时间:2023-05-30 08:35:07
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇水库路基设计,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
关键词:输水工程 驼峰管段 负压 调节池
1 工程概况
庐山位于江西省北部,长江、鄱阳湖之畔,是国家重点风景名胜区,其主要水源是地处特级 保护区内的芦林湖。由于庐山旅游业的快速发展,生活用水量急剧增加,用水需求已超过了芦林湖的正常供水能力。据测算,至2010年,芦林湖的平均年缺水量将达到97×104 m3 。为保护芦林湖的水质和湖面景观,并满足供水要求,特兴建了莲花台水库供水工程,主要包括一座取水水库、一座取水泵站和一条DN400、长约4.6 km的输水管道。工程设计供水能力为1.22×104 m3/d,流量为0.16 m3/s,将莲花台水库的蓄水输送到芦林湖,以增加芦林湖的蓄水量,提高芦林湖的供水能力。
工程采用2台水泵并联供水(另有1台备用),水泵设计扬程为1 225 kPa(122.5 m), 流量为288 m3/h,安装高程为881.6m。取水水库的正常蓄水位为912 m,死水 位为887 m。输水管道进口(即水泵出口)的桩号:-78.5 m,管中心高程:882.3 m,输水管道出口的桩号:4476.33 m,管中心高程:993.02 m,按自由出流设计。整个输水管道系统的总水头损失系数∑R=1 042.773(这里R=Δh/Q2,Δh 、Q分别是对应的水头损失和过流量),其中管道出口附近约600 m管段(含驼峰管段)内 的主要节点参数如表1所示。
表1 输水管道出口附近管段主要节点的有关参数 节点
桩号
(m) 节点管
中心
高程
(m) 管段
长度
(m) 原输水管道布置情况 增设调节池后情况 工况1 工况2 工况1 工况2 压力
水头
(kPa) 内水
压力
(kPa) 压力
水头
(kPa) 内水
压力
(kPa) 压力
水头
(kPa) 内水
压力
(kPa) 压力
水头
(kPa ) 内水
【关健词】供水;管道;水厂;设计
1、工程简况
陆川县清湖水库集中供水工程是一个以供水为主的水利工程,陆川县清湖水库集中供水工程最高日供水量测算到2030年最高日需水量为1.1995万m3/d,由此确定本工程供水规模为1.2万m3/d。清湖水库正常蓄水位为83.78m,死水位为74.38m。有压隧洞位于主坝右侧,出口接坝后电站,装机容量95kw。本工程从清湖水库坝后电站的压力管分出岔管取水,规划水厂地面高程为64.0m,死水位与水厂间高差为10.38m,距离6km,可实现无动力输送原水。清湖水库水质较好,水体不受污染,水体常年达到或优于《地面水环境质量标准》(GB3838-2002)的Ⅲ类水体标准。工程建成后,将解决清湖镇区(含红山农场)、以及沿途8个行政村大部分人的用水问题,现状(2012年)52630人,远期(2030年)70643人。
2、工程布置及主要建筑物
2.1工程总体布置
清湖水库为多年调节水库,水质较好,是乡镇供水的理想水源,经水量平衡计算,按规划水平年预测需水量1.2万m3/d。清湖水库能满足用水量的要求。原水取水口选在清湖水库放水隧洞的出口处,从原电站压力钢管分岔引出,经输水管道引至水厂进行净化处理,输水方式采用重力流无动力引水,单管布置,管径为DN=450mm;水厂布在清湖镇区西北侧大塘江村附近的山坡上,生产规模1.2万m3/d,原水经净水厂净化后,通过加压泵站加压至设计水压54m,最后通过配水管网供给用户,管径φ90~450mm。
2.2输、配水工程
1)输水管设计
清湖镇输水干管始于清湖水库输水隧洞末端,止于清湖镇水厂,单管布置,管长5975m。管道沿途经过蚊龙、上铺岭、榕树环、那百垌、罗子田、垌尾最后到达清湖镇水厂。此输水干管的总设计流量为0.147m3/s。为便于工程的运行和管理,结合各输水线路沿线地形和地质情况,输水管道拟尽量采用浅埋式布置方案。清湖水库至清湖镇水厂公路两侧基本无建(构)筑物,输水干管可沿公路的内侧(靠山侧)埋设。
2)配水管网设计
结合本工程地质条件以及供水对象,配水管网采用树枝状布置,并选用钢纤管和PE管。其中管径小于250mm以下的采用PE管,管径大于250mm采用钢纤管。配水管网总长51.78km。
2.3净水厂设计
水处理构筑物生产能力按最高日供水量1.2万m3/d,除以每天工作时间24 h确定,即500m3/h。
水厂工程包括生产建筑物、水厂附属建筑物、厂区环境设施等。生产建筑物包括絮凝池、沉淀池、过滤池、清水池,水厂附属建筑物由办公室、值班室仓库等组成。净化系统是本工程的主要部分,由絮凝池、沉淀池、加药加矾室、过滤池、清水池等项目。
1)絮凝(反应)池
净水厂净化系统净化规模为1.2万m3/d,系统工作时间每天按24小时计,根据用水量(包括5%的水厂自用)计算结果得知,净化系统平均时用水量为525m3/h。
反应池分8个反应室,每个反应室串联起来。反应池有效水深3.3m,存泥高1.5m,超高0.3m,总高5.1m,平面尺寸为2.60×2.60m。
2)沉淀池
沉淀池工作时间按24h计,进水流量与反应池相同,为525m3/h。采用斜管沉淀池,水在斜管内的上升流速采用v0=2.5mm/s。经计算,沉淀池的尺寸(长×宽×高)为12.5m×6m×5.68m。
3)过滤池
根据计算清湖水厂净化系统设计流量分别为525m3/h。参照全国通用建筑标准设计图集S775,净化系统选用两组S775(八)320m3/h重力无阀虑池,流量共640m3/h满足要求;单池平面尺寸为4.1×4.1m,总高4.74m。
4)清水池与消毒
清水池容积按日供水量的10%~20%计算,本工程日供水量为12000m3,选两个1500m3的方形清水池使用满足要求。清水池单池边长28.7m,池高4.5m,池顶覆土高度为1.0m。
5)加氯、加药设计
投药间设置氯酸钠原料间、盐酸原料间、二氧化氯制取室、矾库、加矾间、化验室、值班室、办公室。投药间内配备有二氧化氯、混凝剂的储存、配制、投加系统。
2.4加压泵站
加压泵站设在清湖水厂内,泵站共设四台水泵,三台工作一台备用,水泵型号为KQSN250-N6,扬程为54m。加压泵站平整后室内地面高程为60.2m,采用单层单列式布置,单层式砖混结构,机组间距为4.0m,宽6.5m,长19.0m,为了满足水泵检修的要求,在泵房内设一台2.0t电动葫芦。
3、机电及金属结构
3.1 水机设备
清湖镇水厂供水日变化系数为1.3,由于供水的重要性,加压泵站考虑设置四台水泵,三台工作一台备用。
根据供水工程要求,加压泵站供水流量为900m3/h,单台水泵流量为382 m3/h,供水扬程为48.24m,三台工作一台备用。从“水泵系列型谱”拟选水泵型号及参数:KQSN250-N6,H=54m,Q=382m3/h,n=1480r/min,水泵吸入口径250mm,吐出口径DN=150mm、必需汽蚀余量2.9m,电机功率90kW,泵重511kg。
3.2 电气工程
清湖水厂的动力负荷均采用0.4kV电压供电,1回10kV电源进线引接于附近的10kV线路线路,设降压变压器一台,型号为S13-500/10,额定电压比为10±5%/0.4kV;0.4kV电压母线设2面GCS型成套低压开关柜,1面GCS型成套无功自动补偿柜,1面ZX-2动力箱。另设1台400kW柴油发电机组接于0.4kV电压母线上作为备用电源。
3.3 金属结构
为了能将絮凝沉淀池底沉积物快速有效排出,在絮凝沉淀池上配备1台吸泥机(移动台车式)。
净化系统各建筑物的埋件、埋管及阀门等算入各建筑物的水处理设备内,输、配水管网的金结算入相应的管附件内。
4、结语
陆川县清湖水库集中供水工程是新建项目,工程任务是解决清湖镇区及镇区周边村屯的用水问题,现状(2012年)52630人,远期(2030年)70643人。工程设计从清湖水库取水,经输水管道引至规划水厂,净水处理采用常规工艺,经加压后通过配水管网向用户供水。本工程项目实施后,将为清湖镇区、以及镇区周边村屯提供丰富干净的水源,促进了地区经济快速发展,具有明显的社会效益。经过论证,技术可行,经济合理,对环境无不良影响。
参考文献:
[1]林继镛.水工建筑物(第五版).中国水利水电2011.8.
