欢迎访问爱发表,线上期刊服务咨询

量化交易策略的研究8篇

时间:2023-07-28 09:18:47

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇量化交易策略的研究,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

量化交易策略的研究

篇1

在传统的证券投资学中,投资组合理论、资本资产定价模型、套利定价理论和期权定价理论是现代金融理论的四块基石。前两者主要依靠均值-方差组合优化的思想,后两者则主要依靠市场的无套利条件。传统的投资方法主要是基本面分析和技术分析两大类,而量化投资则是“利用计算机科技并采用一定的数学模型去实现投资理念、实现投资策略的过程”[3]。从概念看,量化投资既不是基本面分析,也不是技术分析,但它可以采用基本面分析,也可以采用技术分析,关键在于依靠模型来实现投资理念与投资策略。为了分析量化投资对证券投资学的启示,本文从量化投资“黑箱”的各个构成来探讨量化投资与证券投资学中思路和观点的差异。

(一)资产定价与收益的预测

根据组合优化理论,投资者将持有无风险组合与市场风险资产组合,获得无风险利率与市场风险溢价。资本资产定价模型则将此应用到单一证券或组合,认为证券的风险溢价等于无风险利率加上与风险贡献比率一致的风险溢价,超过的部分就是超额收益,即投资组合管理所追求的阿尔法值[4]。追求显著正的阿尔法是资产定价理论给实务投资的一大贡献。基于因素模型的套利定价理论则从共同风险因素的角度提供了追求阿尔法的新思路。其中,法玛和佛伦齐的三因素定价模型为这一类量化投资提供了统一的参考。可以说,在因素定价方面,量化投资继承了资产定价理论的基本思想。对于因素定价中因素的选择,证券投资学认为,对资产价格的影响,长期应主要关注基本面因素,而短期应主要关注市场的交易行为,即采用技术分析。在量化投资中,主要强调按照事先设定的规则进行投资,这在一定程度上与技术分析类似。但是,在技术分析中,不同的人会有不同的结论,而量化投资则强调投资的规则化和固定化,不会因人的差异而有较大的不同。另外,量化交易更强调从统计和数学模型方面寻找资产的错误定价或者进行收益的预测。

(二)无套利条件与交易成本

在证券投资学里,流动性是证券的生命力。组合投资理论、资本资产定价模型以及套利定价理论等都认为市场中存在大量可交易的证券,投资者可以自由买卖证券。这主要是为了保证各种交易都能实现,如套利交易。根据套利定价理论,一旦市场出现无风险的套利机会,理性投资者会立即进行套利交易,当市场均衡时就不存在套利机会。现实市场中往往存在套利限制。一是因为凯恩斯说的“市场的非理性维持的时间可能会长到你失去偿付能力”。二是因为市场总是存在交易费用等成本。但证券投资学中,对市场中套利限制与非流动性的关注较少,这是因为传统金融理论中简化了市场结构。市场微观结构理论研究在既定的交易规则下,金融资产交易的过程及其结果,旨在揭示金融资产交易价格形成的过程及其原因。在市场微观结构理论中,不同的市场微观结构对市场流动性的冲击是不同的。因而,从量化投资的角度看,为了降低交易带来的价格冲击,能实施量化投资策略的证券往往都应有较好的流动性,因为交易时非流动性直接影响投资策略的实施。从这个意义上讲,量化投资时的交易成本不仅包括交易费用,更主要的是要考虑市场交易冲击的流动性成本。

(三)风险控制与市场情绪

在证券市场中,高收益与高风险相匹配。量化投资在追求高收益的同时,不可避免地承担了一定的风险。在证券投资学中,系统性风险主要源于宏观经济因素,非系统性因素则主要源于行业、公司因素,并且不考虑市场交易行为的影响。在量化投资中,较多地使用因素定价模型,不仅会考虑市场经济因素,而且会考虑交易行为等因素,只是不同的模型有不同的侧重点,在多模型的量化投资系统中自然包括了这两方面的因素。除了各种基本面和市场交易的因素风险外,量化投资还有自身不可忽视的风险源。一方面,量化交易中,部分交易是采用保证交易的期货、期权等衍生品交易,这种杠杆交易具有放大作用,隐藏着巨大的风险。另一方面,市场冲击的流动性成本也是量化投资的风险控制因素,理所当然地在图1的风险控制模型中体现出来。另外,在一般的投资过程中,市场情绪或多或少会成为风险控制的一个对象。然而,在量化投资中,更多的交易都是通过计算机来实现的,如程序交易等,这样以来,投资者情绪等因素对投资决策的影响相对较小。所以,在量化投资的风险控制模型中较少地考虑市场情绪以及投资者自身的情绪,主要是通过承担适度的风险来获得超额回报,因为毕竟减少风险也减少了超额回报。

(四)执行高频交易与算法交易

在对未来收益、风险和成本的综合权衡下,实现投资策略成为量化投资的重要执行步骤。为了达到投资目标,量化投资不断追求更快的速度来执行投资策略,这就推动了采用高速计算机系统的程序化交易的诞生。在证券投资学里,技术分析认为股价趋势有长期、中期和短期趋势,其中,长期和中期趋势有参考作用,短期趋势的意义不大。然而,随着计算机信息科技的创新,量化投资策略之间的竞争越来越大,谁能运作更快的量化模型,谁就能最先找到并利用市场错误定价的瞬间,从而赚取高额利润。于是,就诞生了高频交易:利用计算机系统处理数据和进行量化分析,快速做出交易决策,并且隔夜持仓。高频交易的基本特点有:处理分笔交易数据、高资金周转率、日内开平仓和算法交易。[5]高频交易有4类流行的策略:自动提供流动性、市场微观结构交易、事件交易和偏差套利。成功实施高频交易同时需要两种算法:产生高频交易信号的算法和优化交易执行过程的算法。为了优化交易执行,目前“算法交易”比较流行。算法交易优化买卖指令的执行方式,决定在给定市场环境下如何处理交易指令:是主动的执行还是被动的执行,是一次易还是分割成小的交易单。算法交易一般不涉及投资组合的资产配置和证券选择问题。

二、对量化投资在证券投资教学中应用的思考

从上述分析可以知道,量化投资的“黑箱”构造与证券投资学之间存在一定的差异,因此,在证券投资的教学中应当考虑量化投资发展的要求。

(一)市场微观结构与流动性冲击

在理性预期和市场有效假说下,市场价格会在相关信息披露后立即调整,在信息披露前后市场有着截然不同的表现。在证券投资学里,一般认为价格的调整是及时准确的,然而,现实的世界里,价格调整需要一个过程。在不同的频率下,这种价格形成过程的作用是不同的。在长期的投资中,短期的价格调整是瞬间的,影响不大。然而,在高频交易中,这种价格调整过程影响很大。市场微观结构就是研究这种价格形成过程。市场微观结构理论中有两种基本的模型:存货模型和信息模型。存货模型关注商委托单簿不平衡对订单流的影响,解释没有消息公布时价格短暂波动的原因。信息模型关注信息公布后信息反映到价格中的这一过程,认为含有信息的订单流是导致价格波动的原因。无论是关注委托订单的存货模型还是关注市场参与者信息类型的信息模型,这些市场微观结构的研究加强了流动性与资产价格之间的联系,强调流动性在量化投资决策中的重要作用。一般的证券投资学中基本没有市场微观结构的内容,因而,为了加强证券投资学的实用性,应关注市场微观结构的内容与发展。

(二)业绩评价与高杠杆

对于证券组合而言,不仅要分析其超额收益和成本,还要考虑其风险与业绩。在组合业绩评价中,一方面要考虑风险的衡量,另一方面则要分析业绩的来源。在证券投资学中,组合业绩来自于市场表现以及管理者的配置与选股能力。对于量化投资而言,市场时机和管理者的能力依然重要,然而,量化投资的业绩评价还应考虑另一个因素:高杠杆。量化交易中,部分交易是采用保证交易的期货、期权等衍生品交易,这种杠杆交易具有放大作用,在市场好的时候扩大收益,但在市场不好的时候会加速亏损,这些与传统的业绩评价就不太一样。在一般的证券投资学里,业绩评价主要考虑经风险调整的收益,很少考虑其杠杆的作用,这不仅忽略了杠杆的贡献,而且有可能夸大了投资者的技能水平。

