欢迎访问爱发表,线上期刊服务咨询

高中数学基本思想方法8篇

时间:2023-06-25 09:21:33

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇高中数学基本思想方法,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

高中数学基本思想方法

篇1

关键词:断点;初高中;教学衔接

中图分类号:G632 文献标识码:B 文章编号:1002-7661(2013)30-203-01

很多初中生在步入高中阶段后回来向笔者反映,在数学学习方面跟不上节奏、进不了状态,尤其是成绩比较好的学生表现的更加明显。他们逐渐陷入数学神秘莫测的幻觉,产生畏惧感,动摇了信心,甚至失去了学习的兴趣。根据笔者初中、高中两个阶段的教学经历和经验分析,造成这种现象的原因是多方面的,最主要的原因还在于初、高中数学教学衔接上,下面我就这个问题谈谈在教学中的两点认识。

一、基础知识、思想方法的“断点”衔接

随着高中的学习慢慢深入,大量的作业也铺天盖地地来了,同时所牵扯到的方法和知识一下子多了起来,初中刚毕业的学生很容易被吓倒,原来学习的信心和兴趣和学习热情被扼杀。由于初中全面推行新课程标准数学教材实验,而高中数学新课程改革相对滞后,造成了初高中数学内容上存在过渡问题,其中主要的问题在于数学基础知识和数学的基本思想方法不衔接,出现“断点”。 因此初中新课程标准下的数学教材在高一数学教学补充以下内容及思想方法:

1、数和式

(1)立方和(差)公式、平方和(差)公式。在必修1单调性的证明时要求学生能够掌握;和(差)的立方公式,它是二项定理的最佳接洽点,也即是二项定理最直接的推广。

(2)十字相乘法和分组分解法。尤其是十字相乘法,它是解一元二次方程最快的方法,同时也就是解一元二次不等式的最快的方法。涉及“分组分解法因式分解”.初中课标、教材中已不作要求。

(3)二次根式:适当补充相当的运算。如整体运算等。

2、方程

可化为一元二次方程的高次方程、分式方程和无理方程。这部分初中教材删除了。同时也就删除了用换元法解分式方程和无理方程中的平方关系和倒数关系;删除了换元法;删除了解方程的基本思想方法:降次;分式转整式;无理转有理的重要思想方法。一元二次方程根与系数的关系。补齐公式只需三五分钟,但它同时也缺乏整体运算的思想方法,缺设而不求的思想,而这些思想方法在高二的解析几何:直线和二次曲线的关系中应用极大。当然也就缺少机会强调一元二次方程根与系数的使用条件。

3、函数

二次函数所学内容有:定义,平移,基本性质,应用最值解答实际问题。应补充三个二次的关系和二次函数在给定区间上的最值。当然拓展到 “含参”在给定区间的分类讨论――“定轴动区间”和“动轴定区间”;二次方程的根的分布以及二次函数的其他性质,相应的可安排在函数性质学习完后,插到指数函数前学习。

4、证明

现行教材中“证明”的内涵与以前有所差别:现行初中数学教材中 “证明”是一个局部的公理化体系,它是从4条“基本事实”出发,证明40条左右的结论,除此之外的知识一般不在“证明”部分涉及。即使等式的性质、不等式的性质有的初中课标教材也不把它作为证明的依据,涉及的内容仅仅局限于“相交线与平行线”、“三角形”、“四边形”。而高中数学教材中,凡是学过的知识几乎都可以作为“证明”的依据.

初三学生数学计算能力、逻辑推理的能力、思维的深刻性和思维的严谨性等都较差。但他们在应用数学知识解决实际问题、探究与发现、合作与交流等多方面很优秀。因此,在初中教学中,要着力提高学生计算、推理等方面的能力,养成学生良好的思维习惯;而在高一教学中则要充分应用其优点,适时、适当补其知识和能力的不足。

二、教法和学法“断点”的衔接

课堂教学是师生的互动。初中毕业生一开始总觉得课堂简单,要求有挑战性问题、作业马虎、课堂乱喊爱表现,此类男生居多;对数学有畏惧心理,不是很自信,此类主要是女生;不预习,不及时复习当天的知识就开始盲目地做题;有的学生不能很快地适应高中的教学模式,更多的是不能适应高中的老师;有的学生认为老师不够亲切太严厉,说话声音小,板书有点小,语速太快……这些习惯上的“断点”如果不能很好的解决,对高中学习进步会有很大的影响。