关键词:水库;溢洪道工程;设计思路;设计布局
水利工程关乎社会民生,在新时期人均物质生活水平显著提升背景下,对于工程设计提出了更高的要求。作为水利工程中重要组成部分,水库溢洪道工程质量高低将直接影响到水库的安全,尤其是在汛期和泄洪期,尽可能降低安全因素带来影响。在水库溢洪道工程设计中,需要充分把握水库溢洪道的设计布局、水库溢洪道水力计算和结构计算,提出设计合理性,提升我国水力工程建设质量。由此看来,加强水库溢洪道工程设计研究十分关键,对于后续工作开展具有一定参考价值。
1水库工程中常见的问题
1.1洪水期间的问题
在水库溢洪道工程中,洪水期间出现的问题十分严重,作为保障水库安全的基础设施,水库溢洪道所起到的作用十分突出。但是由于造价不合理,水库设施不完善,所以在水库溢洪道设计标准上存在一定的不合理性,洪水数据偏小,这就导致后续设计的溢洪道尺寸不合理,难以满足实际要求。尤其是水库溢洪道运行条件较为恶劣,长期受到水体和风体的影响,岩石风化现象十分严重,致使水库溢洪道的泄洪能力偏低,在洪水期间为水库安全埋下了严重的安全隐患。
1.2水库溢洪道布置和设计问题
在水库溢洪道布置和设计方面,由于距离大坝进出口太近,所以坝肩和溢洪道之间的距离过于单薄。加之进出口并未建立专门的护砌,所以一旦发生洪水事故很容易造成坝肩崩塌,埋下严重的安全隐患。在水库溢洪道设计中,由于平面弯道过大,收缩性较强,洪水期间对于水库的泄洪能力带来不同程度上的影响,尤其是水库溢洪道布置的弯道大多数是在下坡处。水流流式不断变化,两岸水面差距十分明显,水库凹岸的水面不断提升,并且水流流速较快。这种现象将导致延平直段由于水流流速和冲击力较大发生拆冲现象,影响到水库整体的泄洪能力,带来的影响十分深远。如果水库缓流处收缩过于强烈,可能产生较为明显的流态变化情况,进而对溢洪道砌面产生严重的冲击力,工程施工难度更大。也正是由于水库投入资金限制性较大,如果砌筑高度较高,相应的需要投入大量的资金费用,在一定程度上对水库泄洪能力和安全产生直接的影响。
1.3水库溢洪道工程设计方法不合理
由于水库溢洪道工程设计涉及内容较广,在平面和剖面设计中可能存在不同程度上的缺陷,进而影响到溢洪道陡坡设计缺陷和不足的出现。主要是由于水库溢洪道布设具有非山坡性特点,所以底部并未进行充分的反滤砌筑防护,可能出现不同程度上渗漏水现象,进而发生严重的滑坡事故,对水库安全带来严重的破坏和影响。与此同时,在设计中由于重视程度不高,边坡的厚度不均匀可能产生严重的滑坡事故,进而对水库泄洪能力产生影响,带来较大的冲刷力。由此可以看出,当前我国水库溢洪道工程设计中还存在一系列缺陷和不足,除了上述问题以外,还包括一些结构基础和泄洪能力上的缺陷,可能出现水流冲击力较大,水库砌筑防护裂缝漏水,影响到工程的建设安全,还有待进一步完善和创新。
2水库溢洪道的设计规划
2.1水库溢洪道的设计布局
在水库溢洪道工程设计中,需要结合当地的地形、地貌和水文条件,保证经济投入合理性,后续施工活动可以安全有序进行。如果水库附近有山,建设水库溢洪道是合理的,如果施工区域较为狭窄,水库溢洪道可以选择侧槽式进行施工,有助于提升水库溢洪道泄洪能力。水库溢洪道设计布置中,主要是在坚硬平面上,尽可能的缩短线路距离,避免弯道的出现。同时,出口与坝体之间的距离越远越好,这样可以有效避免后续滑坡或泥石流对水库溢洪道带来破坏。(1)进口段。一般情况下,进口段的形状为喇叭形,这样是为了降低损失和地形因素限制,根据实际情况适当的设置弯道。设置的弯道尽可能保证平缓,避免受到较强的冲刷影响;溢洪道坝面设计为梯形或是四边形,水流速度在1s/h以下,可以不适用砌护墙。反之,如果与附近建筑物在一定范围内连接,可以适当的增加切护长度和厚度。(2)控制段。为了保证洪水期间泄洪能力,水流速度均匀,应该保证进口水流和建筑物保持垂直,根据地形条件有针对性的设置控制断面,确定泄洪流值。一般情况下,岩基单宽流量大概在50m3/s以上,除了一些小型水库进水口设置引流以外,水库溢洪道的宽度应该控制在3h以下。如果断面宽度较大,布设间距应该控制在10m~15m之间。(3)陡坡和急流段。在陡坡和急流段的设计中,可以选择直线法,进而避免坡体和弯道产生的流态负压问题。故此,在水库溢洪道设计中需要因地制宜,根据具体的地形、地貌和水文条件来确定引流形式。(4)消能段。陡坡和急流段的尾端需要安设一个效能装置,结合溢洪道地形和地质条件有针对性选择装置型号。在溢洪道末端选择多级跃流形式,促使水库的泄流方向可以控制在坝角的100m~150m左右。但是,对于消能工具的选择,如果是非岩基的消能工具,绝大多数情况下是采用底流效能方式.末端配置消能池。水库洪流阶段,池流量处于一个较为平稳的阶段,可以选择消能槛形式来满足实际需要。水库洪流是远驱式,可能对砌护带来严重的冲刷作用。针对此类情况下,可以选择差动式消能装置,水库溢流道末端坡度较陡情况下,应用挑射效能模式作用更为突出,还可以有效避免消能池的使用,降低工程量和资金投入,提升工程建设经济效益。
2.2水库溢洪道水力计算
(1)进口段水力计算。进口段水力计算主要是选择查尔诺门斯基法,从下游控制面反推上游控制断面的水面曲线变化情况,并且得出具体的数位高度,确保泄洪时水库的水位计算结果精准度。(2)陡坡和急流段的水力计算。陡坡和急流段的水力计算方法较为多样化,可以采用b2型降水曲线方法进行计算。(3)消能工具水力计算。在水库溢洪道底流式效能设备计算时,通过巴什基洛娃图方法进行计算,步骤简单,可以更快的得到计算结果,保证计算结果精准度,降低计算时间。一般情况下,在溢洪道建设中,更多的选择尺寸较大的消费设备,所以想要获得准确的水利工程效能情况,应该建立模型进行试验分析,得出更加准确的结果。(4)侧槽段的水利计算模式。在溢洪道侧槽段水力计算中主要是通过扎马林法,这个计算模式中将将流假定值是均匀的,但是实际情况下确实动态变化的,所以只能计算得出一个模糊结果,与实际情况存在一定的差异。尤其是近些年来,水利工程的水流量和能量关系的计算不断深化,计算方法也在不断创新,在了解池流情况基础上,由于侧槽式溢洪道水流内进冲击力较大,所以导致水流的流态变得更加复杂,计算难度较高。
