时间:2023-06-27 15:25:11
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇量化投资与分析,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
尽管量化投资已经成为市场投资的发展趋势,但是大多数投资者并不是很熟悉量化投资。一方面是由于量化投资一定程度上依赖数学模型,而赚钱的投资模型都是机构的秘密武器,不会轻易披露。另一方面是由于量化投资采用计算机系统,设计各种交易手段,有着较为复杂的数学计算与技术要求,现在许多量化投资都是计算机自动执行的程序交易。另外,量化交易者,俗称宽客(quants)的交易和故事多多少少增加了量化投资的神秘感。所以,人们一般把量化投资称为“黑箱”。纳兰(Narang,R.,2012)描述了量化交易系统的典型构造,打开了量化投资的“黑箱”。纳兰认为阿尔法模型用来预测市场未来方向,风险控制模型用来限制风险暴露,交易成本模型用来分析为构建组合产生的各种成本,投资组合构建模型在追逐利润、限制风险与相关成本之间做出平衡,然后给出最优组合。最优目标组合与现有组合的差异就由执行模型来完成。数据和研究部分则是量化投资的基础:有了数据,就可以进行研究,通过测试、检验与仿真正确构建各个模型。预测市场并制定策略是量化投资的核心,即阿尔法模型在量化投资中处于核心地位。随着量化投资的不断发展,量化投资模型也在不断改进。简单的策略可能就是证券或组合的套利行为,如期现套利组合、市场异象研究中的差价组合等。统计套利策略是经典的量化投资策略,如匹配交易或携带交易。近年来,高频交易成为量化投资的重要内容,基于高速的计算机系统实施高频的程序交易已经是量化投资的重要利器。丁鹏(2012)将量化投资的主要内容分为以下几个方面:量化选股、量化择时、股指期货套利、商品期货套利、统计套利、期权套利、算法交易、ETF/LOF套利和高频交易等。他认为量化投资的优势在于:纪律性、系统性、及时性、准确性和分散化。
二、量化投资“黑箱”中的构造与证券投资学的差异
在传统的证券投资学中,投资组合理论、资本资产定价模型、套利定价理论和期权定价理论是现代金融理论的四块基石。前两者主要依靠均值-方差组合优化的思想,后两者则主要依靠市场的无套利条件。传统的投资方法主要是基本面分析和技术分析两大类,而量化投资则是“利用计算机科技并采用一定的数学模型去实现投资理念、实现投资策略的过程”。从概念看,量化投资既不是基本面分析,也不是技术分析,但它可以采用基本面分析,也可以采用技术分析,关键在于依靠模型来实现投资理念与投资策略。为了分析量化投资对证券投资学的启示,本文从量化投资“黑箱”的各个构成来探讨量化投资与证券投资学中思路和观点的差异。
(一)资产定价与收益的预测
根据组合优化理论,投资者将持有无风险组合与市场风险资产组合,获得无风险利率与市场风险溢价。资本资产定价模型则将此应用到单一证券或组合,认为证券的风险溢价等于无风险利率加上与风险贡献比率一致的风险溢价,超过的部分就是超额收益,即投资组合管理所追求的阿尔法值。追求显着正的阿尔法是资产定价理论给实务投资的一大贡献。基于因素模型的套利定价理论则从共同风险因素的角度提供了追求阿尔法的新思路。其中,法玛和佛伦齐的三因素定价模型为这一类量化投资提供了统一的参考。可以说,在因素定价方面,量化投资继承了资产定价理论的基本思想。对于因素定价中因素的选择,证券投资学认为,对资产价格的影响,长期应主要关注基本面因素,而短期应主要关注市场的交易行为,即采用技术分析。在量化投资中,主要强调按照事先设定的规则进行投资,这在一定程度上与技术分析类似。但是,在技术分析中,不同的人会有不同的结论,而量化投资则强调投资的规则化和固定化,不会因人的差异而有较大的不同。另外,量化交易更强调从统计和数学模型方面寻找资产的错误定价或者进行收益的预测。
(二)无套利条件与交易成本
在证券投资学里,流动性是证券的生命力。组合投资理论、资本资产定价模型以及套利定价理论等都认为市场中存在大量可交易的证券,投资者可以自由买卖证券。这主要是为了保证各种交易都能实现,如套利交易。根据套利定价理论,一旦市场出现无风险的套利机会,理性投资者会立即进行套利交易,当市场均衡时就不存在套利机会。现实市场中往往存在套利限制。一是因为凯恩斯说的“市场的非理性维持的时间可能会长到你失去偿付能力”。二是因为市场总是存在交易费用等成本。但证券投资学中,对市场中套利限制与非流动性的关注较少,这是因为传统金融理论中简化了市场结构。市场微观结构理论研究在既定的交易规则下,金融资产交易的过程及其结果,旨在揭示金融资产交易价格形成的过程及其原因。在市场微观结构理论中,不同的市场微观结构对市场流动性的冲击是不同的。因而,从量化投资的角度看,为了降低交易带来的价格冲击,能实施量化投资策略的证券往往都应有较好的流动性,因为交易时非流动性直接影响投资策略的实施。从这个意义上讲,量化投资时的交易成本不仅包括交易费用,更主要的是要考虑市场交易冲击的流动性成本。
(三)风险控制与市场情绪
在证券市场中,高收益与高风险相匹配。量化投资在追求高收益的同时,不可避免地承担了一定的风险。在证券投资学中,系统性风险主要源于宏观经济因素,非系统性因素则主要源于行业、公司因素,并且不考虑市场交易行为的影响。在量化投资中,较多地使用因素定价模型,不仅会考虑市场经济因素,而且会考虑交易行为等因素,只是不同的模型有不同的侧重点,在多模型的量化投资系统中自然包括了这两方面的因素。除了各种基本面和市场交易的因素风险外,量化投资还有自身不可忽视的风险源。一方面,量化交易中,部分交易是采用保证交易的期货、期权等衍生品交易,这种杠杆交易具有放大作用,隐藏着巨大的风险。另一方面,市场冲击的流动性成本也是量化投资的风险控制因素,理所当然地在图1的风险控制模型中体现出来。另外,在一般的投资过程中,市场情绪或多或少会成为风险控制的一个对象。然而,在量化投资中,更多的交易都是通过计算机来实现的,如程序交易等,这样以来,投资者情绪等因素对投资决策的影响相对较小。所以,在量化投资的风险控制模型中较少地考虑市场情绪以及投资者自身的情绪,主要是通过承担适度的风险来获得超额回报,因为毕竟减少风险也减少了超额回报。
(四)执行高频交易与算法交易
在对未来收益、风险和成本的综合权衡下,实现投资策略成为量化投资的重要执行步骤。为了达到投资目标,量化投资不断追求更快的速度来执行投资策略,这就推动了采用高速计算机系统的程序化交易的诞生。在证券投资学里,技术分析认为股价趋势有长期、中期和短期趋势,其中,长期和中期趋势有参考作用,短期趋势的意义不大。然而,随着计算机信息科技的创新,量化投资策略之间的竞争越来越大,谁能运作更快的量化模型,谁就能最先找到并利用市场错误定价的瞬间,从而赚取高额利润。于是,就诞生了高频交易:利用计算机系统处理数据和进行量化分析,快速做出交易决策,并且隔夜持仓。高频交易的基本特点有:处理分笔交易数据、高资金周转率、日内开平仓和算法交易。高频交易有4类流行的策略:自动提供流动性、市场微观结构交易、事件交易和偏差套利。成功实施高频交易同时需要两种算法:产生高频交易信号的算法和优化交易执行过程的算法。为了优化交易执行,目前“算法交易”比较流行。算法交易
