时间:2023-06-07 09:01:46
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇嵌入式设计系统,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
为解决公交车的高效便捷清洗问题,基于青岛理工大学韩旭东教授的团队设计的一款“垂直滚筒式公交清洗小车”,利用AT89C51单片机配合其他元器件,设计了相关的嵌入式系统,包括超声波测距系统和手动/自动双模平台升降控制系统,完善了原产品的设计。采用KeilC51软件编写了相应的控制程序,使用Proteus软件绘制了电路原理图,并进行了仿真模拟。
关键词:
公交清洗小车;嵌入式系统;超声波测距;平台升降控制
0引言
为解决公交车的高效便捷清洗问题,青岛理工大学韩旭东教授的团队设计了一款“垂直滚筒式公交清洗小车”[1]。但在该设计中,仅对机械结构与工作原理做了介绍,缺少相关的控制电路与控制程序的设计,给清洗小车的使用带来了极大的不便。本文在原产品的基础上,针对小车与公交车之间距离的控制不准确的问题,设计了超声波测距系统;针对平台升降控制不方便的问题,设计了手动/自动双模平台升降控制系统。有效地提高了该产品的实用性,完善了该产品的设计。
1超声波测距系统
1.1设计目的
清洗小车由人力推动并控制方向,但由于路面不平,人力控制精度有限,会使小车与公交车车体间的距离发生改变,距离过近会使滚筒挤压车体表面,阻碍滚筒旋转;距离过远,则会使滚筒毛刷与车体表面间间隙过大,影响清洗效果。需要一套测距系统使小车与公交车车体间的距离始终保持在一个合理范围之内。
1.2测距方式的选择
超声波测距是利用机械波反射来测量距离,适用于短距离测距,原理简单,成本低,远距离测量精度较低。公交清洗小车的使用环境比较复杂,对测距系统的精度要求不高,测量的距离在1~2m,且要求结构简单、成本低廉、性能稳定。根据需要和集中测距方式的特点,本文选择超声波测距方式。
1.3超声波测距原理
超声波在均匀介质中的传输速度为一恒定值,由发生器发射超声波,在遇到测量目标后反射回来,由接收器接收并记录由发射到接收经历的时间,便可以计算出发生器与测量目标之间的距离[2]。公式如下:L=12C•Δt。式中:L为测量距离;C为超声波在当前介质中的传输速度(空气中常温下速度为340m/s);Δt为从发射到接收经历的时间。
1.4设计内容
本文利用AT89C51单片机、HC-SR04超声波测距模块、LED灯组成了一个超声波测距警报系统。当距离过近时,指示距离过近的红灯点亮;距离适中时,指示距离适中的绿灯点亮;当距离过远时,指示距离过远的红灯点亮。工作人员可以根据灯光指示调整小车位置,使之与车体表面间的距离保持在一个合理范围。1.4.1HC-SR04超声波测距模块工作原理本文所采用的HC-SR04超声波测距模块,具有成本低、体积小、精度高、使用简单方便等优点,其基本工作原理为:1)采用I/O口TRIG触发测距,提供至少10μs的高电平信号;2)模块自动发送8个40kHz的方波,自动检测是否有信号返回;3)有信号返回,通过I/O口ECHO输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间[3]。1.4.2程序控制过程利用AT89C51单片机自带的定时计数器资源,通过I/O口给超声波模块一个发射信号并开始计时,当收到超声波模块的反馈信号时,结束计时并计算距离。
2手动/自动双模平台升降控制系统
2.1设计目的
现行大多数公交车的高度在3m左右,为能够确保清洗整个车体表面,原产品采用双丝杠旋转驱动平台升降的设计,并利用直流电动机产生动力。为方便用户使用,能够快捷高效操作平台升降,提高清洗效率,本文设计了一套手动/自动双模平台升降控制系统。
2.2设计内容
根据计算,清洗平台需调整2次高度才可将车体表面清洗完毕,为了方便工作人员操作,本文设计了手动/自动双模控制系统。该系统采用AT89C51单片机,配合L289直流电动机驱动模块,通过控制电动机的正反转实现平台的升降,设计原理图见图4[5]。操作过程为:启动系统后,在自动模式下,按UP键,平台会上升一个固定高度;按DOWN键,平台会下降一个固定高度。该高度值是为实现最高清洗效率,以3m高的车身为标准,经优化计算得出的最适高度。因为公交车的型号差异,车身高度也各不相同,所以为满足实际使用要求,我们又设计了手动控制模式。在手动模式下,按住UP键,平台会上升,松开立即停止;按住DOWN键,平台会下降,松开立即停止。为防止工作人员误操作,本文增加了按键防抖动延迟,防止工作人员误触按键;如果UP和DOWN键同时按下,则电动机停转,直至其中一个按键松开。
3结语
关键词:黑盒测试;嵌入式系统;程序流程图;插桩处理
引言
黑盒测试是从用户观点出发的测试,依据需求功能说明书中的预期用途、定时和性能的要求,推断测试结果。黑盒测试根据测试阶段可分为单元测试、集成测试、确认测试、系统测试四个阶段[1]。嵌入式计算机系统具有与传统软件测试不同的新特性,因此需要采取针对性的测试方法。通用的测试方法可分为静态时间分析和动态时间分析。
1嵌入式软件测试的环境分析
在线仿真配备了CPU芯片接口,提供和应用程序交流信息桥,不足之处在于对硬件的依赖性较强,测试范围较窄;目标机仿真测试结果真实,但由于实际运行中连接外部设备,很难辨识软件和硬件错误。在实际测试中,根据测试效率、成本、可靠性、自动化程度等因素选择测试环境[2]。
2嵌入式测试系统的技术实现
CodeTest一方面吸取软件插桩技术,另一方面从硬件测试那里吸取从总线获取数据的技术,并进行升级改造。在硬件测试时,CodeTest选择插入点的方式为主动获取关键数据。和CodeTest相比,纯软件测试对目标测试的影响大大降低。因此选用Cereal仿真器。嵌入式软件测试系统由功能测试模块、代码测试模块、数据分析和文档报告模块、通信接口转换模块组成。对于黑盒测试来说,功能测试模块居主导地位,它主要通过接收目标系统输出信号和需要的信号进行比对来判定目标系统在功能上是否达到最优[3]。
