欢迎访问爱发表,线上期刊服务咨询

初中数学思维能力培养8篇

时间:2023-05-29 08:32:14

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇初中数学思维能力培养,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

初中数学思维能力培养

篇1

 

课堂教学结果表明:许多学生之所以处于低层次的学习水平,有一个重要因素,就是逆向思维能力薄弱,定性于正向学习的公式、定理等并加以死板套用,缺乏创造能力、观察能力、分析能力和解决问题的能力。因此,加强逆向思维的训练,可改变其思维结构,培养思维灵活性、深刻性和双向能力,提高分析问题和解决问题的能力。迅速而自然地从正面思维转到逆向思维的能力,正是增强数学能力的一种标志。因此,在课堂教学中务必加强学生逆向思维能力的培养与塑造。

 

中学数学教学的目的是为了使学生获得一定的数学知识,更是为了使学生获得一定的数学能力,形成一定的数学意识,最终能分析问题,解决问题。对学生进行思维能力的培养,显然是实现这一目的的重要手段。而逆向思维是数学思维的一个重要方面,更是创造性思维的一个重要组成部分。当人们在处理某些问题上习惯于正向思维而处于“山重水复疑无路”的困境时,逆向思维往往会使我们面前呈现“柳暗花明又一村”的醉人情景。所以在数学教学中,要重视学生思维的灵活性、敏捷性和深刻性的培养,从而提高学生的思维品质和思维能力。下面谈谈如何在初中数学教学中培养学生逆向思维能力的点滴体会。

 

传统的教学模式和现行数学教材往往注重正向思维而淡化了逆向思维能力的培养。为全面推进素质教育,本人在三十多年的数学教学实践中常注重以下几个方面的尝试,获得了一定的成效,现归纳总结如下,以供同仁们参考:

 

一、加强基础知识教学中的逆向思维训练

 

(一)在概念教学中注意培养相反方向的思考与训练

 

数学概念、定义总是双向的,我们在平时的教学中,只秉承了从左到右的运用,于是形成了定性思维,对于逆用公式法则等很不习惯。因此在概念的教学中,除了让学生理解概念本身及其常规应用外,还要善于引导启发学生反过来思考,从而加深对概念的理解与拓展。例如:讲述:“同类二次根式”时明确“化简后被开方数相同的几个二次根式是同类二次根式”。反过来,若两个根式是同类二次根式,则必须在化简后被开方数相同。例如:若 是同类二次根式,求m,解题时,只要将2m+3 =4+m,即可求出m的值。再如:已知am=3,an=2,求a2m+3n的值。这只需逆用公式am·an=am+n即可,a2m+3n=a2m·a3n=(am)2·(an)3=9×8=72。

 

任何一个数学概念都是可逆的。在进行概念教学时不仅要从正面讲清其含义,也应重视定义的逆向应用。使学生对概念有一个完整的了解,帮组学生透彻理解,形成牢固记忆。特别是在平面几何入门阶段,逆向思维训练尤为重要,能为以后的推理论证打下良好的基础。如线段中点的概念,我们知道,若点C为线段AB的中点,则有:AC=BC①或AC=BC=1/2AB②或AB=2AC=2BC③,反之也应理解,若以①、②、③式中的任一式为已知,且点C在线段AB上,都可以得到点C为线段AB中点的结论。又如对“两条不同的直线不能有两个或更多个公共点”,可以从逆向思维的角度来帮组学生理解:如果两条直线有两个或更多个公共点,那么经过这两个公共点就有两条直线,这与公理“经过两点有且只有一条直线”相矛盾,因此两条不同的直线不能有两个或更多个公共点。有时逆用定义还可以更简捷流畅地解决问题。

 

(二)重视公式逆用的教学

 

数学公式是我们解题的重要依据之一,但我们往往习惯于公式的正向思维,对学生进行逆向使用公式的训练明显不足。因此,我们在进行公式教学时,应强调公式是可以逆用的,并要进行适当的训练。公式从左到右及从右到左,这样的转换正是由正向思维转到逆向思维的能力的体现。因此,当讲授完一个公式及其应用后,紧接着举一些公式的逆应用的例子,可以给学生一个完整、丰满的印象,开阔思维空间。在代数中公式的逆向应用比比皆是。如(a+b)(a-b)=a2-b2的逆应用a2-b2=(a+b)(a-b),多项式的乘法公式的逆用用于因式分解、同底数幂的运算法则的逆用可轻而易举地帮助我们解答一些问题,如:计算(1) 22000×52001;(2)212-192;(3)2m×4m×0.125m等,这组题目若正向思考不但繁琐复杂,甚至解答不了,灵活逆用所学的幂的运算法则,则会出奇制胜。故逆向思维可充分发挥学生的思考能力,有利于思维广阔性的培养,也可大大刺激学生学习数学的主观能动性与探索数学奥秘的兴趣性。

 

(三)定理的逆向教学

 

