线上期刊服务咨询,期刊咨询:400-808-1701 订阅咨询:400-808-1721

生物技术论文8篇

时间:2023-04-17 17:22:20

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇生物技术论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

生物技术论文

篇1

1.1化学仪器分析法

随着软电离技术的迅速发展,对于一些具有复杂结构的大分子生物聚合物,质谱法可将其进行电离分解后在电场和磁场作用下进行离子质量分析,从而获得有机物分子式和结构信息,方法高效、快速准确。将色谱法与质谱联用可形成更强有力的联用分析技术,实现对极低浓度的生物样品的含量测定和蛋白质多肽类药物的代谢动力学研究。核磁共振是一种吸收光谱(1H-NMR和13C-NMR应用广泛)。1H-NMR可以提供分子中氢原子所处的化学环境、相对数目以及分子构型等有关信息,13C-NMR直接提供有关分子骨架的结构信息。光谱携带大分子生物聚合物结构信息经过计算机处理,可确定氨基酸序列、核酸的分析和定量混合物中的各组分含量分析等。将核磁共振技术与高效液相色谱法或毛细管电泳法联用,分析能力强大并能拓展其在生命科学领域中的应用范围。但质谱,核磁共振仪器精密昂贵,工作环境操作技术要求高,普及性受限。

1.2生物技术分析法

生物技术分析法主要包括:免疫学法、放射性同位素示踪法、生物鉴定法和量热法等。免疫学法是利用蛋白质多肽抗原与相应抗体(单克隆或多克隆抗体)可以特异性识别结合的特点(结合比色法),借助显微镜观察定位,对蛋白质多肽进行定性定量分析。常用免疫学方法有免疫荧光法和酶联免疫吸附剂测定法。免疫荧光法:是将目标抗体标上荧光素,借助荧光显微镜进行抗原示踪定位的检测技术;酶联免疫吸附剂测定法:又称酶联免疫法,或ELISA法,是在酶免疫技术基础上发展起来的一种新兴的免疫检测方法,该方法是将可以催化底物发生显色反应的酶进行标记,然后通过显色进行分析检测的一种前沿特殊试剂检测方法。例如,动物血清蛋白药物或动物性食品中农药残留的ELISA法建立等。而放射性同位素示踪法则是将目标性分子或产物用放射性同位素标记(与内源物质区别),以研究目标分子或产物的体内分布、代谢行为。放射性同位素示踪法和免疫学方法虽然能够描述蛋白质多肽类药物的体内动力学行为,但不能够直接反映出蛋白质多肽类药物的生物活性和稳定性。生物鉴定法和量热法则分别依据生物药物的特异性反应原理和放热吸热原理对药物的生物活性和稳定性进行分析研究。例如,生物鉴定法利用组织或细胞对蛋白质多肽类药物的某种特异反应,界定药物是否具有生物活性,根据制剂-效应曲线对目标蛋白质多肽类药物进行定性定量分析。量热法则是通过测定样品在受热过程中的放热和吸热行为来研究样品中各组分相互作用及状态变化的一种方法,该方法多用于多肽的热稳定和结构分析。

2结语

篇2

根据我国农业畜牧业的现有基础以及对动物生物技术的实际需求,国家应该集中各种力量,着重对生物技术开展基础性的研究,加大技术的投资力度,对一些利润高的技术产品进行重点投资,根据我国农业动物生物技术的现有基础和社会发展变化的主要形势,预计农业生物技术将在以下几个领域取得长足发展。

1.分子生物学技术

由于农业养殖日益呈现出规模化与集约化较高的特征,再加上人们对短期经济效益的集中追求,所以我国传统的畜禽品种资源将会遭遇越来越严重的破坏,其群体数量将日益降低,品种资源的破坏形势会日益加深,根据这种现实情况,未来农业动物生物技术将在以下分子生物领域进行发展:对我国固定的优良品种或基因进行挖掘与定位;为畜禽的遗传多样性进行保护的分子监测技术;我国固有畜禽品种的起源与进化的比较基因组学研究;保存动物遗传资源的生物技术研究。

2.分子育种技术

我国农业中的畜禽育种工作经过长时间的发展,逐渐由追求数量转向追求质量,育种方法也逐渐由数量遗传法转向分子育种与常规育种相结合的方法,所以分子育种技术的改进将是未来阶段我国农业动物生物技术的一个主攻方向,分子育种技术的研究将集中在标记辅助育种技术、数量性状主基因的检测和定位技术、动物功能和抗病基因的诊断技术以及试剂盒的研究,通过这些方面的技术研究提高动物产品的质量,实现其最大效益。

3.分子诊断技术

畜禽疫病是对我国畜牧业生产以及产品安全造成主要影响的关键因素,畜禽疾病的危害严重、流行面广,潜在危险性较大,一旦发生就会造成较大的经济损失,因此,利用免疫学、现代分子生物学以及病毒学的相关技术,对我国畜禽的重要疫病进行分子生物学研究是是农业动物生物技术的主要发展趋势之一,主要包括:重要畜禽疫病的分子诊断、监测、重要畜禽疫病病原的大分子结构与功能研究以及试剂盒的研发。

4.转基因动物技术转基因动物是一种将胚胎工程与分子生物学有机结合而研究出来的一种基因工程动物,这种技术是克隆技术的突破性进展,影响动物发育过程中的基因表达,能够促进遗传学与发育生物学以及相关学科的发展,是加快动物育种进程、提高育种效率,为濒危动物提供生存方式的有效方法。

二、结语

篇3

生物安全管理问题严重,这种问题主要表现在三个方面:一个是我国转基因生物安全管理体系本身就不是很完善,这样对进出口的安全管理工作就欠缺安全评价。安全评价要求的是严格的制度,安全评价就包括植物、动物以及微生物方面的安全。另外是国家的政策方面,政策不够明确,例如标识是否实现问题,哪些农产品实现了标识,哪些没有。其三是对于现在的科研机构方面,以及政府管理部门,处理事务不够协调,没有协调配合好较高水平的科研人才严重不足,满足不了现在科技的高端发展以及快速的发展,同时政府不能给科研领域相应的科研经费,有些科研机构也就没有了资金基础。