3词法语法分析的设计与实现
3.1Lex⁃Yacc
Lex是检测字符匹配性的词法生成程序,Yacc是测定语法的生成程序。一个Lex程序由三段组成:首先是C和Lex定义;第二段是C代码;第三段是C函数。一个Yacc程序也是由三段组成,分别是声明、语法规则和C代码。Lex同Yacc的工作原理如图1所示。
3.2Lex⁃Yacc之间的联系
Lex程序用来计算数字字符串,能对各种符号进行识别,当插码时可以以注释的形式插入插桩代码,等程序完成,可以自行取消代码插桩,不影响整体进程。Yylval用来传递Lex与Yacc之间数字字符串转化后的数值,利用lineno传递正在处理的代码行号和标号。本次设计全程在Linux下,通过Lex编译后生成词法分析程序的C代码,通过Yacc编译后生成语法分析程序的C程序代码。两者通过gcc命令进行编译形成综合分析。最后运行该综合分析器就可以对51系列的汇编语言进行分析[4⁃5]。
3.3被测源程序静态结构分析
Lex⁃Yacc工具对单文件逐行扫描,得出当前语句各类参数类型,不同参数类型分别进入不同的单链表中。其中除了顺序单链表外,其他四种处理方式基本相同。待词法、语法分析完毕,五个单链表中存储了对应的汇编程序。因为单链表本身只是一个转换器,无法显示汇编程序之间的逻辑关系,所以需要对程序进行二次分析,确定所有逻辑关系。其中五个单链表形成的流程图如图2所示。针对程序流程图的建立,首先搜索匹配节点,根据节点不同进入相应分支处理。当前语句在顺序节点,则进入顺序处理模块。从关键字“结束行号+1”开始遍历单链表,存在两种结果:一是算法出错;另外一种就是在主程序中时则表明当前分支分析完成。接着要判断条件跟踪链表中的顺序分支(规定为右分支)是否都已分析完毕。
4覆盖率分析及评测
4.1被测源程序覆盖率分析
虚拟插桩技术就是在汇编语言基本结构的特点上,在源程序的插桩点处设置断点,在源程序执行到断点处,响应断点处指令,给出具体的PC地址,自动记录并打印出来,接连下去形成PC值的数据链。通过查询五类单链表与之建立对应关系,就可以获得到源程序的真实运行轨迹,进而计算出各类覆盖指标。
4.2基于代码的覆盖评测
在仿真测试平台原型系统上,基于代码的覆盖测试首先需要选定适合用作黑盒测试的子过程模块。提取的子过程模块必须具备独立运行的能力,根据覆盖测试的标准和要求对代码逻辑结构进行认真分析,设计出多个测试用例,然后通过手工运行该子程序的方式,在某一特定测试用例驱动下运行,测定出运行路径,通过计算得出两种覆盖率理论评测指标,与仿真测试平台上实现的两种覆盖率相对比,得出覆盖率分析法与虚拟插桩的正确性验证结果。
5嵌入式系统平台设计
设计一个可以代替人工进行黑盒测试的平台系统,见图3,其基本原理是通过脚本语言记录状态信息,之后通过PC回放测试信息以判断结果是否与记录脚本一致,以此决定本次测试是否通过。为此,在编辑源代码时就需要满足录制脚本和脚本回放两个阶段的需求。
5.1插装代码分析
在PC上运行插装系统最重要的原则就是要保证软件原有功能的稳定性和完整性。因此在设计嵌入式系统的插装代码时不能改变程序的原有逻辑和原有执行流程,应尽量降低在嵌入式系统所占的资源,尽可能将部分功能和操作交付于PC进行。嵌入式系统中的模拟用户输入模块的主要功能是将计算机发送的命令进行分析,并将结果回复到处理模块中,其操作模拟流程见图4。
5.2系统状态的定义和获取
(1)声音信息的获取嵌入式系统中对声音信息的获取主要是通过识别每个声音惟一的ID编号和固定的音频编码进行的。工作时,由系统中的服务函数获得ID声音的音频编码并发送到PC中。(2)获取LED信息LED的运行方法和声音相似,都有一套惟一的LED编码,并由LED控制器控制。常用的设计方法是将LED中的编码放到嵌入式系统中的缓冲区内,通过定时刷新函数提取LED信息[6]。(3)获取LCD信息由于LCD需要显示的信息较多,且各消息属性复杂,因此较难提取。目前常用的提取方法是点阵截取法和消息截取法。由于点阵截取法操作简单、测试结果准确率高,因此本文使用点阵截取法获取LCD信息。(4)系统状态的获取主动请求和被动获取是嵌入式系统获取信息的主要方式。主动请求是指嵌入式系统在处理完PC发出的操作命令时,主动将搜集好的信息发送到PC上。被动获取是指嵌入式系统并不主动发送检测信息,而是当状态出现时才决定是否继续后续操作。
5.3自动化比较和测试
软件是否准确输出结果,需要经过多次测试实际输出和预期输出的差别。本文在设计嵌入式系统时综合考虑了一些智能比较思想来优化设计流程。由于实际的嵌入式系统会产生上百个复杂的状态信息[7],为便于比较,本文采用了相对比较的办法对录制脚本时的状态变迁进行比较。最后设计完成的嵌入式系统需对脚本进行测试,这是交互式应用的重要组成部分。脚本测试的准确度主要依赖于所选用的测试工作和脚本技术。当前主要的脚本技术有共享脚本、数据驱动脚本、结构化脚本等。这些脚本都包括了三个命令,即人工操作命令、状态检查命令、逻辑控制命令。测试脚本主要就是对这三个命令进行检查,其中在自动化检测中采用何种脚本记录测试结果可依据模块要求进行选定。
6结语
黑盒测试技术的汇编语言测试系统用例研究在我国已经很多,本文最大的亮点是引入虚拟插桩技术,实现真正插桩,即在被测源程序的插桩点处设置中断指令,当源程序运行到该点处时自动运行断点指令,给出具体的PC地址,进而给出一系列地址数据,根据事先设定的用例判定运行效果,得出黑盒测试的正确验证结果。此方法最大的优点在于高效、精确、成本较低,在实际运用中具有较高的实用价值。
参考文献
[1]孙昌爱,靳若明,刘超,等.实时嵌入式软件的测试技术[J].小型微型计算机系统,2000,21(9):920⁃924.
[2]杜晓东.面向嵌入式系统的测试工具研究[D].成都:电子科技大学,2003.
[3]苏铭,宋宗宇,王华.多计算机的自动插桩与监测系统[J].计算机工程与应用,2002(4):79⁃82.
