲线求得混凝土小单元和各根钢筋的应力,建立平衡方程,通过迭代方法求出所需配筋面积。
本工程结构混凝土强度等级采用C30,纵向受力钢筋采用HRB335级钢筋
(D≤22mm),箍筋采用HRB235级钢筋。由于结构平面不规则性,考虑双向地震作用,地劈作用分析方法采用侧刚分析方法。
4.2结构自振周期
结构的自振周期,如表1所示。
可以看出,水平地震力方向与坐标轴夹角为0°时,T3/T1=0.88
4.3轴压比
异形柱不同截面形式的轴压比限值在文献中有详细的规定。表2列出了KZl、KZ3、KZ5、KZ7、I(Z8等有代表性的截面在水平力方向与坐标轴夹角分别为0°和45°时作用下的轴压比。
由于本工程建筑布置的特殊性,异形柱有少量一字形和z形柱,从表2的轴压比值可以看出,L形、T形、+形异形柱在水平力方向与坐标轴夹角为45。时的轴压比值较0°时的轴压比值均大,特别是L形柱,轴压比差值较大,轴压比公式为
μN=N/fcAc(1)
其中:μN为轴压比;N为考虑地震作用组合的轴向压力设计值;fc为混凝土轴心抗压强度设计值;Ac为异型柱截面面积。
从式(1)可知,同截面同混凝土标号的异形柱轴压比越大,则上部荷载越大,故本工程异形柱设计中应采用水平力方向与坐标轴夹角为45°时的数据作为依据。文献通过模型分析提出L形等肢异形柱应考虑45°和-45°地震作用方向的计算,这与本文研究得出的结论吻合。
4.4底层剪力控制
通过异形柱受力机理分析可知,异形柱受力时,柱肢内存在相当大的剪应力和翘曲应力,故异形柱受力计算除按轴压比控制进行双偏压计算外,还应计算抗剪应力。
从表3中可以看出,水平力方向与坐标轴夹角为45°时,5种不同形式的异形柱柱底剪力较水平力方向与坐标轴夹角为0°时大,特别是L形截面的异形柱。这与异形柱在不同方向水平力作用下获得的轴压比数值趋势相符。同时应考虑L形柱在45°和-45°地震作用方向的计算。
4.5层间位移角
结构在水平力方向与坐标轴夹角分别为45°(曲线1)和0°(曲线2)作用下,x和y方向的最大层间位移角,如图2、3所示。从图中可以看出x和y方向下层间位移角均小于等于1/600,满足规范相应要求。曲线1对应楼层n各点层间位移角值均小于曲线2相对应值,说明结构在水平力方向与坐标轴夹
角为45°时抗侧力能力较好。
5、异形柱框架结构设St中的优化措施
5.1异形柱框架结构设计中的优化措施
从以上分析可以看出,异形柱结构与矩形柱结构在性能上存在较大差异,设计过程中应重点控制和优化对异形柱结构整体性能影响较大的内容,具体如下:
1)调整异形柱平面框架布置形式,使其刚度中心尽量与形心重合,相应调整异形柱柱肢高,使其满足扭转与平动第1周期比T3/T1
2)异形柱的方向性较强,在进行整体计算分析时,应增加45°和-45°风和地震作用方向的计算,保证结构的安全度。
3)Z形柱本文未详细分析,其剪切中心与形心虽然重合,但框架梁往往布置在两翼,不可避免地产生翘曲应力,故设计时,建议将框架分析所得的截面弯矩乘以1.15-1.25的增大系数以考虑翘曲应力的影响。
4)异形柱受力后,柱肢端部会出现较大应力,加上梁作用于柱肢上,应力产生不均匀性。一般越靠肢端,应力越大,对柱肢形成偏心压力,因而在异形柱配筋时,应在肢端设置暗柱,离端部厚度范围内设2φ14的构造钢筋,箍筋同柱,可限制柱肢混凝土裂缝开展,提高异形柱局部抗压、抗剪强度及变形能力。
5.2异形柱混凝土节点核心区处理措施
由异形柱的截面特性,决定了梁柱节点核心区域面积较小,而梁柱纵筋交汇使得箍筋配置不可能太多。为了满足抗剪承载力的要求,只能提高混凝土的标号,但随之带来的问题是构件变脆,同时与梁板混凝土强度的协调也成问题,有时了为个别柱的需要,而使全部柱的混凝土标号提高,也造成了投资上的浪费。
为了解决这一问题,设计时采用了在节点核心区的柱内加竖向钢板的方法,钢板伸过节点核心区上下一定的长度锚固,按钢板与混凝土协同工作来计算分析,确定钢板的截面尺寸。最终设计的结果是钢板截面尺寸较小,不影响梁柱钢筋的布置,且钢板设置灵活,哪里需要哪里加,从已建成工程使用来看,效果较好。
6、结语
综上所述,异形柱结构由于具有不出现柱楞,不露梁,并能够增加使用面积等优点,以及民用建筑市场朝着大开间、太空间方向的发展,应用前景将日益广泛。结构设计时应根据其受力特点,充分了解其破坏机理,选用合理的结构形式,正确掌握分析方法,其结构才能有可靠的安全保证。
参考文献:
[1]中华人民共和国建设部.混凝土异形柱结构技术规程(JGJl49-2006)[S].北京:中国建筑工业出版社,2006
【关键词】浅谈 多层 砌体 住宅 设计
改革开放后,随着我国经济的迅速发展,建筑结构无论从理论还是施工技术都有长足发展。建筑物结构形成越来越多,使用的材料也越来越丰富,其中砌体结构在土木工程领域的应用非常广泛。