数学定理并非都是可逆的,在教学中除了要探讨教材中给出的某些定理的逆定理,如勾股定理及其逆定理等,同时也要探索某些教材中没有给出但却存在的某些定理的逆定理,这样不仅能巩固、完备所学知识,激发学生探究新知识的兴趣,更能使学生的思维多样化,提高思维能力。如在教学定理“等腰三角形的顶角平分线、底边上的高和底边上的中线互相重合”后,可组织学生探讨下列命题是否为真:1.有一角平分线平分对边的三角形是等腰三角形;2.有一角平分线垂直于对边的三角形是等腰三角形;3.有一边上的中线垂直于这边的三角形是等腰三角形等等。再如韦达定理的逆用等。

 

(四)多用“逆向变式”训练,强化学生的逆向思维

 

作为思维的一种形式,逆向思维蕴育着创造思维的萌芽,它是创造性人才必备的思维品质,也是人们学习和生活中必备的一种思维品质。在数学教学中充分认识逆向思维的作用,结合教材内容,注重学生的逆向思维能力的训练,不仅能进一步完善学生的知识结构、开阔思路,更好地实现教学目标,还能达到激发学生创造精神、提升学习能力的目的。“逆向变式”即在一定的条件下,将已知和求证进行转化,变成一种与原题目似曾相似的新题型。例如:不解方程,请判断方程2x2-6x+3=0的根的情况。可变式为:已知关于x的方程2x2-6x+k=0,当K取何值时?(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(3)方程没有实数根。经常进行这些有针对性的“逆向变式”训练,创设问题情境,对逆向思维的形成是有很大作用的。

 

(五)强调某些基本教学方法,促进逆向思维

 

数学的基本方法是教学的重点内容。其中的几个重要方法:如逆推分析法,反证法等都可看做是培养学生逆向思维的主要途径。比如在证明一道几何命题时(当然代数中也常用),老师常要求学生从所证的结论着手,结合图形,已知条件,经层层推导,问题最终迎刃而解。养成“要证什么,则需先证什么,能证出什么”的思维方式,由果索因,直指已知。反证法也是几何中尤其是立体几何中常用的方法。有的问题直接证明有困难,可反过来思考,假设所证的结论不成立,经层层推理,设法证明这种假设是错误的,从而达到证明的目的。

 

二、加强解题教学中的逆向思维训练

 

解题教学是培养学生思维能力的重要手段之一,因此教师在进行解题教学时,应充分进行逆向分析,以提高学生的解题能力。

 

1.正面不行用反面。这里的反面指的是用反证法,就是从问题的反面入手,它是初中阶段两大间接证发中的一种,另一种是同一法。

 

2.顺推不行则逆推。有些数学题,直接从已知条件入手来解,会得到多个结论,导致中途迷失方向,使得解题无法进行下去。此时若运用分析法,从命题的结论出发,逐步往回逆推,往往可以找到合理的解题途径。3.直接不行换间接。还有一些数学题,当我们直接去寻求结果十分困难时,可考察问题中的其他相关元素从而间接求得结果。

 

总之,培养学生的逆向思维能力,不仅对提高解题能力有益,更重要的是改善学生学习数学的思维方式,有助于形成良好的思维习惯,激发学生的创新开拓精神,培养良好的思维品性,提高学习效果、学习兴趣,及提高思维能力和整体素质。当然,在初中数学教学中,要培养学生逆向思维能力,必须具备丰富而扎实的“双基”知识,量力而行,适可而止,且有机有节地长期进行养成训练,切不可急于求成,特别是对中、下面学生而言,过于强调这方面的能力,会增加其课业负担与精神压力,可能使之产生厌学情绪。培养学生的创新意识和创新能力是每一个教师义不容辞的责任,就基础教育阶段而言,我们必须把对学生的创新意识和创新能力的培养贯穿在平时的每一节课中。创新思维的内涵是十分丰富的,有意识地对学生进行逆向思维培养不失为发展学生创新思维的一个行之有效的方法。

篇2

关键词:初中数学;思维能力;培养策略

教师是教学的重要参与者,要想有好的教学效果,就必须增强教师课程合作、互相学习的能力。这就需要教师与教师、教师与专家等进行教学经验的交流和合作,增强初中数学教师教学实施的有效性。它不同于一般的合作,除了具有合作的一般特征,同时还有其自身的特点,是一个新的概念在教育领域的能力扩展。当然,合作的能力是在教师合作之中逐渐形成并使教师掌握的,是通过教育资源的合理使用、合并使用、优势共用这些促成因素在后天实践中逐步形成的,教师在课程能力合作中积累的实践经验,在很大程度上取决于教师有目的的训练和长期的培养,这也是教师能力形成的基本方法。

一、在教学中教师课程合作的两种方式

1.理论学习是教师课程合作的先导

要想达到初中数学教学中课程合作能力的目标,教师就要对数学教育理论进行学习,这既是对数学教师素质的根本要求,也是教师增强自身能力的发展需要,更是在日常数学教学中的实际需要。数学教育的理论研究,为未来教师的交流与合作奠定了基础。