[4]杨作梅,张旭东.1ex与yacc[M].北京:电子工业出版社,2003.
[5]邓支益,何亦征,田翼.嵌入式软件测试研究[J].航空电子技术,2003,34(1):37⁃42.
[6]曹文静,宫云战.软件测试性计算方法研究[J].计算机工程与设计,2003,24(10):67⁃70.
关键词:嵌入式芯片;FPGA;人机交互界面
嵌入式芯片是当前一些主流数码设备的核心部件,也是嵌入式系统的硬件基础。嵌入式系统是以应用为中心,软硬件可裁减的,适应应用系统对功能、可靠性、成本、体积、功耗等综合性严格要求的专用计算机系统。简单地说,嵌入式系统集系统的应用软件与硬件于一体,类似于PC中BIOS的工作方式,具有软件代码小、高度自动化、响应速度快等特点,特别适合于要求实时和多任务的体系。
嵌入式芯片主要包括FPGA芯片(Field Programmable Gate Array 现场可编程门阵列),MCS-51系列芯片等等。本文主要介绍面向嵌入式芯片的指令测试系统。
一、系统架构
测试系统的主体是面向嵌入式芯片的人机交互界面。它为用户提供了检测芯片指令集的各种便捷操作。
为了更好的实现测试体系的各项功能,笔者在编写程序时,将测试系统人为的分成了几个模块。这些模块之间有着非常紧密的联系,每一步的实现都是下一步成功运行的基础。
测试体系的主体架构主要分为五个部分:
(一)源代码的输入与保存
用户可以通过编辑框输入代码,实现程序的编写。此外系统还为用户提供了编辑框的清空操作,并可以自动将编写的代码保存为.asm文件。
(二)源文件的读取与显示
用户可以将已经编写好的源文件读入系统,并对其进行编辑。
(三)交叉编译
系统对读入的源文件进行编译,期间用户可以自动配编译工具,编译完成后系统将自动报错。
(四)串口的输入输出
系统可以将用户指定的二进制文件送到串行口中,并发送至连接到PC端的8051芯片中。发送成功后,系统将显示已经发送的信息。
系统可以自动接收来自串口的消息,并显示在相应的列表框中。
(五)程序运行日志
系统在用户运行了测试体系之后,即程序的出口处,自动生成程序的运行日志,它为用户显示了程序运行的各项参数,例如程序运行时间,串口状态等。
此外系统为了使用户可以更加方便自如的使用本测试框架,在每一部分的实现过程中,都充分考虑了软件的灵活性,尽可能的让用户自主配置测试体系的各项参数。
二、系统设计
(一)整体性
作为嵌入式测试系统的人机交互界面,在其设计的过程中必然要形成一套完备的软件体系,即保证程序运行的整体性。这关系到整个测试系统的完整性和稳定性。
源代码输入和源文件读取部分主要是将指令集测试代码导入到系统中。交叉编译部分的工作是对导入系统的测试代码进行编译处理,以便用户对测试代码进行调试。串口检测部分是将编译通过的测试程序所生成的二进制文件以8位字符串的形式送入串口,经过开发板的运行以后,将结果通过串口输出到指定的LCD显示屏或PC上,从而验证测试程序的可执行性。程序运行日志是对整个程序运行的效率和稳定性向用户提供的反馈信息。
(二)灵活性
在保证程序运行的整体性的同时,为了使测试体系的使用更加的方便,提高测试体系进一步完善的空间,就必须保证各功能模块的灵活性。在源代码输入和源文件读取的部分,系统默认的输入程序是汇编程序,但用户也可以输入C程序,JAVA程序,XML程序等多种程序语言。同时,在交叉编译部分也可以通过调用不同的编译器和链接器对这些程序编译调试,这无形中将单一的面向嵌入式芯片的汇编编译器扩展为集C语言编译器,JAVA语言编译器和XML语言编译器等多种编译器于一体的集成编译环境,从而实现强大的编译功能。串口检测部分为用户提供串口参数的配置框,并支持串口信息的发送与接收,从而使测试体系具有了类似超级终端的串口通信功能,这也为用户对串口操作提供了极大的方便。
三、结束语
作为当前主流的数码产品的关键部件,嵌入式芯片必然会在未来的IT市场上占有越来越重要的地位。本文所探讨的嵌入式芯片测试系统正是基于这样的考量,不但从源代码的输入与保存,源文件的读取与显示,交叉编译,串口的输入输出和程序运行日志这五个模块来构建测试系统,而且还从程序设计的整体性和灵活性两个方面,对该系统进行了评测。未来的嵌入式系统和普通的计算机系统在微型化和小型化方面将会趋于一致,而测试系统也可以进一步扩展为对整个计算机系统进行相应的检测。希望测试系统能为嵌入式芯片的发展做出一定的贡献。
参考文献:
[1]胡振华.VHDL与FPGA设计[M].北京:中国铁道出版社,2003.
[2]陈荣,陈华.VHDL芯片设计[M].北京:机械工业出版社,2006.
[3]张大波,吴迪,郝军.嵌入式系统原理设计与应用[M].北京:机械工业出版社,2005.