在多层住宅建筑中,用砌体内外承重墙和钢筋混凝土楼板组成的混合结构房屋占主导地位。砌体结构有其自身优点,如耐久性好、耐火性好、便于就地取材、施工技术要求低、造价低廉等;但其也有缺点,如强度低,整体性能和延性差,自重大,砌筑工作量大,劳动强度高等。为充分发挥其优势,砌体结构在材料和结构构造方式上进行了很多的探讨,取得了一些新进展,如采用配筋砌体、组合砌体和预应力砌体等新的结构形式,可以克服材料的性能不足,改善砌体结构的受力性能;采用空心称重砌块,降低结构自重;进行墙体材料改革,发展非烧结材料,利用工业废料,减少对农田的占用。
在商品房住宅小区设计中,大部分建筑采用了砌体结构。由于用户对房屋使用功能要求的多样化,使得建筑平面布置和立面造型都较为复杂,增加了设计难度。主要表现在以下几个方面:
一、总高度和层数接近规范限值
《建筑抗震设计规范》(GB50011-2001)7.1.2条规定"房屋的总高度指室外地面到主要屋面板板顶或檐口的高度,半地下室从地下室内地面算起,全地下室和嵌固条件好的半地下室应允许从室外地面算起;对带阁楼的坡屋面应算到山尖墙的1/2高度处。"城镇中小区内多数住宅楼均采用一层为车库,顶层带阁楼或是坡屋面的形式。这样房屋的总高度和层数就会接近或超过规范规定的极限值。这时,横墙内的构造柱间距不宜大于层高的2倍,即一般不宜超过5.4米;纵墙内的构造柱一般不超过3.9米(外纵墙)和4.2米(内纵墙),即大致每开间均应设置一根构造柱,如此要求是十分必要的,实验证明墙段的宽高比超过2时,构造柱的约束作用会降低。
二、纵向布置较弱
随着住宅商品化,使得砌体住宅楼的客厅面积增大,由于业主使用要求不同,大房间内不设置纵墙或只设置较短的墙段,便于其以后用隔断自由分割。众所周知,多层砌体房屋的抗震性能主要取决于砌体墙,而水平方向地震作用分为两个方向,房屋的纵向相对于横向比较弱,在地震作用下率先产生裂缝,严重者会出现倾斜、错动、倒塌等现象,进而使房屋遭到破坏。所以在拿到建筑专业的条件图后,结构设计人员要先思考分析,务必要和建筑设计人员沟通,尽量做到纵、横墙的布置均匀对称,沿平面内宜对齐,沿竖向应上下连续,同时一轴线上的窗间墙宽度宜均匀。
多层砖混住宅一般采用横墙承重或纵横共同承重的结构体系。由于内纵墙体少,因而房屋该方向空间刚度和整体性均较差,拉震能力低。当纵墙不能贯通布置时,可在纵横墙交界处采取加强措施,如在纵、横墙交接处增设钢筋混凝土构造柱,并适当加强构造配筋或者可以在纵横墙交接处每隔一定高度放置水平拉结构筋如2ф6@500,以加强房屋整体性,防止纵、横墙交界处在地震力的作用下被拉开。另外,构造柱与墙体必须依靠楼层上下楼盖圈梁的拉结才能成为一个整体。构造柱作为一种竖向构件,一般沿墙截面不变,配筋也少有变化。因此,在各楼层柱高处必须有圈梁作为锚固点,以形成上下和左右墙段的约束作用。楼盖圈梁在多层结构中很难准确计算,它的作用是多方面的,如增强拉接,提高结构的整体性,抵御地基的不均匀沉降,加强楼板与墙体的连接等。
三、墙体上下不连续
住宅楼底层平面局部内收或外伸,形成上下层墙体不连续,或底层作为汽车库、小商店以致外墙的门洞间墙宽度较小时,底部应采用框架-抗震结构体系。6、7度且总层数不超过五层的底层框架之间的砌体震墙,但应计入砌体墙对框架的附加轴力和附加剪力;其余情况应采用钢筋混凝土抗震墙。底层框架-抗震墙房屋,应允许采用嵌砌于框架之间的砌体抗震墙,但应计入砌体墙对框架的附加轴力和附加剪力;其余情况应采用钢筋混凝土抗震墙。底层框架-抗震墙房屋的纵横两个方向,第二层与底层侧向刚度的比值,6、7度时不应大于2.5,8度时不应大于2.0,且均不应小于1.0。底部两层框架-抗震墙房屋的纵横两个方向,底层与底部第二层侧向刚度应接近,第三层与底部第二层侧向刚度的比值,6、7度时不应大于2.0,8度时不应大于1.5,且均不应小于1.0。
底部抗震墙的布置宜均匀对称,避免由于水平地震作用下扭转导致破坏;抗震横墙间距应满足规范要求;同时调整底部大片剪力墙的布置形式和开洞方式,当墙体较宽时可考虑开设一些洞口,以减少该大墙片的刚度。钢筋混凝土抗震墙周边应设置由梁(或暗梁)和边框柱(或框架柱、暗柱)组成边框;各墙段的高宽比不宜大于2。底层框架-抗震墙的纵、横地震剪力设计值应乘以增大系数,以提高底层或底部两层结构的安全度,满足规范对于薄弱部位应采取必要措施的要求。其值应根据第二层与底层的侧向刚度比值的大小在1.2-1.5范围内选用。对于采用嵌砌于框架之间的普通砖砌抗震墙,墙厚不应小于240mm,砌筑用的砂浆强度等级不应小于M10的要求,且施工时应先砌墙后浇筑框架的施工方案。
四、异形楼板的配筋
【关键词】多层建筑;结构体系;结构设计
1 多层轻钢住宅的优点
由于我们自己的局限性的结构体系,为封闭的小开间住宅平面布局,不断地适应生活的要求不断变化的模式。与传统的住宅相比,多层住宅建筑具有明显的特点和优势,受到了越来越多人的关注。