优化买卖指令的执行方式,决定在给定市场环境下如何处理交易指令:是主动的执行还是被动的执行,是一次易还是分割成小的交易单。算法交易一般不涉及投资组合的资产配置和证券选择问题。 三、对量化投资在证券投资教学中应用的思考
从上述分析可以知道,量化投资的“黑箱”构造与证券投资学之间存在一定的差异,因此,在证券投资的教学中应当考虑量化投资发展的要求。
(一)市场微观结构与流动性冲击
在理性预期和市场有效假说下,市场价格会在相关信息披露后立即调整,在信息披露前后市场有着截然不同的表现。在证券投资学里,一般认为价格的调整是及时准确的,然而,现实的世界里,价格调整需要一个过程。在不同的频率下,这种价格形成过程的作用是不同的。在长期的投资中,短期的价格调整是瞬间的,影响不大。然而,在高频交易中,这种价格调整过程影响很大。市场微观结构就是研究这种价格形成过程。市场微观结构理论中有两种基本的模型:存货模型和信息模型。存货模型关注商委托单簿不平衡对订单流的影响,解释没有消息公布时价格短暂波动的原因。信息模型关注信息公布后信息反映到价格中的这一过程,认为含有信息的订单流是导致价格波动的原因。无论是关注委托订单的存货模型还是关注市场参与者信息类型的信息模型,这些市场微观结构的研究加强了流动性与资产价格之间的联系,强调流动性在量化投资决策中的重要作用。一般的证券投资学中基本没有市场微观结构的内容,因而,为了加强证券投资学的实用性,应关注市场微观结构的内容与发展。
(二)业绩评价与高杠杆
对于证券组合而言,不仅要分析其超额收益和成本,还要考虑其风险与业绩。在组合业绩评价中,一方面要考虑风险的衡量,另一方面则要分析业绩的来源。在证券投资学中,组合业绩来自于市场表现以及管理者的配置与选股能力。对于量化投资而言,市场时机和管理者的能力依然重要,然而,量化投资的业绩评价还应考虑另一个因素:高杠杆。量化交易中,部分交易是采用保证交易的期货、期权等衍生品交易,这种杠杆交易具有放大作用,在市场好的时候扩大收益,但在市场不好的时候会加速亏损,这些与传统的业绩评价就不太一样。在一般的证券投资学里,业绩评价主要考虑经风险调整的收益,很少考虑其杠杆的作用,这不仅忽略了杠杆的贡献,而且有可能夸大了投资者的技能水平。
(三)人为因素与模型风险
在量化投资中,非常注重计算机对数据和模型的分析,这突出了量化投资的规则性和固定性。然而,实际中,别看量化采用了各种数学、统计模型,但策略设计、策略检测和策略更新等过程都离不开人的决策。量化交易策略与判断型交易策略的主要差别在于策略如何生成以及如何实施。量化投资运用模型对策略进行了细致研究,并借助计算机实施策略,能够消除很多认为的随意性。但是,量化策略毕竟体现投资者的交易理念,这一部分依赖于投资者的经验,一部分依赖于投资者对市场的不断观察与更新。实际上,人始终处于交易之中,对于市场拐点以及趋势反转的判断主要还是依赖投资者的经验。光大的乌龙指事件充分表明了人为因素在量化投资中的两面性:决策实施依赖于人的设定,而人的设定不仅依赖于经验,而且人还会犯错。人之所以会犯错,一方面是因为人们对市场的认知是不完全的,另一方面则是人们使用了错误的模型。经典的证券投资理论中,股票价格的变动被认为是随机的,小概率事件出现的机会比较小,但是经验研究表明股票收益率具有肥尾现象,小概率事件发生的机会超出了人们原先的认识,即市场还会出现“黑天鹅”。更为关键的是,量化投资更依赖数学和统计模型,这就使得量化投资存在较大的模型风险,即使用了错误的模型。为了防范模型风险,应采用更为稳健的模型,即模型的参数和函数应该适应多种市场环境。近年来,研究表明,证券收益及其与风险因素的关系存在较大的非线性,同时,市场中存在一定的“噪声”,采用隐马尔科夫链等随机过程和机器学习等数据挖掘技术进行信息处理成为量化投资的重要技术支持。
尽管量化投资已经成为市场投资的发展趋势,但是大多数投资者并不是很熟悉量化投资。一方面是由于量化投资一定程度上依赖数学模型,而赚钱的投资模型都是机构的秘密武器,不会轻易披露。另一方面是由于量化投资采用计算机系统,设计各种交易手段,有着较为复杂的数学计算与技术要求,现在许多量化投资都是计算机自动执行的程序交易。另外,量化交易者,俗称宽客(quants)的交易和故事多多少少增加了量化投资的神秘感。所以,人们一般把量化投资称为“黑箱”。纳兰(Narang,R.,2012)描述了量化交易系统的典型构造,打开了量化投资的“黑箱”。纳兰认为阿尔法模型用来预测市场未来方向,风险控制模型用来限制风险暴露,交易成本模型用来分析为构建组合产生的各种成本,投资组合构建模型在追逐利润、限制风险与相关成本之间做出平衡,然后给出最优组合。最优目标组合与现有组合的差异就由执行模型来完成。数据和研究部分则是量化投资的基础:有了数据,就可以进行研究,通过测试、检验与仿真正确构建各个模型。预测市场并制定策略是量化投资的核心,即阿尔法模型在量化投资中处于核心地位。随着量化投资的不断发展,量化投资模型也在不断改进。简单的策略可能就是证券或组合的套利行为,如期现套利组合、市场异象研究中的差价组合等。统计套利策略是经典的量化投资策略,如匹配交易或携带交易。近年来,高频交易成为量化投资的重要内容,基于高速的计算机系统实施高频的程序交易已经是量化投资的重要利器。丁鹏(2012)将量化投资的主要内容分为以下几个方面:量化选股、量化择时、股指期货套利、商品期货套利、统计套利、期权套利、算法交易、ETF/LOF套利和高频交易等。他认为量化投资的优势在于:纪律性、系统性、及时性、准确性和分散化。
二、量化投资“黑箱”中的构造与证券投资学的差异
在传统的证券投资学中,投资组合理论、资本资产定价模型、套利定价理论和期权定价理论是现代金融理论的四块基石。前两者主要依靠均值-方差组合优化的思想,后两者则主要依靠市场的无套利条件。传统的投资方法主要是基本面分析和技术分析两大类,而量化投资则是“利用计算机科技并采用一定的数学模型去实现投资理念、实现投资策略的过程”。从概念看,量化投资既不是基本面分析,也不是技术分析,但它可以采用基本面分析,也可以采用技术分析,关键在于依靠模型来实现投资理念与投资策略。为了分析量化投资对证券投资学的启示,本文从量化投资“黑箱”的各个构成来探讨量化投资与证券投资学中思路和观点的差异。
(一)资产定价与收益的预测
根据组合优化理论,投资者将持有无风险组合与市场风险资产组合,获得无风险利率与市场风险溢价。资本资产定价模型则将此应用到单一证券或组合,认为证券的风险溢价等于无风险利率加上与风险贡献比率一致的风险溢价,超过的部分就是超额收益,即投资组合管理所追求的阿尔法值。追求显著正的阿尔法是资产定价理论给实务投资的一大贡献。基于因素模型的套利定价理论则从共同风险因素的角度提供了追求阿尔法的新思路。其中,法玛和佛伦齐的三因素定价模型为这一类量化投资提供了统一的参考。可以说,在因素定价方面,量化投资继承了资产定价理论的基本思想。对于因素定价中因素的选择,证券投资学认为,对资产价格的影响,长期应主要关注基本面因素,而短期应主要关注市场的交易行为,即采用技术分析。在量化投资中,主要强调按照事先设定的规则进行投资,这在一定程度上与技术分析类似。但是,在技术分析中,不同的人会有不同的结论,而量化投资则强调投资的规则化和固定化,不会因人的差异而有较大的不同。另外,量化交易更强调从统计和数学模型方面寻找资产的错误定价或者进行收益的预测。