关键词:嵌入式;设计技术;挑战;市场;性能
中图分类号:TP311
嵌入式系统是以应用为中心,以计算机技术为基础,并且软硬件可裁剪,适用于应用系统对功能、可靠性、成本、体积、功耗有严格要求的专用计算机系统。嵌入式计算机系统与通用计算机系统有着本质上的不同,嵌入式计算机系统在很多情况下需要考虑的是为其产品性能,生命周期和商业驱动做优化,而不是努力提高其最大计算吞吐量。对于一个有市场适应能力的嵌入式计算机系统来说,产品的成功与否更重要的是其在性价比上的优势。
嵌入式系统是以应用为中心,以计算机技术为基础,并且软硬件可裁剪,适用于应用系统对功能、可靠性、成本、体积、功耗有严格要求的专用计算机系统。它一般由嵌入式微处理器、硬件设备、嵌入式操作系统以及用户的应用程序等四个部分组成,用于实现对其他设备的控制、监视或管理等功能。嵌入式系统和具体应用有机地结合在一起,它的升级换代也是和具体产品同步进行,因此嵌入式系统产品一旦进入市场,具有较长的生命周期。
由于嵌入式计算机系统自身功能和具体应用环境的限制,其在设计技术上会面临如下两个方面的挑战:
1 系统自身发展升级挑战
应用领域的不断扩大和用户要求的逐渐提高推动了嵌入式计算机系统功能的升级,而在升级过程中,嵌入式计算机系统设计技术作为系统开发的核心环节,无法避免的要面对来自整个系统的全面挑战。
1.1 单片机向多模块组合转变
随着用户对备选方案数量要求的提高,嵌入式系统从过去单一的单片机应用模式,转变为能够提供更多不同层次方案的多样化模式。通过重用和组合IP核构件技术实现的片上SoC系统,是目前嵌入式系统能够实现的最高形式。通过利用FPGA和IP模块进行功能组合PSoC/SOPC设计,彻底改变了过去单片机从底层全权包揽的单一设计局面。
1.2 对设计技术的要求更高
经过几年发展,目前高端嵌入式系统都是建立在RTOS基础之上的,所以很多非计算机专业技术人员就要学习全新的RTOS技术。这无疑是一次设计技术的重头再来,需要设计人员做到从观念认识到设计技术的一次彻底转变。
1.3 运用新开发工具进行系统开发
嵌入式设计从8/16位转向功能更强大的32位MCU,升级之后,开发工具的投入就成为了系统开发过程中最大的障碍。升级之后的开发环境不仅加大了系统投资数目,对其使用的技术有了更高要求,其开发工具较之前也有了更复杂的变化。使用新系统进行开发时,如何正确选择处理器架构、评估嵌入式操作系统,以及使用陌生的开发工具,都是一个新的挑战。
1.4 多种技术协同设计
嵌入式系统对软硬件的协同配合有着超高的要求,所以在设计过程中,软硬件设计的同步与集成是主要问题。由于技术细节处的不断增加,控制软硬件一致性与正确性需要消耗极大的时间。目前业界已经开发Polis、CosYma及Chinook等多种方法和工具来支持集成式软硬件的协同设计。这使得系统可以跨越硬件和软件平台复用,并支持设计空间探索。是一种统一软硬件的开发方法。
2 应对市场的重点性能挑战
嵌入式计算机系统设计技术在满足用户多样性需求和自身不断升级方面的提升与完善是信息技术发展的必然趋势,但是其最根本的基础性能提高则是市场判定该系统是否卓越,亘古不变的标准。在设计过程中,基础性能设计的重点如下:
2.1 操作实时响应
嵌入式计算机系统嵌入到对象系统中的计算机应用系统,嵌入系统在运行时不仅要求得到正确的结果,更要满足时间交互过程的响应要求。在设计过程中,有时需要要求设计技术按照软件运行最坏情况下的时间进行预留,因为软件运行耗费的时间会立刻增加系统响应的时间,致使系统不能满足嵌入对象系统提出的响应时间。“信号处理系统”、“紧急任务处理系统”就是典型的实时性要求很强的系统。
2.2 嵌入系统安全性
嵌入式计算机系统通常应用于安全性很高的情况下,这就要求设计技术能够保证系统极高的安全性能和可靠性能。
(1)可靠性能。嵌入式计算机系统的可靠性是衡量其设计技术的重要标准,它要求设计技术满足增长系统生命周期,拓宽系统适用范围,减少系统中的错误,增加系统的稳定性,甚至要降低嵌入式系统的维护费用。为满足如上诸多要求,嵌入式系统设计技术应该从工作温度,抗震动,抗电磁干扰,抗辐射等方面着手进行全面加强。
(2)可用性能。嵌入式计算机系统为达到提供预期的功能要求提高系统的可靠性,在系统设计时,通常需要采用故障避免、故障检测与故障容错等设计技术。
(3)安全性能。嵌入式计算机系统的安全性,要求系统的设计技术尽量使系统能够无错误的完成预期功能,同时降低系统的危害程度,安全完成运行任务。
(4)保密性能。保密性能在网络嵌入式计算机系统中尤为重要。通过现有的保密技术和网络安全措施基本可以保证数据的安全,但也无法做到完全保证。这就需要我们通过系统的设计技术加入入侵检测模块来提升嵌入系统的保密性。使入侵模块成为整个系统的最后防线,在系统遭受威胁或被攻击后,通过分析攻击行为,有效保护系统免受同样攻击。
通常在设计时,都是利用技术通过提高嵌入系统的抗入侵能力来提高保密性,在遭到入侵时,嵌入计算机系统能够进行安全的现场重编程及提供重建保护等。
3 结语
互联网在日常生活与工作中的作用越来越大,信息技术的发展日益迅速。嵌入式计算机系统作为当今信息技术的核心部分,对我国的各行各业产生了深远影响。嵌入式计算机系统设计技术,则是嵌入式计算机系统开发的核心环节。更高的应用需求,对嵌入式计算机系统的设计技术提出了更高的要求。与此同时,嵌入式系统本身的升级,也使得嵌入式计算机系统的设计技术面临更大的挑战。本文通过以上对嵌入式计算机系统设计技术的几点分析,主要分析了嵌入式计算机系统的设计技术为更好的适应和满足市场,而需要面对的诸多挑战。可以看出,嵌入式计算机系统在市场上的需求日益增大,用户的要求也在向多样化和高标准的趋势发展。这就要求系统的设计技术,一方面要不断与时俱进熟练掌握新升级技术,来适应市场满足多样化需求;另一方面要保证系统基本的实时性与安全性。只有这样抓牢基础,不断提高才能在当今的信息化社会中站稳脚跟,不会被市场淘汰。
参考文献:
[1]刘洪涛,孙天泽.嵌入式系统技术与设计[J].21世纪高等学校计算机规划教材,2009,1:12-13.
[2]冯立杰,傅民仓,李文波.多CPU嵌入式系统的设计方法[J].现代电子技术,2006,6:33-34.
[3]张涛.嵌入式计算机系统设计技术[J].中国计算机报,2000,7:D10.
关键词: 地理信息系统;嵌入式;全球定位系统;空间数据
Abstract: based on embedded system design of the structure of the geographic information system, and puts forward the comprehensive GIS architecture using a variety of modern technology, they include GIS technology and embedded technology, and RS technology, GPS technology, mobile computing technology and communication technology, etc.