(1)外形美观,建筑造型简洁,富有,截面尺寸小,使用的净面积的增加钢材强度高,可以提供较大的柱网布置;当考虑楼板的组合作用,使用组合梁或扁梁时,可以增加净高。这种开放式住宅既为建筑师提供设计的回旋余地,又为住户提供了灵活分隔室内空间的可能。
(2)供货迅速,安装方便,可以比混凝土结构至少缩短一半工期。在当前贷款利率高的金融形式下,早投产,早回收投资,这对于降低工程总造价,增加投资效益幅度是十分重要的。
(3)干法施工,装备化程度高,建设快速,高效,质量有保证。
(4)轻钢结构在生产和使用的过程中能源与原材料消耗低,建筑垃圾少,粉尘少,噪音低,具有很高的可重复使用性和可循环性,因此是一种绿色环保结构。
2 结构体系的选择
建筑层数越多,高度越高,则由于风力或地震力引起的侧向力就越大,建筑物必须有相应的刚度来抵抗侧向力。因此,结构体系也就需要不断的发展。目前,多层和小高层钢结构建筑常用的结构体系有以下几种。
(1)框支结构体系。纯框架在风、地震荷载作用下,侧移不符合要求时,可以采用带支撑的框架,即在框架体系中,沿结构的纵、横两个方向布置一定数量的支撑。在这种体系中,框架的布置原则和柱网尺寸,基本上与框架体系相同,支撑大多沿楼面中心部位服务面积的周围布置,沿纵向布置的支撑和沿横向布置的支撑相连接,形成一个支撑芯筒。采用由轴向受力杆件形成的竖向支撑来取代由抗弯杆件形成的框架结构,能获得比纯框架结构大的多的抗侧力刚度,可以明显减小建筑物的层间位移。
(2)框架剪力墙结构体系。在框架结构中布置一定数量的剪力墙可以组成框架剪力墙结构体系,这种结构以剪力墙作为抗侧力结构,既具有框架结构平面布置灵活、使用方便的特点,又有较大的刚度,可用于40至60层的高层钢结构。当钢筋混凝土墙沿服务性面积(如楼梯间、电梯间和卫生间)周围设置,就形成框架多筒体结构体系。这种结构体系在各个方向都具有较大的抗侧力刚度,成为主要的抗侧力构件,承担大部分水平荷载,钢框架主要承受竖向荷载。
3 主要构件设计
3.1 柱
前已述及,钢结构住宅一般为大开间,框架柱在两个方向都承受较大的弯矩,同时应该考虑强柱弱梁的 要求。而目前广泛使用的焊接H型钢或I字热轧钢截面,强弱轴惯性矩之比3~10,势必造成材料浪费。因 此对于轴压比较大,双向弯矩接近,梁截面较高的框架柱采用双轴等强的钢管柱或方钢管混凝土柱是适宜的。对于方钢管混凝土柱,不仅截面受力合理,同时可以提高框架的侧向刚度,防火性能好,而且结构破坏时柱体不会迅速屈曲破坏。因此,尽管平面受力结构中,选用H型钢或I字钢在受力上还是合理的但总体上,箱形钢管柱尤其是方钢管混凝土柱应得到广泛应用。方钢管混凝土柱将是钢结构住宅发展的 主要方向,但由于缺乏相应的规范、规程,目前在住宅中应用还很少。尤其钢管砼梁、柱的连接较为复杂,不利于工厂制作和现场施工,应加大力度开发研究。
3.2 楼面屋盖结构
楼面和屋盖必须有足够的强度,刚度和稳定性,同时应当尽量减少楼板厚度,增加室内净高。压型钢板-混凝土组合楼盖是目前应用较为广泛的形式。它具有施工速度快,平面刚度大,增加房屋净高的优点。具体做法是在钢梁上铺设压型钢板,再现浇100~150mm混凝土。在钢梁上焊接足够的剪力连接件,使钢梁与混凝土协同工作构成组合楼盖。这种做法耗钢量较大,且需防火处理。可以用预应力钢筋混凝土薄板取代压型钢板。此外,预应力圆孔板、迭合板、组合扁梁也是常用形式。
3.3 支撑和剪力墙形式
多层框架钢结构体系的侧向刚度较弱,随着层数的增加,为了抵抗水平地震作用,减小层间错移,常在墙体内布置垂直支撑,为了方便门窗开洞,支撑形式可以灵活采用,如X型、单斜杆型、K型、M型、W型、V型和人型等。建议多采用偏心支撑,因其在地震作用下具有较好的延性和耗能性能。
剪力墙按其材料和结构的形式可分为钢筋混凝土剪力墙、钢筋混凝土带缝剪力墙和钢板剪力墙等。钢筋混凝土剪力墙刚度较大,地震时易发生应力集中,导致墙体产生斜向大裂缝而脆性破坏。为避免这种现象,可采用带缝剪力墙。钢板剪力墙是以钢板做成剪力墙结构,与钢框架组合,起到刚性构件的作用。
4 节点设计
在结构分析前,就应该对节点的形式有充分思考与确定。常常出现的一种情况是,最终设计的节点与结构分析模型中使用的形式不完全一致,这必须避免。按传力特性不同,节点分刚接,铰接和半刚接。初学者宜选择可以简单定量分析的前两者。常用的参考书[2]有丰富的推荐的节点做法及计算公式。
连接节点有等强设计和实际受力设计两种常用的方法,初学者可偏安全选用前者。设计手册中通常有焊缝及螺栓连接的表格等供设计者查用,比较方便。也可以使用结构软件的后处理部分来自动完成。
具体设计主要包括以下内容:
4.1 焊接
对焊接焊缝的尺寸及形式等,规范有强制规定,应严格遵守。焊条的选用应和被连接金属材质适应。E43对应Q235,E50对应Q345. Q235与Q345连接时,应该选择低强度的E43,而不是E50.