2.加强我国生物转基因安全管理体系的建议

首先在科学研究领域的普及程度上,国际、政府以及相关部门以及科研机构一定要对转基因技术的研发有一个科学的认识,转基因技术不仅仅是一个科研的项目,更重要的是一种关乎着人民生活质量提高、生态环境改善以及经济持续快速健康发展的生物转基因技术,当前社会需要的是具有高素质科研能力强的人才,以应对发达国家对我国转基因技术市场的抢占,并且较强科研发知识的普及,营造一个好的氛围,以满足现在我国转基因技术安全性问题带来的挑战这样的缺口和对这方面需要加强的这方面的需求。其次,国家要加强研发资金的投入,组织多部门的共同协助,并且多个学科一起努力协作去帮助完成科研开发研制生物转基因技术领域的发展,可以聘请国外专门的科研人才来校做培训,并加强现有研发人才的专业素养的提升能力,帮助生物转基因技术更安全。第三,国家要加强对法规体系和安全监管的健全和加强,为科技的研发建设起一个专门的科研场所,这个科研机构可以由几个部门共同承办,也可由政府协助建设,可以让科研相关学科定期定时的去专门的研发机构进行培训,解决最突出的安全问题;在组织领导机构中上可以由政府出资建立研发资金的投入体系,组织多部门的领导,这样强有力组织领导机构的建立,可以为研发资金问题有更大投入,从而分担资金上的压力。第四,在安全管理上政府一定要有针对性的,选好一个突破口,积极的并由专门的组织部门进行管理,同时由一个或多个协助管理主要负责生物转基因技术的安全管理问题,积极而有效的策略去推进生物转基因技术的安全性与管理方面的加强;另外,在转基因技术逐渐产业化成规模的同时,加快我们本山的转基因作物的研发快速推进,以便在有安全问题时能够为其及时应对,对我国的生物科学技术以及转基因技术、生态安全等综合国力的提升与增强意义都是重大的。

3.结论

篇4

由于篇幅限制,本文下面着重介绍聚合物纳米药物。迄今为止,用于纳米药物输送的载体主要是聚合物[12]。因为聚合物主要有以下优点:分子量大,由于EPR效应,作为载体能使药物在病灶部位停留较长时间,延长疗效。可通过调节聚合物物理化学性能和自身降解而达到缓释或控释药物的目的。易功能化,可把一些具有靶向作用或控释功能的组分键合在聚合物粒子表面。可调控的生物降解性,避免药物释放后聚合物载体材料在人体器官聚积,产生毒副作用。(1)聚合物键合药物。聚合物键合药物又称为聚合物前药,它们的生物活性取决于键合的小分子药物是否能够在病变区被及时释放出来。传统的小分子化疗药物在给药过程中遇到许多问题,如在水中溶解性和稳定性较差、体内迅速清除、毒副作用大等。聚合物键合药物采用化学桥联稳定药物分子,将小分子药物以可降解的化学键键合到聚合物骨架上,可以有效避免纳米颗粒在体内循环过程中不必要的药物泄露,而通过不同的化学键的选择,特别是那些对病变局部环境敏感的化学键,比如pH和酶敏感化学键,可以实现在肿瘤组织或肿瘤细胞内的可控释放,这使得其相对于通过物理相互作用包载型的纳米药物更加具有优势。常见的聚合物骨架包括聚乙二醇(PEG)、聚谷氨酸(PGA)、聚N-(2-羟丙基)甲基丙烯酰胺(HPMA)。Duncan等研发了一系列HPMA抗肿瘤键合药物,目前正在进行临床I、II期研究。化疗药物是以Gly-Phe-Leu-Gly键合到聚合物骨架上。通过细胞内溶酶体的酶解作用,键合的抗肿瘤药物可以被有效地释放出来,达到了细胞内给药的要求[13]。再比如将galactose键合到聚合物骨架上可以有效地增加这些纳米药物的肝靶向性[14]。(2)聚合物-蛋白质结合体:聚乙二醇和多糖经常用于制备蛋白质高分子共价结合体。获FDA批准可在临床上使用的聚合物-蛋白质结合体大多数是由聚乙二醇制备的(PEGylation)。PEGylation可增加蛋白质的水溶性和稳定性,又可降低其相应的免疫原和抗原性,从而延长药物在体内的循环半衰期[15,16]。如罗氏公司生产的PEGasys(PeginterferonAlfa-2a)可以使干扰素在血清中的半衰期提高50-70倍[17]。高分子蛋白质结合体的制备方法有:带有功能基团的高分子链与蛋白质活性部位直接连接;将与蛋白质具有特异结合作用的分子首先与高分子以共价键结合,而后实现高分子与蛋白质的特异性结合。目前关注的热点之一是对于具有治疗作用的蛋白质和催化功能的酶等生物特异性蛋白质,与高分子结合后如何保持其生物功能的问题。(3)RNA纳米颗粒:在药物开发史上,化学药物和蛋白质药物已出现,RNA药物或以RNA为目标的药物将是药物开发的第三个里程碑。RNA是由腺嘌呤(A)、尿嘧啶(U)、鸟嘌呤(G)和胞嘧啶(C)构成的一种核糖核酸高分子.与Watson-Crick的DNA碱基配对(A-T,G-C)的双螺旋链的结构不同,RNA的二级结构里经常出现一些非传统的碱基配对如环环相互作用。通过底端向上的“自组装”技术,包括模板法和非模板法,RNA分子可以构建种类繁多的和具有生物功能的纳米结构。RNA纳米治疗剂的独特之处在于,其支架、配体和治疗剂都是由RNA组成,由于其均匀的纳米级尺寸、良好的生物相容性、低毒性和目标特异性,使其有利于在活的机体内应用而不会在正常器官内积累[18],为癌症的治疗提供了参考意见。郭培宣等人于1986年构建phi29DNA组装马达,是至今所能构建最强大的生物马达。1987年郭等人[19,20]报道了phi29噬菌体中由pRNA(packagingribonucleicacid,简称pRNA)驱动的纳米马达。该纳米马达的功能是包裹DNA并将DNA运送到病毒衣壳中,ATP为这种RNA马达提供能量。随后,郭的研究团队证明pRNA分子可以经过改造构建成二聚体、三聚体和六聚体的纳米颗粒,从而开创了RNA纳米技术[21,22]。利用此技术,该团队研发了一系列多功能RNA纳米治疗剂,可用于靶向治疗肿瘤,且不会损伤正常组织。例如[23-26],利用重新改变结构的RN段携带多达4个治疗和诊断模块构建出了超稳定的X形RNA纳米颗粒。这些RNA纳米颗粒可纳入沉默基因的小干扰RNA,调控基因表达的micro-RNA,靶向癌细胞的核酸适体,或是能够催化化学反应的核酶[27]。(4)固体聚合物纳米粒子。其制备方法包括单体聚合成聚合物纳米粒子和聚合物后分散自组装形成固体纳米粒子。常见聚合物载体有聚氰基丙烯酸烷酯、聚乳酸、聚(乳酸-乙醇酸),以及天然大分子如壳聚糖和白蛋白等。药物通过物理吸附或化学键合方法引入载体。Abraxane是第一个获FDA批准的聚合纳米粒子药物,用于乳腺癌、肺癌和胰腺癌的治疗,由白蛋白纳米粒子和键合的paclitaxel组成,尺寸约130nm[28]。聚合纳米粒子作为药物载体除需具备生物相容性和生物降解性之外,单分散性要好。将纳米粒子表面接枝PEG可有效增强分散性和在体内的循环稳定性。此外,研发多功能纳米粒子以便提高靶向性也是当今研究的一个热点。(5)聚合物纳米胶束。常见小分子表面活性剂形成的胶束稳定性较差,不适于药物运输。而聚合物纳米胶束,具有载药量高、载药范围广、稳定性好,体内滞留时间长等优点[29,30]。常用于难溶性药物、大分子药物及基因治疗药物的载体,还可实现靶向给药,具有广泛的应用前景。聚合物纳米胶束通常是由具有亲水部分和疏水部分的两亲嵌段共聚物在水中自组装形成的纳米级大小的核-壳型胶束,尺寸大约20-100nm。其中亲水部分多由PEG组成,疏水部分多由聚乳酸、聚环氧丙烷、聚氨基酸组成。目前至少有6种聚合物纳米胶束抗肿瘤药物进行临床研究。纳米药物是具有巨大发展前景的新型药物,其在医药领域的发展必将引起疾病诊断和治疗的革命。目前,纳米医药技术的基础理论及纳米药物的制备工艺等还很不完善。基础理论方面,人们对纳米药物在体内的行为,包括组织分布、药代动力学和药效,以及它们与载体的化学结构和物理性能之间的相互关系,都缺乏深入和系统的研究;从制备工艺来讲,制备工艺要求操作方便、成本低、易于工业化放大生产,产品性能要稳定。因此,纳米技术在医药领域中的研究还需做大量的工作。其未来发展方向是增强载药量、提高靶向作用及控释能力、降低超敏反应[31]。