(二)无套利条件与交易成本
在证券投资学里,流动性是证券的生命力。组合投资理论、资本资产定价模型以及套利定价理论等都认为市场中存在大量可交易的证券,投资者可以自由买卖证券。这主要是为了保证各种交易都能实现,如套利交易。根据套利定价理论,一旦市场出现无风险的套利机会,理性投资者会立即进行套利交易,当市场均衡时就不存在套利机会。现实市场中往往存在套利限制。一是因为凯恩斯说的“市场的非理性维持的时间可能会长到你失去偿付能力”。二是因为市场总是存在交易费用等成本。但证券投资学中,对市场中套利限制与非流动性的关注较少,这是因为传统金融理论中简化了市场结构。市场微观结构理论研究在既定的交易规则下,金融资产交易的过程及其结果,旨在揭示金融资产交易价格形成的过程及其原因。在市场微观结构理论中,不同的市场微观结构对市场流动性的冲击是不同的。因而,从量化投资的角度看,为了降低交易带来的价格冲击,能实施量化投资策略的证券往往都应有较好的流动性,因为交易时非流动性直接影响投资策略的实施。从这个意义上讲,量化投资时的交易成本不仅包括交易费用,更主要的是要考虑市场交易冲击的流动性成本。
(三)风险控制与市场情绪
在证券市场中,高收益与高风险相匹配。量化投资在追求高收益的同时,不可避免地承担了一定的风险。在证券投资学中,系统性风险主要源于宏观经济因素,非系统性因素则主要源于行业、公司因素,并且不考虑市场交易行为的影响。在量化投资中,较多地使用因素定价模型,不仅会考虑市场经济因素,而且会考虑交易行为等因素,只是不同的模型有不同的侧重点,在多模型的量化投资系统中自然包括了这两方面的因素。除了各种基本面和市场交易的因素风险外,量化投资还有自身不可忽视的风险源。一方面,量化交易中,部分交易是采用保证交易的期货、期权等衍生品交易,这种杠杆交易具有放大作用,隐藏着巨大的风险。另一方面,市场冲击的流动性成本也是量化投资的风险控制因素,理所当然地在图1的风险控制模型中体现出来。另外,在一般的投资过程中,市场情绪或多或少会成为风险控制的一个对象。然而,在量化投资中,更多的交易都是通过计算机来实现的,如程序交易等,这样以来,投资者情绪等因素对投资决策的影响相对较小。所以,在量化投资的风险控制模型中较少地考虑市场情绪以及投资者自身的情绪,主要是通过承担适度的风险来获得超额回报,因为毕竟减少风险也减少了超额回报。
(四)执行高频交易与算法交易
在对未来收益、风险和成本的综合权衡下,实现投资策略成为量化投资的重要执行步骤。为了达到投资目标,量化投资不断追求更快的速度来执行投资策略,这就推动了采用高速计算机系统的程序化交易的诞生。在证券投资学里,技术分析认为股价趋势有长期、中期和短期趋势,其中,长期和中期趋势有参考作用,短期趋势的意义不大。然而,随着计算机信息科技的创新,量化投资策略之间的竞争越来越大,谁能运作更快的量化模型,谁就能最先找到并利用市场错误定价的瞬间,从而赚取高额利润。于是,就诞生了高频交易:利用计算机系统处理数据和进行量化分析,快速做出交易决策,并且隔夜持仓。高频交易的基本特点有:处理分笔交易数据、高资金周转率、日内开平仓和算法交易。高频交易有4类流行的策略:自动提供流动性、市场微观结构交易、事件交易和偏差套利。成功实施高频交易同时需要两种算法:产生高频交易信号的算法和优化交易执行过程的算法。为了优化交易执行,目前“算法交易”比较流行。算法交易优化买卖指令的执行方式,决定在给定市场环境下如何处理交易指令:是主动的执行还是被动的执行,是一次易还是分割成小的交易单。算法交易一般不涉及投资组合的资产配置和证券选择问题。
三、对量化投资在证券投资教学中应用的思考
从上述分析可以知道,量化投资的“黑箱”构造与证券投资学之间存在一定的差异,因此,在证券投资的教学中应当考虑量化投资发展的要求。
(一)市场微观结构与流动性冲击
在理性预期和市场有效假说下,市场价格会在相关信息披露后立即调整,在信息披露前后市场有着截然不同的表现。在证券投资学里,一般认为价格的调整是及时准确的,然而,现实的世界里,价格调整需要一个过程。在不同的频率下,这种价格形成过程的作用是不同的。在长期的投资中,短期的价格调整是瞬间的,影响不大。然而,在高频交易中,这种价格调整过程影响很大。市场微观结构就是研究这种价格形成过程。市场微观结构理论中有两种基本的模型:存货模型和信息模型。存货模型关注商委托单簿不平衡对订单流的影响,解释没有消息公布时价格短暂波动的原因。信息模型关注信息公布后信息反映到价格中的这一过程,认为含有信息的订单流是导致价格波动的原因。无论是关注委托订单的存货模型还是关注市场参与者信息类型的信息模型,这些市场微观结构的研究加强了流动性与资产价格之间的联系,强调流动性在量化投资决策中的重要作用。一般的证券投资学中基本没有市场微观结构的内容,因而,为了加强证券投资学的实用性,应关注市场微观结构的内容与发展。
(二)业绩评价与高杠杆
对于证券组合而言,不仅要分析其超额收益和成本,还要考虑其风险与业绩。在组合业绩评价中,一方面要考虑风险的衡量,另一方面则要分析业绩的来源。在证券投资学中,组合业绩来自于市场表现以及管理者的配置与选股能力。对于量化投资而言,市场时机和管理者的能力依然重要,然而,量化投资的业绩评价还应考虑另一个因素:高杠杆。量化交易中,部分交易是采用保证交易的期货、期权等衍生品交易,这种杠杆交易具有放大作用,在市场好的时候扩大收益,但在市场不好的时候会加速亏损,这些与传统的业绩评价就不太一样。在一般的证券投资学里,业绩评价主要考虑经风险调整的收益,很少考虑其杠杆的作用,这不仅忽略了杠杆的贡献,而且有可能夸大了投资者的技能水平。
(三)人为因素与模型风险
在量化投资中,非常注重计算机对数据和模型的分析,这突出了量化投资的规则性和固定性。然而,实际中,别看量化采用了各种数学、统计模型,但策略设计、策略检测和策略更新等过程都离不开人的决策。量化交易策略与判断型交易策略的主要差别在于策略如何生成以及如何实施。量化投资运用模型对策略进行了细致研究,并借助计算机实施策略,能够消除很多认为的随意性。但是,量化策略毕竟体现投资者的交易理念,这一部分依赖于投资者的经验,一部分依赖于投资者对市场的不断观察与更新。实际上,人始终处于交易之中,对于市场拐点以及趋势反转的判断主要还是依赖投资者的经验。光大的乌龙指事件充分表明了人为因素在量化投资中的两面性:决策实施依赖于人的设定,而人的设定不仅依赖于经验,而且人还会犯错。人之所以会犯错,一方面是因为人们对市场的认知是不完全的,另一方面则是人们使用了错误的模型。经典的证券投资理论中,股票价格的变动被认为是随机的,小概率事件出现的机会比较小,但是经验研究表明股票收益率具有肥尾现象,小概率事件发生的机会超出了人们原先的认识,即市场还会出现“黑天鹅”。更为关键的是,量化投资更依赖数学和统计模型,这就使得量化投资存在较大的模型风险,即使用了错误的模型。为了防范模型风险,应采用更为稳健的模型,即模型的参数和函数应该适应多种市场环境。近年来,研究表明,证券收益及其与风险因素的关系存在较大的非线性,同时,市场中存在一定的“噪声”,采用隐马尔科夫链等随机过程和机器学习等数据挖掘技术进行信息处理成为量化投资的重要技术支持。
(四)2013年诺贝尔经济学奖的启示
量化投资重在风控