焊接设计中不得任意加大焊缝。焊缝的重心应尽量与被连接构件重心接近。其他详细内容可查规范关于焊缝构造方面的规定。
4.2 栓接
铆接形式,在建筑工程中,现已很少采用。
普通螺栓抗剪性能差,可在次要结构部位使用。
高强螺栓,使用日益广泛。常用8.8s和10.9s两个强度等级。根据受力特点分承压型和摩擦型。两者计算方法不同。高强螺栓最小规格M12.常用M16~M30.超大规格的螺栓性能不稳定,设计中应慎重使用。
自攻螺丝用于板材与薄壁型钢间的次要连接。国外在低层墙板式住宅中,也常用于主结构的连接。
4.3 连接板
可简单取其厚度为梁腹板厚度加4mm.然后验算净截面抗剪等。
4.4 梁腹板
应验算栓孔处腹板的净截面抗剪。承压型高强螺栓连接还需验算孔壁局部承压。
4.5 节点设计必须考虑安装螺栓、现场焊接等的施工空间及构件吊装顺序等。构件运到现场无法安装是初学者长犯的错误。此外,还应尽可能使工人能方便的进行现场定位与临时固定。
4.6 节点设计还应考虑制造厂的工艺水平。比如钢管连接节点的相贯线的切口需要数控机床等设备才能完成。
5 结束语
当前我国钢结构研究已进入一个新阶段,应及时把握其发展趋势,结合我国国情,积极借鉴并吸纳国外成熟技术,注意各专业间的相互配合,促进钢结构住宅产业化发展,相信我国钢结构住宅的发展前景是美好的。
参考文献:
关键词:多层砌体;住宅建筑;结构设计;问题
中图分类号: TU318 文献标识码: A 文章编号:
随着我国的国民经济高速发展,综合国力得到了大大的提高,相应带动了大量的城乡改造工程。但城市的发展在幅员辽阔的中国极不平衡,较为落后、偏僻的城市,由于经济实力较差、交通不便等原因,楼房的建设依然以砌体结构为主,如办公楼、教学楼、多层住宅、沿街二、三层店铺和多层底商住宅楼等。因设计水平所限,注重了承载力的计算,忽视了构造措施和概念设计;注重了本专业的设计,忽视了和别的专业相协调,在许多建筑的施工图设计中,已经埋下了很大的安全隐患。这样的设计不仅不符合现行设计规范,而且降低了建筑结构的可靠度和安全性
一、砌体结构的含义
用砖砌体、石砌体或砌块砌体建造的结构叫做砌体结构。我国砌体结构应用非常的广泛,它具有可以就地取材,非常好的耐久性和比较好的大气稳定性和化学稳定性,也同样具有不错的保温隔热性能。
二、 砌体结构的特点
多层砌体房屋是指由烧结普通粘土砖、烧结多孔粘土砖、混凝土小型空心砌块等砌体承重的多层房屋。通常砌体结构房屋给人们的印象多数是建筑高度不大、层数较少、层高较低、窗户较小、内部墙较多,立面造型简单,这种印象正好说明了砌体结构的建筑特点。砌体结构由粘土砖或砌块砌筑而成,材料呈脆性,其抗剪、抗拉和抗弯强度较低,因此抗震性能较差,即便有圈梁、构造柱等加固措施,在强烈地外,巷子中砖瓦紧凑地接着淅淅沥沥的水滴。“滴答滴答下小雨了,种子说我要发芽,我要发芽。”记得初来时,我在小巷中震作用下,破坏率仍然较高。
三、多层砌体住宅建筑结构设计易忽视的问题
1、地基处理及基础设计
地基及基础在建筑的安全性方面的重要作用不言而喻。砌体结构房屋,由于平面不规则,或房屋高差较大引起建筑物重量悬殊较大,或由于地基不均匀,即房屋各部位下面持力层地基强度不同,以及下卧层软硬程度不同,而引起较大的不均匀沉降。显然,对于以脆性材料为主的砌体结构这种不均匀沉降更是极其不利的。但由于砌体结构上部荷载相对来说并不很大,许多设计人员往往在设计中不太重视,在地基处理和基础设计时的比较随意,如:(1)人为造成不均匀地基。如建筑距离较小时,为了解决基础外放的问题,同一结构单元,桩基和天然地基或换填土地基混用等。(2)采用软件进行基础设计时,为减少绘图工作量,归并系数较大,这等同于独基(或条基)采用不同的地基承载力特征值。从理论上讲,上述两种情况,事实都是对同样的地基承受不同的附加应力,必然会产生不均匀沉降。
为更好的控制不均匀沉降,从而减少由于沉降差引起的结构附加应力。在做地基处理及基础设计时应该更加细致,比如:对同一结构,承载能力较低的地基之上的基础,宽度取值可比计算值大些,以减少对地基的附加压力,从而减少沉降值;而地基强度较高的基础,宽度可按计算设置甚至略小于计算值(慎用),以期人为增加该部分基础的沉降量,减少与较软弱地基部分的沉降差。
设计中如遇到地质条件很不均匀的复杂地基时,除了对由于地基承载力不同而引起的砌体结构房屋的不均匀沉降作上述处理外,相应的应上部结构也适当进行加强,以增强结构的整体刚度,抵抗地基的均匀沉降。如增加设置圈梁的层数和圈梁设置的密度,加强不同土层的交接房屋结构的连接构造和配筋等。
2、预制过梁的设计与施工
过梁是墙体门、窗或设备洞口上承担竖向荷载的构件。在设计及施工工程中常见问题如下:
(1) 过梁端部支承长度不足.(一般为240mm)
从设计角度讲,过梁截面设计主要取决于:过梁上荷载选取;正截面受玩,支座斜截面受剪承载力计算;按梁端有效支承长度或过梁有效支承长度验算支承处砌体局部受压。预制尺寸的误差,施工操作中的随意摆放都能导致过梁支承长度的不足。在此中情况下,容易导致支承处砌体局部受压强度不足。更有甚者,一端与构造柱相连的过梁没有采用与构造柱整体浇筑, 只是在构造柱相应位置处甩筋后浇,使过梁支座截面的斜截面抗剪能力降低,满足不了设计要求。
(2) 门窗洞口处过梁与设备洞口处过梁不区别对待