(三)人为因素与模型风险

在量化投资中,非常注重计算机对数据和模型的分析,这突出了量化投资的规则性和固定性。然而,实际中,别看量化采用了各种数学、统计模型,但策略设计、策略检测和策略更新等过程都离不开人的决策。量化交易策略与判断型交易策略的主要差别在于策略如何生成以及如何实施。量化投资运用模型对策略进行了细致研究,并借助计算机实施策略,能够消除很多认为的随意性。但是,量化策略毕竟体现投资者的交易理念,这一部分依赖于投资者的经验,一部分依赖于投资者对市场的不断观察与更新。实际上,人始终处于交易之中,对于市场拐点以及趋势反转的判断主要还是依赖投资者的经验。光大的乌龙指事件充分表明了人为因素在量化投资中的两面性:决策实施依赖于人的设定,而人的设定不仅依赖于经验,而且人还会犯错。人之所以会犯错,一方面是因为人们对市场的认知是不完全的,另一方面则是人们使用了错误的模型。经典的证券投资理论中,股票价格的变动被认为是随机的,小概率事件出现的机会比较小,但是经验研究表明股票收益率具有肥尾现象,小概率事件发生的机会超出了人们原先的认识,即市场还会出现“黑天鹅”。更为关键的是,量化投资更依赖数学和统计模型,这就使得量化投资存在较大的模型风险,即使用了错误的模型。为了防范模型风险,应采用更为稳健的模型,即模型的参数和函数应该适应多种市场环境。近年来,研究表明,证券收益及其与风险因素的关系存在较大的非线性,同时,市场中存在一定的“噪声”,采用隐马尔科夫链等随机过程和机器学习等数据挖掘技术进行信息处理成为量化投资的重要技术支持。

(四)2013年诺贝尔经济学奖的启示

篇2

在如今每位公民都想通过金融产品投资的方式来增加个人资产的时代,量化基金的高收益率逐渐被投资者所知。西蒙斯,一位世界级的数学家以年净赚15亿美元成为全球收入最高的对冲基金经理,名气可谓超过金融巨鳄索罗斯。大奖章年化以35%超越股神巴菲特年化20%的收益神话。而在2016年5月《机构投资者》旗下出版物《阿尔法》公布的“2016年全球收入最高的对冲基金经理”排行榜中前十位有八位为量化基金经理,前25位有一半属于量化分析。由此可见海外对冲基金的焦点正从宏观对冲基金转向量化对冲基金。

而在国内,量化基金正处于起步阶段,国内对于量化投资策略的研究较少。笔者以量化投资平台上自主开发的策略代码为例,通过对代码的编写优化及检验回测,使读者了解到量化投资的可操作性和高回报性。

1 量化投资策略概述

量化投资是计算机通过开发者编写的程序来进行分析以及交易整个的品种选择、交易时机、交易方向以及仓位管理都是通过计算机完成。它避免了投资者个人的情绪影响,完全自动化操作,和如今的工业2.0类似。一个稳定的量化投资策略往往可以胜任一位投资者的多种操作策略,尤其在风险管理上量化投资更胜一筹。

国内的主流量化交易平台有文华赢智、TB、金字塔决策交易系统和国泰安量化投资平台等。国内的量化交易平台繁多,而与海外动辄数百上千亿美元的量化基金相比,国内目前量化产品规模总体不大,而严格遵循量化投资理念的基金更少。并且A股市场发展时间较短,与发达国家比起来市场效率低太多,所以A股有很大的市场空间和盈利机会。本文以程序化实现简单、性价比高等特点的文华赢智为程序化交易平台为例,为防止成果泄露,以上证指数为模型进行探究。

首先,笔者先阐述如何建立一个量化投资策略。

(1)交易思路的确立。不仅仅是量化投资,就算是普通的投资者也需要一套自己的交易体系。赚不到钱,赔钱,一直观望,总之,所有交易中的不幸都可以归咎于没有一套自己的交易系统或者自己的交易系统有问题。

(2)将思路编写成投资策略。这一项是量化投资的关键,如何将自己的投资思路转变为?C器代码,首先是由你所在的交易平台所搭建的语言决定的,例如文华赢智就是使用的比较简单的麦语言。其次需要对使用的技术指标进行组合搭建,编写出可运行的代码。

(3)在计算机上进行回测,选取最优目标组合和参数。技术指标的参数设置往往决定了整个交易系统的成败,一点点小的误差往往会导致千差万别的结果。笔者格外强调资金管理是投资体系中非常重要的部分,却是大多数投资者忽略的环节,这需要读者进行不断学习研究。

(4)进行实盘操作,在操作中不断完善投资策略,评价该交易代码。评价程序化交易模型性能优劣的指标体系包含很多测试项目,但主要评价指标有年化收益率、最大资产回撤、收益风险比、夏普比率、胜率与盈亏比等。在下文中笔者将对这些评价指标进行分析。

2 量化投资策略代码分析:以文华赢智交易平台为例

在文华赢智中,进入趋势模型跟踪编写平台,利用麦语言中已存在的函数进行编写,现笔者将自行编写的其中的一个策略代码贴出:

MA1:=MA(C,N1);//多头均线

RSV:=(CLOSE-LLV(LOW,N))/(HHV(HIGH,N)-LLV(LOW,N))×100;//收盘价与N周期最低值做差,N周期最高值与N周期最低值做差,两差之间做比值定义为RSV

K:=EMA(RSV,2×M1-1);//RSV的指数移动平均

D:=EMA(K,2×M2-1);//K值的指数移动平均

C>MA1 AND CROSS(K,D);//MA1均线上方,KD金叉,买入

CROSS(D,K);//KD死叉卖出平仓

参数设置:[N1=10,N=44,M1=M2=27]

笔者需要对参数的设置进行重点提醒。测试参数的不同会对测试结果产生非常大的影响,对于参数的精确设置影响到交易模型的可行与否。

这其中,笔者进行的是顺势交易的代码编写。顺势交易,是顺着当前的趋势进行交易。如果当前趋势上升就买入开仓,当前趋势下跌就卖出开仓。为了防止恶意做空,本策略只进行多头行情的研究,空头行情并没有叠加进来,所以收益率要比双向行情要低。

下面对此策略代码进行回溯。对交易模型的测试结果是否满意主要与品种、时间、手续费费率有关。不同的品种相同的策略有不同的结果,测试的品种越多,越能检验出策略模型的适用性。在时间上,如果所采用的历史数据越少、时间跨度越短,测试的市场状况就越狭窄,策略的可靠性就越差,反之亦然。手续费费率的影响就不用多提,但是有关滑点的问题也是策略需要多加研究的方面。

交易人员最关注的是策略到底能否盈利,能赚多少。交易的盈亏额能完全反映这一点。在如下的季度统计图和年度统计图中可以看出从2009年8月到2014年11月各有盈亏,比较温和,总体的波动幅度并不大。而从2014年11月开始,出现了一直盈利并且幅度较大的状况,尤其是2016年年初的季度,最高的盈利额达到了110354元,这比2014年前总的盈利还要多。而从2016年第一季度后出现了亏损,但是幅度并不大,而后又出现了盈利的情况。该策略在该时间段是盈利的,符合模型最基本的要求,季度统计图和年统计图如图1所示。

交易者在一个策略中拥有的资产总和也是其关注的重点。假如交易者所用的权益小于某一理想的数值,他可能会停止该策略的继续进行,这也是我们常说的回撤问题。在如下的权益曲线图中,交易者的权益几乎是一直递增,并且在2014年年末后斜率变大,由此我们可以得出使用该策略几乎不存在回撤问题,对于交易者的心态有着积极的作用。权益曲线图如图2所示。

每次交易的盈亏额也是交易者关注的问题,如果亏损数量过大,再加上杠杆的作用,可能就会出现爆仓的问题。首先说明,此回溯并没有加进杠杆因素,国内保证金按保守20%计算,也就是5倍杠杆,虽然不太大,可是影响还是有的。在如下的盈亏分布图中,可以看出最大的一笔亏损出现在第500次左右交易时,亏损额为27523,而最大的盈利额也是出现在附近,盈利为32916,看来这附近的波动很大,应该有政策因素在内的影响。该策略总体来说单次盈亏额波动并不大,比较稳健。盈亏分布图如图3所示。

只有图表并不能准确地反映出策略的完全可行性,下面将此策略的测算报告给予公布。

我们从测算报告中可以很容易得出此策略一共测试了2772天,无杠杆收益率为六年50%,而且只是多头策略。而自2017年2月17日结算时起,沪深300、上证50股指期货非套期保值交易保证金调整为20%,所以5倍杠杆的话就为250%。如果只看重策略的收益率却忽略了回撤风险是极其冒险的激进策略。如果策略的收益风险比相同,但是结果还是要取决于资金管理决策。

笔者在此将夏普比率进行说明。评价策略的优劣应从收益值和风险一起考虑。调险后的收益率就是一个同时考虑进了收益和风险的指标,能够排除风险对评价的不利影响。1966年,夏普提出了著名的夏普比率:S=(R-r)/σ(R为平均回?舐剩?r为无风险投资的回报率,σ为回报率的标准方差)。此公式表示为尽量用最合适的方法用小风险换得大回报。如果为正值就说明投资收益比银行存款利息高。比率越大说明所获的风险回报越高。该策略的夏普比率为22.83,可见是一个理想的策略模型。