对此,首先要让学生了解高中数学的特点,明确高中数学的学习方法,端正学习的态度。要把对学生加强学法指导作为教学的重要任务之一。指导要以培养学习能力为七点,狠抓学习基本环节,不要要求学生干什么、而是引导他们怎么干。具体措施有三:一是寓方法指导于知识讲解、作业讲评、试卷分析等教学活动之中,这种形式贴近学生学习实际,易被学生接受;二是举办系列讲座,介绍学习方法;三是要求学生写数学学习日记,及时总结反思。要求学生端正学习态度,养成良好的学习习惯,调节自身学法,以尽快适应高中数学教学。其次,教师也要根据学生实际随时调节教学方法。在高一,教师可适当降低要求,循序渐进,逐步提高。老师要先给学生搭个梯子,做个示范走一遍,再扶着他们慢慢自己摸索,直到学生能够自己不断的向高处攀登。不能开始就“撒手”,让学生摔得很惨。

很多老师把高中的学生出现的问题推到初中的数学教育,我们应该明白一点,高中的教育更多的是提高拨优的教育不再是“义务基础教育”,在这个过程中势必要淘汰掉一部分。说起来有点残酷,但这就是事实。新课改强调要注重学生的基础,注意螺旋式地上升。如何“引导学生做好过渡阶段的学习”是一个很有研究价值课题,作为老师也要多多找找自己的原因。参考文献:

[1] 中华人民共和国教育部制定《普通高中数学课程标准》2007.

篇2

【关键词】高中数学 教学设计 思维培养

高中数学新课标从改革理念、课程内容到课程实施都发生了较大变化。要实现数学教育教学改革的目标,教师是关键,教学实施是主渠道,而教学设计是实现课程目标、实施教学的前提和重要基础。因此,在高中数学教学设计中必须充分考虑数学的学科特点,高中学生的心理特点,以及不同水平、不同兴趣学生的学习需要,运用多种教学方法和手段,引导学生积极主动地学习,掌握数学的基础知识和基本技能以及数学思想方法,发展应用意识和创新意识,形成积极的情感态度,提高数学素养,使学生对数学形成较为全面的认识,为未来发展和进一步学习打好基础。

一、重新审视基础知识,注重基本技能训练

1. 强调对基本概念和基本思想的理解和掌握。教学中应强调对基本概念和基本思想的理解和掌握,对一些核心概念和基本思想(如函数、空间观念、运算、数形结合、向量、导数、统计、随机观念、算法等)要贯穿高中数学教学的始终,帮助学生逐步加深理解。由于数学高度抽象的特点,注重体现基本概念的来龙去脉。在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质。

2. 重视基本技能的训练。熟练掌握一些基本技能,对学好数学非常重要。在高中数学课程中,要重视运算、作图、推理、处理数据以及科学计算器的使用等基本技能训练,但应注意避免过于繁杂和技巧性过程的训练。

3. 审视基础知识与基本技能。随着科技的进步、时代的发展和数学研究的不断深化,高中数学的基础知识和基本技能也在发生变化,教学要与时俱进地审视基础知识和基本技能。例如统计、概率、导数、向量、算法等内容已经成为高中数学的基础知识。对原有的一些基础知识也要用新的理念来组织教学。例如,立体几何的教学可从不同视角展开――从整体到局部,从局部到整体,从具体到抽象,从一般到特殊,而且应注意用向量方法(代数方法)处理有关问题;不等式的教学要关注它的几何背景和应用;三角恒等变形的教学应加强与向量的联系,简化相应的运算和证明。

二、关注相关数学内容之间的联系,全面地解和认识数学

数学各部分内容之间的知识是相互联系的,学生的数学学习是循序渐进、逐步发展的。为了培养学生对数学内容联系的认识,在教学设计中,须要将不同的数学教学内容相互沟通,以加深学生对数学的认识和本质的理解。例如,可以借助二次函数的图像,比较和研究一元二次方程、不等式的解;比较等差数列与一次函数、等比数列与指数函数的图像,发现它们之间的联系等。