设备洞口处过梁与门窗洞口处过梁的区别在于设备洞口处过梁须预留洞口(供穿管用),造成其本身强度的削弱。有的设计人员人为:住宅结构中过梁的荷载不大,故常常忽略。但是在实际工程之中,确确实实有的设备洞口上方的过梁由于开洞而设计时没有加强,从而导致过梁跨中出现竖向裂缝,影响正常使用。所以在砌体住宅设计中,考虑过过梁开洞削弱的影响, 适当加大设备洞口连梁的截面高度和配筋,避免在使用期间其出现裂缝,满足正常使用要求。
3、砌体承重墙设备留洞问题
(1)砌体住宅结构设计中,楼梯间由于楼层处开大洞没有楼板连接形成了砌体结构中的一个比较薄弱的部位。然而,近几年的砌体住宅设计中,往往把设备留洞放楼梯间在两侧横墙上,致使本来就比较薄弱的部位更加变的薄弱了。具体表现如下:
a)楼梯间横墙处较大洞口两侧没有设置构造柱。
b)相邻洞口之间净距过小。
(2)因为结构施工图中很少有设备洞口定位,有时只是在《结构设计总说明》统一注明墙体开洞加强措施,从而导致现场施工中墙体留洞带有很大的随机性.较大的消弱了墙体的侧向刚度,大大降低了墙体侧向承载力。对此提出建议如下:
a)较大洞口或洞口集中部位两侧设置构造柱,构造柱整层通高配置。并应于相应洞口(洞口上皮一致)上方设置现浇混凝土过梁,与两侧构造柱整浇一起。
b)若洞口上皮不一致时,除按条1 设置构造柱外,洞口间净距最小须保证各洞口过梁在墙体上支承长度之和。
c)待设备箱体安装完毕固定后,应用细石混凝土添塞充实。其次,砌体结构承重墙体砌筑过程中,各管线的预埋尤其注意。施工中往往由于疏忽大意,导致管线没有预埋墙体之中,而只能在墙体上开线槽,卧管线与槽中。这种做法实际上存在几个缺陷:其一,墙体开槽,削弱墙体强度。其二,线槽填充的混凝土与砌体材料的热涨性能差异较大,将导致墙面开裂。其三,墙体悬挂器件穿孔时,易损坏管线,造成漏水,漏电。所以在施工时应组织周密,勿漏项,尽量避免这种费力不讨好的返工之做。
4、楼板配筋问题
砌体住宅结构设计中,楼板钢筋的用量占据上部结构钢筋用量的很大比例。而开发商为了减少投资,控制造价,一味控制建筑结构用钢量。甚至提出限制钢筋用量的设计要求。有的结构设计人员就从楼板配筋上下“功夫”, 不合理的缩减楼板配筋或者过分相信软件计算数据,没有考虑工程经验在内,从而造成钢筋配置量偏小,构造布置上不满足要求,导致楼板开裂或产生过大挠度变形,影响住宅的正常使用。造成这一现象的主要原因在于:结构计算中的理论条件与现实工程实际的情况不相符。列举实例如下:(1)楼板负筋位置的正确保证。理论设计原则是采用“大直径,大间距”。实际配置中仅满足设计配筋需要从而采用了直径小的钢筋。这样一来,施工人员的踩踏、现场浇注混凝土的砸压造成负筋下移,结果是:a)楼板保护层过大,表层混凝土开裂b)楼板支座截面处楼板计算高度变小,支座负筋配置量加大,导致配筋不足,引起支座裂缝。(2)卫生间等开有较多洞口的楼板没有考虑洞口削弱的影响,设计过程中没有人为的适当增强。在多层砌体住宅结构设计中,卫生间所辖板块较小,建议楼板配筋采用双层双向全部拉通的布置方式。而对于放置浴缸、浴盆的卫生间,其活荷载的取值应加大。
我国是一个发展中国家,经济发展还很不平衡,在今后很长一段时间里,多层砌体结构房屋还会在中小城镇、广大农村,尤其是广大民居建筑中还将广泛采用。因此,设计人员必须严格执行规范和相应的构造要求,只有这样才能有效消除设计质量隐患,保护人民生命财产安全。另外,还要深入开展科学研究,充分挖掘技术潜力,努力克服材料弱点,进而提高多层砌体结构的抗震性能,为经济建设服务。
参考文献:
[1] 余春梅. 构造柱的作用与质量通病防治[J]. 内江科技, 2008,(09)
[2] 彭炽凡. 构造柱彻体结构受压承载力测试与分析[J]. 广东科技, 2007,(01)
[3] 刘彤, 程春丽. 浅谈砌体结构抗震的新发展[J]. 黑龙江科技信息, 2009,(22)
关键词:轻钢结构 结构体系 组合楼盖
一、前言
轻钢结构住宅相比于传统住宅,有其突出的优点:
(1)轻钢结构配件制作工厂化和机械化程度高,商品化程度高。
(2)现场施工速度快,主要为干作业,有利于文明施工。
(3)钢结构建筑是环保型的可持续发展产品。
(4)自重轻,抗震性能好。
(5)综合经济指标不高于钢筋混凝土结构。
随着我国钢产量的快 速增长,对用钢政策由限制用钢到合理用钢到积极用钢,国务院1999年颁发的72号文件提出要发展钢结 构住宅产业,在沿海大城市限期停止使用粘土砖。因此开发轻钢结构住宅体系已成为当前住宅结构研究 中的热点。不过,多层轻钢结构的研究还处于起动阶段,研究力度还不够,实际设计和施工还存在不少争议和问题。这些都急需解决,以利于轻钢住宅在我国健康快速发展。
二、结构体系选型
对低、多层住宅,目前国内外常用的结构体系主要有:
(一)冷弯薄壁型钢体系
构件用薄钢板冷弯成C形、Z形构件,可单独使用,也可组合使用,杆件间连接采用自攻螺钉。这种体系节点刚性不易保证,抗侧能力较差,一般只用于1~2层住宅或别墅。笔者处理的几个旧房加层,如蓟县 国税局、天津港派出所等改造工程,使用了该体系,效果较好。
(二)框架
目前,这种体系在多层钢结构住宅中应用最广。纵横向都设成钢框架,门窗设置灵活,可提供较大的开间,便于用户二次设计,满足各种生活需求。钢框架考虑楼盖的组合作用,运用在低多层住宅中,一般 都能满足抗侧要求。但是由于目前框架柱以H型钢为主,弱轴方向梁柱连接的刚性难以保证,因此设计 施工时须慎重处理。
(三)框架支撑体系
在风载或地震作用较大区域,为提高体系的抗侧刚度,增加轴交支撑或偏交支撑效果很好。这种体系为多重抗侧体系,而且梁柱节点,柱脚节点可设计成铰接、半刚接,施工构造简单,基础主要承受轴力, 体形较小,因此成为人们青睐的对象。