3 结 论

篇3

(暨南大学信息科学技术学院 广东 广州 510632)

摘 要:“金融改革”的提出,金融市场的逐步开放,将促进金融创新的步伐,给投资者带来越来越多的投资渠道,同时也将加速中国金融市场与国际金融市场的融合。通过分别建立两个单指标择时策略模型,运用MATLAB模式搜索算法在设定时段内搜索最优参数,并分别对两个单指标策略进行交易仿真回验。实证结果显示,趋势型指标可以抓住大的波段行情,获得超额收益,具有较好的择时效果。实证显示组合指标策略的效益明显高于单指标策略。因此,采用组合指标策略进行个股量化择时交易较单指标策略能获得更优的投资收益。

关键词 :量化择时;趋势指标;组合指标策略;参数优化

中图分类号:F8 文献标识码:A doi:10.3969/j.issn.1665-2272.2015.12.008

1 绪论

1.1 背景意义

“金融改革”的提出将为中国的量化投资带来发展前景。金融市场的逐步开放将会促进金融创新的步伐,给投资者带来越来越多的投资渠道,同时也将加速中国金融市场与国际金融市场的融合。很多国外成熟的投资工具和投资方法将逐步进入中国市场,以期货市场为代表的衍生品市场将迎来飞速增长,以量化投资为代表的投资方法也将得到投资者更大的关注。

在投资业,各种渠道提供的海量信息以及高频金融交易数据都在深刻地影响这个行业的发展以及金融市场的有效性。金融创新给期待量化投资的投资者提供了丰富的投资工具。自20世纪50年代以来,金融市场出于规避监管,转嫁风险和防范风险等需要,推出了很多创新性的金融产品,提供了越来越丰富的投资工具。金融衍生品在金融市场中占的比例越来越重要。

中国量化投资的前景广阔。党的十八届三中全会提出了“健全多层次资本市场体系”的指示精神,为十二五期间的资本市场发展指明了方向。随着金融投资工具的增加,量化投资将显示出其更大的作用,帮助投资者在更好的风险管控中寻求最佳收益回报。

作为量化投资中的量化择时,是指利用某种方法来判断大势的走势情况以及时采取相应措施,它是收益率最高的一种交易方式。就股票投资者而言,择股和择时都是至关重要的,正确择股是盈利的前提,而正确择时则是盈利的最终实现。因此,从微观角度入手,建立有效的个股量化择时交易策略值得研究。

1.2 文献综述

关于量化投资的研究,国内外更多的研究主要以策略构建和实证为主。易海波、杨向阳、罗业华、曾敏通过将量化指标按照股票属性进行分类排序,以自下而上的选股方式,构建出价值、成长、质量三个基本模型,并在此基础上衍生得到四个叠加模型和GARP模型。利用八个选股模型以不同的参数进行选股,构建出十个量化选股组合,历史回测结果显示这些组合风格各异,适合不同风险偏好的投资者。张登明通过对技术指标的分析,构建了完整的及时指标组合投资策略框架。他从量化的角度,通过样本统计给出了适合中国股市的优化指标组合及参数设置,对提高投资决策有积极意义。路来政通过研究量化基金的绩效及管理能力来研究量化投资策略的应用效果,采用T-M模型、H-M模型和C-L模型对其中9只量化基金的管理能力进行了研究,以评价量化基金使用量化投资策略的择股效果和择时效果,结果表明量化基金采用量化策略进行投资是有意义的。

股票择时属于量化投资的一个分域。刘澜飚、李贡敏研究了市场择时理论在中国的适用性,表明中国上市公司不仅存股票市场的市场择时行为,而且存在债务择时行为,即股票市场高涨时,上市公司倾向于债务融资。林正龙基于效用无差别定价原理,运用实物期权定价理论,研究项目投资收益不可完全复制的不确定性投资机会定价与择时问题,得出不同于指数效用,对具有常值相对风险回避系数效用函数的投资者而言,不确定性投资机会的定价与择时与投资者当前财富数量有关。卓琳玲、胡志强通过对样本公司的研究,发现样本公司股票行为、债券发行和内部融资均呈下降趋势,其中股票不是特别明显,当市值杠杆比率上升时期,股票发行出现显著地下降趋势,此时市场时机选择比较明显,说明我国股市存在明显的市场时机选择行为。刘阳、刘强通过研究我国从上世纪90年代初-2010年1月的上证综指和深证成指,分析异常收益率对整个期间收益的影响及择时的可能,发现极少数具有超常收益的交易日对股票市场的长期收益具有显著的影响,认为理性的投资者应该放弃择时而选择长期投资。王俊杰在择时模型方面分析了行业指数存在的持续性和行业轮动特征,并以时间序列模型为基础,构建动量模型、MS-GARCH行业择时模型等量化择时策略,回测结果MS-GARCH择时模型战胜行业动量模型和指数,表现较好。

温婧茹对移动平均线理论进行改进,构造了最适参数,参考设计了触线交易策略和过滤器交易策略,构建了家电板板块静态与动态相结合的股票池,实证得出,不同股票对应的最适参数不同,用个性化的参数进行决策能获得更好的收益;应用收益率确定最适参数以择股,结合触线交易策略以择时,能够跑赢大盘,取得超额收益。曹力自适应均线更适合于组合类的标的,如指数或者封闭式基金,因为这些标的的走势经过了平均的平滑,没有突然的大起大落,更容易用均线来跟踪趋势的变化。而对于个股,波动形态和指数类表的不同,所以需要使用不同的参数,在大多数个股上能够获得超额收益,特别对强周期性行业的股票自适应均线有很强的择时能力。但是自适应均线也不是万能的,对于某些个股,因为波动形态的复杂,用自适应均线也无法获得超额收益。曹力、徐彪从实证效果来看,利用可交易组合的均线模式识别找出的买入机会成功率较高,能抓住一些市场主要的反弹机会,因此累积收益非常出色。可交易组合的均线模式识别方法是择时交易,特别是熊市中择时的有效方法。

1.3 研究框架

传统的趋势指标择时策略往往是单指标的,并且策略参数通常是约定俗成的。单指标策略局限性和偶然性大,不能有效及时获取收益和及时止损;约定俗成的常用参数值在面对各种波动幅度不同、周期性不同、价格弹性等不同的个股时也有失客观性和灵动性。

所以,在探究一种改进针对个股的传统趋势指标量化择时的策略。首先建立基于各传统趋势指标的单指标择时策略,通过参数优化确定各单指标策略的最适参数;并在单指标的基础上,创新性地通过指标的组合,构建一个综合性且参数最优的组合指标择时策略,以增强策略的稳定性和鲁棒性,获得更优的投资收益。

1.4 术语说明

(1)累计收益率:

(2)年化收益率:年化收益率是把当前收益率(日收益率、周收益率、月收益率)换算成年收益率来计算的,是一种理论收益率,并不是真正的已取得的收益率。

(3)夏普比率:夏普比率是一个可以同时对收益与风险加以综合考虑的经典指标,它反映了单位风险基金净值增长率超过无风险收益的程度。如果夏普比率为正值,说明在衡量期内基金的平均净值增长率超过了无风险利率。夏普比率越大说明基金单位风险所获得的风险回报越高。因此,夏普比率是可以同时对收益与风险加以综合考虑的经典指标之一。

夏普比率=

(5)最大回撤率:在选定周期内任一历史时点往后推,产品净值走到最低点时的收益率回撤幅度的最大值。最大回撤率用来描述买入产品后可能出现的最糟糕的情况,是一个重要的风险指标。

2 理论概述

2.1 量化投资理论

量化投资是运用现代统计学和数学的方法,从大量的历史数据中寻找并获得超额收益的一种投资策略,投资者通过计算机程序,建立可以重复使用并反复优化的投资策略,严格按照这些策略所构建的数量化模型进行投资并形成回报。

量化投资的内容主要包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易、ETF/LOF套利、高频交易等。量化投资在国外已有30多年的发展历史,但在国内还是近年出现的新鲜事物。相比其他投资策略,量化投资在国外的运用已取得了更佳的业绩。

与海外成熟市场相比,中国A股市场的发展历史较短,投资理念还不够成熟,相应的留给主动型投资发掘市场的潜力和空间也更大。国内很多实证文献讨论国内A股市场也尚未达到半强势有效市场,因此量化投资理论引入国内证券市场是非常有意义的,它以正确的投资理念为根本,通过各种因素的分析,以全市场的广度、多维度的深度视角扫描投资机会,在中国市场的应用将更显其优势。

2.2 择时理论

量化择时是量化投资的一种,它利用数量化的方法,通过对各种宏观微观指标的量化分析,试图通过回溯历史数据,找到影响大盘走势的关键信息,并且对未来走势进行预测。如果判断是上涨则买入持有;如果判断是下跌则卖出清仓;如果判断是震荡则进行高抛低吸,这样就可以获得远远超越简单买入持有策略的收益率。所以择时交易是收益率最高的交易方式之一。