Keywords: geographic information systems; Embedded; Global positioning system; Spatial data
中图分类号:S611文献标识码:A 文章编号:
1.引言
随着GIS技术的不断成熟和它给人们带来的巨大便利,以及嵌入式设备性能的提高和普及,两者的结合成为一种必然的发展趋势。近年来,嵌入式GIS技术正成为GIS发展的热点之一,它的应用包括了汽车导航、野外测绘、物流运输、军事指挥等众多的领域。我国也已经开发出了自己的嵌入式GIS产品,比如武汉中地软件的MAPGIS-Embedded和北京超图公司的eSuperMap等。本章提出了一种基于嵌入式设备的地理信息系统的完整的体系架构,对于架构中涉及到的技术以及每一个模块都做了比较详细的说明。同时需要指出的是:这个架构不仅具有一定的理论价值,还具有很强的现实意义。我们已经按照此架构中提出的思想进行了代码实现,当然由于时间和精力的关系,只是实现了其中的一些基本的功能,但这却是自主开发嵌入式地理信息系统的一次有意的尝试,并具体介绍实现的过程和步骤,以及实现过程中一些难点、关键问题的解决。
2.嵌入式GIS体系架构
嵌入式地理信息系统的体系架构如图1所示。从图中可以看出,整个系统是基于C/S模式的,它由嵌入式设备、高性能计算机、全球定位系统(GPS)和空间数据库四个部分组成。
嵌入式设备由嵌入式硬件系统和嵌入式软件系统构成,其中嵌入式硬件系统要集成GPS定位信息的接收功能;在嵌入式硬件之上的一层是嵌入式操作系统(如ARM-Linux等),它是嵌入式软、硬件之间的桥梁,主要负责文件管理、进程调度等功能;运行在嵌入式设备上的GIS软件(也就是客户端程序)包括地图的显示、缩放、漫游、缓冲分析、通讯等几个模块,通讯模块可以通过无线网络与高性能计算机(服务器)进行通信和数据传输。
高性能计算机(服务器)要实现最短路径、最优路径的查询等地理信息系统中比较复杂的功能,同时还要实现与客户端进行通讯、文件格式的转换,以及访问数据库服务器等功能。
对于系统中数据的存储,我们采取的是客户端-服务器两级数据存储模式,大部分的数据存放在服务器端(高性能计算机),客户端(嵌入式设备)只保留少量常用的数据;如果系统中的数据量过于庞大,甚至可以由一个具有海量存储器的计算机专门来存储服务器端的数据,并向服务器提供访问接口,这样可以减轻服务器的负担,提高整个系统的效率和处理数据的速度。在必要时,客户端可以向服务器提出更新数据的请求,服务器在接到请求后把相应的数据文件回传给客户端。
图1 基于嵌入式设备的GIS架构示意图
对系统的功能模块进行了划分,把地图显示、图层管理、缓冲分析、缩放和漫游等比较简单,对硬件资源消耗小的应用放在客户端,而把最优路径、最短路径的分析等复杂的应用放在服务器端。这样做的原因在于嵌入式硬件本身的资源非常有限,如存储空间偏小、处理器的速度也不是十分理想等,所以它不可能发展较为复杂的GIS空间分析功能。当客户端需要调用最短(优)路径查询等复杂的GIS分析功能时,就向服务器发出请求(其中包括客户端当前的位置、目的地等参数),服务器根据客户端传递的参数,对数据库进行一系列的查询、检索等操作后,将分析的结果回传给客户端,从而为客户提供决策支持,同时也减轻了嵌入式设备的负担,提高了它的工作效率。
3.全球定位系统及3S集成技术
3S技术为科学研究、政府管理、社会生产提供了新一代的观测手段、描述语言和思维工具。3S的结合应用,取长补短,是一个自然的发展趋势,三者之间的相互作用形成了“一个大脑,两只眼睛”的框架,即RS和GPS向GIS提供或更新区域信息以及空间定位,GIS进行相应的空间分析(图2),以从RS和GPS提供的浩如烟海的数据中提取有用信息,并进行综合集成,使之成为决策的科学依据。RS、GIS、GPS集成的方式可以在不同的技术水平上实现,最简单的办法是三种系统分开而由用户综合使用,进一步是三者有共同的界面,做到表面上无缝的集成,数据传输则在内部通过特征码相结合,最好的办法是整体的集成,成为统一的系统。
图2 3S的相互作用与集成
4.空间数据的无线传输
空间数据无线传输技术是完善嵌入式GIS 功能的重要技术之一。但是目前该技术的发展受到诸多因素的制约,下面就这些制约因素加以阐述和分析,并针对无线传输网络提出相应的解决方案。虽然GPRS是作为现有GSM网络向第三代移动通信演变的过渡技术,但是它相对于原来GSM的拨号方式的电路交换数据传送方式,在许多方面都具有显著的优势。正是由于GPRS具有以上的这些特点和优势,在我们设计的基于嵌入式设备的GIS系统架构中,采用了GPRS作为空间数据的无线传输网络。
5.试验结果
ECI GIS的开发严格遵循了软件工程的思想,并且针对嵌入式软件开发的特点,对软、硬件平台以及专业需求等因素也进行了综合的分析和考虑。但由于时间、技术等方面的原因,我们的软件只是实现了GIS中的一些基本功能。本节将重点向您介绍这些功能的实现,即程序运行的结果。说明:地图中的当前图层为上海市区县和主要河流。
图3全图显示
图4属性数据库的显示
结束语
ECI GIS1.0是一个基于嵌入式设备的地理信息系统软件,它经过了架构的搭建、模块设计、代码实现、软件移植和应用检验几个阶段,具备了地图缩放、信息查询等基本的功能。ECI GIS与其他的嵌入式地理信息系统相比,最大的特点就是它没有借助任何商业的操作系统(如WinCE)和GIS系统软件,实现过程中用到的Linux和GDAL函数库的源代码都是免费开放的。ECI GIS1.0是我们为开发出中国拥有自己完全版权的GIS软件而进行的有意的尝试和探索,这一点或许远远大于其在商业上的价值。
参考文献:
[1] 龚健雅. 地理信息系统基础[M]. 北京:科学出版社,2001.
[2] 张超,陈丙咸,邬伦.地理信息系统[M]. 北京:高等教育出版社,1995.
[3] 邬伦.地理信息系统――原理、方法和应用[M].北京:科学出版社, 2001.