2.经验交流是教师课程合作的纽带

初中数学教学是一个协作探究式教学的学科,教师之间的经验交流,是为教师寻找差距、找到解决问题办法的平台。不同的教师在教学方法、教学经验以及课堂活动安排上都有所不同,通过教师间的课程合作能力培养,可以帮助教师积累知识、总结经验。在合作中具体的经验交流可以分为:校内经验交流、校外经验交流、网络经验交流等。

二、如何培养学生的解题能力

学生是学习的主体,教师的自身能力上去了,接下来就需重点培养学生的学习能力,由于数学学科的特点,要求学习者必须有强大的思维能力才能真正把数学学习好,真正做到学有所用。数学思维的培养又是在不断解题的过程中发展起来的。

1.加强学生的审题能力

审题是做数学习题的第一步。审题时一定要仔细,要经过思考,挖掘题目中可能隐藏的条件。有些学生就是很马虎,审题的时候粗心大意,觉得题目简单就没有进行深入的思考,结果白费工夫,得不偿失。很多学生在考试后才发现丢分最严重的就是那些简单的题目,因为往往这个时候,他们已经没有把思维放在审题上了,掉以轻心,最终导致解题错误,教师应该引导学生发现题目中的隐藏条件。

2.加强对错题的思考和研究

所谓“失败乃成功之母”,教师和学生都不应该害怕解错题,应该正视错题。因为错题是学生获得解题经验,从中发现自己的知识缺陷,知道自己的错误在哪儿的宝贵途径。教师应该帮助学生分析错题的原因,经过研究后从中总结出教学思想,深化对缺陷知识的理解,寻找解题的方法,并使学生掌握同类题型的解题方法。为此,我让全班学生都准备了一个错题本,专门摘抄自己平时出现错误的题目,然后在每道题的后面写上分析,包括解题思路,运用到哪些知识点等等,而且要求学生要不断地拿出错题本来复习,加深印象,以至于不会在下次做同样类似的题时出错。

3.训练学生一题多解的习惯,强化培养的效果

数学中存在很多有趣现象,一个题目有多种解题思路,就是一个很好的例证。教师要在讲解题目时引导学生从多个角度去思考题目的解法。新课改也提出了要求,要把学生从传统的教学模式中解放出来,注重培养学生的创造性思维,从不同的途径,不同的方法寻找问题的答案。数学是一门比较灵活的学科,很多时候同一道题目会有不同的解题方法。教师要鼓励学生在平时的练习中,对于每一道题目都采用新的方法解决,活用知识,训练思维。每个学生的思维都不一样,我们要鼓励学生敢于尝试,勇于探索,善于寻找另类的解题方法。这个过程就是一个很好的培养学生思维能力的过程。

数学本身就是一门逻辑性很强的学科,很多学生都不喜欢,但是只要找对方法,就一定能学好数学。学生创新能力的培养是初中数学教学阶段的重要教学目标,提升数学教学质量,培养学生创新、多思、善思能力。教学中教师应对此加强重视并在课堂实践中积极执行,有效推进数学教学改革和新课程的实施。

参考文献:

[1]涂荣豹.数学解题学习中的元认知.数学教育学报,2002(04).

篇3

关键词:动态思维;动态问题;能力;素材

动态问题在初中数学中占有重要位置,它渗透运动变化的观点,集多个知识点于一体,集多种解题思想于一题.这类题灵活性强、有区分度,能力要求高,能全面地考查学生的实践操作能力、空间想象能力以及分析问题和解决问题的能力,受到了人们的高度关注;同时,也得到了命题者的青睐.动态问题常常出现在各地的学业考试数学试卷中.面对动态问题,学生普遍感到困难,因此,在平时的教学中要注意对动态思维的培养,提高学生解答动态问题的能力.本文结合人教版教材,谈谈动态思维能力的培养.

一、静中导动,激发动态思维

课程标准关于“数学思考”的课程目标对初中生的要求为:应当包括既能够用数和简单的图表刻画一些现实生活中的现象,对某些数字信息作出合理的解释,又能够用各种数学关系(方程、不等式、函数等)去刻画具体问题,建立适合的数学模型.因此,教师要根据学生已有的知识,利用课本素材,引导学生对问题进行再思考.

问题一:甲、乙两人从A,B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.出发后经3小时两人相遇.已知在相遇时乙比甲多行驶了90千米,相遇后经1小时乙到达A地.问甲、乙行驶的速度分别是多少?

本例是一道静态的数学问题,在学生会用方程的思想解答后,教师宜引导学生尝试提出新的数学问题,要求学生至少能提出下列三个问题中的两个问题并解答:

(1)求A,B两地的距离.

(2)甲、乙两人出发1小时后,他们相距多少千米?3.5小时后,又相距多少.

得出经过2.5小时或3.5小时后,两人相距30千米.即A,B两地相距180千米.这体现了学生自主学习的好习惯.