2纳米生物医用材料

纳米生物医用材料是纳米材料与生物医用材料的交叉,在人类康复工程中发挥重要作用。纳米生物医用材料将解决临床对伤口敷料、人造皮肤、人造血管和组织工程支架、高性能组织修复、器官替换的迫切需求[32-34],而且已显示出巨大的潜在应用价值。材料支架在组织工程中起着重要作用[35]。模仿天然的细胞外基质结构而制成的纳米纤维生物可降解材料已开始应用于组织工程的修复和再生。由于软骨再生能力有限,软骨组织工程领域的发展具有重要意义,特别是在治疗老龄化社会日益流行的大关节骨关节炎方面[36]。嵇伟平等采用塑性变形和化学处理方法在Ti6A14V合金上制得一种新型多孔纳米晶体,通过体外实验研究了成骨细胞在纳米Ti6A14V合金表面的黏附情况。结果表明,与普通钛合金相比,纳米表面钛合金早期就能使成骨细胞伪足伸展良好,促进成骨细胞紧密贴壁和早期融合,与细胞黏附相关的Integrinβ1的表达也高于普通钛合金,为将纳米技术应用到人工关节等植入器械领域提供了新的方向[37]。还可以将纳米骨材料[38]植入体内填充各类型的骨缺损,其网状结构可生长出很多新生的骨细胞,所有填的纳米骨材料,最后会降解消失,骨缺损部能完全被新生骨取代。目前医用纳米羟基磷灰石/聚酰胺66复合骨充填材料已投入市场,对骨缺损的恢复具有较好的作用。纳米技术与生物医学的结合,为医学界提供了全新的思路,在医学领域的应用已取得一定成果。但目前大多数研究还处于动物实验阶段,仍需大量临床试验予以证实,纳米材料应用的生物安全性也有待进一步提高。这就要求生物医学研究者与纳米材料的研究人员合作需进一步加强,制造出更先进的生物医用纳米材料。

3纳米诊断学

纳米诊断学是纳米生物技术在分子诊断中的应用,对于发展个性化治疗具有重要意义。目前纳米生物技术在临床诊断方面的研究主要集中在纳米生物传感器[39,40]和成像技术[41,42]、使用制造纳米机器人在细胞水平上进行维修,生物标志物的提取及测定等[43,44]领域,以疾病的早期诊断和提高疗效为目标。

3.1体外生物分子检测

超灵敏的生物分子检测方法可以服务于临床诊断[45,46]。由于待测分子含量很少,因此,对方法的检测灵敏度有很高要求。纳米材料特有的性质可以极大地提高分子检测的灵敏度和简便性[47,48],人们研究了各种各样的超微量生物分子检测的信号放大方法[49,50]。丁良等[51]利用纳米晶体中阳离子交换反应释放的阳离子来诱导荧光染料,用于痕量生物分子的检测,取得良好效果。实验表明基于ZnS纳米簇的阳离子交换放大器的检测性能优于酶联免疫吸附测定法(ELISA),检测限低1000倍。标志着利用便携式床旁检测设备检测生物标记物成为可能。