2.3水库的结构计算
为了保证水库建筑物结构稳定性和安全性,这就需要在结构计算中能够选择合理的计算方法,除了对于坡面挡土墙的计算以外,还要对其他方面内容进行详细计算和分析。在陡坡砌护厚度计算中,主要是为了保证互动安全,设置可伸缩沉陷缝,避免洪水期间砌护体受到影响坡向发生变化,加剧阻力。
3结语
综上所述,水库溢洪道工程设计中,作为水利工程中重要组成部分,设计合理与否将直接影响到工程整体建设质量,这就要求设计人员充分把握水库溢洪道的设计布局、水库溢洪道水力计算和结构计算,提出设计合理性,提升我国水力工程建设质量。
参考文献:
[1]张俊宏,梁艳洁,杜娟,等.华阳河水库溢洪道泄洪消能试验优化研究[J].中国农村水利水电,2014,12(9):71~74.
[2]郝晓辉,郭磊,王慧,等.峤山水库溢洪道挑流鼻坎结构尺寸的确定[J].山东水利,2016,28(1):50~51.
[3]彭琦,陈朝旭,李涛,等.天河口水库除险加固工程设计[J].人民长江,2015,42(12):89~92.
[4]张艳丽.海龙川水库溢洪道加固设计与计算分析[J].水利技术监督,2015,23(1):49~51.
[5]和桂玲,刘长余,李清华,等.山东省邹城市西苇水库除险加固工程设计[J].中国水利,2014,21(20):77~80.
【关键词】水电站库区低等级复建公路 桥梁设计选型
1 概述
在水电站库区低等级公路复建中,通常不可避免的需要建设一些桥梁。水电站库区公路复建一般是因水库淹没,顺岸坡抬高复建,路线走廊带所处的地形复杂,地面起伏大,变化频繁,横坡较陡等,局部需穿越陡崖、崩塌或深切支沟等地形。拘于这样的地形地质条件,公路路线布设时通常是平曲线多,平面半径小,纵坡大,横坡陡,高挡墙多,甚至局部采用半边桥或者高架桥穿越,桥梁比例高。而且对于水电站库区公路,路线跨越深切支流较多,常常会遇到弯坡桥,高墩大跨桥和需采取多样的墩台形式适应地形地质条件。比如某水电站库区某公路复建工程,桥梁工程投资约占公路总投资的2/5。尽管是低等级公路,但如何做好桥梁的选型及设计对库区复建公路的设计就显得非常重要。
桥梁选型属于概念设计范畴,是桥梁结构设计里具有创造性的领衔设计。合理的桥型会使得公路桥梁工程结构本身安全、可靠、经济、耐久满足其正常使用功能外,还能和周边环境协调,提高人文景观效应。桥梁设计选型是指选用一种单一的结构力学体系(包括梁、拱和索结构)或者是由两种简单体系组合而成的结构力学体系(如系杆拱,斜拉悬吊结构和斜拉拱桥等方面)作为桥梁结构的主体空间结构形式,从而确定桥型结构。
2 水电站库区低等级复建公路常用桥型
2.1钢筋混凝土梁桥。
钢筋混凝土结构的一种有非常好的耐久性,并且还有非常强的可塑性,能够按照设计意图做成各种形状的结构,因此在桥梁设计中被广泛应用。钢筋混凝土梁桥就是钢筋混凝土的结构的一种,以简支梁、连续梁等结构形式被应用,而且由于其较强的可塑性,尤其在低等级公路越沟弯道段,被广泛使用。在低等级库区复建公路中,常会遇到跨径L≤16 m 的桥梁形式,一般情况下,根据桥位特点、周边环境和建设环境,桥梁跨径L≤6 m 时,采用实心板结构; 在桥梁跨径6 m≤L≤16 m 时,可采用空心板或连续的实心现浇板。
2.2预应力混凝土梁桥。
预应力混凝土梁桥根据跨度大小,在使用情况上是不一样的。L≤20 m 时采用后张法空心比较经济合理,因其建筑高度小、受力合理、施工工期短等优点被广泛采用。在25 m≤L≤50 m 时更多采用组合小箱梁或者T梁,小箱梁相比同跨径的T 梁有的诸多优点,被广泛使用。具体的优点主要有:一是梁高较小。二是梁稳定性优于T 梁抗扭性好,三是张拉预应力钢束时,较大跨径的T 梁易发生侧弯,而小箱梁基本不会出现侧弯。预应力筋能够使受拉区预先储备一定的压应力,在外力作用下混凝土可不出现拉应力或者是出现超过某一限值的拉应力。
2.3连续刚构桥和拱桥。
连续刚构桥是墩梁固结的连续梁桥,该种体系利用主墩的柔性来适应桥梁的纵向变形,适用于大跨、高墩的桥位修建,是库区跨越较大支流切沟的重要桥型之一。连续刚构桥分主跨为连续梁的多跨刚构桥和多跨连续-刚构桥,均采用预应力混凝土结构,梁墩固结点可将铰设置在大跨、高墩的桥墩上,利用高墩的柔度适应结构由预加力、混凝土收缩徐变和温度变化所引起的纵向位移。该桥型整体性能好,挂篮等施工方法成熟,结构刚度大,抗震性能好,被广泛应用于各级公路及铁路桥梁中。对库区的深切地形尤为适应。
拱桥在我国大江南北到处可以看见,起初的拱桥多采用用天然石料作为建筑材料。拱桥以其跨度大,造价低廉为高山峡谷中广泛采用。水电站库区的深切地形,往往两岸基岩完整,承载能力较好,适合修建拱桥。其古朴大方、受力合理、构造简单、无需高墩、造价低等特点均为其他桥型不可相比。
3 桥型方案比选原则
桥梁方案设计是初步设计阶段的重要设计内容,根据路桥配合选择的桥位、公路的技术标准、荷载等级、桥梁的各项设计要求,按照技术可行,经济合理,因地制宜、就地取材、便于施养、适用美观与自然环境协调一致的设计原则进行桥梁桥型方案设计。根据地形地质水文拟选三种进行比较分析,从安全、功能、经济、美观、标准化施工、占地和工期多方面比选,最终确定桥梁形式。
3.1适用性原则
所谓适用性原则就是符合公路总体设计要求,综合考虑水文,地质,地形,施工等因素,满足在车辆和人群的安全畅通及未来交通量增长的需要。在桥下应满足泄洪、安全通航或通车等要求。结构上保证使用年限和易维护,易保养。
3.2舒适与安全性原则。
所谓舒适与安全性原则就是要控制桥梁的竖向与横向振幅,避免车辆在桥上振动与冲击。整个桥跨结构及各部分构件,在制造、运输、安装和使用过程中应具有足够的强度、刚度、稳定性和耐久性。
3.3经济性原则 。
所谓经济性原则就是设计的经济性,符合长远发展远景及将来的养护与维修等费用。 同时还要先进性原则,体现出现代桥梁建设的新技术及造型美观原则。一座桥梁应与周围的景致相协调。合理的结构布局和轮廓是美观的主要点,尤其是在水电站库区低等级复建道桥梁的设计中。
4 水电站库区低等级复建道路桥梁设计选型
4.1桥型上部结构的比选