(四)框架剪力墙体系
在低多层住宅中,可以应用传统的剪力墙体系,如钢筋混凝土剪力墙或钢板剪力墙。目前正在研究的空腔结构板是一种理想的抗侧结构。空腔结构板是一种新型的轻质板材,采用黄纸制成具有众多等边空腔 结构的板状基架,然后经浸渍而成。该板材与钢框架可靠连接,便可形成新型剪力墙。另外美国,澳大利亚等国还开发了交错桁架体系,比较新颖。
三、 主要构件设计
(一)柱
前已述及,钢结构住宅一般为大开间,框架柱在两个方向都承受较大的弯矩,同时应该考虑强柱弱梁的要求。而目前广泛使用的焊接H型钢或I字热轧钢截面,强弱轴惯性矩之比3~10,势必造成材料浪费。因 此对于轴压比较大,双向弯矩接近,梁截面较高的框架柱采用双轴等强的钢管柱或方钢管混凝土柱是适宜的。对于方钢管混凝土柱,不仅截面受力合理,同时可以提高框架的侧向刚度,防火性能好,而且结 构破坏时柱体不会迅速屈曲破坏。因此,尽管平面受力结构中,选用H型钢或I字钢在受力上还是合理的但总体上,箱形钢管柱尤其是方钢管混凝土柱应得到广泛应用。方钢管混凝土柱将是钢结构住宅发展 的 主要方向,但由于缺乏相应的规范、规程,目前在住宅中应用还很少。尤其钢管砼梁、柱的连接较为复杂,不利于工厂制作和现场施工,应加大力度开发研究。
(二)楼盖
在多层轻钢房屋中,楼盖结构的选择至关重要,它除了将竖向荷载直接分配给墙柱外,更主要的作用是保证与抗侧力结构的空间协调作用;另外从抗震角度来看,还应采用相应的技术和构造措施减轻楼板自 重。常用的楼盖结构有:压型钢板-现浇混凝土组合楼板,现浇钢筋混凝土板以及钢-混凝土叠合板,而以第一种最为常用。目前,在多层轻钢房屋整体分析时,还普遍不考虑楼盖与钢梁的组合作用,即使 设置抗剪键,也偏保守地假设钢结构承受全部荷载,这样不仅增加材料用量和结构自重,反而会造成强梁弱柱的不利情况。有一6层算例,表1、表2分别反映了考虑楼盖组合作用对梁刚度以及结构整体刚度的影响。
表1 截面惯性矩对比
构件名称 截面惯性矩 组合前后的对比
主梁(负弯矩区) 1.51(2.22) 1.47
主梁(正弯矩区) 1.51(4.28) 2.83
次梁 0.797(2.48) 3.11
注:括号内为考虑年组合作用的情况
表2 结构位移对比
结果 工况1 工况2 工况3
楼层梁挠度 16.9(10.9) 16.9(10.2) /
屋盖梁挠度 35.5(35.4) 34.3(34.2) /
底层层间位移 16.9(10.2) 4.8(3.7) 8.4(5.9)
顶点位移 / 18.2(13.8) 49.9(31.0)
注:括号内为考虑年组合作用的情况
算例表明,考虑组合作用后主梁的刚度大大增加,使得梁的挠度和地震作用下柱顶的侧移大为减少,此考虑组合作用应予关注。为使楼层高度减到最小,提供更大的空间,组合扁梁楼盖也成为一种趋势。
转贴于 (三)支撑体系
支撑分轴交支撑和近年发展起来的偏交支撑两种,前者耐震能力较差,后者在强震作用下具有良好的吸能耗能性能,而且为门窗洞的布置提供了有利条件,目前国内用的还很少,建议在高烈度区首选偏交支撑。剪切型耗能梁段,加劲肋按以下公式设计:
a=29tw-d / 5,(γp=±0.09rad)(1)
a=38tw-d / 5,(γp=±0.06rad)(2)
a=56tw-d / 5,(γp=±0.03rad)(3)
式中,a―――加劲肋间距,d―――梁高, ―――腹板厚度,γp―――塑性转角;弯曲型耗能梁段还需在 梁段端点外1.5bf处加设加劲肋。
(四)节点抗震设计
框架梁柱节点一般采用两种连接方法,根据"常用设计法",即翼缘连接承受全部弯矩,梁腹板只承受全部剪力的假定进行设计。震害表明,这种设计不能有效满足"强节点弱杆件"的抗震要求,在高烈度区隐患 很大。改进的框架节点设计,在梁端上下翼缘加焊楔形盖板或者将梁端上下翼缘局部加宽盖板面积或加大的翼缘截面面积主要由大震下的验算公式确定:
式中: 为基于极限强度最小值的节点连接最大受弯承载力,全部由局部加大后的翼缘连接承担;为梁件的 全塑性受弯承载力; 为基于极限强度最小值的节点连接最大受剪承载力,仅由腹板的连接承担;为梁的净跨; 为梁在重力荷载代表值作用下按简支梁分析的梁端截面剪力设计值。
四、结论
1)低、多层轻钢结构住宅考虑楼盖与钢梁的组合作用,可显著减小主梁挠度和柱顶位移。
关键词:多层民用住宅 轻钢结构
1. 轻钢住宅在我国的发展
我国轻型钢结构经过20多年的发展历史,虽然起步并不晚,主要由于经济与技术的原因使得多层轻钢住宅的发展受到制约。国内最早出现的轻钢结构住宅是94年11月建于上海浦东北蔡的8层钢结构住宅,采用冷弯成型的矩形钢管混凝土柱和U型冷弯型钢组合梁组成框架。其特点是采用稻草板作外墙和楼板的组件,单位面积用钢量34kg/m2。
天津经济开发区太平村是我国住宅产业化的探索基地之一,来自中国,日本,美国,加拿大等15个国家和地区的95名参展商展示了各自的产品,其中钢结构住宅均采用框架结构。楼板及墙体、屋顶均采用复合结构,工厂预制,现场安装,缩短了施工工期。
长沙远大集团建造的8层钢结构公寓,称之为集成化建筑。该建筑装有中央空调一体化机组,整体浴室,“五表”远传系统等现代化设备。室内设计考究,体现了钢结构住宅的风格和质量,表明了钢结构住宅的良好发展前景。表1为若干轻钢住宅经济技术指标。
当前,国家将住宅产业作为国民经济新的经济增长点。为居民提供高质量的符合市场需求的商品化住宅成为必然趋势。国家鼓励发展
表1 轻钢住宅经济技术指标
工程名称 马钢住宅试验楼 北京西三旗水电工程宿舍 涿州中铁紫荆关钢结构公司试验楼保定太行集团轻钢住宅示范楼