新的高中数学教学内容是根据学生的不同需要,分不同的系列和层次展开的,因此必须引起课堂教学设计的足够关注。同时,处理这些内容时,还要注意明确相关内容在不同模块中的要求及其前后联系,注意使学生在已有知识的基础上螺旋上升、逐步提高。例如,统计的内容,在必修系列课程中主要是通过尽可能多的实例,使学生在义务教育阶段的基础上,体会随机抽样、用样本估计总体的统计思想,并学习一些处理数据的方法;在选修课中则是通过各种不同的案例,使学生进一步学习一些常用的统计方法,加深对统计思想及统计在社会生产生活中的作用的认识。

三、关注知识的发生和发展过程,促进学生自主探索

在高中数学教学设计中,呈现教学内容应注意反映数学发展的规律,以及人们的认识规律,体现从具体到抽象、特殊到一般的原则。例如,在引入函数的一般概念时,应从学生已学过的具体函数(一次函数、二次函数)和生活中常见的函数关系(如气温的变化、出租车的计价)等入手,抽象出一般函数的概念和性质,使学生逐步理解函数的概念;立体几何内容,可以用长方体内点、线、面的关系为载体,使学生在直观感知的基础上,认识空间点、线、面的位置关系。

在教学设计中,应注意创设恰当的情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题,提出问题,经历数学的发现和创造过程,了解知识的来龙去脉。教学素材的呈现应为引导学生自主探索留有比较充分的空间,有利于学生经历观察、实验、猜测、推理、交流、反思等过程;还可以通过设置具有启发性、挑战性的问题,激发学生进行思考,鼓励学生自主探索,并在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对数学较为全面的体验和理解。

四、加强现代信息技术与数学教学的整合

篇3

关键词:高中数学;函数;数学思想

高中函数教学具有较强的逻辑性,导致学生学习起来存在较大的困难,因此教师必须要采取有效的措施不断激发学生的学习兴趣,为学生讲解一些思想方法,从而促进学生对函数知识的深入学习,来提升学生的学习效率。并且让学生在函数的学习中去了解事物的变化与发展,理解其中存在的一些规律,培养学生的思维判断能力,从而有效提升学生的学习质量。

一、函数与方程思想

在高中数学函数学习中,函数与方程思想属于一项基本思想,同时也是高考的难点所在。目前在高中数学教学中,由于教师对思想方法的渗透不够完善,导致学生仅仅是利用一种方式做题,缺少举一反三的能力,数学学习较为机械化。函数思想主要是指利用运动以及变化的观点来建立有效的函数关系,从而来构造函数,之后利用函数的图像以及性质进行问题的解决与转化,从而促进学生解决问题能力的提升。方程思想主要是指分析在数学问题中的变量间的等量关系,从而构造出方程,利用方程性质解决问题。将函数思想与方程思想相互结合,从而培养学生的解题能力,做好学生运算能力以及逻辑思维的训练,让学生掌握函数问题的解决方式,提升学习效率。利用函数与方程思想,能够促进学生借助数学思想进行分析,并且去主动思考解决疑问,提升自身的数学素养。

二、化归类比思想

化归与类比思想主要是将需要解决的问题转化为已有知识范围中可解决的问题,将复杂化的问题逐渐向简单化转化,并且将一些一般性的问题转化为直观性问题,以便于学生解决。化归类比思想是函数教学中的基本思想方法,在函数问题中,很多本内容都涉及了类比思想,学生在问题的解决中必须要不断转化问题,利用已知条件与其他条件进行对比,从而简化问题,最终解决问题。这在很大程度上提升了学生的数学创造性思维以及逻辑性思维。学生有效掌握化归类比思想方法,能够在解决问题中不断活跃思维,将其与其他知识相联系,从而不断激发学生的学习动力与思考能力,提升学生的学习效率。例如,在函数问题的解决中,可以引入符号来进行问题的概括,简化数学思维,提升学生解决问题的能力。在解析几何的教学中,其中直线的斜率可以利用符号表示,倾斜角用α表示,因此直线的斜率可以表示为k=tanα,这样将数学语言转化为符号,学生理解起来也比较方便。所以学生在学习中掌握化归类比思想,利用数学变化方式来进行问题的转化,从而有效解决问题,促进学习能力的提升。