桥梁上部结构形式的选择合理与否对工程的经济性、结构新颖、施工方便、美观性及施工速度有较大的影响,是整个桥梁设计过程中非常重要的一个环节。同时还要以不破坏或少破坏地区原有风貌为原则,最大限度减小施工对水流的污染,较好地与周围环境相协调。在水电站库区低等级复建道路桥梁设计中,主要采用钢筋混凝土、预应力混凝土简支梁。简支梁桥是梁式桥中应用最早、使用最广泛的一种桥型。具有受力简单、节省材料、架设安装方便等优点。简支梁常用的经济合理跨径在20 m 以下,且采用空心板较多。随着近年来施工工艺的改进,应用较多的是宽幅式空心板和小箱梁,其经济技术指标较其他结构优势明显。对于跨径25 m 的简支梁,在库区桥梁中较少见,如需采用时,推荐T 梁。对于跨径30 m 的简支梁,组合小箱梁和T梁应用一样,各项指标也相差不大,各有优缺点。对于跨径35 m和40 m 的简支梁桥,采用组合小箱梁的结构形式,桥梁整体性好,施工张拉时不易出现侧弯,且更为节约材料。特别在曲线上的桥梁,组合小箱梁抗扭性能好于T 梁,且T 梁施工难度较大。所以跨径35 m 与40 m 上部结构推荐采用组合小箱梁。
4.2桥型下部结构比选
桥梁方案比选中,上部结构是首要考虑的,下部是从属的,但是也是不容忽视的。
库区低等级复建道路桥梁在山区,由于地势起伏都非常大,对自然环境的破坏应该以最小为目的。为了使桥墩台自身稳定性,需要将基础嵌入岩层或稳定的地基中。一般桥台填土高度宜控制在8 m 以下,桥台形式主要采用轻型桥台和重力式U 形桥台,轻型桥台采用桩基为宜。桥墩除特殊结构外一般采用双桩柱式桥墩,桩径1. 5 m,柱径1. 2 m,桥墩高度小于45 m 时,采用圆柱式墩较为经济,因其施工工艺成熟,提升滑模施工快。对于墩高大于45m的桥墩,为保证结构 有足够的刚度,同时兼顾外形美观,设置工艺较为成熟的空心薄壁墩。
5 结语
随着我国基础设施不断完善,边远山区的通村通乡公路建设项目越来越多,不至在水电站的库区低等级复建道路中,在一般的乡村道路建设中同样会有较多的桥梁建设,做好做优低等级公路建设中桥梁设计选型工作,对公路建设项目,乃至社会经济发展具有较大的意义和价值。
参考文献
关键词:禄丰县;管道工程设计;工程施工
1、引言
城镇供水工程随着科技的进步和居民生活质量的提高,管道供水较传统渠道引水的优越性日益显著。在有利于工程经营管理、方便实用、安全卫生、节水环保、用水保证率高等方面具有明显的优势。禄丰县城自来水大滴水引水工程管道全长22.34Km,所用管径为DN600mm和DN500mm预应力钢筋混凝土管材;德钢至石门水库引水工程管径采用DN800mm预应力筋混凝土管材,管道全长2.68Km。上述工程启用至今,从经济、安全、适用和效益的角度来分析都是比较科学合理的。
2、管材的选择
在输配水管道安装工程中使用的管材可分为金属管和非金属管两类,常见的金属管有铸铁管、钢管、球墨铸铁管等,非金属管有塑料管(PVC管、PE管、PP管),自应力钢筋混凝土管,随着管材生产工艺和各种新型材料的广泛应用,逐步创新生产了预应力钢筋混凝土管、预应力钢筒混凝土管、UPVC管、玻璃钢塑料复合管、玻璃钢管被广泛地应用到工程实践中。
因城镇供水直接影响居民的健康质量,其供水安全、管材对水的质量是否存在二次污染和工程自身的经济效益的优劣,成为了工程首先考虑的问题。管道供水工程投资中管材投资比例占工程总投资份额最大,实践证明管道工程设计中,科学合理选择管材是决定项目能否发挥正常功能,有利于施工和进度,以及工程效益最大化的关键。
因管材生产材料、技术及生产工艺的不同和差异。同一管径和长度的管道相比:从材料性能来看管材不易断裂;管道自重相对较轻、安装更简单快捷;安装后内外承压力及安装的密闭性更好;抗腐蚀性能较优、管内壁不易结垢;从水力性能来看能实现更大的供水流量,从综合安装维护造价来看有着更加优越的性价比,则可认为是选择了比较理想管材。
城镇引水管材大多选用管径范围在Φ300―Φ1200 mm之间,工作压力多为0.2―1.2 Mpa之间的管材,就目前情况来看非金属管在小管径和易埋设的条件下较为经济实用,压力管道管径范围在Φ20―Φ700 mm之间,是“以塑代钢”的适宜选择;由下面方案进行比较,非常清楚地看出,在供水安全、卫生,施工占地少,管道施工适应性好的前提条件下,钢筋预应力混凝土管和钢筒混凝土管工作压力在0.4―1.6 Mpa之间,相对管径偏大的管材选择上较其它管材更具优势。钢筒混凝土管与预应力钢筋混凝土管相比,除价格偏高以外,在安装管径大,施工地质条件复杂的情况下优势明显;玻璃钢管管材根据模拟实验资料显示,在用含大量泥砂的水装入管材内,经30万次旋转后,检测管内壁磨损深度,经表面硬化处理的钢管为0.48mm,玻璃钢管仅为0.21mm,所以玻璃钢管不仅糙率小,且更为耐磨。从实例讲,由深圳至香港的供水工程,供水管道长50公里,分别用两条内径为2.2m和1.7m玻璃钢管道,从1965年使用至今仍完好无损,故工作压力在0.4―1.6 Mpa之间,供水高差有限的情况下,以是一种良好的生活饮用水管道工程措施选择。
(4)总水头损失计算
可根据管线测量成果按式(8)计算,也可根据式(9)、(10),按经验局部水头损失的a倍8%~12%来计算,以可根据不同管材管道计算经验公式进行计算。
即:h=hf+ahf
一般管材管径均为定型尺寸,为达到充分利用自然水头,优化工程设计及投资的目的,里程较长的管道经常会设计成不同管径和管材混合安装在同一管道上使用,计算时根据上述公式及不同管材水力特性反复试算,直到符合设计要求。
4、方案比较
管道引水工程措施应用范围,通常地形复杂、区域跨度大,沟渠难配套和维护困难,有一定的供水自然落差;项目供水保证率要求高,有供水卫生考虑的。然后就是选用管材的经济、性能对比了,方案及投资比较以当时(2000年)禄丰地区市场价格为准,管径Φ500 mm、工作压力1.0 Mpa管材方案及投资比较如下。
(其中管材价含运费)
由上表和参与我县多项引水工程的设计及施工实践经验来看,在工作压力设计为1.0 Mpa以下管材使用范围内预应力钢筋混凝土管有较好的经济实用性;而作压力设计为1.0~2.0 Mpa使用范围内钢筒混凝土管和玻璃钢管优越性能比较显著。