关键词:软件测试控制系统嵌入式
中图分类号:TP311.52 文献标识码:A 文章编号:1007-9416(2012)05-0151-01
1、嵌入式系统的特点以及实现方法
嵌入式系统的主要特点如下:嵌入式系统的硬件和软件的紧密结合,具有很强的依赖性之间的软件和硬件,嵌入式系统的功能和性能通过软件和硬件来实现。因此,在硬件平台上的嵌入式软件系统的测试。在硬件,嵌入式软件系统测试。这是一个不同的主机平台上的软件,只能在电脑平台的主机平台软件系统测试,不需要专门的硬件平台测试。嵌入式系统的要求非常苛刻的时间。嵌入式系统,实时控制系统,为要求苛刻的实时场合。嵌入式系统的硬件资源有限,存储容量和速度的嵌入式CPU和应用环境的制约。
软件测试的方法可以分为黑盒测试和白盒测试两大类:黑盒测试是一种基于需求的测试,以验证测试软件是否满足软件的需求。白盒是基于结构的测试,软件控制流测试包括语句覆盖,分支覆盖,等等和数据流测试。覆盖测试原理是:测试软件,测试工具的使用静态分析,以确定代码中的分支点,并统一编号,分配给每个分支点。计划执行的历史信息和路径,你可以从这份文件中,为了计算的代码覆盖率。嵌入式软件与主机平台上的软件有不同的特点,所以从主机平台软件测试,测试也明显不同。
2、嵌入式系统的应用
嵌入式系统为中心,基于计算机技术,利用可定制的功能性,可靠性,成本,体积,功耗严格要求,设备专用计算机系统111硬件和软件。它一般由嵌入式微处理器,硬件设备,嵌入式操作系统和用户应用程序,控制其他设备,监事或管理由四部分。最典型的嵌入式系统的特点是与人民生活密切相关的,任何一个普通的人可能有各种使用嵌入式微处理器技术的电子产品,MP3,PDA等数字设备,数字家电,智能家电,地理信息系统的车辆。事实上,新的嵌入式设备的数量远远超过通用计算机。其硬件系统表现如右:
嵌入式操作系统和通用操作系统有许多功能,如可靠性,可削减,可扩展性,实时等。前三嵌入式应用环境的要求。“实时”,以满足系统内容的实时性要求。通常在一些嵌入式操作系统,通常被称为“实时操作系统,但它是操作系统的性能有一个更好的实时能力。在一个特定的嵌入式应用系统中,没有实时的结论。不同的嵌入式操作系统,可以有不同的实时能力。嵌入式操作系统应符合设计实时任务调度,运行速度快,实时性能的内容嵌入式操作系统的能力,可以更容易地实现实时的应用程序。
3、应用航天业的条件和发展
今天的软件和硬件技术的发展,嵌入式系统被广泛用于航空航天,国防,军工,电子通讯等行业,其中软件变得越来越复杂。应用嵌入式系统的特点,这些地区往往是高安全性,关键任务系统,软件,小缺陷可能会严重威胁生命和国家安全的,巨大的天文财产损失。这使得它保证嵌入式软件的质量和可靠性变得至关重要。
4、航天业的应用条件
嵌入式系统的任务有一定量的时间限制。据截止时间,实时系统,实时被分为“硬实时时间”和“软实时”。可以完全满足硬实时应用的需求,否则,导致发生重大安全事故,甚至造成了生命和生态破坏。
可预见性是一个系统,能够实时执行任务的时间来判断,以确定它是否能满足任务的期限。在航空航天工业实时系统需要严格的时间限制,称为实时系统的可预测性是一个重要的性能要求也至关重要。除了硬件延迟的可预见性,也需要软件系统的可预测性,包括应用程序的可预测性的响应时间可预测的,也就是说,在有限的时间内完成必要的工作;和操作系统,即实际运行时的开销时间原语,调度功能应范围内,以确保应用程序的执行时间为界。
5、与外部环境的相互作用
航天业需要的外部环境是独一无二的,这样的外部环境是一个实时系统不可或缺的组成部分。空间计算机子系统控制系统,它必须在规定时间内作出回应外部请求。外部物理环境经常指责子系统,两个互动,以形成一个完整的实时系统。为此,该系统需要一个静态的分析,并保留资源和冗余配置,系统可以工作在最坏的情况下,或避免损失。可靠性已成为航空航天工业的实时系统性能不可缺少的一个重要指标来衡量。
6、结语
随着嵌入式系统的广泛使用,其实时性已经吸引了越来越多的关注。实时嵌入式系统是一个综合性的问题,应考虑在嵌入式系统设计,硬件不仅是软件的选择也应注意。在这些领域的嵌入式系统应用的特点,往往是高安全性,关键任务系统,软件,小缺陷可能会严重威胁生命和国家安全的一个巨大的天文数字的财产损失。这使得它变得至关重要,以确保嵌入式软件的质量和可靠性。
参考文献
[1]谢东,李昌禧.基于LabVIEW的嵌入式软件黑盒测试系统的研究[J].工业控制计算机,2005年12期.
[2]杨顺昆,刘斌,陆民燕.WindowsNT下几种定时器的实现原理及性能比较[J].测控技术,2002年12期.
[3]崔小乐,刘斌,钟德明,阮镰,高小鹏.实时嵌入式软件仿真测试平台的体系结构设计[J].测控技术,2003年07期.
[4]崔小乐,刘斌,杨顺昆,阮镰.嵌入式软件仿真测试平台的建模环境设计[J].测控技术,2004年02期.