三、数形结合思想方法

数形结合方法是解决高中函数问题的一种常用方式,并且运用过程简单,能够将复杂的函数关系利用直观的图像表现,便于学生解决函数问题。将抽象思维与形象思维结合,有助于学生对知识的深入理解与分析,提升解决问题的效率。高中函数较为复杂,仅仅凭借数量关系,学生无法有效理解知识,然而利用图形的规律与性质,将其数量关系进行表现,从而化繁为简,促进学生理解知识。例如,在进行y=(cosθ-cosα+3)2+(sinθ-sinα-2)2的最值

(θ,α∈R)求解中,可以将其转化为函数模型的图像,以此来直观地进行数学关系的展示,促进学生对问题的求解,提升解题的效率。

四、分类讨论思想

高中函数分类讨论思想,是一种化整为零、积零为整的思想方式,在问题的研究中,如实所给的条件以及对象无法进行统一,那么就需要根据数学对象的基本性质以及相关条件进行分析,将问题对象分为不同的类别,同时针对问题进行讨论,来解决问题,促进知识的理解。在高中函数学习中,较为常用的分类讨论思想主要是根据函数的性质、定理以及公式的限制等进行探讨。并且结合问题中的变量以及需要讨论的参数等,来将其进行分类与讨论,从而解决问题。这需要教师在教学中由浅入深、循序渐进地进行分类讨论思想的渗透,从而让学生在潜移默化中掌握思想方法,做到举一反三,以便于加深学生对数学思想方法的了解与运用。

高中数学函数教学中,教师要想提升教学效率,促进学生函数理解能力的提升,就要有效渗透数学思想方法。学生利用数学思想方法进行函数知识的分析,从而解决函数问题,最终提升学生的函数学习效率。

参考文献:

篇4

关键词: 高中数学 抛物线 变式探究 基本不等式

在我国传统的数学教学中十分重视变式教学,正是因为应用了变式教学,我国中学生在基础知识和基本技能方面远远超过了西方学生,可以说变式教学是具有中国特色的教学方法,但是我国学生在解答开放性问题及动手能力方面逊于西方学生.我国的专家学者对变式教学的理论研究比较多,实践研究比较相对较少,对理论的研究大都停留在感性知识上,甚至在有些理论的认识上还模棱两可,还有就是很少有高中教师能在教学实践中深层次地剖析变式教学,因此,对变式教学的实践探究就有非常重要的理论和实践意义.下面笔者列举数学教学案例就对变式教学的实践谈谈体会.例如,与直线和圆锥曲线位置关系有关的问题是各级竞赛及高考的热点问题,同时也是考查学生数学综合能力的主要载体,对相关问题的变式、探究是培养学生数学基本思想方法、形成数学能力的重要途径.本文主要结合2013年全国数学联赛的一道试题重点研究与直线和抛物线位置关系有关的度量问题及轨迹问题,其基本的思想方法可以类比到直线与其他二次曲线的问题中.

【评析】本题是2013年全国高中数学联赛一试的一道填空题,题目内容简洁清晰,以学生比较熟悉的抛物线及向量的数量积运算为背景,主要考查学生综合运用坐标法和函数与方程的思想进行分析问题、解决问题的能力,题目本身容易上手,解题思路自然流畅.通过深入思考发现,本题内涵丰富,对相关问题的变式分析更是培养学生探究能力的一个很好的素材.

变式3:求坐标原点在直线AB上的投影的轨迹.

总之,变式探究学习模式在课堂教学实施中,就是在科学的教育理论指导下,借鉴科学家发明创造的思想方法和数学问题,通过创设一定的情境帮助学生主动投入多角度的解题教学中,对数学问题作多层面探究.首先,引导学生运用数学基本策略和方法发现和提出问题,并解决问题.其次,引导学生合作交流,开发学生潜能;让学生在教师的指导下,理清知识结构,寻找科学有效的方法,对数学问题进行独立探究和合作探究,归纳综合,拓展创新,深层探究,发展学生的创新能力.

参考文献:

[1]钱正艳.引导学生创新思维,拓宽学生的思维空间[J].湖南教育,2010(12).