5、预应力钢筋混凝土管道设计及施工
(1)预应力钢筋混凝土管因自重大、质脆,在运输装卸、安装过程中需小心以防断裂。
(2)安装时一般400~700 mm管径的借转角度不大于1.5°,400~700 mm管径的借转角度不大于1.0°。管槽底坡在1:1~1:0.5之间应考虑使用钢管安装,管槽底坡比1:0.5陡的应考虑修改管线和设计方案。
(3)在跨河,借转无法解决管道转向的和管槽底坡较陡的应使用钢结构弯头或直管安装,同时使用砼镇墩。所用管材钢结构承、插口应根据预应力钢筋混凝土管承、插口尺寸制作,与预应力钢筋混凝土管连接止水则正常使用橡胶圈,根据禄丰县城大滴水引水工程施工经验证明设计考虑钢管部分易腐蚀而将混凝土镇墩浇筑至与钢结构弯头连接的预应力钢筋混凝土管头50cm处,导致管道试压和运行期间有部分预应力钢筋混凝土管在靠近镇墩30cm处断裂。而德钢引水工程施工时,经过与设计方协商,把设计变更为钢结构弯头和直管承、插口露出镇边缘30~50cm,并做好该部位的防腐蚀措施,从而解决了预应力钢筋混凝土管靠近镇墩30cm处断裂的问题。钢筒混凝土管则兼备了钢管和预应力钢筋混凝土管的优点,但价格比预应力钢筋混凝土管高。预应力钢筋混凝土管的断裂,在不影响结构损坏的条件下,一般采用钢结构抱箍配合石棉自应力水泥及107胶水混合物塞填维修,养护24小时后可进行压水实验。
6、预应力钢筋混凝土管道压水实验的几点建议
管道工程中压水实验是检验管材质量和安装质量最直接有效的方法,但已是施工中最不安全的环节,目前就此问题相关资料多有不详并缺乏实践操作的有关资料和经验论述。
(1)管道安装过程中应尽量仔细认真检查管材质量和止水胶圈安装质量,以此最大限度减少管道压水实验次数,因压水过程不但有一定的危险,而且耗时费力。如果因此导致管道损毁,维修费用也很高。
(2)压水实验堵头位置的选择应先根据工作压力和管径大小先计算压水实验时堵头承受的总压力,一般用实验压力的1.2~1.5倍来计算。堵头位置选择原则为:管段地势相对高处,一般不宜选择在地势低洼积水的地点;除堵头处安装压力表以外,管道最低处附近应安装压力表;堵头设置在易取水处,但该处要地质条件要好,干燥易排水,管槽及管线相对平缓顺直,做到尽量利用地形条件降低堵头处因压水实验承受的总压力。为降低管道试压成本可在距离管口0.6~0.8米处设置两层以上方木(边长0.25米以上),受力面方木竖置以管槽,根据试压管径大小设1.2cm厚度钢板与千斤顶便于调整堵头与试压管道承、插口的距离,与夯土堆接触的方木则横置,整个堵头基础低于管槽基础,保证压水实验的安全。一般试压管段长度选择1.5公里左右较为合理,可根据堵头较理想的安置位置酌情增减试压管段长度,因管段试压长度与管道修复的经济合理性和管道压力稳压阶段单位时间内压力下降值有直接的关系。
(3)试压前已安装好的管道两侧土要回填夯实,管道夯实的覆土厚度应大于管承口的0.5倍,堵头钢构件上应设置配套进水管、压力表、补排气阀及配套球阀,加压时一般在正三角形位置上布置三个千斤顶,故堵头一般要用钢肋加固,靠近堵头的3根预应力管应采用比设计工作压力大1.2~1.5倍的管材,并用土完全夯实覆盖,防止因爆管而造成工作人员伤亡。试压前将水充满管道,将管道地形高程相对较高处加压至0.1~0.2 Mpa,利用补排气阀将管道内空气排出,在此条件下养护3天。
(4)压水实验时0~1.2 Mpa工作压力可采用多节泵加水增压,压水每增加0.2~0.4 Mpa压力可停止加压30分钟,其间试压管段工作区内应禁止人畜进入,严防发生安全事故。用方木与夯土堆建成的堵头支撑在管道加压过程中会产生位移和变形,应根据情况用安装好的千斤顶不断调整钢构件堵头与管道承或插口的距离,保证堵头处止水胶圈始终保持在密封状态,另外试压工作时应配齐必要的对讲通讯设备,保证整个工作现场通畅的协调与沟通。
(5)堵头的支座伸入管槽基础两侧及槽底,管道试压压力在1.2 Mpa以下范围内可采用40×40cm方木,长度200~300cm,砌成墙体状,一般使用两层,按受力方向前层竖直,后层横置,然后把方木后面用土方人工夯实回填至原地面高程。千斤顶根据压力大小选择,一般使用三个,与方木接触的受力部位同时作用于一块钢垫子上,若压力较大时应考虑混凝土支座。
【关键词】干渠;存在问题;改线思路
1 灌区概况
石堡川灌区地处陕西省关中平原东北部,居关中平原与陕北黄土高塬接缘地带。灌区设施范围涉及渭南市白水、澄城及延安市洛川三县。灌区设施灌溉面积40万亩,有效灌溉面积31万亩,设计灌溉保证率50%。灌区受益范围包括白水、澄城、洛川三县14个乡镇,180个行政村,灌区内总人口30.8万人,其中农业人口19.37万人。
灌区属暖温带大陆性季风区,多年平均降雨量549.2mm。灌区土壤以黄绵土为主,夹少量褐色垆土。灌区作物主要以小麦、玉米、油菜、苹果、核桃为主,是陕西省粮食生产基地和果林优生区。
灌区水源石堡川水库,修建于1969年,总库容6375万m3,兴利库容4585万m3。灌区地下水埋深40~100m。可开采量2030万m3,目前年利用地下水量约520万m3。
灌区工程设施包括:水库枢纽、干渠、支渠、抽水站及田间工程五部分。枢纽有大坝、放水洞、泄洪洞、泄洪底洞、溢洪道;干渠1条,长38.708km,各类建筑物148座;支渠8条,分支渠14条,总长219.343km,各类建筑物1895座;抽水站9座,总装机1350kw,抽水流量1.65m3/s;田间工程有斗渠397条,总长486.5km,建筑物2940座;分引渠2229条,长2213.5km,各类建筑物24500座。
2 干渠工程存在问题
石堡川水库干渠0+000~14+950段为绕山明渠及隧洞、跨沟建筑物等,存在渠基岩石风化、剥落、滑塌、险情不断、渗漏严重、隧洞及建筑物建设标准低,病险严重,导致不能按设计流量运行,事故频发,贻误灌溉,水资源浪费严重。干渠工程存在的主要问题:
(1)渠基地质条件差,岩石风化,基础变形,渗漏严重。经对石渠段0+000~5+300全面检查观察,发现石渠段下部有一层约4m厚的泥质页岩,其特点是外露最易风化,特别是在1.5km至4km处,大多为这种情况,而泥页岩不断风化脱落,使上部的砂页岩石渠部分悬空,加上渠道内的渗漏水和冻胀影响,上部的岩体塌落,使部分渠段基础移动变形。由于两侧未变形岩体的相互牵制,这些“危险”段落暂时还没有滑塌,但一旦上下渠道均发生变形,石渠整段滑塌的风险就非常大,特别是渗漏和由于渗漏产生的冻胀使这种危险情况在不断加剧。经初步检查评估,这利风险极高的渠段约为3km,占石渠段总长的57%。
(2)过水能力不足,无法满足灌溉和城市供水。石渠段经过两次防渗改造,过水断面减小18%,每次防渗漏处理方案都是在原渠内衬砌砼,致使渠道断面缩小,要达到设计流量,只能抬高设计水位,从理论上侵占了渠道设计时的超高断面。而更重要的是渠道存在的安全隐患使管理单位不能按设计的9m3/s放水,只能按其70%的流量运行。目前的现状是渠道不稳定状态进一步加剧,今后数年内管理单位只能加大巡查维护力度,盼侥幸维持6m3/s左右的风险运行。
(3)渗漏损失严重,水量浪费大。石堡川干渠全长38.5km,渠道水利用系数0.75,经分段监测,仅5.3km石渠段水量损失就达到18%。据观察和当地群众反映,每次石渠段放水时,特别是放水流量较大时,下游河道的流量就会有看得见的增大变化,而当渠道停水后,河道水也明显减小,这说明石渠段的渗漏通过通过各种途径均汇入了地形最低的河道里。按2012年放水3000万m3计算,仅石渠段5.3km年可损失水量达540万m3,相当于几座小型水库的容量。这对于一特别缺水的渭北旱原来说是非常可惜的有效水资源。
(4)险情不断,抢修不便,贻误灌溉。1971年9月2日,暴雨引起山洪,洪水顺沟而下,东、西孙家山和落雁3座土填方大部分冲毁;1971年10月30日,北彭牙西沟双曲拱渡槽在吊装五段拱肋时,垮入沟中,成为开工以来第一大事故;1990年11月17日,冬灌进入,干渠落雁弯道填方发生险情,当即决定停水抢修,维修队全体干部工人经一夜奋战,于20日抢修完毕,继续放水冬灌;1991年7月5日,张索渡槽漏水,经过5小时的紧张施工,处理好接头处漏水,保证了夏灌行水安全;1994年6月28日,灌区突降特大暴雨,导致渠道不同程度的发生倒塌、决口;1995年7月24日―8月1日,灌区连续两次突降暴雨,导致干支渠道不同程度的倒塌及衬砌板悬空及衬砌板悬空、裂缝、变形,建筑物损坏严重;2005年3月,落雁段发生管涌;2008年夏灌中放水流量由6m3/s增加到8m3/s,但不到48h,石渠段末段的土石渠结合部渠外侧突然滑塌,形成了40多米长的一条决口,8个流量全部溃泄至下部河道和河川农田和果园,造成了较大的损失。全线灌溉中断,由于交通不便,经过一个月的苦战完成决口抢修后,已失去了夏灌的最佳时期,几十万亩农田和果园严重受损,而为夏准备的超过汛限水位的1000多万方水,由于水库防汛的要求而白白的被从河道下泄。2012年夏灌中石渠段又一次发生严重漏水问题,有多处漏水点距石渠段150m左右,在石渠段下部的山脚下老百姓的农田中冒出,淹没农田40多亩,果园10多亩,给受灾群众造成损失近20万元,为此群众不断上访,要求彻底改变石渠段的安全隐患。
(5)干渠改造交通不便,改造投资大,治标不治本。现状干渠0+000―5+300交通条件差,改造工程投资大,由于渠基础基础条件差,即使进行内衬防渗,也不能适应渠基的变形造成的危害,仅是治标,不治本,通过干渠改线,可消除渠基带来的不利影响,从长远看,石堡川水库不仅承担灌区农业用水,而且可能承担县城供水、工业用水,采用隧洞输水,防止水质污染、节水具有十分重要意义。
3 干渠改线思路
现状干渠起于水库放水洞出口,沿沙家河左岸山坡盘山向西,在桩号3+841进入1#隧洞,渠线基本呈南北走向,先后经2#、3#、4#隧洞,在东落雁村出4#隧洞,接明渠后,渠道转向东,经石索村、北彭衙、丁家山村至澄县。干渠较大建筑物、渡槽、高填方多位于0+000―15+000段。
根据干渠现状存在问题,拟对石堡川水库干渠进行改线,改线段隧洞起于总干渠0+133,出于总干渠14+950,然后向东输水到现状干渠,向西输水到二支(11+103.4),一支渠位于干渠7+126.9处,设计流量1m3/s,面积4.0万亩,对现状干渠0+135―7+126.9改造后解决一支渠输水问题,故确定改线隧洞流量为原干渠流量扣减一支渠流量。
4 改线投资对比分析
方案1是对现状干渠0+135~14+950进行内衬C20砼12cm,配φ6@200钢筋网,对现状隧洞进行内衬砼防渗加固,对渡槽进行加固,对高填方进行充填灌浆,工程估算投资1.45亿元。方案2是采用隧洞对0+135~14+950段进行裁弯取直,替代明渠输水,工程投资1.60亿元,由于改线方案2具有安全、节省维修费用、线路短、水利用率高的优点,推荐选用方案2。
5 工程建设方案
洞线起于干渠0+135,出口到干渠14+950,通过改线可替代干渠长度14.815km,减少5.3km石渠段,4座隧洞,6座渡槽,3座高填方运行带来的各种病害、险情,改线段总长7.93km,其中隧洞长7.715km,明渠长0.215km。隧洞设计流量取8m3/s,加大流量10.5m3/s,控制面积36万亩。
6 结语
改线工程完成后,从放水洞口到三支口,水利用系数提升至0.98,按灌区每年渠首引水3000万方,年可节余水量600万方,多灌溉5万亩果园,按亩均增产500公斤苹果,可增产苹果2.5万t。
灌溉增产调查资料及2013年农产品影子价格,经分析计算,正常运行期所产生的灌溉净效益为5000万元,则灌溉净效益为2000万元,间接效益按灌溉净效益的15%计算,则为300万元。
改线工程一旦实施完成,可节省每年原干渠维修费用200万元,有利于灌区进入良性发展的轨道。
其他效益按固定资产投资的2%计列为248万元。
(甘肃省兰州公路管理局榆中公路管理段,甘肃 兰州 730100)
【摘要】通常,路面受到破坏的一个重要原因即路基出现意外状况。首先对公路路基常见的病害作出了具体的分析与归类,此外对每种病害出现的原因进行了总结。与此同时,提出了相应的解决公路路基常见病害的防护措施,以供同仁参考!