股票的量化择时是预测市场以后的走势,并由此来判断调整投资组合的风险水平,从而获取更大的收益,具体表现是现金流进出证券市场和在证券间比例变换的时机选择。

2.3 趋势追踪理论

趋势择时的基本思想来自于技术分析,技术分析认为趋势存在延续性,因此只要找到趋势方向,跟随操作即可。

技术指标是技术分析中使用最多的一种方法,通过考虑市场行为的多个方面建立一个数学模型,并给出完整的数学计算公式,从而得到一个体现证券市场的某个方面内在实质的数字,即所谓的技术指标值。指标值的具体数值和相互间关系直接反映证券市场所处的状态,为操作行为提供指导作用。目前证券市场上的技术指标可分为“趋势型指标”、“反趋势型指标”、“能量指标”、“大盘指标”、“压力支撑指标”等类别。

移动平均线(MA)是一种常用的趋势型指标,由Joseph E.Granville于20世纪中期提出来。它是当今运用最普遍的技术指标之一,帮助交易者确认现有趋势、判断将出现的趋势、发现过度延伸而即将发转的趋势。后来又逐渐衍生出其他类型的均线,如平滑异同移动平均线(MACD)、三重指数平滑平均线(TRIX)等。 这些均线理论常用两根线的交叉作为交易信号,并以此作为买卖时点的判断。

均线理论提供了一种简单有效的使价格序列平滑并且使趋势更易于辨认的方法。

因此综合以上理论的优点,在此基础上改进传统趋势指标的量化择时策略,并创新性地开发更优的组合指标量化择时策略,以达到及时获取收益和及时止损的目的。

3 择时策略模型建立

3.1 MA单指标策略模型的建立

MA移动平均是指连续若干交易日收盘价的算术平均,用来显示股价的历史波动情况,进而反映股价指数未来的发展趋势。

其中

利用MA指标进行量化择时,在短期移动均线与长期移动均线的交叉处进行买入或卖出择时交易。以下分别建立买入和卖出法则的模型。

在短期移动均线下穿长期移动均线的黄金交叉处买入,故建立如下数学模型:

mabuy=1,MA(s)t>MA(s)t-1&MA(s)t>MA(l)t&MA(s)t-1<MA(l)t-10,其他(6)

其中mabuy=1,表示满足买进,mabuy=0表示不满足买进。

在短期移动均线上穿长期移动均线的死亡交叉处卖出,故建立以下数学模型:

mabuy=1,MA(l)t<MA(l)t-1&MA(s)t<MA(l)t&MA(l)t>MA(l)t-10,其他

其中mabuy=1,表示满足卖出,mabuy=0表示不满足卖出。

3.2 MACD单指标策略模型的建立

MACD即指数平滑异同移动平均线,是根据均线的构造原理,通过分析短期指数移动平均线与长期指数移动平均线之间的聚合与分离状况,对买进、卖出时机做出判断的趋势型技术指标。

MACD的计算如下:

(1)计算短期(ms)指数移动平均线EMA1和长期(ml)指数移动平均线EMA2。

(2)计算离差值DIF=EMA1-EMA2。

(3)计算DIF的M日指数移动平均线,即DEA。

(4)计算MACD=2(DIF-DEA)。

利用MA指标进行量化择时,在DIF与DEA的交叉处进行买入或卖出,分别建立买入和卖出法则的模型。

当DIF、DEA均为正值,DIF向上突破DEA时,为买入信号,建立如下数学模型:

macdbuy=1,DIFt>DIFt-1&DIF>DEAt&DIFt-1<DEAt-1&DIF>00,其他 (8)

其中,macdbuy=1表示满足买进,macdbuy=0表示不满足买进。

当DIF、DEA均为负值,DIF向下跌破DEA时,为卖出信号,建立如下数学模型:

macdsell=1,DIFt<DIFt-1&DIFt<DEAt&DIFt-1>DEAt-1&DIF<00,其他(9)

其中macdsell=1,macdsell=0表示满足卖出,表示不满足卖出。

3.3 MA-MACD组合指标策略模型的建立

组合模型构建两个新的信号变量:买入信号个数阈值“buy”(1≤buy≤2,整数)和卖出信号个数阈值“sell”(1≤sell≤2,整数)。

买入信号个数阈值“buy”表示:当MA策略中的“mabuy=1”的买入信号个数与MACD策略指标中的“macdbuy=1”的买入信号个数之和至少达到阈值“buy”(1≤buy≤2)数量个时才进行买入交易。

即“buy”阈值取不同值时,买入信号组合满足买入条件的情况如下:

buy=1时,满足买入情况:mabuy=1||macdbuy=1||macdbuy=1||mabuy=1&macdbuy=12时,满足买入情况:mabuy=1&macdbuy=1(10)

卖出信号个数阈值“sell”表示:当MA策略中的“mabsell=1”的卖出信号个数与MACD策略指标中的“macdsell=1”的卖出信号个数之和至少达到阈值“sell”数量个时才进行卖出交易。

即“buy”阈值取不同值时,买入信号组合满足卖出条件的情况如下:

sell=1时,满足卖出情况:masell=1||macdsell=1||mabsell=1&macdsell=12时,满足买入情况:masell=1&macdsell=1(11)

3.4 模型最优参数的选择

就个股而言,不同的计算参数,将导致不同的择时效果。面对各种波动幅度不同、周期性不同、价格弹性等不同的股票,如果盲目套用经典参数可能会有失客观性和灵动性。因此, 在进行量化择时策略构建时,需要针对个股进行策略的参数优化,检验指标不同参数的测试效果,并最终选择一个最优的参数组合。

夏普比率是一个可以同时对收益与风险加以综合考虑的经典指标,它反映了单位风险基金净值增长率超过无风险收益的程度。如果夏普比率为正值,说明在衡量期内基金的平均净值增长率超过了无风险利率。夏普比率越大说明基金单位风险所获得的风险回报越高。因此,夏普比率是可以同时对收益与风险加以综合考虑的经典指标之一。

4 个股实证分析

4.1 数据选择

为验证上述模型的有效性,个股实证以深圳证券交易所的华谊兄弟300027为交易标的,选取来源于国泰安2011.1.1-2014.6.30的基本面数据库,包括个股开盘价、收盘价等。

4.2 MA单指标择时策略仿真回验

首先对该股策略进行参数优化:本策略中对于参数,在测试期间内,以2天为间隔,测试范围从2天到20天;以5天为间隔,测试范围从20天到120天;搜索精度为1;测试回验30天,截止日期设为2013-12-31。通过回验得到参数优化结果(见表1)。

如表1所示,最优组合(s,l)=(2,20),当以2日为短期均线,20日为长期均线,在参数优化测试期间进行交叉择时时效果较好,在回验测试期间内夏普比率达2.4234。

确定最优后,运用国泰安量化交易平台QIA进行策略交易仿真回验。设定合约保证金为1,合约乘数为1,市场参与度为0.5,买方手续费为0.05‰,卖方手续费为0.05‰,交易账户为股票账户并设定初始资金为1 000 000元,以一年期国债利率为无风险利率,并以沪深300为业绩比较基准,以数据库所给时间2011年1月1日-2014年6月30日为策略回验时间区间进行回验。最终结果(见图1、表2)。

回验结果显示,此单指标策略在2011年1月1日-2014年6月30日间的累计收益率达42.26%,年化收益率达11.10%,高出同期的沪深300指数比较基准,并且胜率达60.80%。由此我们可以得出结论,采用MA单指标策略进行个股量化择时交易也能获得较优的投资回报。

4.3 MACD单指标择时策略仿真回验

对该股策略进行参数优化:该策略需要优化确定的参数主要包括短期指数移动平均线的计算天数ms、长期指数移动平均线的计算天数ml,以及DEA的计算天数M。本策略的参数优化依然以最大化夏普比率为最优化目标函数,并使用Matlab的模式搜索算法在设定的回验时段内搜索最优参数组合(ms,ml,M)。

对于参数ms,在测试期间内,以2天为间隔,测试范围从2天到20天;参数ml以5天为间隔,测试范围从20天到120天;参数M以5天为间隔,测试范围从5天到60天;搜索精度为1;测试回验30天,截止日期设为2013-12-31。通过回验得到参数优化结果如下:

如表3所示,最优组合(ms,ml,M)=(2,25,10),当以2日为短期指数移动平均线计算天数,25日为长期指数移动平均线计算天数,10日为DEA计算天数,进行交叉择时时效果较好,在回验测试期间夏普比率达3.0682。

组合指标择时策略仿真回验。由于组合指标策略是建立在单指标策略基础上的,所以该策略中的参数(s,l)、(ms,ml,M)即为模型一和模型二参数优化后确定的值,而参数(buy,sell)的组合情况有(2,2)、(2,1)、(1,2)和(1,1)四种,阈值组合选取哪个使得策略最优则需要进一步的参数优化。