这是一个动态思维的升华,有利于发现数学人才,在这一过程的学习中,学生自觉不自觉地借助图形进行分析,采用数形结合的方法,建立数学模型,这样,学生的数学思维得到了充分的发展.

二、动中取静,发展动态思维

课程标准关于“数学思考”的课程目标对初中生又要求:经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.对于学生普遍感到棘手的动态问题,有时可交由学生合作完成,教材中也有安排.

本例旨在巩固合作学习的成果,进一步发展学生的动态思维能力,同时借助图形,融入了分类讨论的因子,为后继学习动态问题打下扎实的基础,发展了学生的动态思维.

三、动静结合,提高动态思维

课程标准关于初中“解决问题”的课程目标要求:形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.有了前两个学年的学习经历,对于动态问题具备了一些基本的解题策略,为九年级进一步学习动态问题打下了基础.为形成和提高学生的动态思维,使学生在这一阶段能够独立地解决动态类问题,就要创造性地使用所学的知识.

本例相当于点P在坐标轴上移动,当点P移动到什么位置时,三角形OAP为等腰三角形,即动中有静.否则不构成等腰三角形,即静中有动.动中有静,静中有动,在一定条件下可相互转化.当遇到动态问题时,要善于动中取静,先把动态问题转化为静态问题来解决,然后再从静态转到动态,即动静结合.

数学课本是获取数学知识的主要源泉,平时教学应“以本为纲”,尤其对课本中提供的素材,应做一番探索、研究,这是全面掌握知识、提高解题能力的有效方法.事实上,各地学业考试卷中绝大部分试题都是以课本的素材为原型加工改编的.因而,“把握课程标准,以本为纲,紧扣教材”,从课本素材入手,探究相关的知识和结论,是提高解题能力与技巧、激活数学思维的重要途径.

参考文献:

[1]史炳星,刘晓玫.实施新课程精要读本:初中数学.首都师范大学出版社,2004.

篇4

一、以鼓励思考质疑激发思维动机

动机是人内心潜在的欲望和行动的驱使力,缺少了动机一切行为活动无从谈起,更无成功可言.提升学生的思维能力,激发思维动机是关键,作为教师在数学课堂中必须充分尊重学生的主体地位,充分发挥自身的主导作用,努力寻求教学内容与学生内心需要的最佳磨合点,鼓励学生对某种数学现象或某个数学问题大胆地提出质疑,勇敢地说出自己的想法,以积极主动的态度参与课堂之中.例如在学习《数轴》一课时,初次接触数轴学生倍感新奇,笔者在课上提到数轴以原点为界向右为正,向左为负的规定时,立即有学生在下面小声嘀咕,我关注到这一细节并给了他发言的机会.原来这位学生对数轴的这一规定提出了质疑:为何向右为正,向左为负呢?反过来难道不行吗?又有学生提问:能不能向上为正,向下为负呢?这些问题的提出在我的意料之中,我为他们的勇气而感到欣慰,于是便大加赞赏,指出这一问题很有意义,并乘机对数轴的产生和发展历史进行了必要的补充.此时此刻,困惑得到明晰解析,质疑精神得到呵护肯定,课堂教学内容得到丰富充实,你还会怀疑大胆质疑的意识不会在同学们中象星星之火燎燃大地吗?还担心同学们对数学不感兴趣吗?

二、以重视问题设计调动思维热情

亚里斯多德曾经说过:“思维从问题和惊讶开始”.可见,一个有意义的问题对于学生思维的发展是何等的重要.不同的问题设计具有不同的教学效果,这在一定程度上决定着一堂课的成败优劣,同时也体现出一位教师的智慧和能力.在教学《有理数》时,为了帮助学生更深入、更灵活地掌握有理数四则运算的法则,使计算与生活问题有机地融为一体,笔者由学生熟知的“二十四点”运算游戏受到启迪,设计了这样一个问题:有四个有理数,分别是2、4、-2、6,每个数只能使用一次,如何通过加减乘除四则运算使其结果为24?这样的问题打破了传统的给出现成题按要求计算的形式,使得计算富有一定的弹性和空间,学生在运算的过程中对四则运算的法则有了更深刻地了解和掌握,同时问题本身的趣味性也有效地唤起了学生的思维意识,调动了学生的思维热情.

三、以倡导一题多解发展思维广度

“条条大道通罗马.”数学课堂的解题过程往往追求的是一种殊途同归的教学效果,这其实就是数学新课程所提出的一题多解,方法多元的要求.解决数学问题我们鼓励学生采用不同的方法,欢迎奇思妙招的出现,让学生张开思维的翅膀尽情翱翔,让充满互动的数学课堂涌现出更多的精彩.