关键词 公路路基;常见病害;防范措施
路基是公路的重要组成部分,是路面的基础。其质量的好坏,将直接影响到路而的使用品质。据调查,我国路面产生的早期损坏因路基而造成的占60%以上。路面的损坏往往与路基排水不畅、压实度不够、强度低等有直接关系,而且修复难度大、费用高。
1常见病害及原因
因为不同的工程在其施工过程中,地形与地质之间存在差别,再加上一些自然因素的影响,比如水文、天气等等,都会导致公路路基产生一定的病害。根据笔者的调查,可以发现常见的公路路基病害有沉陷、坍塌、边坡滑坡等等,这会威胁到交通的安全。
1.1路面不平
作为公路工程舒适程度的一个重要参数,路面平整度对于整个公路路基质量的控制有着重要作用。一旦工程的质量受到影响,路面也会出现不平整的状态。这导致的最终结果是,路面的平整度严重降低,使得车辆不得不降低行驶的速度。与此同时,冲击力也在明显增加,形成的安全性以及舒适性都会受到影响。长此以往,公路工程将会无法实现预期的社会以及经济效益。通过研究发现,路面的平整度受到影响主要存在以下原因:没有控制好基层的平整度,最为严重的一种情况是波浪式起伏;对于路面的施工质量没有较好地把握;摊铺机及压路机的工作人员专业性不强;没有正确地把握好基准线或滑靴。
1.2路基不均匀沉降
导致公路路基产生沉降的原因是多方面的,举一个简单的例子,例如路基的荷载力太小,或者是土的应力作用以及地下水的作用力等等。很多的资料都显示,这种路基病害的产生是受多方面因素影响而形成的。通常来讲,路基产生不均匀沉降的具体原因表现为:填方路基的土体不具备足够的压实度;在地基中具有饱和软土层;公路路基的刚度不一致,这样容易导致路基受车辆荷载力的影响,其结构出现附加应力,并且这种力偏高,使得公路路基出现病害;同时,地下水状态发生改变,也会导致土体以及水压力发生变化,进而使得附加应力出现。这种附加应力会加强填土的附加沉降;此外路基的侧向变形,也是导致路基发生病害的一个因素,不容忽视。
1.3坡面破坏与滑坡
公路路基会出现滑坡的原因是多方面的,其中,最为关键的一个因素则是受地基的强度影响。由于地基的强度不断降低,破坏了土体稳定性的平衡,最终使得路基产生灾害。加上路堤的边坡坡度较大,或者是另外一种情况,边坡的坡脚已经被冲走,都会使得路基出现滑坡灾害。通常而言,较为严重的滑坡主要是在松散结构,或者是黄色湿陷性黄土层中出现的。至于滑坡的具置,主要是在一些无法整合的接触面处。这是因为接触面部位的黄土的稳定性不强,受到外力影响,比如水,或者是地震等等的作用力,都极容易出现土体滑移和崩坍。
1.4路基沿山坡滑动
在水库库区、沿河的高路堤路段,水库蓄水前路基比较稳定,但随着水库不断蓄水,水位不断提高,沿库区路段路基底部被水浸湿,强度降低,从而使上层土体失去支掌,形成滑动面,坡脚又未进行必要的加固处理,当路基土体自重和行车荷载产生的向下滑动的力大于路基底层与原地面之间的摩阻力时,路基就可能沿基底向下滑动,路基整体失去稳定。
2防治措施
2.1路基的勘察与设计
勘察设计工作人员的业务水平的提高,对于我们在设计路段的工程地质状况进行了深刻透彻,仔细而全面的调查,软基处勘察水平的提高,全面真实无误地综合反映当地地质的情况,对影响路基病害的因素进行全面的调查分析,这给我们提供了大量详细的设计资料信息。于是,再通过设计部门借鉴、参考我国及其他国家相关部门,对路基勘察与设计的资料,根据路面实际勘察、路面实际地理环境等情况,给我们制作出一个科学而准确的设计方案。监理单位要不定期的对控制路基施工的测量放样进行抽查。
2.2强化施工现场监督与管理
严格把握好公路路基的施工质量,第一,需要制定出一个具体的施工计划。这个计划的制定不应带有随意性,需要尊重工程的实际情况制定。在完成路基填筑时,必须在事先做出一定的准备工作,观察路基的清理工作是否符合要求,有没有杂质,或者是软土地基。其次还需注意路基的排水设施,应尽量地保持公路路基的干燥,以及压实度等等。施工必须保持一定的秩序,严格按照施工计划执行。
2.3路基路面的排水
对于公路路基施工建设中雨水冲刷强、排水措施不完善的路段,应该参考雨水的冲刷力度、雨量大小建设排水管道,从而减小雨水对公路路基路面的伤害。对于公路路面的排水措施也应该根据路基的具体情况,目的是减小雨水下渗到路基中去。对公路路基的排水工作应该严谨合理,对具体路段采取具体的措施,采用管道排水施工建设时也可以根据路基的情况使用不同的管道施工,以适应路基排水的需要。
3结束语
综上所述,由于公路建设时间短,建设完成速度快,为了对公路路基常见病害进行有效处理,需要对公路路基进行有效的防护措施,以保护公路路基的安全。对于公路路面进行施工建设时,暴露出来的公路路基问题尤其需要引起重视,并且我们应该通过提高公路施工的技术和能力,定期对公路路基的养护等措施解决公路路基病害问题,实现公路行车安全和公路路基质量安全。总之,公路路基建设需要对施工工作、技术工作、管理工作、监督工作等各个工作环节进行有效的安排,以实现公路路基的养护和公路路基的质量安全。
参考文献
[1]郑昌礼.公路路基常见病害及防治措施[J].科技创新导报,2008(12):60.
[2]祁昌旺.高速公路路基质量通病及其防治措施[J].黑龙江交通科技,2007(03):35-36.