近几年,国内基金公司都在积极推出量化投资产品。但市场人士认为,目前国内的常见“量化”基金,实质上大多是“量化选股”基金,从量化的风险控制到量化的交易,整个决策流程依然靠传统的方法。
国内著名投行宏观策略研究员的工作积累,华尔街量化投资的历练,使华商大盘量化拟任基金经理费鹏对量化投资的A股应用有着自己的心得。他认为,量化投资最大的优势在风险控制上。与传统的价值投资“越跌越买”的理念不同,他认为量化投资应该是主动对市场风险进行判断,通过技术分析、量化模型分析等判定风险,在确定风险之后,及时对仓位进行控制,及时止损。
费鹏认为,目前市场上的量化产品将研究的重点放在择股和行业配置上,缺乏有效及时的风险响应体系,而从国外的经验看,量化的一大特点就是对风险的预判。因此,华商基金量化投资团队在吸收国内外先进经验的同时,在模型设计之初,便将核心定为风险控制。
在设计中,华商基金量化投资团队借助了包括从统计信息学角度出发的信息熵值(Entropy)的变化、从分形理论出发的市场模式(P atter n)的变化、从金融物理学角度出发的金融泡沫统计指标的变化、从市场微观结构出发的分析师一致预期分歧的变化和趋势等,构建风险模型,对中短期系统风险进行定量分析,依靠基金经理和研究员对宏观经济发展状况、人口与社会的结构性特征、经济产业周期等因素的分析,对长期风险进行定性分析。
量化投资坚持追求绝对收益
提及量化投资,人们就会想到西蒙斯用公式打败市场的经典案例。但这一投资工具在被引入国内投资市场之后,并没有展现其神奇的威力。根据wi n d数据分类显示,目前市场上有19只量化基金,2 012年可统计的15只量化基金平均收益率仅为2 . 5 5%(同期沪指上涨3 .17%),国内发行的量化基金的表现不尽如人意。
在费鹏看来,国内的量化基金仅仅是“量化选股”,追求相对收益。他认为,量化投资的核心应该是风控,坚持追求的则应该是绝对收益。
相比而言,目前国内公募量化基金多采用多因子模型,而多因子模型的设计原理是把价值投资理论通过数字模型加以表达。在实际测算中,华商基金量化团队每日涨幅居前的股票中,会有所谓投资价值较少的“垃圾股”,很难通过价值投资理论解释。
对此,华商量化投资团队在设计选股模型时,更多的是通过捕捉市场的异常波动,寻找股价波动的非基本面的因素。通过对数据挖掘,建立初选股票池,然后按照行业分类,结合基本面研究,通过行业研究员调研,寻找相互印证支持依据,在分析手段上更多了对隐性信息的补充。
关键词:量化基金;数量化投资;量化策略
中图分类号:F832.51 文献标识码:A doi:10.3969/j.issn.1672-3309(x).2011.11.38 文章编号:1672-3309(2011)11-84-02
近年来,随着我国资本市场的不断发展,数量化投资在国内越来越受到关注。国内机构投资者逐渐增加量化分析在投资中的应用。在基本面投资的基础上应用数量化策略,成为投资领域发展的新趋势。国内的基金公司在这股潮流下也纷纷推出自己的量化基金产品。
依据资讯商wind的显示,截至2011年9月底市场上一共有14只不同类型的量化基金。
一、国内量化基金的发展
据统计,国外定量投资在全部投资产品中的份额中占30%以上,主动投资产品中大约有20-30%使用量化技术。与国外市场相比,国内基金无论数量还是规模都要小很多。国内大部分量化基金都是在2008年金融危机之后才陆续推出。目前市场上有65家基金公司,正式推出量化基金的也只有13家。
自开始两只量化基金成立后,2006-2008年期间市场上没有任何新的量化基金成立,之后又呈现出一个快速增长的态势。为什么国内量化基金的发展会有如此特点?分析一下其中原因,笔者认为有如下几点:
(一)国内资本市场的发展为量化投资准备了必要条件。2005年以来,证券市场发生了一系列变化:股权分置改革完成、IPO扩容,卖方量化研究能力提高、股指期货及融资融券的推出等。如何在众多的上市公司中迅速、有效地选择投资目标,降低调研和投资成本,成为机构投资者面对的新问题。而通过用量化手段,分析、归纳出相对客观的选股模式,发掘内在的驱动因素,正是量化选股的优势所在。正是在这样的环境下,机构投资者开始重视起量化投资来。作为证券市场上的卖方,券商纷纷在自己的金工团队基础上成立数量化研究团队,推出了大量量化策略报告和量化投资方面的服务(如程序化交易服务)。一些阳光私募基金也开始成立。公募基金作为市场的领头羊,自然在量化投资方面不甘落后,招兵买马为发行量化基金做准备。
(二)国外量化基金的优异表现吸引了众人的目光,特别是2008年金融危机期间,量化基金的优异表现吸引了更多的人关注。当时大部分基金都亏损严重,但部分采用量化策略的基金却获得了非常好的收益。詹姆斯・西蒙斯管理的大奖章基金的年均净回报率高达35%,成为量化基金中令人眼红的明星。国内基金公司正是抓住投资者对量化基金的兴趣,适时推出各自的量化基金产品。
(三)人才队伍的积累,为国内量化基金的推出提供了可能。量化基金是一个舶来品,熟悉量化基金管理的人才在国内相当缺乏。光大保德信和上投摩根之所以能较早推出其量化基金,关键在于其外方股东的支持,其产品采用的是其外方股东提供的量化投资方法。而当时国内的本土基金则缺乏这方面的人才,自然没有实力推出量化基金产品。但金融危机给了国内基金行业机会,危机之后很多国外的投资人才回到国内,他们也带来的国外的一些先进的量化投资知识和经验。目前市场上量化基金经理绝大多数均是有海外背景的。
二、国内量化基金的量化技术
通过基金的招募说明书,我们可以将市场上目前量化基金采用的数量化模型和模型主要使用的选股指标罗列出来。
我们无法了解各基金量化模型的详细内容,但从表2可以看出,目前国内基金采用的模型多是侧重于选股的。其中多因子模型应用最多,通过多因子模型筛选出被低估的股票,进行价值投资是大部分基金所采用的量化方法。这一情况也与海外情况类似。
三、国内量化基金收益及绩效
本文选取了成立以来、最近1年(20100930-20110930)、今年以来这3个时间段来从收益和绩效两个方面对市场上量化基金进行对比。通过比较,我们可以看到富国沪深300、光大保德信核心和中海量化策略这三支基金表现相对较好。但从总体上来说,国内量化基金表现还不是很突出,各只业绩差距也很大。
四、影响国内量化基金发展的因素
国内量化基金的发展毕竟要取决于证券市场的大环境,随着股改的结束、股指期货的推出,市场环境相比之前更有利于量化投资的发展,但仍然有很多的约束,如衍生产品的缺乏,对基金公司、保险公司投资的约束,这些都制约了机构投资者在量化投资方面施展拳脚的空间。当然,我相信随着中国资本市场的发展,这些情况在未来会逐步改善。
数量化模型的应用需要结合实际的市场环境,国内量化投资水平的提高,不能依靠引进模型,最关键的还是要结合本土的实际情况,开发适合国内市场的模型。量化技术的本土化发展是未来量化基金发展的关键,只有设计出符合国内市场环境并能取得不错业绩的量化模型,投资者才能真正认同量化基金。
另外,基金的考核机制也是影响量化基金发展的一个重要因素。量化基金因其特殊性,其绩效考核与普通基金会有不同。设定一个合理的基金考核制度,给其一个宽松的投资环境,只有这样量化基金才能更加健康的发展。
参考文献:
[1] 数量化投资的解读及其本土化―量化基金专题研究之一[R].联合证券,2009-11-17.