对于参数buy,初始值设为2,测试最小值为1,最大值为2,步长设为1;参数sell,初始值设为2,测试最小值为1,最大值为2,步长设为1;搜索精度设为1;测试回验90天,截止日期设为2013-12-31。通过回验得到参数优化结果(见表4)。

如表4所示,最优组合(buy, sell)=(1,1),即当买入信号个数至少有一个时就进行买入交易,卖出信号个数至少有一个时就进行卖出交易,以此进行组合指标择时效果最好,在参数优化回验测试期间夏普比率达2.490 3。

5 结论

从价格沿趋势移动和历史会重演的角度出发,运用传统趋势指标MA和MACD,分别建立MA、MACD的单指标择时策略模型并通过模式搜索算法分别求出两个策略的最优参数,从实证结果看趋势型指标可以抓住大的波段行情,获得超额收益,具有较好的择时效果。在此基础上再创新性的运用通过设置买入和卖出信号个数阈值的方法构建二者的最优组合指标模型,增强了择时的稳定性和鲁棒性,在有效降低风险的同时提高了收益率。

综上所述,基于以上的不足之处,以后将沿着组合指标择时的思路继续深入研究以对目前的研究进行改进。未来的工作主要是:对于用于组合的单指标要进行更为全面的扩展,引进其他经典趋势型指标DMA平均线差指标、TRIX三重指数平滑移动平均指标等,同时把指标类型拓展至其他类型,如反趋势型指标ACCER幅度涨速指标等,量价指标APBP人气意愿指标等,大盘指标OBOS超买超卖指标等,压力支撑指标ENE轨道线指标等。通过增加组合趋势型数量和组合指标类型,以使组合指标策略更全面、更切合实际市场。

参考文献

1 丁鹏.量化投资——策略与技术[M].北京:电子工业出版社,2012

2 方浩文.量化投资发展趋势及其对中国的启示[J].宏观管理,2012(5)

3 郭建.论证券投资技术分析中历史会重演的根本原因[J].商业时代,2007(28)

4 李向科.证券投资技术分析[M].北京:中国人民大学出版社,2012.

5 张登明.技术指标投资策略的优化及其在量化交易中的应用[D].武汉:华中科技大学,2010

6 方智.基于多技术指标模型的沪深300指数走势预测[D].南昌:江西财经大学,2012

7 路来政.量化投资策略的应用效果研究[D].广州:暨南大学,2012

8 刘澜飚,李贡敏.市场择时理论的中国适用性[J].财经研究,2005(11)

9 林正龙.项目投资定价与择时理论研究[D].长沙:湖南大学,2006

10 胡志强,卓琳玲.IPO市场时机选择与资本结构关系研究[J].金融研究,2008(10)

11 王俊杰.量化交易在中国股市的应用[D].南京:南京大学,2013

篇4

>> QFII在中国A股市场交易策略的实证研究 A股寻求20日均线支撑 16家券商集中推荐招商蛇口 中国A股主板市场PEAD实证研究 切线在均线系统中的应用研究 捕捉牛股:均线共振 GARP量化选股策略在A股市场中的应用 A股交易时间太短 资源冗余对企业绩效的影响:基于沪深A股的实证研究 A股发行公司IPO前盈余管理与IPO后经营业绩的实证研究 女性董事与盈余管理:来自深交所A股上市公司的实证研究 H股回归对A股市场流动性和波动性的影响:实证研究 基于价值投资的Piotroski选股策略实证研究 买入并持有策略在A股失灵? 股票均线几种特性在预示后市中的作用研究 金融危机背景下QFII在A股市场中的交易策略及对投资绩效影响研究 金融危机后上证A股银行股的CAPM模型实证分析 基于R语言的均线量化策略分析 A股中期策略 转型期下的A股投资策略 均线在趋势下的实战应用分析 常见问题解答 当前所在位置:,2015- 04-0516:32。

③互动百科.凯利公式[Z].http:///wiki/%E5%87%AF%E5%88%A9%E5%85%AC%E5%BC%8F,2016-03-03。

参考文献

[1]邱捷铭.均线交叉策略的另类创新研究[R].2015.7.16.

[2]周铭山,冯新力,林靓,方旭S,周开国.A股市场均线策略有效性与收益率随机特征研究[J].证券市场导报,2013(01).

[3]罗然.关于移动平均线交易策略的研究[J].四川经济管理学院学报,2010(04).

[4]徐鹏.移动平均线交易规则的实证分析[J].江西金融职工大学学报,2008(04).

[5]罗然.对移动平均线投资策略的分析――基于石油行业个股历史数据的实证研究[J].呼伦贝尔学院学报,2010(05).

[6]吴亚军,惠晓峰.基于均线交易系统的非特定时间动态VaR研究[J].运筹与管理,2013(06).

[7]董大勇.均线指标组合下的上证指数收益实证分析[J].孝感职业技术学院学报,2003(01).

[8](美)罗伯特・D・爱德华(RobertD.Edwards),(美)约翰・迈吉(JohnMagee)著,程鹏等译.股市趋势技术分析[M].中国发展出版社,2004.

篇5

胡俊敏是物理学博士,她是怎样跨专业从事投资行业?

她管理的博时特许价值基金,从2012年6月接手到年底,净值增长幅度居同类前20%,她是通过怎样的操作大幅提升基金业绩?

博时特许价值基金是量化基金,量化基金的操作又有怎样特点?

每日基金特邀胡俊敏博士,倾听她的人生经历和投资理念。

张学庆:从您的简历来看,是物理学博士,这是典型的理科学科,当然您后来又做过量化研究的工作,但您目前从事的工作是投资,是属于金融学这类范畴,这两个学科距离特别大。您之前研究的物理学、化学 ,对于投资有何帮助?

胡俊敏:当年念物理,现在做投资,不是事先计划好的,而是当时的历史环境造成的。我大学的时候是八十年代,中国还没有股市,我连股票是什么都没有概念。因为我比较喜欢跟数字打交道,就学了物理。去哈佛后,刚好碰上一些量化金融理论得到应用,华尔街需要有很强数理根基的人才。而由于美国经济不景气,教育经费不足,学术界又人才过剩,于是华尔街就吸引了大批的数学、统计或物理的博士。我在哈佛有机会初步了解到金融投资。

现在回头看,我学物理出身,做过材料研究,做过量化研究,现在做量化投资, 不是必经之路,但是确实每一段经历形成了我自己的知识结构,对我的投资理念的形成有不同程度的影响。

对于市场的理解。市场是否处于均衡的状态,金融界有很多争论。统计物理关于均衡非均衡态的理论以及量子力学的不确定原理我觉得一定程度上也适用于股票市场。股票市场不停地有新的信息,不同投资者对信息的接受和反馈不是瞬时的。另一方面,投资者行为与股价又是互相影响的,所以市场是处在一种不完全均衡的状态。市场过热现象也是不均衡态的一种表现。

数学统计上几率分布的概念在投资中是至关重要的。经常有投资者问我,你觉得下面一个月市场是涨还是跌,其实这是很难预测的,沪深300指数平均月收益为0.5%,但月波动率有9.1%,一个月的收益有2/3的几率分布在-8.6%到9.6%之间,波动性非常大。

逻辑思维方式和分析解决问题的能力。研究生的时候我做的是实验物理。就是通过对一些现象的观察和研究,找出规律,验证和发现基本原理。投资中由于信息多,频繁、且不完全,具备理性的逻辑思维和抓住问题本质的能力就非常重要。

张学庆:除了在学校中所学的知识,在后来工作中,还需要增加哪一方面的训练?才能成为一名合格的基金经理。

胡俊敏:量化基金经理需要的知识面比较广。除了比较强的数理基础和编程能力,下面几个方面的知识也是非常重要的。

基础金融知识:我业余选修金融方面的课,并通过准备CFA的考试补上金融知识的缺。争取到量化分析师的工作机会

量化投资管理:这有一整套理论框架。我当时在巴克莱资产管理公司任基金经理,有幸参加了《主动组合管理》作者Ron Kahn的课程。这本书被认为是量化投资的圣经。

行为金融:指由于投资者心理或思维偏差造成市场不有效的各种现象。量化投资之所以可行,就是因为股价由于各种原因而偏离其真实价格,有一定统计性规律可循。

市场经验:需要积累,我目前也在逐步积累A股市场的经验。

有志加入到量化投资行业中的朋友们可以针对各自的知识结构,制定出自己的准备计划。

张学庆: 您一个人管理5只基金,这可能得益于采用了量化的方法,同时管理五只基金,你会采取怎样的分配方法来统筹自己在五只基金间的精力分配?