在教学《探索平行线的性质》一课时,有这样一道题:已知如图1,AB∥CD,∠B=135°,∠D=145°,求∠E的度数.提问解题方法时发现大多数学生均利用作辅助线BD或过点E作AB(或CD)的平行线来完成此题,我有意识地再问了一句:有不同的方法吗?这时有一个学生站起来,他的方法是作一条截线FG分别交AB和CD于点F、G,得到五边形BEDGF,利用五边形的内角和很快求出∠E,这种方法简单快捷,令人惊喜;还有一个学生站起来,他的方法是延长BE交CD的延长线于点F,利用平行线的性质和三角形外角的性质也很快求出了∠E,@些方法都与众不同.可见只要教师敢于呼唤,学生的思维必能迸射出夺目的火花!精彩的课堂生成不仅促进了知识的形成,更带来了思维互动的乐趣.

四、以讲究运算速度优化思维品质

篇5

关键词: 初中数学教学 思维能力 培养策略

1.引言

新课程改革的进一步推进对初中数学教学有很大的影响,对学生思维能力的培养是教学改革的重要目标,所以针对当前初中数学教学的实际加强学生思维能力的培养就比较重要。初中数学教学知识内容在生活中的空间形式及数量关系等都有着重要的呈现,而在这些方面要得到高效发展就要增强学生的思维能力。

2.初中数学教学思维能力培养的影响因素及需求分析

2.1初中数学教学中思维能力培养影响因素

初中数学教学中思维能力的培养过程中会受到诸多因素的影响,最主要的就是对数学教学中通过何种理念设计初中数学教学目标。是通过将初中数学教学思维能力培养纳入教学的总规程中,还是通过题海战术对学生的思维能力进行培养。这主要是反映了是将应试教育作为中心,还是以促进学生的全面发展及综合素质提升作为核心发展目标。再者就是对初中数学教学中对其他能力方面的重视度的高低,对学生思维能力的培养也有着很大的影响[1]。

2.2初中数学教学中国思维能力培养需求分析

思维是人脑对客观事物本质属性及内部规律间接概括反映,在现代数学教学中对学生的思维能力的强调也愈来愈重要。对初中数学教学思维能力的培养是对素质教育实施的重要需要,在初中数学课堂教学中利用几何学科自身的优势培养学生的数学思维能力有着实质性的作用。初中数学教学中对学生思维能力的培养也是教学自身的发展需要,义务教育阶段的数学课程主要是为促进学生的全面持续发展,这就要能够对数学自身的特点加以重视,也要能遵循学生的对数学学习的心理规律[2]。不仅如此,对初中生的思维能力的培养也是现实生活及教学改革的需要。

3.初中数学教学中思维能力培养策略探究

3.1初中学生数学思维能力发展特征分析

初中学生的数学思维能力发展方面有着鲜明的特征,初中阶段是学生数学思维发展比较关键的时期,主要体现在学生对教学内容的理解呈现出孤立及间断的状态,在求知欲方面也相对较强,主要是依靠主观思维,对具体和形象问题思维比较活跃。另外在对问题的思考方面还不是太善于从多方面、多角度和多维度进行思考,对思维方向的惰性就相对比较显著。

3.2初中数学教学中思维能力培养策略

第一,在初中数学教学中对学生思维能力的培养要能够从多方面实施,首先要能够对情感的因素加以充分重视,并对心理素质的培养加以充分重视,在积极思维的激发上也要能够加以重视。建立和谐的师生关系,从而调动学生学习的积极性。不仅如此,还要能对学生的兴趣进行激发,这是对学生思维能力进行训练的重要前提,可以将数学史和数学教学相结合,经常鼓励和表扬学生,让学生保持学习兴趣[3]。

第二,在初中数学教学中对学生思维能力的培养要能将实际生活和数学教学紧密结合,现实生活是丰富多彩的,将其和数学教学有效结合能让枯燥的知识变得生动起来,对学生空间想象能力的培养比较有利。在实际教学过程中,空间感的建立要能通过大量感性材料进行联想,从而就能够在类比思维辅助下实现预定的教学目标。例如:在讲授“相遇问题”时,如果只是按照教材内容进行讲解,学生所学到的只是死的知识,这就需要将其和实际生活相联系,可通过两个同学到学校的距离进行举例,这样学生就能够根据实际的情况进行联想,无形中形成了学习数学的动力。

第三,可通过变式教学对学生的发散性思维进行积极培养,变式主要是对数学概念及问题的不同角度和不同情形进行变换,从而凸现概念本质及属性,对数学问题的结构规律的突出和对知识内在联系的揭示。变式是教学中的重要问题探究的方法,同时也是值得提倡的学习方法,主要目的在于培养学生的创造能力,问题变式对学生的发散思维的培养比较有效。

第四,借助一些优良的教学手段培养学生的创新思维。在初中数学教学过程中,教师要能对自己的选择数学应用软件进行充分应用,从而制作出多样化及程式化的课件。并要能够通过多种形式引导学生对数学知识加以应用。例如:对切线长定理进行讲述的过程中,由于几何数学在抽象性方面相对较强,就可通过几何画板加以操作。学生就会对其产生兴趣,想要找到答案,这样通过自己的动手操作就能够发展解决问题的思维能力。