3.2体内诊断

3.2.1注射PEG-Glu-GNPs后肿瘤的轮廓很容易与周围组织区别开来,这种复杂的探针可以实现体内疾病的早期诊断,大大有助于癌症或癌转移的早期发现[52]。另外开发体内神经递质参与脑化学的监测是一项具有挑战性的工作,有助于进一步理解生物分子在病理和生理上的作用。Liu等[53]报道了一种新型的封装有金纳米颗粒的玻璃毛细管来感应大脑多巴胺,结果表明,全氟磺酸改进Au/GCNE可成功用于监测麻醉大鼠纹状体的多巴胺。Kempen等用光学显微镜和扫描电镜定位、观察金纳米粒子聚集的脑肿瘤模型,发现纳米颗粒仅在含有脑肿瘤细胞的区域内聚集,在正常脑组织周围没有发现[54]。3.2.2量子点(半导体纳米晶体)量子点是以CdSe为核、CdS或ZnS为壳的核-壳型纳米体,具有优良的光谱性能。水溶性的量子点在生物化学等研究领域显示了极其广阔的应用前景。它的细胞毒性低,可用于活细胞及体内非同位素标记的生物分子的超灵敏检测。李朝辉等[55]利用反相微乳液技术,以CdTe量子点为核,SiO2为壳,一步制备了表面带有氨基和磷酸基团的核壳型量子点荧光纳米颗粒.该颗粒水溶性好,大小均匀,有效改善了CdTe量子点的不稳定性,成功实现了对肝实质细胞的识别。由于量子点技术有其独特的标记特点,它必将成为今后生物分子检测的尖端技术,为DNA检测(DNA芯片)、蛋白质检测(蛋白质芯片)和探索蛋白质-蛋白质之间(抗原-抗体、配体-受体、酶-底物)反应原理提供更先进的方法。同时也将极大推动生物显像技术和生物制药技术的迅猛发展,给疾病的诊断和治疗带来巨大进步。3.2.3纳米磁性颗粒较大尺度的磁性纳米颗粒呈现铁磁性,在交变磁场的作用下可通过磁滞现象产热,用于癌症的靶向热疗[56]。而粒径小于20nm的磁性纳米颗粒通常显现出超顺磁性,可被广泛应用于临床诊断领域。目前在临床诊断方面较为成熟、发展较快的应用主要包括:磁共振成像、生物分离、细胞筛选等。(1)磁共振成像(MRI)作为一项新的医学影像诊断技术,近年来发展十分迅速,所提供的特有信息对诊断疾病具有很大的潜在优越性。利用超顺磁性氧化铁磁性纳米颗粒在生物体组织内的特异性分布,有助于提高该部位肿瘤与正常组织的MRI对比度,因而作为造影增强剂被应用于MRI,进行肿瘤及其他疾病的诊断[57]。(2)生物分离。因磁性纳米颗粒具有易操控性、比表面积大等优点,使功能化的磁性纳米颗粒的应用具有很大的吸引力[58]。当前磁分离的研究涉及生物领域的多个方面,如血液中金属离子的去除,蛋白质、核酸等的富集、固定化酶的回收与重复等[59]。Yan课题组[60]利用磁性氧化铁粒子作为载体固定蛋白酶A,并利用其能够与乙肝病毒表面抗原抗体发生特异性结合的性质,达到测定乙肝病毒的目的。(3)细胞筛选。当组织或血液中仅有微量癌细胞的时候,通过特定的技术就可以精确地检测到,从而实现对疾病的早期诊断和治疗,必将为病人获得宝贵的治疗时间,提高治愈率。所以细胞筛选具有重要的意义。免疫磁珠细胞筛选法可在几分钟内从复杂的细胞混合物中分离出很高纯度的细胞。Mousavi等[61]等开发了一种新型的与金纳米条结合的微流控芯片,利用高效免疫磁珠法捕捉人血中极少量的细胞,可以达到简单而有效的检测高纯度目标细胞的目的。可以预见,在未来,更加精确的细胞筛选技术将是一个非常热门的研究方向[62]。虽然功能化的磁性纳米材料已经有了广泛的应用,但如何设计更简单的制备过程和更新颖的功能化方式以使材料本身具有更好的分散性和使用寿命,仍是研究者们探索的方向.3.2.4纳米生物传感器在癌症研究领域,利用纳米技术制成的传感器可望使各种癌症的早期诊断成为现实[63]。纳米传感器灵敏度很高,在进行血液检测时,当传感器中预置的某种癌细胞抗体遇到相应的抗原时,传感器中的电流会发生变化,通过这种电流变化可以判断血液中癌细胞的种类和浓度。目前越来越多的风险投资正在涌入这一领域,但这一技术在实用中还有一些技术难题需要解决。今后可能会有多种纳米传感器集成在一起被置入人体,以用来早期检测各种疾病。3.2.5生物芯片生物芯片是基因生物学与纳米技术相结合的产物,它不同于半导体芯片,它是在很小的几何尺度的表面积上,装配一种或集成多种生物活性分子,仅用微量生理或生物采样,即可同时检测和研究不同的生物细胞、生物分子和DNA的特性,以及它们之间的相互作用,获得生命微观活动的规律。具有集成、并行和快速检测的优点,生物芯片技术已经成为21世纪生物医学工程的前沿科技。基于纳米结构阵列的蛋白质芯片和微流控芯片技术在诊断学和生物传感技术方面的应用具有巨大的潜力[64]。Ali等[65]制备的基于氧化镍纳米棒的微流控生物芯片,采用电化学检测法来测定人体血液中的总胆固醇浓度,线性范围为1.5-10.3mmol/L,灵敏度高达0.12mA•mmol-1•cm-2。DNA芯片技术可以快速分析大量的基因信息,从而使生物医学工作者可以研究并收集基因表达和变异信息,还可用于监测不同的人体细胞和组织基因表达,以检测癌症或其它疾病所对应的基因的变化。3.2.6纳米机器人纳米技术与分子生物学的结合将开创分子仿生学新领域。“纳米机器人”是根据分子水平的生物学原理为设计原型,设计制造可对纳米空间进行操作的“功能分子器件”。以色列科学家研发出一种“胶囊相机”,将摄像头内置入比普通感冒药稍大的胶囊内,以大约每秒14张照片的频率拍摄消化道内的情况,并同时传回外置的图像接收器,可进行人体消化道肿瘤监测。还可将纳米机器人注入人体血管内,进行全身健康检查,疏通脑血管中的血栓,清除心脏动脉脂肪沉积物,用于动脉粥样硬化的治疗;可吞噬病毒,杀死癌细胞;可将纳米机器人以插入导管的方式引入到尿道或胆道里内,直接到达结石所在的部位,并且直接把结石击碎,进行肾结石、胆结石的治疗;还可进行人体器官的修复工作、作整容手术、从基因中除去有害的DNA,把正常的DNA安装在基因中,这样可以从根本上治愈遗传缺陷或病毒,使机体正常运行。未来发展趋势是当机器人医生发现可疑病变组织后,立即能伸出“手”来取样进行活检。纳米机器人在体内的生物传感与智能配送生物活化剂有很大潜力[66]。