胡俊敏:这就是量化投资的优势。首先,整个投资流程高度自动化、系统化。每天开盘前,所有基金及模型所需数据都已更新到基金管理系统里。其次,量化投资团队,基金经理后面有基金经理助理、量化分析师及IT的支持。基金经理只需将时间花在最关键的地方。具体讲,

量化基金,比如我管理的特许价值,以及和王红欣博士共同管理的裕富沪深300基金:更多的是模型管理,而不是个股管理。组合里的股票可能有上百只,但是我需要管理的是有二、三十信号构成的模型和一些组合构建的参数。需要交易的时候,可以根据模型用优化系统进行计算,我会检查模型结果是否正确,然后批量交易,而不是一个股票一个股票地分析、决定。。

张学庆: 您管理的基金比较多,有主动配置型,有被动配置型。能否给基金投资者一些建议,那类基金适合哪些投资者投资?

胡俊敏:特许价值基金是一只主动股票型基金,通过量化多因子选股模型在各行业内精选个股,以期获得长期跑赢市场的超额收益。风险要比纯被动或增强指数型基金高,但是超额收益的空间也高,适于有中等风险承受力,投资期间较长,对收益有较高要求的投资者,也可作为长期资产配置的一个成分。

张学庆:做为基金投资者,如果不看好市场,您认为他们有几个措施能够躲开市场风险。

胡俊敏:根本解决的方法是调整资产配置比例。如果对股票市场的未来不看好,那就降低在股票类资产的配置,将卖出的资金放到债券、其它投资品种、或现金上。因为对于市场的判断很难百发百中,所以在调整配置的时候即使不看好股票市场,仍然建议保留一定的股票类资产,市场走势常是不确定的。

同时,普通投资者择时的能力是比较差的。所以我给普通投资者的建议是1)采取定额定投的策略,牛熊市无阻的坚持投资。2)不要将所有的鸡蛋放在一个篮子里。分散投资,做长期资产配置。长期而言所承受的风险是有收益的。

张学庆: 博时特许价值现在规模是11亿,一个基金经理,他管理的资金到达多大规模之后,就会影响到业绩的增长,这也提醒投资者,选择基金时也要注意规模。

篇6

关键词:程序化交易;交易哲学;半自动交易系统

程序化交易产生于美国,早期的程序化交易分为程序化买入和程序化卖出两种,用于纽约股票交易所同时买卖15支以上的股票组合的交易。因此,有时也被称为篮子交易。

随着投资管理业的资金管理规模扩大,投资经理和基金经理们发现凭经验和手工操作无法应对市场风险加大、价格变动频繁等挑战,程序化交易刚好可以解决这些难题,因为它具有速度快、避免个人情绪干扰、量化等优势,投资机构纷纷投入重金研发自动交易模型,其在提高投资决策质量和速度、交易辅助等方面大展身手。

时至今日,西方发达国家已经研发出不少成熟的自动化交易系统,譬如美国有70%的交易是由程序化交易完成的,而且交易量占比连年来还有不断上升的趋势,交易模型的功能也日趋强大和完善。量化投资及程序化交易大师西蒙斯默默无闻地在十几年间大量使用量化系统的交易方法,取得了比巴菲特、索罗斯等市场传奇更高的年收益率。譬如海龟交易创始人丹尼斯不断通过自动化交易实现其从400美金到2亿美金的个人传奇,还培训出一支海龟投资团队(现在还活跃在各大投资机构),他们为早期大胆吃螃蟹者的投资客无声无息地带来了可观的投资回报。

我国的程序化交易起步较晚,发展缓慢,开发出来的比较成熟的交易系统也相对缺乏,但最近几年发展也很迅猛,这得益于新的投资理念的导入、应用平台开发迅速成熟,如tb(交易开拓者)、文化财经、金字塔等平台已经深受广大自动交易者所喜爱和认同。由于程序化交易规避了人性中的贪婪和恐惧等弱点,交易速度快、系统性强,国内自动化交易量占比最近几年也在快速上升。据统计,我国当前金融产品的程序化交易占比为20%~30%,程序化交易的发展空间将会越来越广阔。

一、程序化交易策略为什么要创新

(一)策略效用的边际递减

使用策略的人多了效果就会越来越差。细心的投资者会发现,国内的股指期货越来越难做。在2010年国内刚推出股指期货时就有人使用台湾的一些比较成熟的程序化交易策略而大赚其钱,但在最近两年却发现不容易赚钱了,甚至遭到了比较大的回撤。这是什么原因呢?金融市场本身就是一个众多策略博弈的一个场所,某个策略一旦成功并被多人使用了,其有效性就会越来越低,而且道高一尺魔高一丈,市场上会出现针对某种策略的猎杀者。从技术指标层面看,例如20年前,通过一条20天均线的交易策略是有利可图的,紧接着,越来越多人开始使用均线来做投资决策。但是,每个交易策略和买卖机会都是有容量限制的,这使得策略使用的人越多,单个K线的波动则越大,例如突破20天均线的当根K线的波动极大,这使得中间的利润空间迅速收缩,最终使得策略失效。也可以理解成,当一个策略使用的人越多,知道的人越多,它的盈利能力则越低,最终变得无利可图。在基本面分析上,同样存在自毁性,例如20年前,只要买账面有利润的公司都能赚钱,紧接着所有人都认准了公司账面利润进行投资,这使得所有账面有利润的公司股价都很高,这时候,人们只能通过预测未来利润获得投资回报了。而随着越来越多人熟知各种预测利润的方法,导致价值被低估的公司越来越难找了,最终变成了一个均衡市场。笔者认为,这可以认为是交易策略效用的边际递减。

(二)行情特点发生变化

金融市场的复杂性表现在行情的多变性。还是以国内的股指期货为例,在2010年是一个双边大震荡的行情,2011年单边下跌,2012年、2013年宽幅震荡,2014年上半年窄幅震荡,可以看出无论是单边行情还是震荡行情,由于国内A股的市场容量越来越大,股指期货的日内变动幅度呈现出越来越小的特点,这就给日内趋势易策略带来不小的挑战。

知名投资人、“悍马理论”的创始人冯正平表示:世界上没有交易圣杯,这是他的悍马定律里的第一条。他说2008年前的市场特征与之后的就很不一样,一些原来赚钱的模型后来都赔钱了,而有一些原来赔钱的反倒变成赚钱了。他打了个比方很生动:“就像我们造一个工具,是拿来切菜的还是砍骨头的,还是拿来修指甲的,这个要想清楚。”意思是设计模型时要清楚自己设计出来的交易模型适用于哪种市场环境,要考虑模型的针对性、适应性。

基于多年期货量化交易的经验,上海泛金投资管理有限公司董事长杭国强认为,程序化的本质是给自己的交易列出一系列规矩,让自己的交易更有规则,并利用计算机提高交易速度,其中成败的关键在于对细节的处理。“利用程序界定、评价和预测未来的收益,建立有效的评估体系,不断适应市场的变化,才是程序化交易的灵魂”。

普天投资机构创始人吴转普也认为:自动化交易不存在永远的圣杯,不可能做出一个类似印钞机一样让交易者获利的程序化交易模型,自动化交易更多地被看成是一种管理控制系统,要加入对基本面和技术面的理解,要考虑市场参与者结构的变化,交易程序要不断优化和创新。

在国外,一些成熟的投资公司配备了众多数学和计算机专业人才,他们的主要任务就是针对市场的变化不断完善模型,这正体现了金融机构存在的必要性与重要性。80%~90%的工作人员是在做量化模型的建模、数据处理工作,交易执行人员比较少。由于要处理庞杂的数据,在量化交易中,团队的价值得到充分体现。每隔一段时间他们就会开发出新的交易模型。

即使在高性能硬件与软件结合的高频交易领域,也不存在可以长久不变的“交易圣杯”。高频交易策略对技术要求比较高,在网络速度、硬件反应速度及网络监测等方面都有近乎苛刻的要求。作为高频程序化交易者,Cyc partner公司创始人柳峰介绍说,高频交易者对市场的监测,以及对策略的修改一直不曾停止,“只有不断发现并保持自己的比较优势,才可能在变化的市场中保持盈利”。而高频交易背后的逻辑结构相对来说是简单的,盈利率比较高,有些策略在三年之内运行会比较适用。但是,在市场中采用同种高频交易策略的数量增加之后,交易者必须对策略加以改进。

二、程序化交易策略创新的思路

(一)交易哲学的革新

程序化交易本质上是交易者交易思想的体现,程序化是一种控制手段。有什么样的交易哲学就有什么样的程序化交易策略,所以审视自己的交易哲学的逻辑性就显得尤为重要。策略的优劣对比实际上是背后交易哲学的较量。优秀的交易策略创新来自于交易哲学的突破与革新,而做到这一点并不容易,需要交易者对世界、对自然、对市场有一种深邃的洞察力并能理解转换成为市场语言,物化为交易指标体系。笔者几年来一直致力于对市场背后推动力的研究,市场的上涨和下跌并非随机和无序。比如说,我们可以把市场按照形态分为单边和震荡,在单边市中趋势性模型就能大显身手,而趋势性模型在震荡市中由于来回止损会产生比较大的回撤。而震荡模型策略的表现刚好相反,所以用什么模型不是关键,判断对时段性的单边行情还是震荡行情成为交易策略提高胜率和盈亏比的关键。至于用什么模型来判断单边和震荡是笔者多年研究的成果,有比较高的准确性。