第五,可以突出纵横比较,从而培养学生的求同思维能力。人们对事物的认识是从对事物的区分开始的,这就需要进行比较,从而才能够有鉴别,而求同过程是从彼此关联的材料中实施比较归纳规律得出的结论过程。所以在这个过程中设计一些比较类似的问题就能够对学生的思维求同能力进行有效培养。

4.结语

在初中数学教学过程中,对思维能力的培养需要从多方面进行加强,初中阶段是学生学习的重要时期,在这一时期加强对学生思维能力的培养不仅能增强数学问题解决中的逻辑能力,而且能对其他学科的学习起到帮助作用。由于本文的篇幅限制不能进一步深化探究,希望此次理论研究能起到抛砖引玉的作用。

参考文献:

[1]赵秉录.新课标下提高农村初中数学教学质量的探索与思考[J].科技资讯,2014(08).

[2]王雪佳.关于初中数学教学改革的探讨[J].黑龙江科技信息,2013(20).

篇6

关键词:初中数学教学;思维能力;概括抽象

根据新的教育要求,数学教师要承担起培养学生思维的责任,要全面培养学生的综合思维能力,使学生树立起良好的数学思维素养和全面的学习能力。笔者认为应该从下面四点进行学生思维能力培养。

一、培养学生的灵活性思维能力

初中数学对学生的数学思维形成具有决定性作用,良好的教育方法和理念能为日后数学思维的形成奠定良好的基础。首先要在学生计算能力提高上下功夫、做文章。初中学生的计算能力主要包括实数运算、代数式各种计算、多项式因式分解、方程式和不等式各种运算等等。其次要在推理能力培养上下功夫,主要是由已知条件推导出所需结论和答案。最后是加强对学生的操作技能培养,主要指数学的设计、作图等环节,完成以上环节,对学生基本数学思维的培养能起到较好的推动作用。

二、发展学生的概括抽象思维能力

由于学生的学习能力存在差异,对知识的掌握能力和吸收速度各有不同,数学素养高的学生能较快地收集数学材料、较好地领会数学素材所反映出来的信息,表现出较强的数学素养。因此,对教材内容掌握速度较快、掌控水平明显高于其他学生,能对数学教材较好地吸收,表现出强烈的数学诉求,能在解答数学题的时候不断总结归纳,对知识有系统化的认知和梳理,使知识不断条理化、清晰化,在解题过程中不断提高解题效率。

三、发展学生的类比思维能力

类比能力能较好地开阔学生的思维视野,通过对两个对象或者两类不同事物相似的属性进行归纳总结,从已知推测出未知结论,把事物之间的相似性转移到另一种对象上去,属于具体到抽象的过程。学生的类比思维能力是对客观事物相似性的概括和认识,是学生思维能力的重要表现。

四、发展学生的探索创新思维能力

创造性思维是数学思维的重要组成部分,通过发散性思维和集中思维的培养,综合采用多种思维方式对学生创新能力和学习能力进行培养,使学生在学习过程中形成新思维、新看法、新视角。

概括起来,一切打破传统思维和习惯的思维活动都属于创造性思维的范畴,属于常规思维活动的一种,在突破传统思维方式的过程中常常获得全新的认识和感知,取得意想不到的效果。

参考文献:

篇7

关键词:初中数学;学生;思维能力

中图分类号:G633 文献标识码:A 文章编号:1002—7661(2012)19—0219—01

一、注重培养兴趣,培养学生思维

兴趣是最好的老师,也是每个学生自觉求知的内动力。教师要精心设计每节课,要使每节课形象、生动,有意创造动人的情境,设置诱人的悬念,激发学生思维的火花和求知的欲望,并使同学们认识到数学在四化建设中的重要地位和作用。经常指导学生运用已学的数学知识和方法解释自己所熟悉的实际问题。新教材中安排的“想一想”、“读一读”不仅能扩大知识面,还能提高同学的学习兴趣,是比较受欢迎的题材。适当分段,分散难点,创造条件让学生乐于思维。如列方程解应用题是学生普遍感到困难的内容之一,主要困难在于掌握不好用代数方法分析问题的思路,习惯用小学的算术解法,找不出等量关系,列不出方程。因此,我在教列代数式时有意识地为列方程的教学作一些准备工作,启发同学从错综复杂的数量关系中去寻找已知与未知之间的内在联系。通过画草图列表,配以一定数量的例题和习题,使同学们能逐步寻找出等量关系,列出方程。并在此基础进行提高,指出同一题目由于思路不一样,可列出不同的方程。这样大部分同学都能较顺利地列出方程,碰到难题也会进行积极的分析思维。

二、学会数学方法,促进思维发展

要学生善于思维,必须重视基础知识和基本技能的学习,没有扎实的双基,思维能力是得不到提高的。数学概念、定理是推理论证和运算的基础,准确地理解概念、定理是学好数学的前提。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力。