关键词:嵌入式系统;机器视觉;测控系统;图像跟踪
中图分类号:TP391.41文献标识码:A文章编号:1009-3044(2010)08-1987-02
1 概述
随着科学技术的发展,更高速,更可靠,更低成本成为各种技术开发的要求。因此,设计能实现实时视觉图像采集、视觉图像处理控制,使其结构更紧凑,甚至完全不需要计算机的介入,提高处理速度,并能有效降低成本的专用机器视觉控制系统,使得该系统具有安装方便、配置灵活、便于携带等突出优点。为此,本课题提出了基于嵌入式机器视觉测控系统的研究,在嵌入式系统上实现实时视觉图像采集、视觉图像处理及控制,构成处理速度快,成本低,结构紧凑,不需要计算机介入的专用嵌入式机器视觉测控系统。
2 系统总体设计
2.1 设计方案
目前,用于图像采集处理系统的嵌入式核心器件一般有FPGA、DSP和ARM芯片,出于成本控制与测控系统性能要求的考虑,这里选用FPGA方案。
FPGA内嵌的NiosII软核处理器是32位的,主要包括CPU微处理器、I/O中断、计时器、UART串口及大量通用寄存器。选用FPGA方案的优点在于,在单个芯片上既可以完成图像采集等复杂逻辑的控制,又可以用内嵌的NiosII处理器完成对图像的处理和识别,电路设计简单,成本低。
对于机器视觉测控系统,在选用了嵌入式处理器实现图像采集的功能之后,需要将视频图像进行数字化处理,这里采用标准工业摄像机+视频图像数字化模块的方法实现。标准工业摄像机的输出信号一般是PAL制式或NTSC制式的模拟信号,信号在进行数字图像处理前必须经过刀D转换,即视频采集。视频采集是整个系统中的一个重要组成部分,它是对模拟视频信号实现数字图像处理的第一个步骤。该方案具有通用性好、成本低的优点。
2.2 总体结构设计
1) 硬件设计
硬件设计包括系统硬件电路的连接和FPGA内部逻辑电路的设计。
FPGA内部逻辑电路的设计是以QuartusII为开发环境,用VHDL语言编程实现图像采集、SRAM总线切换等模块的功能,用SOPC Builder配置、产生NiosII软核处理器及必要的外设(用户自定义外设用VHDL编程实现),然后一起编译并下载到FPGA的配置芯片中,再由配置芯片完成对FPGA的上电配置,由此形成硬件逻辑电路的连接,实现图像采集、处理、存储、显示、实时控制等功能模块。
2) 软件设计
用SOPC Builder生成NiosII处理器系统的同时,也会生成相应的SDK软件开发包。在这个软件包的基础上,开发者可以利用NiosII IDE,移植嵌入式实时操作系统μc/OS-II,编写C或者C++程序来完成对图像的二值化、区域分割、特征提取、模式识别等处理过程,最终实现对目标轨迹的跟踪,实时控制机器人沿规定轨迹运行。
3 关键技术问题探讨
3.1 图像采集CCD模块设计
图像信息的获取就是捕捉待处理目标的图像信息并将其转换成适合一体机处理的数字信号,这一过程主要包括图像捕获、光电转换及数字化等几个步骤。目前图像信息获取可以使用CCD、CMOS、CIS等传感器,其中以CCD的应用最为广泛。
本设计模块采用1/3寸逐行扫描型黑白面阵CCD图像传感器ICX424AL。ICX424AL有效光敏单元为659×494,灵敏度高、暗电流小,带有电子快门。由三相垂直脉冲(V1、V2、V3)和两相水平脉冲(H1、H2)驱动工作,水平驱动时钟频率为24.154MHz,驱动电压5V。曝光之后,每一列成像势阱中的电荷在脉冲的驱动作用下被移至势阱旁的垂直寄存器当中,然后垂直驱动脉冲发挥作用,每次脉冲驱动垂直寄存器组中的像素电荷向下移一行,而此时最下面一行的像素电荷则被移动到水平寄存器当中。之后水平驱动脉冲发挥作用,脉冲驱动水平寄存器中的像素的电荷向输出口移动。被移出像素电荷,经过放大器后形成电压信号输出。水平寄存器被移空后,剩余电荷再次向下移一行,在水平驱动脉冲作用下,水平寄存器的电荷再次被依次移出。上述过程一直重复直至所有像素电荷被移出。
ICX424AL的驱动时序由CCD信号处理器AD9929产生。AD9929有一个三线式串行接的串行通信接口,通过该接口可以对AD9929时序发生器的相位寄存器组进行操作,发送配置信息或读取AD9929的工作状态。AD9929可直接与CCD传感器相连接,CCD像素模拟电压信号在AD9929驱动脉冲的作用下,由CCD_IN引脚输入到AD9929中,经模拟前端采样、放大和A/D转换后,产生8位的数字信号由DOUT[0-11]引脚输出,这些数字信号即为CCD图像传感器捕捉到的待测目标的原始图像信息。
3.2 图像实时跟踪算法设计
由CCD模块负责采集图像,那么嵌入式系统必须要有完善的图像跟踪算法,才能够实现智能机器人对目标的跟踪,传统的图像跟踪算法由于运算量较大而存在实时性较差的问题,因此,有必要对图像跟踪算法进行实时性优化设计。
目标图像跟踪是一个序列图像处理、识别和测量过程。在跟踪过程中,目标可能出现大小、形状、姿态等变化,加上实际环境中的各种干扰,以及图像处理最小计量单位的精度问题,相关跟踪得不到绝对最佳的匹配位置,存在测量误差。因此,为了保证跟踪的稳定性,需要对图像跟踪模板进行自适应更新。图像跟踪模板的更新是目标跟踪中要解决的重要问题之一,图像跟踪模板更新过快或过慢,都有可能丢失所跟踪的目标。判断图像跟踪模板是否需要更新要根据相关的置信度信号,如果相关匹配的置信度高,就可以根据本帧图像的匹配点处的坐标来更新图像跟踪模板;如果置信度低,则说明匹配不稳定,要沿用以前的匹配图像跟踪模板对下一帧进行相关匹配。
相关置信度信号是在分析相关匹配算法的基础上设计出来的,它是一个非常重要的参数。经过分析可知:若匹配点处的峰值很大,且峰值与其它非匹配点的均值之差越大,则表明跟踪越可靠。定义帧内相关置信度为:
式中:C0是帧内相关置信度;maxR是当前帧匹配点处的误差累加次数;R是同一帧内M个依次比maxR小的误差累加次数的均值,如果maxR和R相差越大,则说明该匹配点越可靠。本算法可根据计算速度的需要对M取值,一般可以取M等于20~100的任何值。若C0大于阈值T0,则认为相关匹配值maxR符合帧内置信度,更新图像跟踪模板;否则,相关匹配不可靠,不更新图像跟踪模板。阈值T0根据图像的质量和经验来确定,这里我们取T0=0.6。
实践证明,在序列图像跟踪过程中,若单纯地利用当前图像的最佳匹配位置处的图像跟踪模板作为依据进行下一帧图像的匹配,则跟踪结果很容易受某一帧发生突变的图像的影响而偏离正确位置。因此,本系统采用基于置信度的加权自适应模板修正算法:如果当前帧匹配质量很差,则该帧图像数据不进行修正;而若当前帧匹配质量很好,则该帧图像数据进行修正,加权修正算法表示如下式:
上式中,T(i,j,t)为当前帧使用的图像跟踪模板,O(i,j,t)为当前帧最佳匹配位置的子图像,T(i,j,t+1)为预测得到的下一帧图像坐标,α为加权系数(0≤α≤1),该系数的大小根据帧内相关置信度C0,按照下式计算:
4 结束语
本文在嵌入式系统与机器视觉控制系统的交叉点展开研究,目的是将具有重要意义的机器视觉控制系统应用到具有广泛基础的嵌入式系统平台上,拓展机器视觉的应用范围。通过对机器视觉控制系统及嵌入式系统设计方案的选择,并对基于嵌入式机器视觉控制系统的关键技术问题展开研究,以此为依据,设计了相应的硬件系统和软件系统,并将其应用到智能机器人视觉的控制上。
参考文献:
[1] 王耀南,李树涛,毛建旭.计算机图像处理与识别技术[M].北京:高等教育出版社,2001.