[3]宋毅.试论公路路基简单防护类型的选择与加固的相关措施[J].科技风,2014(010:138.
[4]卢莉.公路路基常见病害及加固防护技术[J].科技创新导报,2011(06):127.
[5]封拴虎.路基的常见病害及预防措施[J].交通世界:建养·机械,2009(4):81-82.
[6]刘铁军.路基常见病害原因分析与防治措施[J].科技风,2010(13):105.
[7]梁美花.公路路基边坡常见病害分析及防治对策[J].沿海企业与科技,2007(09):162-163.
[8]张新.浅谈公路路基施工质量问题[J].中国高新技术企业,2008(13):32-35.
[9]武有军.关于公路路基施工技术的探讨[J].信息系统工程,2011(12):17-18.
[10]丁华元.公路路基施工技术要点分析及质量控制[J].科技传播,2011(16):105-106.
[11]汤李斌.山区公路路基的滑坡运动模式的研究[J].电脑知识与技术,2014(09):55-56.
Abstract: Based on the analysis of the different types of reservoir bank collapse prediction methods, various reservoir bank collapse prediction methods including empirical method, Е Г КаЧУТИН method, balanced section method, two section method, and bank slope structure method were compared and discussed, and the new method of evaluation and forecast: equilibrium diagram method is more recognized, which has strong usability and simple operation. Taking Lengqing highway reservoir bank collapse prediction as an example to analyze and verify the method, it is found that equilibrium diagram method has good practicability.
关键词: 山区;库岸;路基稳定性;预测评价
Key words: mountain;reservoir bank;roadbed stability;prediction and evaluation
中图分类号:U418.5 文献标识码:A 文章编号:1006-4311(2016)20-0202-03
3 常见坍岸预测方法讨论分析
3.1 库区岸坡地质环境较为复杂,现有相关坍岸预测方法对水库预测时结果往往误差较大。
类比图解法是常用普遍应用的方法,可对均质土质岸坡或岩质岸坡的坍岸进行预测。佐洛塔寥夫、卡丘金和平衡剖面等这三种方法可用于均质岸坡,这三种方法应用于南方山区河谷型水库的坍岸预测,得出的结果和实际有时存在较大的差距。佐洛塔寥夫法考虑了冲蚀土可组成堆积浅滩环境,而实际预测过程较为复杂,且结果不理想。平衡剖面法需要相关观测数据和试验曲线,并绘制平衡断面,然后进行分析。动力法以一定的物理理论为基础,但建立关系方程需要相当数量的观测样本。两段法对于南方山区的峡谷型水库比较适合,在各类岩质的岸坡中具有很要的预测结果。
3.2 对比以上坍岸预测方法的优缺点,我们认为一种新的山区河谷型库岸坍岸预测方法――平衡图解法较为可行。
平衡图解法的基本思路是考虑坍塌土体部分与堆积部分和流失量的体积平衡,通过预测坍岸最终形成的平衡坡面确定坍岸计算的图解法。
预测步骤如下:① 编制预测位置的地形、地质剖面图;② 画出水库正常高水位线、水库排洪水位线(P=20%洪水频率)、正常低水位线(调度低水位);③ 由正常高水位向上画出毛细水上升高度线(h1),毛细水位上升高度值可取为0.5m;④ 由水库排洪水位线向上,标出洪水冲刷影响线,影响深度(h2)值可取为0.5m;⑤ 标出正常低水位线;⑥ 在正常低水位线选取α点,该点位于原坡面线与正常低水位线交点上;⑦ 由α点向上绘出冲磨蚀坡面线,与水库排洪水位线交于b点;其稳定坡度β1可根据实地调查和类比水库统计以及实验获得;⑧ 由b点作水下坡面线,和正常高水位毛细水上升高度线相交于c点;其稳定坡度β2视岸坡岩性而定;⑨ 由a点向下作水下堆积坡面线,与原坡面线相交于e点;其稳定坡角β3由岸坡岩土体水下停止角选取;⑩ 绘制水上岸坡坡面线c-d;坡角β4据自然坡角确定;c点作竖直线向上交原坡面线于m点。
检验原坡面坍塌面积A1与水下堆积面积A2之比p,如大于1.1,则向水中移动α点并按上述步骤重新作图,如小于1,则向岸坡移动α点并按上述步骤重新作图,直至1
水库库岸的坍岸规模预测,主要依据国内同类型水库蓄水后不同岩类库岸再造的实际资料和目前库区洪枯水位带的坍岸情况进行类比,并采用图解法确定坍岸宽度,具体作法是,以大量统计分析常年洪枯水位变幅带不同结构和不同组成物质岸坡的稳定坡角作为水下稳定坡角(α),以洪水位以上稳定的岸坡坡角作为水上坡角(β),然后采用图解法初步预测其坍岸范围。
3.3 以冷清公路库岸边坡坍岸预测为例
土石混合体土样取自冷清公路库岸路基边坡现场,混合体中的碎石主要是灰岩和砂岩、细粒土为粉质粘土。随机取出5份土样进行筛分,筛分后百分含量的平均值见表1。首先确定水下稳定坡角α和水上稳定坡角β,再结合具置的地质剖面,作图求出坍岸的宽度S。
试验采用岩石结构面直剪仪,其尺寸大小为250×250×250mm,粒径最大值取40mm。仪器由水平加压系统和垂直加压系统组成。在塑限附近取四个含水量9%、14%、18%和23%来进行试验。
本试验所有试样采用垂直荷载为200kPa的压力进行制样。每个试验用了三个试件,三个试件在垂直荷载为100kPa、200kPa、300kPa下剪切。
根据以上提出的图解法和参数,即可进行冷清公路路基库岸边坡坍岸的范围规模预测,从而得出工程处治方案。该图解法在预测库岸坍塌的过程中数据易于获得,实用性较强,具有较好的操作性。
4 结论
本文通过讨论库岸坍岸的预测方法,得出以下结论:
①库岸坍岸是一种复杂的地质问题,影响因素较多,现有的预测方法由于参数的局限性,各有其自身的适用范围,但对于较为复杂地质条件下的库岸坍岸问题不能进行有效的预测。
②本文综合现有的库岸坍岸预测方法得出库岸预测方法―平衡图解法,以冷清公路路基库岸边坡坍岸为例,运用图解法进行分析,获得数据较为方便,适用范围较广,操作方法较为实用。
③在山区库岸坍岸的预测过程中,影响因素较多且各影响因素的作用不尽相同,对每个影响因素进行权重分析将是进一步研究的重点工作。
参考文献:
[1]柴波,等.红层水岩作用特征及库岸失稳过程分析[J].中南大学学报,2009(04):1092-1098.
[2]DZ /T0219-2006,滑坡防治工程设计与施工技术规范[S].
[3]红河谷冷墩至清水河二级公路库岸边坡稳定风险评价、库岸再造规律与病害治理技术(报告),2011,08,23.
[4]邵振臣,等.丽宁新团至大东岔口路段滑坡稳定性分析[J].低温建筑,2015,12:128-130.
[5]周世良,等.基于水-岩相互作用的泥岩库岸时变稳定性分析[J].岩石力学,2012(07):1933-1939.