篇5

一、回归课本,注重基础

数学的基本概念、定义、公式,数学知识点的联系,基本的数学解题思路与方法,是第一轮复习的重中之重。回归课本,自己先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要扎扎实实,不要盲目攀高,欲速则不达。复习课的容量大、内容多、时间紧。要提高复习效率,必须使自己的思维与老师的思维同步。而预习则是达到这一目的的重要途径。没有预习,听老师讲课,会感到老师讲的都重要,抓不住老师讲的重点;而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,从而提高复习效率。

二、夯实基础,提炼方法

在第一轮复习要求学生打好基础,牢固掌握课本上的重点知识及常用的基本思想和方法。近两年来的高考数学试题的难度比较稳定,对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,通过对数学知识的考查,反映考生对数学思想和方法的理解;命题主要从学科整体意义和思想价值立意,另一个特点是强化对通性通法的考查,淡化特殊的技巧,这更加突出了对数学思想方法核心部分的考查。

数学的思想方法是数学的精髓,只有运用数学思想方法,才能把数学的知识与技能转化为分析问题和解决问题的能力,才能体现数学的学科特点,才能形成数学的素质,因此,在系统复习的阶段,一定要打好扎实的基础,深刻领会数学思想方法,以适应高考要求。例如解析几何的学科特点是用代数的方法研究、解决几何的问题,坐标系是建立代数与几何联系的桥梁,解题时既要善于把几何图形的形状、大小、位置关系等方面的问题通过坐标系转化为曲线方程,又要善于运用代数的方法解决几何问题。

高考试题中主要从以下几个方面对数学思想进行考察:(1)常用的数学方法:配方法、消元法、换元法、待定系数法、降次、数学归纳法、坐标法、参数法等。(2)数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等。(3)数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳与演绎等。(4)重要的思想:主要有函数和方程、数形结合思想、分类讨论思想、转化(化归)思想等。

三、以“错”纠错,查漏补缺

这里说的“错”,是指把平时做作业中的错误收集起来。高三复习,各类试题要做几十套,甚至上百套。如果平时做题出错较多,就只需在试卷上把错题做上标记,在旁边写上评析,然后把试卷保存好,每过一段时间,就把“错题笔记”或标记错题的试卷看一看。在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。查漏补缺的过程就是反思的过程。除了把不同的问题弄懂以外,还要学会“举一反三”,及时归纳。

四、创建知识网络体系

在第一轮复习时,注意加强课本上各知识点的联系,使学生对知识系统化网络化,加深对知识的理解和记忆。(1)横向联系。数学考试中对数学知识的考查,特别注意“点”和“面”的结合。考查的面宽,知识点在每份试卷有100多个,例如函数是高中数学的主干,其知识和方法,与不等式、方程、数列、平面三角、解析几何、极限与导数的联系十分密切,相互渗透,相互作用,自然成为高考中考查的重点内容。向量是一个重要的运算工具,不能把它作为一个独立的单纯的知识点学习,应学会使用这个工具。(2)纵向联系。例如函数是高中数学的一条主线,在高中数学中占有重要的地位,由于对函数知识的综合考查能够比较全面看出学生运用数学知识解决问题的能力,所以高考中对函数的考查是一个重点。在复习函数时,我们由函数的概念入手,到函数的性质:定义域、值域、图象、单调性、奇偶性、周期性、最(极)值、对称性、可逆性、连续性、可导性等十一个方面来学习。尤其是处理函数的最(极)值问题、值域问题、单调性问题、不等式等都可以用导数这一工具来解决,常使问题大大简化。同时总结中学数学的常见的函数:正比、反比、一次、二次、指数、对数、三角以及由它们复合而成的一些基本初等函数,较熟练地掌握它们的图像和性质。所以复习函数由浅入深,逐步到位。第一轮复习中在课堂上对一些重点、难点概念要注意重点复习。系统复习知识不是简单的重复和机械的记忆,而是要把所学的知识形成网络化,形成体系,基本达到综合、灵活应用的水平。

五、处理好讲练关系,提高运算能力

篇6

关键词:高中数学;目标教学;解题方法

一、数学解题的认识

解题就是“解决问题”,即求出数学题的答案,这个答案在数学上也叫做“解”,所以,解题就是找出题的解的活动。教学中的解题是一个再创造或再发现的过程,是数学学习的核心内容。解题是真正发生数学教育的关键环节,尚未出现解题的数学学给人一种尚未深入到实质或尚未进入到的感觉。解题是掌握数学并学会“数学地思维”的基本途径。概念的掌握、技能的熟练、定理的理解、能力的培养、素质的提高等都离不开解题实践活动。解题也是评价学生认知水平的重要手段和方式。尽管不能认为是唯一的方式,也是当前用得最多、操作最方便、公众认可度最高的一种方式。可以说解题贯穿了认知主体的整个学习生活乃至整个生命历程。