结构体系 12层框架-支撑体系 6层框剪体系 6层钢框架-砼核心筒体系 空间框架结构
结构型式 热轧H型钢 H型钢,压型钢板组合楼板焊接工型梁柱 H形柱,工形梁
用钢量(kN/m2) 52 63 46 52
单位造价(元) 1100 1100 1200 900
“新型建筑体系”,已将其列入优先发展的高新技术领域中。国务院1999年颁发的72号文件
提出要发展钢结构住宅产业,在沿海大城市限期停止使用粘土砖。建设部标准定额研究司正在编制与修改与多层钢结构房屋密切相关的技术规程。建设部科技司在今年上半年分别召开了“钢结构住宅产业化技术导则编制研讨会”和“钢结构住宅建筑体系及关键技术研究课题立项评审会”。通过了18个包括钢结构住宅建筑体系及其关键和试点工程的立项。国家政策为钢结构住宅开发创造了条件,钢结构产业化住宅有望在最近取得突破性进展。
2. 多层轻钢住宅的优势
过去我国大量开发的是以小开间砖混结构为主的住宅。这种住宅体系由于使用实心粘土砖,浪费土地资源,建筑物自重大,对抗震不利。另一方面,由于结构体系自身的限制,住宅平面布局多为封闭式的小开间,不能适应不断变化的居住模式的要求。与传统住宅相比,多层轻钢住宅具有明显的特点与优势,日益受到重视。
(1)自重轻,抗震性能好。采用高效轻型薄壁型材,构件截面特性优良,相对承载力高,受力性能良好,整体刚度大,抗震性能好,可以大量节约材料,减轻结构重量,降低基础,运输和安装费用。因此,对地震区,地质条件差和运输不便的地区,其优越性更为明显。
(2)外形美观,建筑造型简洁,丰富,构件截面尺寸小,净使用面积增加。钢材强度高,可以提供较大的柱网布置;当考虑楼板的组合作用,使用组合梁或扁梁时,可以增加净高。这种开放式住宅既为建筑师提供设计的回旋余地,又为住户提供了灵活分隔室内空间的可能。
(3)供货迅速,安装方便,可以比混凝土结构至少缩短一半工期。在当前贷款利率高的金融形式下,早投产,早回收投资,这对于降低工程总造价,增加投资效益幅度是十分重要的。
(4)干法施工,装备化程度高,建设快速,高效,质量有保证。
(5)轻钢结构在生产和使用的过程中能源与原材料消耗低,建筑垃圾少,粉尘少,噪音低,具有很高的可重复使用性和可循环性,因此是一种绿色环保结构。
3.多层轻钢住宅的体系与结构特点
3.1抗侧力结构体系
主要应用于多层轻钢住宅的体系可分为:纯钢框架体系,框架-支撑体系,钢框架-混凝土剪力墙体系,周围抗侧力体系等。
(1)纯框架体系常用于4~8层住宅。它主要由宽翼缘的H型或箱形柱和工字型梁组成,亦可采用热轧H型钢。这种体系具有较为灵活的空间布局,但侧向刚度较弱。相对于框架-支撑体系,用钢量较大。纯框架体系多采用双向刚接,这样可以加大结构自身的侧移刚度,减少抗侧移构件内力,加强耗能机制,提高建筑物的延性。但节点形式较为复杂。由于建筑美观的要求,端板连接不宜于多层轻钢住宅。
(2)框架-支撑体系主要由焊接工字型梁柱组成。多数情况下,这种体系为横向承重。梁柱节点在横向上,为刚接;纵向为铰接。因此,结构在纵向相当于排架,抗侧移刚度很低,需设置侧向支撑抵抗水平荷载,限制结构的水平变形。支撑可用槽钢,角钢或圆钢杆,具体形式可结合建筑立面或门窗洞口需要采用单斜杆、X型、K型或偏心支撑。单斜杆简单明快,但必须设置两组不同倾斜支撑,以保证结构在两个方向具有同样抗侧力能力。X型支撑具有很好的侧向刚度,但是交叉点处的细部构造比较复杂。偏心支撑具有非常好的抗震耗能效果。它的工作原理是:在中、小地震作用下,支撑提供主要的抗侧力刚度,与中心支撑相似;在大地震作用下,保证支撑不发生受压屈曲,而让耗能梁段屈服消耗能量。它是专为抗震设计提供的支撑形式。
(3)框架-钢筋混凝土剪力墙(筒)体系。用钢筋混凝土剪力墙部分或全部代替钢支撑,就形成了框架-钢筋混凝土剪力墙(筒)体系。它适用于小高层住宅。一般将楼梯或电梯间设计成钢筋混凝土墙(筒)。这样即有效的加强了建筑物的侧向刚度,又解决了楼梯间的防火问题。如果结构刚心偏移过大,出现扭转的问题,可在适当部位设置钢支撑。
(4)周围抗侧力体系。这种体系在欧美国家的商业和民用建筑中十分流行。它的特点是刚架柱强轴与其相交的建筑轴线垂直,形成外筒,抵抗水平荷载,将之传递到基础。它适用于建筑外型接近于正方型的结构。可以将这种思路应用到框架-支撑体系中。把纵向的支撑去掉,将原有位置的刚架柱扭转90度,梁柱由铰接变为刚接。这样,刚架柱同时起到抗风柱与竖向支撑的作用。
对于多层轻钢民用住宅体系的选择,不必拘泥于某一种特定的体系。可以根据建筑平面设计的要求,灵活处理,综合使用不同的抗侧力体系。
3.2 楼面屋盖结构
楼面和屋盖必须有足够的强度,刚度和稳定性,同时应当尽量减少楼板厚度,增加室内净高。压型钢板-混凝土组合楼盖是目前应用较为广泛的形式。它具有施工速度快,平面刚度大,增加房屋净高的优点。具体做法是在钢梁上铺设压型钢板,再现浇100~150mm混凝土。在钢梁上焊接足够的剪力连接件,使钢梁与混凝土协同工作构成组合楼盖。这种做法耗钢量较大,且需防火处理。可以用预应力钢筋混凝土薄板取代压型钢板。此外,预应力圆孔板、迭合板、组合扁梁也是常用形式。
3.3 墙体结构
各种轻质墙体材料以其良好的保温、隔热、隔声性能受到开发商的青睐。目前,墙体主要分为自承重式和非自承重式。自承重墙体主要包括用于外围护结构的加气混凝土块、太空板、轻钢龙骨加强板等,以及用于内墙的轻混凝土板、石膏板、水泥刨花板、稻草板等。外挂的非自承重式墙体材料主要有彩色压型钢板、彩色压型钢夹芯板、玻璃纤维增强外墙板等。采用非自承重式墙体材料,需设置墙梁用以悬挂外围护结构。门窗洞口上下要布置。墙梁多采用C或Z型冷弯薄壁型钢,尺寸取决于跨度(刚架间距)和墙距(板跨)。