[2] 影响量化基金业绩的主要因素[R].海通证券,2009-10-28.
【关键词】金融衍生品 量化投资 相关性 探究
金融衍生品与量化投资之间的相关性是当前经济发展比较重要的研究议题,两者的有效配合在某种程度上能使投资者获得较为丰富的投资收益,并且将风险以及杠杆性将至最低。就当前现状而言,金融衍生品内容越来越多,而量化投资投资工具呈现多元化的趋势,这为投资者提供了较多的投资方式以及渠道,并使其在最小风险值内获取最大的经济收益。文章主要介绍了金融衍生品及量化投资,重点阐述了两者之间的关联性,最后论述了两者有效融合的前提下如何获得最大的经济效益值。
一、金融衍生品与量化投资概念阐述以及其发展
(一)金融衍生品
金融衍生品在我国经济中运用范围不断扩宽,它是基于经济发展而形成的,是社会发展的必然产物,并且对于全球经济有着深远的影响,比如加剧世界经济一体化、促使金融一体化的逐步形成,金融衍生品在我国经济发展中扮演非常重要的角色,带动了我国实体经济的发展。所谓金融衍生品,它是与金融相关,并由其引发的派生物,属于一种金融交易工具。近年来,随着市场经济发展速度不断提升,我国金融市场逐渐趋向完善,这也为金融衍生品的发展提供了良好的契机,使其发展日益壮大并成为金融市场的主力军,并且与信贷以及货币市场联系日益密切,最终促进了金融资产配置的逐渐完善,即风险管理的复杂链条。从目前情况分析,我国经济发展呈现出良好的前景,相对应的工业以及房地产发展相对较好,在此基础之上,依据高杠杆原理,金融产品自身的优势性彻底被展现出来,并为投资者带来相对较好的经济效益值。但是金融产品也存在一定的风险,可谓是一把“双刃剑”,虽然它可促进金融市场的发展,但如果运用不当将会引发极为严重的后果。上世纪90年代以来,就发生了多起由于金融产品运用不当而引发的经济损失,例如:2008年金融危机波及全球,引发金融危机的原因主要是CDS等金融产品,其在美国金融市场运作中出现风险管理不当的现象,也就是风险失控,继而引发了全球性的经济危机。
金融衍生品主要是基于与金融有关产品的通过不同方式衍生而来,主要包含四种基本形式,分别是远期、期货、期权、互换,其价格的变动规律主要是由基础标的物所决定的,随着它的变化而变化的,而金融衍生品的价值主要与基础工具的相关因素有关,比如利率、汇率、市场价格、指数、信用等级等等,从本质上分析,它属于虚拟的有价证券,在某种意义上而言是一种权利证书,给予投资者基础性的权利,且与实物资本有着很大的区别,能够使投资者获得投资收益。与一般金融产品相比,金融产品有了极大的改良与进步,产品结构更为复杂,其定价模式基本比较单一,主要是以复杂数学模型为主,将多种风险以及因子,如Beta、Delta、Rho、久期等,通过多种方式的映射、组合、分解复合等,继而形成金融衍生品,结构层次多样。金融产品虽然为投资者提供了发展契机,但是也存在极大的风险,这种风险的形成与交易与结算有着直接的关联,上述两种交易形式基本发生在将来,基于高杠杆的影响,市场风险难以有效控制,预测就更难以估计。
(二)量化投资
量化投资在我国金融市场发展中得到了进一步推广,相较于定性投资,量化投资科学性更强,并且具备相应的理论依据。在投资过程中,投资者可以利用数学、统计学,还可以借助数据挖掘等方法,以此构建投资策略,管理投资组合,继而实现风险管理,利用数据模型,借助系统交易信号,系统会自动完成相关交易。从本质上分析,量化投资属于工具,投资者可以通过经验累加,然后利用数学模型的功能性,继而实现信息化的表达。量化投资形式具有自身的优势特点,这也是传统投资形式不可比拟的,它主要将投资者经验累积以另外一种方式呈现,即数学模型,继而转化至计算机中,运用相对科学的计算方式,实现产品投资,随着金融市场的日益完善,数学模型也得以不断优化。无论是数量化的投资,还是依靠计算机程序的投资,对于技术的要求极为苛刻,在业界誉为“黑箱交易”,从某种角度分析,量化投资基本不依赖大脑,而是依据交易系统,继而实施具体的决策,上述交易系统是之前确定的,且形式非常复杂的,这样的系统往往具备较高的精准度。与此同时,交易系统开发需要一定的技术支持,即程序算法设计,部分开发者通常会采取相应措施,加密交易系统,以此保障知识产权不受侵害。外界投资者对此并不清楚,具体运行机制也存在极大的疑问。量化投资者基于交易系统的前提下,收集市场最新的数据变化,同时采集与之相关的信息,将其输送至交易模型里,然后通过科学的计算,数据的挖掘,加密信息的处理,最终敲定资产配置方案,确定交易的最佳时机。按照相关公式进行量化投资在某种程度上是一种相对理性的投资,其自身的优势集中体现在分析策略这一环节,突出明晰性以及一致性,与此同时,运用信息与公式,由此获得的结果基本相同,这在某种程度上对交易者非常有利,避免由于其客观性以及随意性而引发的交易失误。
针对量化投资而言,其涵盖多个方面:就现状而言,主要包括量化资产配置、量化投资交易、风险管理。以资产配置为例,必须要基于行业选择的前提下,以此实施有效配置,然后依据策略组合,在行业内开展相关工作,实行资产优化。量化资产投资,它在某种程度上奠定了总体投资方向,确定发展前景最好的行业、风格和产品。换言之,投资者需要根据市场行情变化规律,选择市场以及产品,然后给予最佳资金分配方案。相较于传统的投资形式,量化投资更具一定的优势,更具科学以及合理性,同时兼具高信度。投资者可以依据数据模型,对整个市场进行有效分析,继而给予相对准确的判断,以此进行理性投资决策。
二、两者之间的关联性分析
金融衍生品与量化投资的有效结合能够起到非常关键性的作用,投资者能够选择相对发展较好的金融产品进行量化投资,由此收获了相对丰富的投资收益,因而探讨两者之间的关联性以及有效融合具有划时代意义。近年来,我国金融市场发展形势良好,也因此带动了金融衍生品的迅速扩大,促进了国民经济的迅速增值。但是以我国现有金融衍生品现状来说,无论是从行业总量、规模,还是参与范围及层次方面来看,金融衍生品都还属于小众市场,仍需不断创新与改革。从目前情况分析,对于大部分的投资者而言,他们对于金融衍生品的了解还不够透彻,这也导致了民主对于金融衍生品的了解甚少,基本都停留在电视或是报纸上对于金融衍生品的看法,这于金融衍生品的长远发展是非常不利的。2008年的金融危机,很多实体企业采取了相应的对策,比如参与期货市场,实施套期保值,以此降低生产经营风险,也在某种程度上扩宽市场发展。
金融市场发展速度的加快,股指期货得以大面积扩散,指数期权也扩大了应用范围,这于我国金融市场发展而言是极为有利的因素,为量化投资提供良好的发展契机,迎来发展机遇。借助量化投资原理,运用相关实践方法,通过计算机程序实施投资交易,这将是之后金融衍生品投资的主流方向。