在例题课中要把解(证)题思路的发现过程作为重要的教学环节。不仅要学生知道该怎样做,还要让学生知道为什么要这样做,是什么促使你这样做,这样想的。这个发现过程可由教师引导学生完成,或由教师讲出自己的寻找过程。

在数学练习中,要认真审题,细致观察,对解题起关键作用的隐含条件要有挖掘的能力。学会从条件到结论或从结论到条件的正逆两种分析方法。对一个数学题,首先要能判断它是属于哪个范围的题目,涉及到哪些概念、定理、或计算公式。在解(证)题过程中尽量要学会数学语言、数学符号的运用。

初中数学研究对象大致可分为两类,一类是研究数量关系的,另一类是研究空间形式的,即“代数”、“几何”。要使同学们熟练地掌握一些重要的数学方法,主要有配方法、换之法、待定系数法、综合法、分析法及反证法等。

三、加强思维能力训练,注意思维品质培养

在学生初步学会如何思维和掌握一定的思维方法后,应加强思维能力的训练及思维品质的培养。

要注意培养思维的条理性与敏捷性。根据解题目标,确定解题方向。要训练学生思维清晰,条理清楚,遇到问题能按一定顺序去分析、思考,对复杂问题应训练学生善于于局部到整体再从整体到局部的思维方法。学生在思维过程中,要能迅速发现问题和解决问题。

要注意培养思维的严密性和灵活性。每个公式,法则、定理都有它的来龙去脉,都有使它成立的前提条件,都有它特定的使用范围,要做到言必有据。选择一些习题让学生先做,再针对学生思维中的漏洞进行教学分析。

四、思维培养多途径,激发思维积极性

(一)找准数学思维能力培养的突破口。

数学思维的敏捷性主要反映了正确前提下的速度问题。因此,数学教学中,一方面可以考虑训练学生的运算速度,另一方面要尽量使学生掌握数学概念、原理的本质,提高所掌握的数学知识的抽象程度。因为所掌握的知识越本质、抽象程度越高,其适应的范围就越广泛,检索的速度也就越快。另外,运算速度不仅仅是对数学知识理解程度的差异,而且还有运算习惯以及思维概括能力的差异。因此,数学教学中,应当时刻向学生提出速度方面的要求,使学生掌握速算的要领。

为了培养学生的思维灵活性,应当增强数学教学的变化性,为学生提供思维的广泛联想空间,使学生在面临问题时能够从多种角度进行考虑,并迅速地建立起自己的思路,真正做到“举一反三”。教学实践表明,变式教学对于培养学生思维的灵活性有很大作用。如在概念教学中,使学生用等值语言叙述概念;数学公式教学中,要求学生掌握公式的各种变形等,都有利于培养思维的灵活性。

(二)教会学生思维的方法

现代教育观点认为,数学教学是数学活动的教学,即思维活动的教学。如何在数学教学中培养学生的思维能力,养成良好思维品质是教学改革的一个重要课题。孔子说:“学而不思则罔,思而不学则殆”。在数学学习中要使学生思维活跃,就要教会学生分析问题的基本方法,这样有利于培养学生的正确思维方式。要学生善于思维,必须重视基础知识和基本技能的学习,没有扎实的双基,思维能力是得不到提高的。

数学概念、定理是推理论证和运算的基础。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力;在例题课中要把解(证)题思路的发现过程作为重要的教学环节,仅要学生知道该怎样做,还要让学生知道为什么要这样做,是什么促使你这样做,这样想的;在数学练习中,要认真审题,细致观察,对解题起关键作用的隐含条件要有挖掘的能力,会运用综合法和分析法,并在解(证)题过程中尽量要学会用数学语言、数学符号进行表达。

此外,还应加强分析、综合、类比等方法的训练,提高学生的逻辑思维能力;加强逆向应用公式和逆向思考的训练,提高逆向思维能力;通过解题错、漏的剖析,提高辨识思维能力;通过一题多解(证)的训练,提高发散思维能力等。

(三)善于调动学生内在的思维积极性

一要培养兴趣,让学生迸发思维。教师要精心设计,使每节课形象、生动,并有意创造动人情境,设置诱人悬念,激发学生思维的火花和求知的欲望,还要经常指导学生运用已学的数学知识和方法解释自己所熟悉的实际问题。

篇8

关键词: 初中数学教学 思维能力 培养

思维是人脑对客观事物间接的和概括的反映,而人的思维能力又是能力培养中一大要素。因此,在数学教学中要注重学生的逻辑思维能力的培养。

一、在概念教学中培养学生的思维能力

数学概念本身是基本的思维形式,它是判断、推理、论证的基础,在概念的形成过程中蕴含着观察、归纳、分析、比较、抽象、概括等数学思维的基本形式和基本方式。因此,数学概念的教学是提高学生思维能力的重要途径之一。