(二)从全自动到半自动的尝试

笔者认为,交易策略不易过于死板。众多程序化交易策略坚持不下去的原因是全自动带来的众多劣质交易,频繁止损。其实法无定法,笔者认为可以半自动化交易提高胜率和盈亏比,至于何时开启程序化何时关闭程序化背后的规则和逻辑也必须是严密的、一贯的,譬如在背后规则市场进入单边市时开启程序,市场重归震荡市时关闭程序,需要一切有章可循。正如世上没有永动机一样,没有一个自动化交易策略能一如既往地战胜市场,能够在资本市场有骄人业绩的一定是半自动交易程序策略。

(三)交易周期、参数的调整

可以针对不同金融市场的特点,变革不同的交易周期,充分认识到金融市场博弈的本质。当多数人使用某个交易周期的时候,我们可以回避它改变交易周期,比如在股指期货中大家常用1分钟图、10秒钟图,笔者觉得不烦尝试15秒图,既保持了一定的反应速度,又能减少频繁交易的问题,对于大家在交易中常用的macd指标、dmi指标、均线指标,我们可以通过测试调整其参数设置以达到阶段性优化交易的目的,更重要的是避开了大众常用参数,可以避开程序化交易猎杀者的屠刀。建议策略框架的核心参数不要超过三个,超过三个以上的参数有拟合历史行情的嫌疑。著名的海龟策略创始人也曾在海龟策略遭受比较大的亏损时修改技术参数才渡过难关的。

(四)创新交易技术指标

使用独创的交易技术指标来设计交易系统能在金融市场上提高交易胜率和盈亏比,其原因在于创新的交易技术指标相对保密,不具有从众性,相反具有出其不意的优势。比如在趋势交易系统里面大家认为均线是一个很好的趋势跟踪指标,但它的缺点也很突出,除具有其他趋势跟踪指标一样的滞后性外,对付慢涨急跌或者慢跌急涨的行情是一个弱项,所以有人创造了自适应均线来对付这种行情,这就是创新交易指标的做法。笔者举出这个例子意在抛砖引玉,创新和改良指标的方法和技术有赖于开发者的细心、耐心和汗水。

三、程序化交易策略创新后测试要注意的问题

首先,避免对交易策略的参数过度优化。过度优化是以拟合历史取得比较高的胜率和盈亏比的,这种过度优化的策略对付现实或者未来变化的行情反倒会产生比较大的回撤甚至亏损,这是由于形态的周期性反复原理产生的。

其次,核心框架策略可以试着应用于其他金融交易品种,观察其表现。

再次,某一参数取值的盈利远远高于或低于附近的参数值就要引起高度警惕。

最后,不要对一两次巨亏或比较长的连续亏损单独做优化,否则即使减小了最大回撤也是不可靠的。

参考文献:

[1](美)里什q纳兰.打开量化投资的黑箱[M].郭剑光,译.北京:机械工业出版社,2012.

篇7

量化交易到底是什么?

说到量化交易,虽不陌生,但仍懵懂。到底什么是量化交易呢?

量化交易区别于定性投资(过去的投资方法)的鲜明特征,就是充分利用各种各样的数理模型。它是借助现代统计学和数学的方法,利用计算机技术,从庞大的历史数据中海选能带来超额收益的多种“大概率”事件,然后制定策略,并用数量模型验证及固化这些规律和策略,继而再严格执行这些已固化的策略来指导投资,以求获得可持续的、稳定且高于平均的超额回报。

对于量化交易中模型与人到底是什么关系?比如中医与西医的诊疗方法,中医是望、稳、问、切,最后判断出的结果,很大程度上基于中医的经验,定性程度上大一些;而西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。

以此形容的话,可以说定性投资像中医,更多地凭主观臆断和个人经验判断病在哪里;量化交易像西医,依靠数量模型判断,而这些模型对于使用量化交易的投资者的作用就像CT机对于医生的作用。在每一天的投资运作之前,一般都会先用模型对整个市场进行一次全面的检查和扫描,然后根据检查和扫描结果做出投资决策。

量化交易靠概率取胜

和传统投资方式相比,量化交易的视角更广,它借助计算机高效、准确地处理海量信息,更广泛地寻找和验证投资机会,消除投资组合配置的局限性,并依靠计算机配置投资组合,克服人性弱点,使投资决策更科学、更理性。

具体来说,这个新兴的投资方法,与我们那些传统的看指标判断、听消息判断、简单看财务报表判断等定性投资方法相比较,主要有以下几大优势:

量化交易有着严格的纪律性。比如,如果有人问你,某年某月某一天,你为什么购买某支股票的话,你就可以打开量化交易系统,系统会显示出当时被选择的这只股票与其他股票在成长面上、估值上、资金上、买卖时机上的综合评价情况,而且这个评价会非常全面,比普通投资者拍脑袋或者简单看某一个指标买卖更具有说服力。

它系统性较完备,具体表现为“三多”,包括多层次、多角度、多数据。因为人脑处理信息的能力是有限的,当一个资本市场只有100只股票,这对定性投资基金经理有优势,他可以深刻分析这100家公司。但当有成千上万只股票时,量化交易就可以充分发挥它强大的信息处理优势,捕捉更多、拓展更大的投资机会。

另外,定性投资大部分时间在琢磨哪一个企业是伟大的企业,那个股票是可以翻倍的股票,而量化交易大部分精力花在分析哪里是估值洼地,哪一个品种被低估了,买入低估的,卖出高估的。

量化交易靠概率取胜。这表现为两个方面,首先量化投资不断地从历史中挖掘,有望在未来重复的历史规律,并且加以利用。其次它在股票实际操作过程中,运用概率分析,提高买卖成功的概率和仓位控制。

量化投资者也有噩梦

事实上,量化交易的方法在海外已有30多年的发展历史,素以投资业绩稳定,抗风险能力强著称,目前已经成为海外基金管理投资市场的重要方法。

而与海外成熟市场相比,量化交易以基本面分析为驱动,以全市场、多维度的视角广度扫描投资机会,在中国市场的应用将更显其优势。

不过,在谈及这么多利好之后,还是要“泼一次冷水”。不要以为不停闪烁的超级电脑自动进行着高速交易,荧幕上滚动着通过高速网络提前获取的最新市场消息,加上通过杠杆放大的头寸,账户的盈利不断上跳,这一切的一切就预示着“可以躺着赚钱的时代”来临了,现实并没有这么美好。

相对来说,量化交易目前还处在初级发展阶段,比如基本面投资者只需简单的基于预测特定事件,比如超过或差于预期的财报做交易即可。而量化交易者则需要搞清楚具体消息对股价的平均影响程度,这就不是一件容易的事了,因为你的研究对象时刻还在变化着。

不仅如此,研究出一套只基于公司财报的交易系统不难,比如基于超出预期的营收或股息来买入。但是供给面的情况、消费者层面的情绪纳入交易模型中,也比较麻烦。

同时,股票、基本面、新闻消息之间的关系也是不停变化着的。记得2009年美股到达低点的时候,很多“低质”公司的回报大大高于“优质”公司的回报。很多3块钱的“垃圾股”可以在很短时间内涨到10块钱,而高价的优质公司的股票想要翻一倍都要花上很久很久。对于基本面投资者来说,这是掘金的好时候,但对于量化投资者来说却是噩梦,因为大多数模型此时都会显示做多“优质股”做空“垃圾股”,后果则可想而知。

另外,量化交易员的精力也是有限的。计算机的消息格式往往不规范,语法也千奇百怪,他们也无法让计算机程序挑选出有效信息并运用于自动交易中。一天只有24个小时,他们也会经常碰到因一个分析无法推进而其他分析也陷入停顿的状况。因此,要在浩如烟海的金融数据中“寻宝”,没那么简单。

篇8

他们和先前的人工交易不同,用数学统计出此前的交易规律,建成模型,用程序来交易。他们大多有较高的学历,或物理或数学或IT背景。他们用模型、公式克服人性的弱点去交易,赚取理性的利润,这个工作叫量化投资。

这是近几年才形成的一个低调的金融圈子,尤其是今年来,这个圈子似乎风生水起。算法、编程、想法、策略、模型成了这个圈子中的常用语,他们分布在券商、公私募基金、期货等金融行业,他们在创新中摸索前进,优秀的团队也不少见。