解题教学的基本含义是,通过典型数学题的学习,去探究数学问题解决的基本规律,学会像数学家那样“数学地思维”。对高中数学教学中的解题课而言,不仅要把“题”作为研究的对象,把“解”作为研究的目标,而且要把“题解”也作为对象,把开发智力、促进“人的发展”作为目标。

传统意义上的解题,比较注重结果,强调答案的确定性,偏爱形式化的题目。而现代意义上的“问题解决”,则更注重解决问题的过程、策略以及思维的方法,更注重解决问题过程中情感、态度、价值观的培养。作为数学教育口号的“问题解决”,对问题的障碍性和探究性提出了较高的要求。波利亚在《数学的发现》中将问题理解为“有意识地寻求某一适当的行动,以便达到一个被清楚地意识到但又不能立即达到的目的。解决问题就是寻找这种活动。”第六届国际数学教育大会报告指出:“一个(数学)问题是一个对人具有智力挑战特征的、没有现成的直接方法、程序或算法的未解决的情境。”这类题目可以称为“问题”。“问题解决”是数学学科的一个永恒的课题。

二、课程标准对数学解题课的基本要求

高中教育首先是人生发展的一个重要阶段,是学生生活的一部分,而不是服务于某一个既定目标的工具。高中阶段的任务应超越“单一任务”和“双重任务”这种教育工具化的倾向,实现从精英教育到大众教育的转变。定位于奠定高中生进一步学习的基础学力,养成其人生规划能力,培养公民基本素养并形成健全人格上。

《数学课程标准》指出:“数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基础知识、基本技能、基本思想,使学生表达清晰、思考有条理,使学生具有实事求是的态度、锲而不舍的精神,使学生学会用数学的思考方式解决问题、认识世界。”

《数学课程标准》在界定高中数学课程性质时指出:“高中数学课程对于认识数学与自然界、数学与人文社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析问题和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。”

《数学课程标准》关于高中数学课程性质中专门对数学的应用提出要求:“高中数学课程有助于学生认识数学的应用价值,增强应用意识,形成解决简单实际问题的能力。”

三、正确处理讲与练的关系

在传统的高中数学解题课上,往往是教师先讲例题,学生再做对应例题的练习题,先讲后练。课堂上学生的思维被禁锢在教室设置的圈套中,形成僵化的思维方式。

笔者认为,处理好讲与练的关系是至关重要的。应提倡让学生做数学,在做中学,在讲之前作适当的练习,坚持“先练后讲”。让学生在不断的探索中提高能力,而不只是看数学、听数学。只有在老师讲解之前学生已经深入地钻研了问题,他才能有“资本”与老师和同学进行平等的对话、交流,真正成为学习的主体。只要练在讲之前,老师讲的过程中,学生必然在心里把自己的想法和老师的想法进行对比、评价。何况,我们还有小组讨论、组间答辩、师生相互质疑等多种“讲”的形式能使师生、生生之间更好地进行交往。

篇7

【关键词】数形结合;高中教学;实例应用

【基金项目】本文为重庆市教育学会第八届(2015-2017年)基础教育科研立项课题(重点课题)“高中数学教学中问题呈现的直观化对学生思维的影响”(课题批准号:XH2015A15)系列论文之一.

一、“数形结合”思想方法概述

(一)数形结合思想方法

中学数学研究的对象是现实世界的数量关系(数)和空间形式(形),数是数量关系的体现,而形则是空间形式的体现.“数”与“形”常依一定的条件相互联系,抽象的数量关系有形象和直观的几何意义,而直观的图形性质也常用数量关系加以精确描述.那么“数形结合”就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”,著名数学家华罗庚说过:“数与形本是相倚依,焉能分作两边飞,数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休,切莫忘几何代数统一体,永远联系,切莫分离.”这首小诗形象、生动、深刻的指明了数形结合的价值,也揭示了数形结合的本质.

(二)数形结合思想的价值

数形结合这种思维方法的应用,有助于我们解决许多问题,同时加深我们对数学问题本质的认识,使数学更具有创造性.