金融衍生品的诞生是社会发展的必然产物,其功能性集中体现在投资风险规避,它形成的主要动因与投资者关系密切,满足其转移风险的需求,同时实现其套期保值实际需求,这一过程又被称为风险对冲,这样可以使投资者运用相对较少的低成本,基于现货价格变动,达到规避风险的目的。从目前形势分析,量化投资在我国金融衍生品上得到了广泛应用,其对冲实践需要借助相关载体,也就是具备一定的期货市场方可实现,但是基于交易品种单一的现状,这使得量化投资产品在某种程度上具有一定的局限性。随着股指期权的诞生,个股期权的逐步实施,扩大了金融市场的投资发展,让更多的投资者增加了风险规避渠道,推动了量化投资范围的不断扩大。量化交易策略也在某种程度上发生了改变,更具创造性,带动实体经济发展。
金融衍生品的诞生以及投入使用促进了我国金融市场交易的逐步完善,这其中金融衍生品的一个非常重要的功能得到了极大的发挥,即价格发现。所谓价格发现功能,主要从参与者角度出发,他们通过获得信息,且基于价格预期,利用公开拍卖形式,或是借助电脑进行撮合交易,这在某种程度上可以获取市场真实需求,供求关系,并且极具竞争性以及预期性的体系。随着世界经济一体化趋势不断加强,世界金融市场不断扩大,与之相关的金融衍生品应用范围也随之不断扩大,金融交易所的相关交易实现跨越式的进步,通过这种形式形成的价格权威性更强。上述价格通过不同的传播工具不断扩散,如报纸、电视、网络等,范围波及全球,俨然成为市场价格的引领者,这为大众提供了良好的平台,让其透过相关经济信息了解经济动态,以便帮助投资者给予正确的决策,借以提升资源配置效率。量化投资相较于传统投资形式具有一定的优势,这主要体现在两个方面:分别是速度与规则,从某种角度分析,我们可以预期,量化交易应用范围,促使市场报价更为紧密,成交更为频繁,从而增强市场流动性。与此同时,基于量化交易策略而言,其中部分交易存在策略的相似性,这对于未来的金融市场影响颇大,集中体现在市场价格波动这一方面,具体表现为高波动性以及规律性,上述改变与量化投资有着非常直接的关联。
金融衍生品是社会发展的阶段性产物,量化投资是基于传统投资形式基础上的创新与变革,两者之间具有一定的关联性,就好比人和人之间的合作,通过量化投资,金融衍生品能够在某种程度上受益,彰显其风险规避功能,量化投资对于投资者而言是巨大的福音,使其更理性地进行投资,从而避免由于自身主观原因而造成的经济损失,与此同时,能够有效消除非预期损失。针对金融衍生品而言,其不断发展对量化投资而言也是非常有益的,为其提供应用平台,借助不同领域资源整合,从总体角度分析,优化金融市场,交易环境不断完善,并且对投资者影响极大,使其投资理念不断升华,投资水平在某种程度上也得到看提高,继而促使投资者通过结合金融衍生品与量化投资获取丰厚的投资收益。总的来说,金融衍生品与量化投资可谓是相辅相成的关系,彼此相互促进又相互影响,协调好两者的关系对金融市场发展益处多多。
三、结语
总体来说,金融衍生品在我国金融市场的广泛运用极大的促进了国民经济的发展,量化投资是一种相对理想的投资理念,将金融衍生品与量化投资有效融合能够获得良好的成效,这于金融市场经济发展而言也是极为有利的因素,为投资者提供了良好的应用平台,促使其获得比较丰富的投资收益。文章主要介绍了金融衍生品以及量化投资的发展,重点阐述了两者之间的相关性。
参考文献:
[1]李东昌.金融衍生品与量化投资相关性研究初探[J].山东工业技术,2015(06).
[2]张梅.后金融危机时代金融衍生品的风险管理与控制[J].湖南商学院学报,2010(02).
[3]寇宏,袁鹰,王庆芳.套期保值与金融衍生品风险管理研究[J].金融理论与实践,2010(05).
[4]林世光.可拓学在金融衍生品市场风险中的量化分析[J].武汉理工大学学报,2010(11).
[5]薛智胜.金融创新风险的防范与监管探析――以金融衍生品为例[J].云南大学学报(法学版),2012(01).
【关键词】量化投资 量化投资策略 资产配置
量化投资是投资者借助计算机信息化建立数学模型,把最新市场数据和相关信息输入到模型中,通过公式计算出投资对象,做出最优投资决策。量化投资不依靠投资者的感觉直觉,不依赖个人判断,而是将其经验利用信息通过模型实现投资理念。同时,投资者期望达到收益和风险的合理配比,利用夏普比率等科学方法控制收益和风险。量化投资者不用每天重复的分析琐碎信息,只需要不断完善这个模型并不断创造新的可以盈利的模型。
二、量化投资策略
(一)量化投资策略分类
量化投资策略,主要包括量化择时策略、统计套利策略、算法交易策略、组合套利策略、高频交易策略等。
(1)量化择时策略是收益率最高的一种交易策略,通过对宏微观指标的量化分析判断未来经济走势并确定买入、卖出或持有,按照高抛低吸原则获得超额收益率。在量化择时策略中,趋势跟踪策略是投资者使用最多的策略。量化择时分析策略包括:趋势跟踪策略、噪音交易策略、理易策略。
(2)统计套利是风险套利的一种,通过对历史数据的统计分析,利用统计学理论,估计相关变量的概率分布,判断规律在未来一段时间内是否继续存在。统计套利策略包括协整策略和配对利差策略、均值回归策略以及多因素回归策略。
(3)算法交易又称为自动交易,主要是研究如何利用各种下单方法,降低冲击成本的交易策略,将一个大额交易通过算法拆分成数个小额交易,以此来减少对市场价格造成冲击,降低交易成本。算法交易策略包括交易量加权平均价格策略、时间加权平均价格策略、盯住盘口测量、执行落差策略、下单路径优选策略。
(4)组合套利策略主要针对期货市场上的跨期、跨市及跨品种套利的交易策略。组合套利策略包括均衡价格策略、套利区间策略、牛市跨期套利、熊市跨期套利等。
(5)高频交易是一种持仓时间短、交易量巨大、交易次数多、单笔收益率低的投资策略,人们从无法利用的极为短暂的市场变化中寻求获利的计算机化交易,依靠快速大量的计算机交易以获取高额稳定的收益。高频交易策略包括流动性回扣交易策略、猎物算法交易策略和自动做市商策略。
如下是量化投资中几种主要的投资交易策略:
(1)趋势跟踪策略。趋势跟踪策略追随大的走势,向上突破重要的压力线可能预示着更大一波的上涨趋势,向下突破重要的支撑线可能预示着更大一波的下跌趋势。趋势跟踪策略试图寻找大趋势的到来,在突破的时候进行相应的建仓或平仓的投资操作来获得超额收益。
趋势型指标进行择时的基本理念是顺势而为,跟踪市场运行趋势。在趋势策略中使用的技术指标是最多的,常用有:移动平均线(MA)、平滑异动移动平均线(MACD)、平均差(DMA)、趋指标(DMI)等。
(2)噪音交易策略。噪声交易是指交易者在缺乏正确信息的情况下进行密集交易的行为。有效市场中噪声只是一个均值为零的随机扰动项,但市场并不总是有效的,市场上有很多异常信息,往往有人能够提前获得这些异常信息,很可能对投资的判断提供重要的价值。噪声交易策略的运用主要是机构投资者通过计算得到市场的噪声交易指数,监测该指数的变化,根据其变化来设计量化交易策略。
(3)协整策略。在统计套利策略中,协整策略是应用最广泛的一种策略。协整套利的主要原理,是找出相关性最好的几组产品,再找出每一组的协整关系,当某一组投资产品的价差偏离到一定程度时建仓,买入被低估的资产、卖出被高估的资产,当价差均衡时获利了结平仓。协整策略包括协整检验、GARCH检验、TARCH检验以及EGARCH检验。