4纳米材料和纳米生物技术的安全性问题

随着纳米技术的迅速发展,不可避免地导致含有纳米颗粒的工业废水的排放[67],纳米材料的潜在的免疫毒性机制所引起的不良反应还没有得到足够的重视[68]。纳米颗粒可直接穿透人体皮肤引发多种炎症;可穿透细胞膜,将异物带入细胞内部,对人体脑组织、免疫与生殖系统等方面造成损害等。如二氧化钛容易在饮用水中聚集,从而污染环境、影响健康。接触二氧化钛纳米微粒后,人体肺部将可能出现炎症。银纳米颗粒目前已被大量使用。研究表明,即使它在环境中的聚集量很低,也会对水中无脊椎动物造成伤害。碳纳米管是工业和实验所需的材料,注射了碳纳米管的老鼠会产生动脉粥状化、线粒体脱氧核糖核酸损伤等反应。当摄入量较大时,对肌肉细胞也有毒性,会对人体健康有不利影响。但尽管纳米生物技术的应用有一定安全性的问题,它的应用也会越来越广泛,同时这也为纳米技术将来的发展指明了方向——如何提高其安全性问题是研究的目标之一。

5发展前景

篇5

1苯丙氨酸解氨酶

苯丙氨酸解氨酶(Phenylalanineammonia-lyase,PAL)是苯丙烷途径的第一个关键酶。PAL普遍存在于植物和某些真菌、细菌和藻类中,其功能是催化L-苯丙氨酸非氧化性脱氨生成反式肉桂酸(cinnamicacid,CA),而肉桂酸是苯丙烷类次生物质(如黄酮、香豆素、木质素及某些酚类)生物合成的通用前体,因此该酶在植物次生代谢中具有极其重要的位置[14]。多数被子植物中,PAL是一个多基因家族,在一组染色体中含有一到多个PAL基因。PAL亚基通常由小型基因家族编码(一般2~5个成员),这些基因家族又图1黄芩苷生物合成途径Fig.1Biosyntheticpathwayofbaicalin186可分成2或3个亚族,随植物不同而异。烟草(Nicoti-anatabacumL.)PAL由2~4个独立基因编码,而欧芹(Petroselinumcrispum)PAL至少包含4个编码基因[15],例外的是火炬松,仅有1个pal基因。Whetten等[16]采用多克隆抗体识别火炬松PAL亚基,获得cDNA,经PCR扩增后测定pal基因序列,发现其与水稻、豆、甘薯等被子植物的编码序列存在60%~62%同源性。欧芹中pal基因含有6个内含子,其上游含有一段富含CT的区段[17]。目前已在诸如马铃薯(SolanumtuberosumL.)、拟南芥、烟草、黄瓜(CucumissativusLinn.)和大麦(HordeumvulgareLinn.)等植物中,克隆到了编码PAL酶的cDN段或基因组序列,其它多种植物的pal基因已测序并在GenBank注册[18]。课题组也已分离获得粘毛黄芩的pal编码基因,并进行了相应的序列和表达分析,发现黄芩pal基因与其它植物pal基因具有很高的同源性,从而证实了该基因具有高度的遗传保守性[9]。

2查尔酮合成酶

包括黄芩苷在内的所有黄酮类化合物的直接通用前体物均是柚皮苷查尔酮,它是由1分子桂皮酰辅酶A与3分子丙二酸单酰辅酶A缩合而成,其中前者来自苯丙酸中间途径,后者经醋酸经乙酰辅酶A羧化酶催化生成。这个重要的缩合反应就是由查尔酮合成酶(Chal-conesynthase,CHS)催化完成的,这是黄酮类化合物合成中第1个关键酶,具有限速作用[19]。自从第1个荷兰芹的chs基因在1983年以来[20],迄今已从多种植物中克隆了chs基因,如高粱(Sorghumbicolor)[21]、兰花(OrchidBromheadiafinlay-soniana)[22]和拟南芥[23]等。chs基因在不同植物类群中保守性较高,一般都含有2个外显子和1个内含子,而金鱼草chs则含有2个内含子[24]。chs基因的外显子1和2分别编码60个和340个左右氨基酸残基,但在序列长度和核苷酸组成方面外显子2的保守性高于外显子1,而作为活性位点的4个保守氨基酸残基位于外显子2中。chs基因内含子的大小及序列差异都较大。不同物种中查尔酮合酶在氨基酸水平上的一致性很高,约79%~91%,说明其具有高度的遗传保守性[25]。chs基因启动子具有多个对环境感受的特异性元件,如接受激发子诱导的ACE元件(ACGTele-ment)[26-27]和H区(H-box)[28],富含AT元件区[29-30]、以及负调控的沉默子[31]和维持基因转录水平的P区[32]。大部分植物的CHS编码基因是一个多基因家族,如矮牵牛、大豆和豌豆等,特别是双子叶植物的chs家族基因数目较多,如菜豆中已发现8个chs基因[33],矮牵牛的chs基因家族包括8~10个成员[34]。虽然chs基因家族中数目较多,但各成员基因编码区的同源性较高。由于CHS在植物外源基因的表达、细胞的发育和分化、花色素的积累和抗菌、抗胁迫生理过程等起着重要的作用,因此chs基因家族的不同成员往往受植物不同发育时期和组织特异性调控,对不同外源刺激的敏感程度也不同,这个特点与黄酮类物质的功能多样性相适应[35]。该课题组基于黄芩chs家族,利用同源性克隆方法,克隆获得了粘毛黄芩chs基因,并从分子水平上验证了所选植物的chs可能起源于同一个祖先,也反映出黄酮化合物为聚类指标的进化生物学意义,从而说明作为类黄酮代谢关键酶的CHS蛋白在自然演化进程中的遗传保守性和功能稳定性[36-37]。chs基因具有显著的时空差异性表达模式,如组织和发育时期的特异性表达,在一些植物发育的早期阶段CHS在叶片中表达,而成熟植株中主要仅限于花组织中存在;chs基因接受诱导因子调控的特异性转录,在很多植物(如矮牵牛、菜豆等)中,外界刺激如胁迫、紫外线和病原体会诱导CHS的快速响应并表达,CHS的这种对外界刺激的敏感程度的差异特点与CHS编码序列上游启动子中含有的特异性顺式作用元件有关[38]。此外,笔者也发现粘毛黄芩chs基因受到外源甲基茉莉酸的时间依赖性地调控,并建立了其诱导差异表达谱[37]。在基因工程领域,对chs基因调控作用的研究主要集中于植物花色表型和抗逆性状的遗传改良,而这种改变实质上也是基于细胞和组织内黄酮化合物的含量调节,例如通过对chs基因的反义或共抑制操作培育颜色变异的转基因花卉[39],也可以正调节马铃薯中的chs基因增加花色素苷等黄酮类化合物的积累,从而改善其抗氧化能力[40],而基于烟草转化系统的研究证实黄芩chs基因在驱动黄酮化合物生物合成的过程中发挥了重要作用[41]。