通过数形结合,首先是我们对几何图形性质的讨论更广泛、更深入了,研究的对象也更宽泛,方法更一般化了.其次是为代数问题提供了几何直观.由于代数借用了几何的术语,运用了与几何类比而获得新的生命力,如线性代数正是借用了几何学中的空间、线性等概念,用类比的方法把自己充实起来而迅速发展的.代数方法便于精细计算,几何图形直观形象,数形结合、相互促进,使我们加深了对数量关系与空间形式的认识.数形结合把点与数、曲线与方程之间建立一一对应的思考方法,启发我们将方程视为点,把某类函数的全体视作空间.形成了一种联想的思维方式,拓展了我们思维的广度与深度.

(三)“数形结合”思想方法在中学教学中的地位

1.从新课程对“四基”的要求来看数形结合思想

四基是基础知识、基本技能、基本思想、基本活动经验.教师应帮助学生领会数学思想方法、掌握知识与技能,积累经验.数学知识之间是相互联系的,数学核心概念、基本思想始终贯穿于中学教学.由于数学高度抽象性,新课标把数形结合思想作为中学数学的重要思想.

2.从新课标对思维能力的要求来看数形结合思想

数形结合思想能帮助学生思维意识的提升.通过数形有机结合,把形象思维与抽象思维有机地结合,让学生抽象思维具体化,初步形成辩证思维能力,同时帮助学生多角度、多层次思考问题.

3.从新课标数学内容的特点来看数形结合思想

数学过于抽象、过于形式化、过于符号化给人产生遥远的距离感.再加上它曲折奥妙的逻辑推理造成学生认知上的特殊难度.可是通过数形结合思想可以形象直观的揭示问题的本质,减轻学习的负担,引发学生对数学的兴趣.

4.从教与学的现状来看数形结合思想

数形结合思想方法已深入中学解题功能,但在实际教育中还未真正落实到位,主要表现在数形结合思想方法的教育目标不够明确,课堂教学随意性,盲目性大,而计划性、系统性、有序性、层次性、过程性则显得不足.造成学生用数形结合思想方法来分析解决问题能力太差.因此,在教学中如何充分发挥数形结合思想的作用,重视数形结合方法的运用,是一个值得研究的课题.

二、数形结合在高中数学教学中的体现

在高中数学教材中,许多数式与方程都有几何意义,许多图形又都可以用数式与方程表示,这种对应关系是相互联系密不可分的.如:

(1)实数对(a,b)与平面内的点(a,b)对应.

(2)方程y=kx+b的几何意义是直角坐标平面上的一条直线,其中数k的几何意义是斜率,即直线倾斜角的正切值;数b的几何意义是直线在y轴上的截距.

(3)函数与图像的对应关系:如:二次函数对应抛物线;三角函数对应正弦曲线等等.

三、部分案例分析

(一)利用数形结合思想解决最值、值域问题

利用数形结合思想有时可以解决一些比较复杂的最值和值域问题.特别是一些三角函数的题目.

应用数形结合解题时要注意以下两点:其一数与形转化的等价性,将复杂的问题转化成简单、熟知的数学问题,转化前后的问题必须是等价的;其二,利用“数”的精确性和“形”的直观性.总之,要让学生真正掌握数形结合思想的精髓,必须有雄厚的基础知识和熟练的基本技巧,如果教师只讲解几个典型习题并把学生讲懂了,就认为学生领会了数形结合这一思想方法,是片面的.教师要有做好长期渗透的思想,平时要求学生认真上好每一堂课,学好新教材的系统知识,掌握各种函数的图像特点,理解各种几何图形的性质.

【参考文献】

[1]王后雄.教材完全解读(人教版)[M].北京:接力出版社,2009-05.

篇8

一、对重点的传统知识作适当拓广

新课标对传统的高中数学知识作了较大的调整,内容变化也较大,有的从整个编排体系上都作了改变。但是,传统的高中数学知识中的重点内容仍然是高中学生学习的主要内容,在教学中对这些知识内容应拓广加深。