[2] 段峰,王耀南,雷晓峰.机器视觉技术及其应用综述[J].自动化博览,2002,19(3):59-61.
关键词:嵌入式;系统软件;设计;实现
中图分类号:TP273.5 文献标识码:A 文章编号:1674-7712 (2014) 12-0000-01
当前时代,科学技术快速发展,信息技术被应用于我们日常生活的各个方面。高科技为我们的生活带来了无限的便利,目前采用高科技手段为人们提供一个安全的生活和工作环境。本文针对嵌入式系统在门禁卡的应用上进行研究,解决了传统门禁卡很多的不便功能。为实现门禁卡自动、智能化管理提供建议,以此来对门禁卡功能与嵌入式系统软件设计与实现相关问题进行研究[1]。
一、嵌入式门禁系统设计
(一)嵌入式系统设计介绍。随着科学技术的快速发展,嵌入式门禁卡系统已经逐渐进入人们的生活,逐渐由传统的门禁卡系统转变为现代的生物特征识别技术门禁卡系统。嵌入式系统的门禁卡主要分为了图像采集、自动照明、语音提示、申请功能、无人监测等具体功能实现[2]。其具体的架构如图1所示。
图1 门禁系统功能图示
(二)系统硬件设计概述。如果要设计出完善的门禁系统,不仅需要软件系统的支持,还需要硬件支撑,否则整个软件系统难以实现。嵌入式多功能门禁系统其本质由嵌入式技术与图像处理技术融合应用。其中嵌入式的硬件支撑硬件结构主要有照明控制、网络接口、摄像头、按键、CF卡、音频接口、LVDS以及DDR2等。
二、嵌入式系统在门禁卡中的实现
(一)图像采集实现。量化后的数字图像信号和连续信号取样的数字图像信号是数字图像处理的对象,当这些最原始的信号经过图像处理后即可获得可观测的连续信号。对连续信号进行取样其本质是将信号的空间离散化,而量化则是将离散后的图像信号幅度上进行离散化,所以量化和取样后的图像信号应该是原始连续图像信号。
对于视频图像的获取方法通常有两种,一是利用视频捕捉卡中的SDK工具获取,二是使用Video for Windows,这给视频捕获编程带来了很大的福利,对视频捕获的灵活性有很大的提高。视频数据的实时采集主要是调用AVICap32.dll来穿件一个AVICap窗口类,它给应用程序提供了一个简单而方便的数据接口,使用户能够访问音频和视频,并且还能在硬盘上对视频捕获进行控制,它在捕获视频的能力很强,可以直接访问视频缓冲区,也不生成中间文件,视频捕获的速度快,及时性高,也可以将视频保存在设置好的文件夹中,整个视频捕捉过程都可以实现控制[3]。
(二)自动照明实现。整个照明系统主要分为了两个部分,照明系统通过发送指令给单片机实现对整个电路进行调整。整个照明系统分为控制部分和图像亮度检测部分,照明系统中的图像检测与电路照明具有很强的联系。嵌入式软件系统进行照明摄像控制时,通过采集信息的亮度,而其亮度与图像的象素有关,将图像做为一个二维图像,横坐标表示图像各个像素点的灰度级r;纵坐标则表示弧度制出现的概率Pr(r);那么对于某一个灰度值ri的象素个数为ni。则概率密度为:Pr(r)= ; =1。
(三)语音提示实现。该系统运用的是ALC655音频解码器,Mic用于连接麦克风,Line用于录制声源的声音,Audio_Out用于扬声器或者耳机。本系统主要根据不用的命令来实现功能,通过调用不同文件得到不同的效果,根据不同情况播放不同的提示音。系统中的MFC附带的音频播放组可以有效的提高开发是速度,通过媒体控制接口API实现停止功能MCI提供了控制媒体接口的能力,对波形音频设备、CD/视频播放设备等媒体进行控制。系统对音频的播放采用的是DirectX,作为低级应用程序的编程接口,在开发上降低难度。对于声音,主要的API是DirectSound,具备播放、处理混音、录音等功能,Microsoft DirectSound API为声音的捕获、播放、混音的处理、录音提供了链接,DirectSound可以给多媒体提供直接访问声音设备、低延迟混合、硬件加速。
(四)申请功能实现。所谓的申请来访功能主要门禁卡在进行检测的时候如果遇到不相匹配者,则需要进行申请之后才能够进入。系统通过语音告知模块的主人,采取系统中断方式来进行受访申请。受访者来进行访问申请时,需要按下按钮然后系统给予语音提示,并且显示出来访者的面貌,以此来进行判断,决定通过或者拒绝。嵌入式软件系统在门禁卡的显示上将来访者的信息显示在LVDS屏幕桑,然后通过系统对来访人员进行判断[4]。
(五)无人监测功能实现。无人监测功能则是当受访者进行访问时,遇到公司无人的时候,由门禁卡系统提示访问者内部无人,并且拍下来访者的照片,发送到系统设定的邮箱之中。在此自动发送邮件的功能中,该系统主要采取以太网作为接口进行数据通讯,并且根据TCP/IP协议来发送报文,实现信息交换。
三、结束语
随着科学技术的不断发展,新型的软件技术被应用到我们日常的生活之中,本文主要针对嵌入式系统在门禁卡中的应用情况,以及在系统设计过程中所占据的地位进行研究。实现嵌入式软件系统在门禁卡中的应用探索,主要针对门禁卡的各项功能的设计与实现进行了详尽的介绍,希望为采用嵌入式方法进行门禁卡开发的企业提供借鉴。
参考文献:
[1]周海龙.嵌入式门禁系统的设计与实现[D].西安电子科技大学,2012.
[2]吴若无.基于光学逆向器门禁的驱动和检测系统设计与实现[D].电子科技大学,2013.