3黄烷酮3-羟化酶

黄烷酮3-羟化酶(flavanone3-hydroxylase,F3H)是黄烷酮分支点的一个核心酶,其作用是催化5,7,4-黄烷酮C3位的羟化,生成二氢山奈素(dihydrokaempferol,DHK),而该物质则是合成黄烷酮和花色素的重要中间产物[42]。因此F3H也是黄酮化合物生物合成途径中的关键酶,是控制黄酮合成与花青素苷积累的分流节点,被认为是整个类黄酮代谢途径的中枢。1991年,人们首次获得f3h基因序列,是从金鱼草中克隆出来[43]。目前已经在拟南芥[44]、苜蓿[45]和玉米(Zeamays)[46]中被陆续分离鉴定,且是以单拷贝形式存在,但在甘蓝型油菜和紫苏中则是以多基因家族形式存在,分别含有5~7个和2~3个成员。在这些植物中,f3h基因一般具有3个外显子和2个内含子[45]。笔者首次克隆了粘毛黄芩的f3h基因,通过系统进化树分析,从分子水平上验证了所选植物的f3h可能起源于同一个祖先,也反映出植物间的植物黄酮醇类化合物的含量与植物间亲缘关系有一定关系。f3h基因在一些植物中是独立表达的,如矮牵牛中的f3h基因,而在大多数的情况下,f3h则是和其上游的chs、chi(查尔酮异构酶)基因以及下游的dfr(二氢黄酮醇还原酶)基因协同表达的,这在拟南芥和金鱼草中都有相关的报道。此外,矮牵牛和金鱼草中f3h基因突变失活则可在阻断花色素的合成通路,获得白花的矮牵牛或金鱼草[43,47]。近期研究表明,通过调控f3h基因的表达能够有效改变植物花卉或种皮的颜色,基于该基因的遗传操作已成为花卉育种研究的重要手段[44,48];而旨在高产黄酮和异黄酮的药物代谢工程领域,通过反义抑制f3h基因阻断花青素合成途径能够使通用前体柚皮苷更多地流向黄酮和异黄酮,从而获得促进目标产物的积累,该方式证明F3H是黄酮代谢工程的重要靶点[49]。由此可见,f3h是黄酮生物合成途径上关键的限速基因,其催化反应是黄酮合成调控的的重要步骤。

4小结

篇6

以生物的免疫、基因、敏感等方面的特点为基础,运用科学合理的方法对具有检测功能的试剂进行制作,进而检测食品的安全性就是生物技术在食品检测工作中的应用原理。在食品检测工作中,生物技术具有诸多优势,例如速度快、范围广以及准确度高等。一般而言,主要的生物检测技术有免疫技术、生物传感器技术、生物芯片检测技术、酶技术等。为了使我国的食品安全检测工作得到提升和发展,我们就需积极对生物技术进行有效运用,并加大开发力度,使其发挥出更大的价值。

2.食品检测中主要的生物检测技术

2.1聚合酶链式反应技术在转基因检测上,聚合酶链式反应技术已得到了有效运用。聚合酶链反应简称为PCR,PCR技术主要通过三个阶段对食品进行安全检测,即变性、复性以及延伸。对DNA模板进行建立,将寡核苷酸作为引物,通过聚合酶作用,沿DNA模板顺序以半保留复制的方式延伸而完成DNA分子复制就是PCR技术的基本原理。在依靠多次的增容以及扩展以后,PCR会变成符合食品检测需求的检测物。该技术由于具备诸多应用优势,因此之后也被合理运用到了各大领域中,尤其是在食品安全检测工作上,该技术已显示出了较好的运用前景。但与此同时,聚合酶链式反应技术也存在着一些不足之处,比如食品中假若有已死亡的细菌存在,那么便会显示为假阳性,针对制毒微生物所产生的毒素,该技术也无法进行全面检测。

2.2生物传感器技术在对生物传感器分子识别原件进行选取时,需使其具有较好的选择性。在和待测物的特异性进行结合以后,依靠对应的信号转换器,分子识别原件所产生的光、热等复合物可促使其进行转化,变为能够输出的的电信号以及光信号,并可将其进行放大然后输出,最后得到检测结果。一般而言,生物传感器具有许多优越性,例如操作简便、敏感性高、反应速度快等,相比于传统性质的食品检测方法,此种检测方法更具科学合理性。另外,运用生物传感器技术,可使安全可靠的食品检测系统得到建立完善。运用此技术,可使检测所用时间得到缩短。倘若要对牛奶以及热狗等食品中的葡萄糖球菌肠毒素进行检测,就可促使其灵敏度得到明显提高,并有效地控制好检查时间。但对当前的实际情况进行分析可知,受计算机技术、生物材料等因素的影响,在食品检测方面,生物传感器的商业化程度仍旧不高。

2.3酶技术在对食品中的残余农药以及微生物污染进行检测时,我们主要可运用到酶检测方法,而这也是较为常见的一类食品检测方法。与此同时,在食品安全检测领域里,酶联免疫分析检测技术已得到了广泛运用。该技术对酶学以及免疫方法进行了结合,并具有较高的准确性以及灵敏性。在对蔬菜和水果当中的菌剂噻菌灵进行检测时,酶联免疫分析检测技术已显示出了较好的敏感性。当前,美国化学会已将此方法纳入到了农药残留检测法当中,而在我国,该检测方法也得到了广泛运用,并取得了较好的效果。

2.4生物芯片检测技术随着全球化经济的发展以及各国贸易的加强,进出口食品也在不断增多。所以,为了对进出口食品进行有效检测,就需运用到高质量、高安全的食品检测技术以及安全监控体系。作为一类高新生物检测技术,生物芯片检测技术在进出口食品安全检测工作中已得到了有效运用。该技术主要对光导原位合成进行了运用,可将大量的生物大分子按照一定顺序进行固化。针对已经通过标记的待测生物样品,该技术可对其中靶分子进行杂交,并运用特定设备对杂交信号的强度进行快速检测,在对检测仪器进行选取时,可优先选用电荷偶联摄影像机,或是运用激光共聚焦完成扫描,进而统计出样品中靶分子的数量。针对食品的安全状态,运用生物芯片技术,我们可进行深入了解。另外,在进出口食品监管管理工作中,快速反应系统以及预警系统的建立完善都离不开生物芯片检测技术。