3.4 多层轻钢住宅的防火
钢材属于不耐火材料,温度为400 °C时,钢材的屈服强度将降为常温的一半,温度达到600 °C时,钢材基本丧失全部强度和刚度。所以,钢结构不仅要进行结构的抗火设计,还要采用防火措施保护。目前常用的防火措施有以下四种方法(1)防火涂料法。将具有一定厚度的防火涂料直接喷在钢结构构件上。防火涂料主要两类:涂层8~50mm,粒状表面,密度较小,耐火极限1~3h的为厚涂型防火隔热材料;涂层3~7mm,遇火膨胀增厚,耐火极限0.15~2h的为薄涂型防火隔热材料。喷涂法造价较低,操作简便,施工速度快,但是构件表面不平整,影响美观。(2)隔离法。将防火材料或防火砖沿构件的外围,将构件包裹,与外界隔离。这种方法美观,无污染,但施工速度较慢,适用于外露的构件。(3)实心包裹法。将钢构件浇注到混凝土中。(4)膨胀漆覆盖法。将具有一定厚度的膨胀漆喷涂、抹、刷在经过处理的构件表面。抗火极限最高达2h。覆盖法施工容易,但不适用于潮湿的环境,仅适用于干燥的室内。
4. 工程实例
4.1 工程背景介绍
某示范楼建筑面积4665m2,5层纯钢框架结构,长67m,宽13.5m,层高3m。焊接工字形梁,纵横双向刚接H形柱。楼面活荷载为2.0kN/m2,屋面活荷载0.3kN/m2,轻型屋面恒荷载0.3kN/m2;基本风压0.25 kN/m2;设计地震烈度为7度,Ⅱ类场地。屋面为冷弯薄壁C型檩条铺双层镀锌压型钢板夹100mm厚保温棉屋面系统,外墙采用200mm厚陶粒混凝土空心砌体墙,分户墙为180mm厚菱镁土板,户内隔墙为90mm厚菱镁土板。条型基础,柱与基础为刚接。
示范楼共有四个居住单元,两种建筑平面布置形式,建筑面积分别为143 M2,102 M2。一单元为大两室两厅,二、三、四单元为小两室两厅。一单元的大客厅使用了组合扁梁,从而实现了梁与楼盖的一体化,减少了结构层高。对于正常极限状态下的组合扁梁,将钢和混凝土两种材料组成的组合梁截面换算成同一种材料的截面,再按照弹性理论计算。为了楼板的放置,扁梁的下翼缘一般较宽,需验算施工时产生的偏心荷载。为了减少设计工作量,通常把扭矩简化为已对大小相等、方向相反的力分别作用于扁梁的上下翼缘。详细分析方法见文献。
4.2 计算方法与基本要求
对于多层轻钢住宅,尽管采用单向板,但由于纵横向均有墙体荷载分布,宜采用三维空间计算模型。本工程采用的是普通楼板,不考虑楼盖对钢架梁刚度增大的作用,忽略楼板的空间联系作用,空间模型为纯框架结构。计算分析是采用有限元分析软件ANSYS完成。在结构计算中采用三维梁单元,质量单元计算结构自振周期以及静力分析。
相对于工业建筑而言,多层民用建筑的荷载工况简单明了。主要考虑以下三种工况:
工况一:1.2×恒载标准值+1.4×活荷载标准值
工况二: 1.2×恒载标准值+0.85×1.4×(风荷载+活荷载)标准值
工况三:1.2×重力代表值+1.3×水平地震作用标准值
对于多层轻钢住宅地震荷载计算,由于楼层较低,结构布置对称,采用底部剪力法就可满足要求。
多层轻钢住宅侧向位移具体要求如下:
(1)在风荷载作用下的顶点水平位移与总高度之比不宜大于1/500。
(2)层间相对位移与层高之比不宜大于1/400。
(3)在常遇地震作用下,层间侧移不超过楼层高度1/250。
对于多层轻钢住宅,还要满足刚架柱构件稳定性与钢框架的整体稳定性要求。
表2 两种方案(空间模型)比较
柱截面(mm) 柱用钢量(t) 单位用量(kg/m2)纵向主自振周期(s) 地震作用下纵向最大层间位移 横向主自振周期(s) 地震作用下横向最大层间位移(mm)
方案一 300x300x12x8 92.91 51.96 1.657 1/426 1.232 1/633
方案二 300x300x10x10 114.55 57.46 1.140 1/700 1.231 1/632
方案比较 节省19% 节省9.6% 基本相同
4.3 计算分析
由于活荷载与基本风压较小,所以工况三为控制工况。计算设计时将两种方案进行了比较,不改变刚架梁的截面形式,只对刚架柱进行改动。方案一,刚架柱为工字形;方案二,刚架柱为箱形。表2给出两种方案空间模型的主要计算结果,可得到以下结论:
(1)两种方案的刚架柱在强轴方向惯性矩相同,即在横向结构的刚度相同,因此横向主自振周期以及地震作用下横向最大层间位移基本一致。
(2)本工程长宽比5,纵横双向刚接,因此对于方案一,当横向侧向刚度满足要求时,纵向刚度也能达到要求。
(3)在满足规范要求的前提下,方案一节约钢材用量,单位面积用钢量减少约10%,经济性好。因此,在设计中选择了工字形刚架柱。表3示范楼主要构件尺寸及其用钢量。但是由于轻钢体系刚架柱的腹板很薄,为了防止局部失稳引起的结构失效,刚架柱宜在纵向梁柱刚接处做成局部箱形柱。
表3 示范楼主要构件尺寸及其用钢量
截面尺寸(mm) 用钢量(t) 比例(%)
刚架柱(GJZ) I300x300x12x8 92.91 38.3
刚架梁(GJL) I400x180x8x6 78.52 38.4
扁梁(BL) I280x140x16x10x210 10.86 4.48
次梁1(CL1) I300x180x8x6 9.14 3.77
屋面梁 I300x160x8x6 10.56 4.36
其它 4.040 16.7