谨慎的宽客人

量化投资圈的人喜欢自己被称为“宽客人”或“矿工”。所谓“宽客”即金融工程师,他们靠编程序去设计模型,用数学的方法分析金融市场,找出影响价格涨跌的相关因素,规避其中的风险,获得收益。

徐明(化名)是上海艾革瑞投资团队的创始人之一,有着大多数编程人员的内秀和儒雅,自信的微笑又暗示着自己不是普通的“码农”。清华大学数学系学士,香港科技大学工业工程与物流管理系博士,精通数学建模、金融工程、组合优化和人工智能算法,这些标签和不少量化“宽客人”类似,他们具备这个行业的先天优势。

徐明在中山大学管理学院管理科学系任教期间,对金融工程产生了浓厚的兴趣,西蒙斯的经历和成功给了他极大的鼓舞,逐渐走上专业量化交易这条路。

十月,天气渐冷。《中国证券期货》记者联系上徐明时,他正带着自己的团队参加海通期货2013年的“笑傲江湖”实盘赛,目前成绩位列投资家组第三名,这不是第一次参加海通期货的实盘赛,去年以总收益89%、总收益额189万,获得程序化组亚军。

“艾革瑞”,源自“Algorithm”(算法)的译音,创始人的量化定位可见一斑。团队主要成员在2012年开始全职投身于程序化交易,多具有证券期货投资、金融工程研究和IT项目开发经验。艾革瑞团队主要做股指期货日内交易,交易频率比较低,平均一天做1个来回的交易,持有时间一般都要超过1个小时。

量化交易和人工交易有一个很大的不同,就是模型的建立。“程序化交易更像一门科学,需要投资者具有较高的模型开发和系统开发能力,以及对于交易规律的深刻认识。”徐明认为,人工交易更像一门艺术,需要对经济周期和行业发展有独到的眼光。

对于模型,“宽客人”都视为自己最核心的秘密武器,往返于华尔街和上海的徐明和其他讳莫至深的受访者不同,对模型提出了自己的看法,“模型是用数学方法找规律,而数学方法找规律很容易过度优化。”

对于投资行业的深刻认识更为重要。徐明表示,“国内金融市场和华尔街还是有本质的不同,对于中国市场期货交易的认识和理解,比运用各种数学模型更为重要。很多系统在数学上是最优的,但是在实践中并不是最优的,而且还可能是有极大风险的(即过度优化)。”

策略是量化“宽客人”的另一个交易核心。“如果交易经常不盈利,就不能仅仅认为是利润回吐了,要考虑策略是否失效。”金华强调。

策略是否失效是所有程序化交易者面对的一个非常难的问题。“失效”本身就很难定义。日内趋势的策略胜率一般都不到50%,所以总是有赔有赚的。赔钱的连在一起,就连续回撤了,这其实只是亏损连在了一起而已。不同的时间,市场的规律也会呈现不一样的特征,所以也很难判断暂时表现不好的策略是否就永久不好了。

所以,最重要的不是判断策略是否已经失效,而是在策略表现不好的时候可以找到原因和解决办法。

在2013年第二季度,艾格瑞团队就经历了一个较大级别的回撤,后来发现系统的很多亏损来自于“过度预测”。直观的理解就是市场还没有开始趋势的时候,系统就进行了未来趋势方向的预测。这一能力在过去的一年都不错,可以获取超额收益;但是可能是因为市场氛围变了,现在不仅不管用,还会带来连续的亏损。

后来艾格瑞团队对策略进行了调整:其一,相关性小的多周期、多系统非常必要。其二,用一套系统的方法去辨别哪些是市场里稳定的规律,哪些是不稳定的规律。其三,在风险控制上更为严格和保守,在谨慎保护本金的基础上,实现盈利。

调整策略后,解决了“过度预测”的问题,然后系统就又恢复了正常。从运行两个多月来看,表现比较稳定。

摸着石头过河的机构

机构投资者对量化投资的关注也越来越多,光大证券“816”事件揭开了冰山一角。8月16日,光大证券量化套利资金超过了200亿,乌龙事件一度引发国内A股和股指剧烈地震。据中国量化投资学会理事长、量化投资经理丁鹏透露,“目前国内量化投资资金的体量已经达到1000亿元。” 这些资金或主要来自券商和险资自营的量化套利资金,以及公私募的量化基金。

业内人士指出,国内某另一家券商在量化上投入的套利策略资金超过了300亿,远超出光大的投入资金,目前,不少券商也在用巨额资金更新IT设备,加上公私募资金,在量化上的投入远超过1000亿。

据悉,光大和海通等券商经营量化套利这项业务上,年度收益约10%-12%,甚至达到10%-15%或更高。如果按200亿元的管理资金来看,带给券商的直接收益就达到20亿-30亿元。这一盈利数字可能近年来熊市中某些券商一年的营业收入。

由于A股市场实施T+1交易,券商量化交易部门在A股从事高频交易的资金较少,据业内人士推算,大约有20亿左右。如果A股市场实施了T+0操作,估计更多券商大资金投入。

公募基金排名的压力,参与股指期货对冲仓位比例不超过20%限制,都成了公募基金量化投资无形的镣铐,短期内难有多大规模。

“公募基金做量化很费劲。”王萌(化名)坦诚表示。

王萌,上海交通大学计算机硕士,资深软件工程师,具有多年软件开发和管理经验,以及金融市场投资经验。已经在资本投资市场10年了,目前是上海某公募基金的总监。

“由于参与公募基金的排名,不可能完全做到量化管理,大多都有主动管理的因素在面。”王萌坦言,这和采访国内某期货公司量化部经理时的话,颇有几分相似,“目前国内公募基金的业绩也没有听说那个做的业绩挺好,更多的是一种宣传噱头。”

而私募则相对轻松的多。私募资金私募基金在量化基金设计上,主要侧重于量化多空策略的经营,目前国内有数十款产品在做,虽然规模算不上太大,但收益稳定保持在9%-15%还是容易做到。

张强(化名)在华尔街做量化投资多年,回国后成立了自己的私募公司,量化操作股指期货。15个月来,资金收益保持在25%,这个业绩在行业里可能算不上多高,但是出奇的稳定,这正是量化投资追求的最高境界,关键是稳定收益。远比上半年盈利50%,下半年亏60%好的多。更难得的是,15个月来回撤仅仅1.5%。这和公募基金带着“镣铐”跳舞形成了鲜明的对比。

无法阻挡狼来了

目前国内的量化投资刚刚起步,发展还受诸多因素困扰。

政策性因素扰动、历史数据不足、数据准确性差、T+1的限制,金融衍生工具不够丰富,风控的完善、系统软硬件的限制等,这些都是量化投资在国内市场的瓶颈。

政策性因素扰动也很明显,证监会对光大证券“816”的巨额罚款,对光大证券在券商中量化的领先地位颇有打击,同行不得不放慢了量化的步伐。

对于数据的不充足以及准确性差,也深受其害,财报质量和国外压根就不在一个档次,查阅数据也只能追溯到最近6、7年,这对用数学的方法统计数据建模型造成了直接的影响。

而某期货公司的董事总经理则直言,目前国内期货市场还是T+1,还没有开通夜盘交易,而国内期货市场又受国外盘影响巨大,国内盘受其影响隔夜暴涨暴跌再正常不过,而依靠数据、模型的量化交易只能是无可奈何,这也是国内商品期货量化操作业绩不理想的原因之一。

金融衍生工具不够丰富,也是国内量化投资的一大影响。目前国内量化投资仅能运用在商品期货、股指期货和国债期货上,还限制颇多。比如股指期货,国内每天挂单不能超过500手;国债期货开通不久,成交量有限;期货市场虽然套利客观,但容纳资金量有限。

据业内传闻,光大证券的量化部门前期运行投入资金是1500万元,如果再加上维护费用,数目不容小觑。

这在券商同行中绝不是孤例。尽管如此,因经验不足,还是在风控上闹出了震惊中外的(816)乌龙事件,对量化的影响可见一斑。

光大乌龙事件暴露出机构投资人在追求创新时忽略了风控的完善。“光大虽被证监会罚款5个亿,但券商用自营资金做量化的赚钱能力也被大众所知,未来会有大量的钱涌入。”一位机构人士认为。

丁鹏认为,“不能因为光大事件,就将先进技术和理念拒之门外,绝对收益是未来趋势。”

国内金融市场,尽管在量化上还存在着不少的问题,但这引人注目的量化投资前景依然引起了国外大鳄的注意,我们无法阻挡:狼来啦!上述某期货公司人士透露,“韩国成熟的量化投资团队,已经进入国内市场开始剪羊毛,据说比国内的量化机构能量要大的多。”还有更恐怖的团队,国外量化操作鼻祖巴克莱已经在国内完成了前期量化测试,不久也会携带巨额资金和先进的理念来分一杯羹。

模型避免过度优化

推荐期刊