2.5免疫法当前,在食品生物检测技术中,免疫法具有最高的灵敏度。另外,该技术还具有容易操作、再现性好、科学可靠等优点,并在食品安全检测工作中得到了有效运用。免疫法可对蛋白质进行检测,蛋白质之间的物理性质以及化学性质差别较小,而运用免疫法则可进行有效区分。

2.6基因探针技术当前,基因探针技术主要分为两种,即同相杂交以及异相杂交。在对食品安全进行检测时,大肠杆菌检测是一项重要内容。对大肠杆菌进行分析可知,其具有p一葡糖苷酸酶的特性,在进行检测时,可对以B一葡糖苷酸酶为目标的DNA探针进行制作,使食品检测工作的效率得到提升,并对传统食品安全检测工作中的问题进行有效解决。

3.食品检测生物技术的具体运用

3.1检测食品的品质和成分针对食品的成分以及品质,生物感应器是最为常见的检测方法。在早期,所使用的生物感应器主要为葡萄糖感应器,可对食品的含糖量进行有效检测,并得到了广泛运用。例如,在对鱼类新鲜度进行检测时,日本已使生物传感器实现了商品化。另外,针对食品中含有的香味物质,在进行检测时还可运用到生物技术。具体的操作方法是:将蛋白和需进行检测的某种气味进行结合,使其成为敏感材料。对于人类身体健康以及生态环境,转基因食品会带来一定负面影响。所以,对转基因食品进行检测就变得尤为重要。当前,主要的检测技术有蛋白质检测、酶活性检测以及有酸检测三种。

3.2检测食品中的有害微生物对科学有效的食品检测技术进行运用,可使微生物的传播得到较好控制。对于人类健康,食品中的微生物会带来一定危害,并严重降低食品质量。因具有诸多优势,在微生物的检测工作中,生物检测技术已取得了较好效果。当前,在对食品微生物进行检测时,常用的生物技术主要有酶联免疫技术、生物传感技术以及合酶链式反应技术。

3.3检测食品中的残余农药)随着时代的发展,如何对食品中的残余农药进行有效检测和分析已受到了人们的高度关注。倘若食品中残留农药,人民群众的生命安全就会受到严重危害。当前,在食品残余农药检测方面,主要运用的生物技术有酶技术以及生物传感器。

4.结束语

篇7

生物技术专业基本技能达标训练,目的在于提高学生科研素养和解决实际问题的能力,使毕业生与就业单位的科研、生产研发和管理达到“无缝接轨”,从而能够在社会生产、管理和服务的第一线解决生物技术方面的实际问题。在专业实验课程的基础上,分别在第一、二、三、四学期设置4个基础技能训练项目:(1)植物生物学基础综合实验,训练内容包括光学显微镜的结构、规范操作,临时切片制作、观察与轮廓图的绘制等,对接第一学期的专业核心课程“植物生物学”。(2)动物生物学基础综合实验,训练内容包括光蛔虫或蚯蚓的横切片观察;鲫鱼外形、鲤鱼骨骼系统的观察,内部解剖与观察;土壤动物的采集、保存及鉴定,等等,对接第二学期的专业核心课程“动物生物学”。(3)生物化学基础技能训练,训练内容包括分光光度法测蛋白质含量、聚丙烯酰胺凝胶电泳电泳槽安装、点样及电泳及层析法分离鉴定氨基酸,等等,对接第三学期的专业核心课程“生物化学。(4)微生物学基础技能训练,训练内容包括(革兰氏)染色法和油镜的使用;酵母菌大小测定;平板菌落计数法等,对接第四学期的专业核心课程“微生物学”。每个项目都设置有相应的考核要点,如项目Ⅰ的考核要点有:①光学显微镜的结构要点、规范化操作流程;②临时切片的熟练制作、质量好坏与规范化观察;③合适染料的挑选与染色效果;④植物轮廓图的绘制和结构标注等,项目Ⅱ的考核要点有:①观察蛔虫或蚯蚓的横切片装片,并按照所给的装片判断出该装片是蛔虫还是蚯蚓并给出理由;②解剖鲫鱼并绘内部解剖示意图;③利用体式显微镜,根据所给检索图鉴定标本等,要求学生必须通过此4个专业基础技能训练项目的考核,否则不能取得本专业学士学位。

在此基础上,大三大四年级设置相应的综合实验及实训项目5项,进行相关实验技能的综合应用实训,包括生物技术综合实训(内容包括生物样品的制备、含量测定、层析技术、电泳技术等)、发酵工程综合实训(内容包括菌种选育、发酵原料准备、发酵工艺控制及产品分离技术等)、生物工艺实训(内容包括抗生素生产工艺实训和啤酒生产工艺实训等)、酶工程实训(内容包括淀粉酶发酵技术,生物制剂的生产工艺等)、职业技能培训(内容包括<营养配餐员>、<食品检验工>国家级职业技能证书考核培训等)。要求学生必须通过所要求的专业技能训练项目才可以参加后续的专业(毕业)实习和毕业论文(设计)等工作。通过专业技能达标训练,保证学生掌握本科生必须具备的现代生物技术基础实践技能,显著增强学生在食品生物技术与生物制药技术两个专业方向的专业技能,并具有一定的行业综合技能,具有一定的实验设计、产品研发能力,具有归纳、整理、分析实验结果的能力以及撰写论文、参与学术交流的能力,同时强化职业技能资格证书作用,将拥有相关职业资格证书算入学分,进入学生的生物技术能力评价的标准,鼓励学生多参加相关职业技能证书的培训和考证活动,提高学生适应社会需要的能力。