1.在概念形成中培养学生的抽象思维能力

抽象概括是数学思维的重要方法,经过观察并在此基础上进行抽象概括往往可以得出定义,从而培养学生的思维能力。

例如,在学习“同底数的幂的乘法”时,先让学生复习乘方的意义及有关名称,然后提出下列问题让学生思考解答:

果所具有的特征,研究其与原来两个幂的底数、指数之间的关系(结果仍是一个幂,且底数不变,指数等于原来两个幂的指数和),并进一步提出,这一发现是不是普遍规律?用什么方法研究?引导学生运用由特殊到一般的方法进行研究,首先举几个例子加以验证,仍得出这一结论,进而将特殊推广到一般来研究,底数由具体的数推广到任意数,用字母a表示,再将指数推广到一般正整数,分别用m和n表示,由幂的意义和乘法结合律同样得到上述结论,从而归纳出“同底数幂的乘法”法则。

2.在概念的深化中培养思维的灵活性

当学生对某些概念理解错误时,需要分析原因,引导学生举正、反例子反复说明,以纠正错误,深化认识,同时要研究概念的变式及概念间的区别与转化,这是培养学生思维灵活性的重要手段。

例如,在教完有理数这一章后,让学生“谈谈对数零的认识”;在教完二元一次方程组的解法后,让学生思考“代入消元法与加减消元法有什么联系”;在教完有理数四则运算后,设问:“你能说说有理数四则运算与算术四则运算的异同吗?”

二、习题教学中对学生进行思维能力的培养

习题教学是数学教学中的重要组成部分,通过习题教学可以把抽象的概念、定理和公式与具体的教学过程联系起来,巩固和加深对数学知识的理解,是培养思维能力、提高解决问题的能力的重要手段。

1.编撰能发展学生思维的习题

在教学中,有意识地选择编撰一些看似简单但必须经过仔细、周密地思考方能正确解答的习题。这样能引起学生的思考兴趣,向学生提出智力挑战,从而对学生进行思维能力的培养。

2.习题的设计要注重层次性

习题的设计一般分为五个层次,精心设计组织不同层次的练习,不仅能调动学生的学习积极性,而且对于促进学生掌握知识,形成技能、巩固双基、发展智能都有重要的意义。

一是与例题相仿的基本题,帮助学生打好基础;

二是与例题相比有一些变化的变式题,用来培养学生思维的灵活性;

三是将密切相关的新旧知识融会贯通的混合题,用来帮助学生巩固旧知识理解掌握新知识,培养学生的对比能力;

四是将训练要点糅合在一起的综合题,用来培养学生初步的综合能力和综合运用能力;

五是设计灵活性强(难度偏大),用于发展学生思维能力的习题。

在习题课教学中,还应启发学生多角度、多层次思考,充分发掘习题的潜在功能,发展学生的智力,培养其思维能力。

三、在复习课教学中重视学生思维能力的训练与提高

在复习课教学中概略地提一下概念,选取讲几个代表性的例题,让学生做几题练习,这几乎成了复习课教学和一种模式,为了能让学生“见多识广”和用“模式”解题,教师总要搜集各种类型的题目讲授给学生,却忽略了复习时对学生思维能力的训练(培养)。有的老师虽考虑到复习中要培养学生的思维能力,但怕占时间影响进度,更怕题目类型讲不全,题目讲少了影响学生的成绩,因而在复习时仍采用以讲例题为主的授课法,这都是不足取的。在复习课教学中应编拟、选择具有代表性的习题,让学生能从全方位、多角度去观察、分析、探讨,以提高学生的思维能力。

例如,在复习三角形内角的平分线性质定理时,要求学生用多种证法证明这个定理,学生经过回忆、思考和老师点拨,课堂上列出了十几种证法,这样在证明定理的过程中,涉及的知识面广,思维活动量大,使教学效果远远超出了定理结论证明本身。为了进一步训练学生的思维,提高学生的思维能力,还可提出如下问题:

1.这十几种解法中有哪些解法实质是完全相同的?为什么?

2.每种解法主要运用了哪些数学知识、数学思想?这些解法间有什么联系?

3.谈谈你探索解法的思维过程,你认为这些解法中哪些解法是理想的?

经过比较、分析、归纳,学生的思维能力得到了一定程度的提高。

总之,在数学教学中,应根据数学学科的特点,从学生熟悉的周围环境出发,根据具体的教学内容,以及学生的认识实际,努力创设问题情境,让学生自己去寻找问题,发现问题,解决问题,以达到培养学生逻辑思维能力的目的。

参考文献:

[1]罗增儒.数学解题学引论.西安:陕西师范大学出版社,2001:205-212.

[2]钱佩玲,邵光华.数学思想方法与中学数学.北京:北京师范大学出版社,1999:87-92.

[3]李家煜.一道习题推广及变换.中学教研(数学),2001:6-7.

[4]旺晓勤,韩祥临.中学数学中的数学史.北京:科学出版社,2001:56-61.

推荐期刊