例如,增加了函数的最值及其几何意义,函数的最值常常与函数的值域有联系,而求函数的值域的基本方法有观察法、配方法、分离常数法、单调性法、图像法等,这些基本方法应该让学生了解。 二次函数,它一直是高(初)中的重点基础知识,在高中数学中二次函数可以与其它许多数学知识相联系,因此拓广和加深二次函数是必要的。例如在高中数学中如闭区间上二次函数的值域;二次函数含参数讨论最值;利用二次函数判断方程根的分布等,这些内容可作适当拓广。 要补充“十字相乘法”、“一元二次方程的根与系数的关系”等知识。函数的图像,除了学习指数函数和对数函数、五个简单幂函数的图象外,应该对三种图像变换:平移变换、伸缩变换、对称变换作适当拓广。《标准》强调指数函数、对数函数、幂函数是三类不同的函数增长模型。在教学中,要求收集函数模型的应用实例,了解函数模型的广泛应用;要求将函数的思想方法贯穿在整个高中数学的学习中,学生对函数概念的认识和掌握,需要多次反复,不断加深理解。

又如,数列一直是高中数学的重点知识。按照教材要求,首先讲数列的一般知识,然后学习等差,等比数列的有关知识,而数列的递推关系,是反映数列的重要特征,也是经常用到的,在讲完了等差,等比数列之后,仍然可以考虑把数列的递推关系的问题适当加深,使学生能解一些简单的递推题目。课本要求掌握等差数列、等比数列求和,而对于非等差数列、非等比数列求和问题,常转化为等差等比数列用公式求和也可用以下方法求解:分组转化法、裂项相消法、错位相减法、倒序相加法。

圆锥曲线是解析几何的重点内容,是高中阶段传统的数学内容,强调知识的发生、发展过程和实际应用,突出了几何的本质。新教材要求学生能够经历椭圆曲线的形成过程,目的是让学生对圆锥曲线的定义和几何背景有一个比较深入地了解。新教材设计了一个平面截圆锥得到椭圆的过程,“有条件的学校应充分发挥现代教育技术的作用,利用计算机演示平面截圆锥所得的圆锥曲线。”在这里要拓宽学生视野,树立数形结合的观点,要善于把几何条件转化为等价的代数条件,进而利用方程求解,在解析几何中,对运算能力也较过去要求更高,这就需要加强理解能力的训练,使学生解决一要会算,二要算对这两大难点。

二、对新增加的知识内容加强基础训练

新课标中增加了一部分新的数学知识,特别是选修系列中新内容较多,有些新内容与高等数学有关,对这些内容在教学中不宜当作高等数学知识来讲,应该关注学生感受背景,认识基本思想。

例如,“数列”部分内容有增有减,增加的内容有:等差数列与一次函数的关系;等比数列与指数函数的关系。突出了数列与函数的内在联系,强调数列是一种特殊的函数,让学生体会等差数列、等比数列与一次函数、二次函数的关系。这部分内容指出要保证基本技能的训练,但训练要控制难度和复杂程度。

又如“导数及其应用”部分内容有增有减,增加的内容有:函数的单调性与导数的关系;利用导数研究函数的单调性;函数在某点取得极值的充分条件和必要条件。应认识导数的本质是什么,这里的导数不应作为微积分初步来讲,把一些较复杂的复合函数求导也引入到教学中。

再如,古典概率问题,与排列组合有联系,又有区别,学生应理解清楚概率的意义,建立随机思想,而处理实际问题时又要会合理应用概率计算公式及原理。

三、加强数学应用问题的教学

新课标对高中数学知识的应用、数学建模提出了更高的要求,新课标的教材在这方面也大大加强了,许多知识是从实际问题引出,最后又要回到解决实际问题中去,但是作为教材受篇幅限制,不可能包括所有内容,而实际问题又是不断发展,不断产生的,因而对应用问题仍有许多地方可以进一步丰富素材。

例如,《标准》强调指数函数、对数函数、幂函数是三类不同的函数增长模型。在教学中,要求收集函数模型的应用实例,了解函数模型的广泛应用;要求将函数的思想方法贯穿在整个高中数学的学习中,学生对函数概念的认识和掌握,需要多次反复,不断加深理解。

又如,“分期付款”、“购房按揭”、“贷款买车”等目前生活中大量存在的实际问题,是与数列有密切联系的,讲完数列之后,可以让学生去分析研究目前各种分期付款的形式,在讨论问题中深化对数列的认识。

再如,教学中,要防止将导数仅仅作为一些规则和步骤来学习,而忽视它的思想和价值,指出任何事物的变化率都可以用导数来描述,注重导数的应用,例如:通过使利润最大、材料最省、效率最高等优化问题,体会导数在解决实际问题中的作用:强调数学文化,体会微积分的建立在人类文化发展中的意义和价值。

四、拓广数学知识的背景

推荐期刊