二、转变观念,积极探索能力培养的新模式

1.改变教育观念,在教与学中促进学生能力培养。

教学改革的首要任务是教学形式的改进。要改进过去单纯传授知识、演绎知识的教学方式,在课堂教学中努力实践、探索师生积极互动、共同发展的教学方式与学习方式的变革;研究教师在教学中的角色转变;提倡启发式、讨论式等生动活泼的教学方法,创设宽松、民主、高效的课堂氛围。探讨培养学生自主学习、合作学习、探究性学习的策略;培养学生在新的教学理念下搜集与处理信息的能力,获取新知识的能力,发现、分析、探索、解决问题的能力;交流与合作的能力等。寻求适合于、满足于不同学生学习需要的,使每个学生都能得到充分发展的教育教学途径,开发学生智力、培养学生创造思维和实际操作能力。其实关于能力培养,我们还必须对生物教学中的存在的大量技能、技巧性的知识加以挖掘与开发。上世纪50年代英国哲学家迈克尔•波兰尼(MichaelPolanyi)研究人类知识的形式,提出人类知识有两种:一种类型的知识是通常以书面文字、图表和数学公式加以表述的;另一种知识是我们知道但难以言述的知识,包括那些非正式的、难以表达的技能、技巧、经验和诀窍等。前者称为显性知识,后者称为隐性知识。显性知识是能够被人类以一定符码系统(最典型的是语言,也包括数学公式、各类图表、盲文、手势语、旗语等诸种符号形式)加以完整表述的知识。隐性知识和显性知识相对,是指那种不能通过语言、文字、图表或符号明确表述,很难进行明确表述与逻辑说明,它是人类非语言智力活动的成果。这是隐性知识最本质的特性。隐性知识是存在于个人头脑中的,它的主要载体是个人,它不能通过正规的形式(例如,学校教育、大众媒体等形式)进行传递,因为隐性知识的拥有者和使用者都很难清晰表达。但是隐性知识并不是不能传递的,只不过它的传递方式特殊一些,例如通过“师传徒授”的方式进行(波兰尼《个人知识》,贵州人民出版社2000年11月出版)。生物教学中的能力培养,实际上确实存在着大量的隐形知识,生物技术是多门操作性很强的学科(生物技术领域包括发酵工程、细胞工程、蛋白质与酶工程、基因工程),它所涉及的多种技术(如荧光定量PCR、蛋白双向电泳和分子杂交等)都有非常详细的步骤,有的操作只需30秒、几分钟不等,几十个步骤下来有的要耗时一周左右,而且整个过程的操作对象都不是肉眼所能分辨的,只有到了最后一步或者通过染色、或者借助仪器(凝胶成像仪、放射自显影等)才能得出结果。即使是同样的操作流程,不一样的操作者完全有可能得到不一样的试验结果甚至大相径庭。从此方面来看,除了依靠课堂教学的知识传递以外,还需要更多的重复性、个体性的操作演练,这是我们长期教学实践所忽视的一面。

2.改革教学评价机制,多形式提高学生的专业学习能力。

在高考指挥棒下,高校的教学评价也沿袭了用分数评价学生一切学习状况的惯性与惰性,目前高校最主要的人才评价机制是分数标注的学业成绩,其他评价机制只能沦为辅助作用。如何改进教学评价机制,对专业学习能力的提高具有重大意义。为科学评价教学质量,需要确定科学的评价方法和建立科学的评价体系。为此,在专业素质能力等少数知识性较强的课程中采用百分制的积分方式,而其他的技能与创新能力的课程则尽量采用其他的计分方式,如用国家职业技能证书(如营养师考核证书、食品检验师考核证书等技能证书)代替课程成绩,顶替学分,用研究成果(如、研究成果、科研项目等)取代实验课成绩,尽量不用量化的分数评价学生的生物技能。即使在普通生物学知识的学习评价,也尽量注重对学生学习及研究过程和方法的引导,采取通过查阅有关资料或进行实验才能完成且无统一答案的作业等形式进行评价。考试方法多样化,如采取开卷或半开卷、文献综述、专题论文、案例分析等形式,评分标准则侧重学生研究、解决问题的思路和方法,是否有独立见解和创新,从而培养学生自我学习和自我发展的能力。

3.重视科研,着力培养学生综合运用知识的创新能力。

篇8

1需要培养建设一支高素质的教师队伍高校教师的业务水平如何决定培养学生能力的高低。通过教师攻读在职学位、到高校进修,开展各方面的交流活动,教研室所有教师都要参与实验、实习、课程设计、大学生科技创新等实践教学环节,不断提高教师的业务素质和工作能力,将成为人才培养的保障。

2需要建立科学合理的实践教学计划根据具体培养要求,在培养计划中建立一个基本完整的实践教学模式。按照实践教学目标体系,整合实践项目和内容。在学生入学后的不同学习阶段,分别在各个实验室进行学习,按照循序渐进的教学原则,设置各个课程的验证型,综合型实验,另设置基础和专业课的实习和实训,虽然这些课程都有专门的培养方案和教学安排,但如何科学安排好各个课程的衔接,还需深入研究。

3需要研究实践教学体系的组成按照专业实践能力培养的自身规律性,首先针对本专业的培养目标,体现理论教学与实践教学相互联系,建立符合实际、具有科学性和操作性的实践教学体系,分别包括了实践教学基础训练(课程教学实验、专业教学实验)、实践教学的依托训练(毕业实习、科研训练)、实践教学核心训练(各种设计性实验、毕业论文实验)、实践教学补充训练(社会实践),这四个训练贯穿整个学程,构成培训学生基本能力、综合能力和创新能力的平台。教学实践环节可分为四大类进行:认知实践:结合基础阶段所学理论,激发学生对本专业后续课程的求知欲望,为学习专业基础课和专业课提供感性认识;课程实践:选择一些专业主干课程,根据每门课程的授课内容和教学进度,安排学生实习,加深学生对授课内容的理解;专业实践:使学生系统参与专业课的具体实践,培养应用与创新能力,团队协作和交流能力。落实到各个专业课程的实践中;综合实践:按本科培养方案的要求,撰写毕业论文,组织答辩。实验考核的效果能够反映平时实验课的成绩,考试的目的是为了促进学习,从而进一步保证实践教学质量的不断提高。

4改革实习环节,以社会实践为补充,充实第二课堂内容学生要能够综合运用所学知识了解实际问题、能够独立分析和解决实际问题的最好途径是实习。生物技术专业的课程包括教学综合实习、专业实习和社会实践三个方面。实践性较强的课程都加强了课程教学综合实习。按照专业培养目标的要求,有计划有组织地参与社会活动,了解现实社会、认识当今的国情、增强年轻人的学习使命感和社会责任意识,在实践中进一步完善知识体系,使学生增强适应社会的能力。第二课堂在培养学生综合素质等方面发挥着重要的作用,如组织课题组活动,参与大学生科技创新项目,到实践基地参观实习。在教学实践环节中实验考核的效果能够反映学生对待实验课的态度,进一步保证实践教学质量的不断提高。

推荐期刊