(4)多因素回归策略。多因素回归策略,也是一种被广泛使用的投资策略。这一策略利用影响投资收益的多种选择因素,并根据其与收益的相关性,建立多元回归模型,简化投资组合分析所要求的证券相关系数的输入,这类方法的代表是套利定价模型。
(二)量化投资策略组合
量化投资策略组合综合考虑交易商品、策略类别、策略数量、时间周期因素。量化投资策略组合相比较单一投资策略有以下优势:
(1)策略组合降低了对单一策略的依赖,当单一策略失去竞争力,使用策略组合的方式,可以利用不同产品价格变化、变化幅度、周期等多个方面把握投资机会,在一定程度上保证了稳定的收益率,盈利机会更多;
(2)策略组合可以分散单一策略的交易风险,降低风险,通过策略组合将投资风险分散化,尽可能规避市场风险、策略风险及系统风险等。
三、量化投资资产配置
资产配置是指资产类别选择,即投资组合中各类资产的适当配置及对这些混合资产进行实时管理。量化投资管理打破了传统投资组合的局限,它与量化分析结合,将投资组合作为一个整体,确定组合资产的配置目标和分配比例,深化了资产配置的内涵。
资产配置包括战略资产配置和战术资产配置两大类。战略资产配置是长期资产配置,针对较长时间的市场情况,控制长期投资风险以达到收益最大化。战术性资产配置是依据资产预期收益的短期变化,获取超额收益的机会。因此,战术资产配置是建立在长期战略资产配置过程中的短期分配策略,二者相辅相成。在长期投资活动的战略资产配置下,战术性资产配置利用其积极的灵活的投资机会,适当的配合战略资产配置,获取较高收益。
四、前景展望
在量化投资飞速发展的今天,它己经成为金融市场中不可忽视的一个领域,中国的金融市场在逐步发展及完善,中国的量化投资也会继续发展和前进,随着量化投资方面的加大投入,量化投资的进程加快,中国量化投资的前景无限。
参考文献:
关键词:量化;投资;基金
数量化投资(以下简称量化投资)作为一种新兴的投资方法出现于20世纪50年代,千禧年后蓬勃发展,截至2008年,该类投资基金占美国证券市场份额的30%。
近年来,量化投资在中国渐渐引起重视,光大保德信基金、上投摩根基金、嘉实基金、中海基金、长盛基金、华商基金和富国基金等,先后推出了自己的量化基金产品。不少基金公司国内外广揽数量化投资人才,一股“量化基金”的热潮悄然掀起。
正如定性投资的偶像巴菲特一样,量化投资领域的传奇人物为詹姆斯 西蒙斯。据统计,詹姆斯 西蒙斯管理的大奖章基金从1989到2006年的平均年收益率高达38.5%,净回报率超过股神巴菲特(他以连续32年保持战胜市场的纪录,过去20年平均年回报达到20%),即使在2007年次债危机爆发当年,该基金回报都高达85%,西蒙斯也因此被誉为“最赚钱基金经理”,“最聪明亿万富翁”。与巴菲特的“价值投资”不同,西蒙斯依靠数学模型和计算机管理着自己旗下的巨额基金,他称自己为“模型先生”。西蒙斯几乎从不雇用华尔街的分析师,他的文艺复兴科技公司里坐满了数学和自然科学的博士。用数学模型捕捉市场机会,由计算机做出交易决策,是这位超级投资者成功的秘诀。(上海金融学院国际金融研究院 鹿长余)
截至2009年6 月30 日,中国定量投资规模总量大约187 亿元,在全部基金管理规模中占比仅0.6%。可以说量化投资在中国目前还是一块需要开垦的处女地,可以预期的是,量化投资在中国发展前景广阔。
什么是量化投资呢?“通过信息和个人判断(using information and judgment)来管理资产为基本面投资或者传统投资,如果遵循固定规则,由计算机模型产生投资决策则可被视为数量化投资。” ――Fabozzi《Challenges In Quantitative Equity Management》
与传统投资相比,量化投资的优越性主要来自两个方面:其一,现资组合理论强调通过多元化投资组合消除非系统性风险,以实现降低风险的作用。但实际上由于人的视野和精力都相对有限,基金经理或研究员不可能进行大范围的股票甄选和高频率的验证测算,形成的投资策略得不到宽度、广度上的肯定,难免形成一孔之见。靠人力甄选得到的投资组合很难达到最优化配置,无法确保在风险管理和利润追求上的投资目标。而量化投资的视角更广,借助计算机高效、准确地处理海量信息,更广泛地寻找和验证投资机会,消除投资组合配置的局限性。其二,行为金融学认为,投资者是不理性的。任何一个投资个体的判断与决策过程都会不同程度地受到认知、情绪、意志等各种心理因素的影响。基金经理和投资研究员在一段时间跟踪某只股票之后,由于时刻关心股价的表现和基本面的变动,可能出现不同程度的情感依赖,“和股票谈起恋爱”。即使出现了下跌趋势,也可能因为过度自信、抵制心理等不理性的分析出发点而导致投资、荐股时的行为偏差。而量化投资依靠计算机配置投资组合,克服了人性弱点,使投资决策更科学、更理性。
简单的说,量化投资是快速高效、客观理性、个股与组合并重、收益与风险并重的投资方法。
量化投资的一般步骤如下:
数据化模型构建组合
1、 数据化:主要任务是把众多纷繁复杂的数据整理分类归纳成有用的数据;
2、 建立模型:给定一个策略,选择合适的模型预测收益与风险,选择最好的策略建立模型;
3、 构建组合:根据预测结果按照规则选择对象构建组合;
最后我们来看下专业金融人士对量化投资的一些看法。
嘉实基金公司的王永宏博士介绍,定量投资和传统的定性投资本质上是相同的,二者都是基于市场是非有效或弱有效的理论基础,投资经理可以通过对个股估值、成长等基本面的分析研究,建立战胜市场、产生超额收益的组合。不同的是,定性投资管理较依赖对上市公司的调研,以及基金经理个人的经验和主观判断,而定量投资管理则是“定性思想的理性应用”。定量投资的核心投资思想包括宏观周期、估值、成长、盈利质量、市场情绪变化等等。
俗话说,“条条大路通罗马”。巴菲特与西蒙斯的投资理念与成功,说明投资没有一定之规。
以巴菲特为代表的一类投资家认为,“现实世界是极为复杂的,经验与思考才是财富制胜之道”。因此,其成功的关键,不是顶级的科技,而是对市场的理解、洞悉和不随波逐流的勇气,即以“人”的因素造就财富的增值。
西蒙斯代表的一类投资家则被看作是推论公式、信任模型的数学家。他们利用搜集分析大量的数据,利用电脑来筛选投资机会,并判断买卖时机,将投资思想通过具体指标、参数的设计体现在模型中,并据此对市场进行不带任何主观情绪的跟踪分析,借助于计算机强大的数据处理能力来选择投资,以保证在控制风险的前提下实现收益最大化。
目前量化投资观念也在中国兴起,量化产品正开始萌芽。新发行的嘉实量化阿尔法基金就是量化投资产品,其试图将投资专家的锐利洞悉和数学家的严格客观进行整合,在基本面分析的基础上,提炼出产生长期超额收益的投资思想,借助计算机系统强大的信息处理能力构建定量模型及投资组合,并根据市场变化趋势及时动态调整,加上基金经理严格遵守纪律性投资法则,使该基金在融合定性投资思想精髓的同时,能够规避基金经理个人情绪对组合的影响,有效克服人性弱点,力争取得长期、持续、稳定的超额收益。
富国基金另类投资部总经理,前巴克莱(BGI)大中华主动股票投资总监李笑薇认为量化投资的核心仍是“人脑”。尽管量化投资在海外发展已有30 余年。由于种种原因,目前这一投资方式在中国尚处起步阶段,对于量化投资也存在诸如“量化就是模型决定一切”、“量化是完全由计算机选股”等较片面的认识。李笑薇表示,量化投资的核心是模型设计,“模型决定一切”的说法只能说是部分正确。当一个模型已经设计建设好之后,模型所产生的交易单的确需要严格执行,只有在特殊情况下才能对其进行修改。
但量化投资的核心是模型的设计和建设。而人脑无疑是这一过程中的关键。人对市场的理解,对模型构建的了解,对模型在市场中应用的经验,是搭建一个完美“黑匣子”的最关键。“只有模型设计和建设得好,投资业绩的把握才会增加。”李笑薇表示。
此外,不同的市场以及同一个市场的不同阶段对应的投资模型是不一样的。所以模型从开始设计到最后应用要经过不断修改,这是最难的问题。“这需要足够的对市场的理解和对模型的理解。”李笑薇解释到,定性投资人和定量投资人看待市场的角度不同。
关键词:量化分析;风险态度相关性;相关系数;理性投资
一、要解决的问题
(1)问题一:根据所给数据量化分析处理公众投资者的个人状况、信息获取方式、媒体信任程度、风险态度。(2)问题二:在量化分析处理公众投资者的个人状况、信息获取方式、媒体信任程度、风险态度的基础上,建立合适的数学模型分析它们之间的相关性;
二、模型的假设
(1)建模时在所有的问题答卷中剔除那些相关性不大的问题,只从中选取具有代表性的问题,以减少建模复杂度。(2)建模过程中的各变量是相互独立的且数据有很强代表性。(3)证券市场是有效的,且价格的变动具有惯性。
三、模型的建立与求解
(一)对问题一的求解
(1)模型的准备。通过对数据的分析,我们从所有47个问题中选出20个具有代表性的问题,将提炼出的问题分成4大类:个人基本信息状况、信息获取方式、媒体信任程度、风险态度。
(2)模型的求解与量化分析。通过对第一大类个人基本信息状况中所选取的5个问题进行量化分析得到个人基本信息状况的量化分析,在所有调查的616名对象中,女性共有236人,女性投资者占总投资人数将近四成。我国投资者的年龄主要集中在30岁以下,占调查总数的36.4%,其次是30~50岁,占比为31.2%,二者之和占到调查总数的近70%。60岁以上投资者仅占8.4%。尽管中高学历投资者居多,但分析表明,教育程度与投资者收益没有明显关系。其次在广大投资者当中97%的投资者属于中产阶级,62%的投资者目的在于改善生活,83.5%的投资者对上市公司只是部分了解,这也显示出了中国投资者投资证券的意愿不强,市场的积极性未完全调动,但同时也说明了我国证券市场还有很大部分未开发,证券市场前景广阔。
通过对第二大类信息获取方式中所选取的5个问题进行量化分析可知65%投资者投资知识来源于时间和杂志,65.5%的投资者做投资时是经过理性分析的,这反映出我国大多数投资者是属于风险厌恶者或者倾向于风险厌恶,在进行投资时还是比较理性的。其次有77.6%的投资者认为以往的投资经验对现在或未来的投资是有用的。73%的投资者会关注财经新闻的报道,85%的投资者主要从网络,电视,报纸杂志等媒体中获得投资信息。
通过对第三大类媒体信任程度中所选取的5个问题进行量化分析得到的媒体信任程度量化分析表如表1所示。
从表1可以看出53%的投资者最初进入股市的原因是认为有利可图,自己决定进入。对于媒体反复推荐的股票,68%投资者不会购买,对媒体的信任程度还是比较低的。其次有76.6%的投资者觉得媒体上推荐的股票是有一定道理的,但有40.4%投资者之所以相信媒体上推荐的股票是因为自身能力的不足,只好相信媒体推荐。同时,在听取各类人士意见时,35%的投资者相信身边熟悉炒股的朋友。总之,我国投资者对于媒体的信任程度还是偏低的,这同时意味着我国的证券业还有着巨大的发展空间。
通过对第四大类风险态度中所选取的5个问题进行量化分析得到的风险态度量化分析表如表2所示。
根据表2分析显示,投资者的操作模式相对稳定,3个月内换手1次或更短的投资者占比最多,总体来看,投资者的持股时间相对较短,长期投资者占投资者比例较小。从趋势上看,在2008年以来的下跌行情中,投资者更倾向于频繁换手,3个月内换手1次或更短的投资者逐渐增加至62.4%,持股半年内的比例明显下降至28.6%。至于持股一年以上的虽有所增加,但平均占比不高,这部分长期投资者的增加不能排除是因套牢产生的被动长期投资。股票下跌时,只有不到20%的股民会选择低价再买入,再一次反映出我国股民大多数属于风险厌恶者。同时,面对股价下跌,但持有目标是五年时,62%的投资者会维持不动,但面对股价下跌,但持有目标是三十年,只有42%的投资者会继续维持不动。总之,投资者个人承担风险的态度还是比较理性的。
(二)对问题二的求解
(1)模型的准备。证券市场市场参与者众多,市场机制更为复杂,信息不对称现象更为明显。对于风险态度的衡量,在影响证券销售量的因素中,有价格,上市公司市场信誉,投资者的风险态度等。本题中着重量化被调查者的风险态度。为了确定投资者分别隶属于风险厌恶,风险中性,风险偏好哪种类型,我们在分析数据的过程中,给每个问题每个选项赋分的原则如下:1)选A、B、C、D的基础得分分别为1、2、3、4。2)将投资者的态度分为(0~30)风险厌恶型,(31~60)风险中立型,和(61~90)风险喜好型。
相关系数用来反映两者之间的相关性,考虑相关系数r时,我们遵循以下准则:1)当r>0时,表示两变量正相关,r
通过数据分析,我国投资者的总体风险态度是介于风险厌恶和风险中立的,由此可以看出投资者较为希望通过风险投资增加其个人收入。但是由于客观、主观因素,投资者中,持观望态度者较多。
(2)模型的建立与求解。根据题目提供的数据以及前面的赋值,算出所有被调查者的风险态度值,并选出问卷中的第二问跟风险态度进行相关性分析,则有:
结果为a=[1 1 1 2 1 1 4 3 2 1 1 1 1 3 2 2 4 3…1]
对应的风险态度值为b=[44 44 46 45 41 42 47 41 54 46 38 49 51 53 53 50 44 44…47]
根据以上分析可知总体个人状况与风险态度的相关性小,由此得出我国近段时间进行投资的民众数量较大,覆盖到不同民众的方方面面。信息获取方式与风险态度之间联系大、得知在我国的投资领域,投资者的信息获取途径和多少对其投资的方向性还是有较大的影响。媒体信任程度与风险态度之间的相关性适中,可知部分投资者对待媒体信息的态度还是比较冷静。
参考文献:
[1] 杨桂元,黄己立.数学建模[M].合肥:中国科学技术大学出版社,2008.
[2] 李柏年,胡守信.基于MATLAB的数学实验[M].北京:科学出版社,2004.
[3] 魏捷.关于调查问卷中定性数据处理方法的探讨[D].中南财经政法大学 2008.