欢迎访问爱发表,线上期刊服务咨询

污水处理论文8篇

时间:2023-04-17 17:22:19

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇污水处理论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

污水处理论文

篇1

进行污水处理工作时要缴纳一定的价内税,起本质就是和处理费用相关的各种税金。目前,我国处理污水的企业属于事业单位的范畴,处理工作中获得的污水处理费也属于行政收费,因此不用缴纳其他税金,我国的污水处理企业将来会实现企业化,那么在污水处理工作中就要缴纳营业税、城市维护建设税、教育费附加等各项税金。对污水处理的营业额所收取的税款就是营业税,依据污水处理的总利润,根据低税率额算出总税款。

二、污水处理费的制定管理

在污水处理费管理工作的整个过程中,都必须以相关的规定为依据,通常使用“两部制”收费方法,要保证确定的污水处理费能体现处理服务的意义,还要平衡好对水的需求,要与我国的收费政策一致。

(一)污水处理费制定的原则

1污水处理费应能补偿成本。进行成本补偿工作时要注意下列两点:①合理确定货币价值量的总额,要在一个科学的范围内;②要合理分析货币价值量补偿与实物补偿间的关系,维持好两者间的平衡。2污水处理费中应包含合理盈利。将污水处理工作中各个工作者的流动成果以货币形式体现出来就是盈利。盈利是实际收取的处理费与成本间的差额,有税金及利润两大方面。依据国家的税法向国家交付的金额为税金,它是为了帮助国家积累资金。利润则要在污水处理费的总额中减去各项成本和税金支出,它可以为企业的发展提供源源不断的动力。确定污水处理费时要本着科学盈利的原则,也就是要根据社会资金的平均利润率来确定。3污水处理费应形成合理差价。用户差价即根据用户的差异来确定费用。生活用水、行政企业和学校的用水都是不以盈利为目的的,所以在对这些用户收取水费时,就要本着微利的原则,即稍稍大于成本即可。但是对于那些以盈利为目标的企业比如商店、酒店等,就要将污水处理费用制定的高些,以保证污水处理工作能够获得预期的利润。

(二)污水处理费的“两部制”

1污水处理费“两部制”的必要性。污水处理系统的建设、维修及管理费用都要通过用户所缴纳的污水处理费来实现回收及增值。容量污水处理费,就是根据用户的实际用水量建设耗费的资金、维修费、管理费等为依据确定污水处理费。企业收取容量污水处理费,除了能够回收企业在建设期间以及污水处理系统运营期间投入的成本,还能够保证用户严格依照自家的实际用水总量来申报最大污水处理量,避免污水处理系统的容积过大而被闲置,保证污水处理系统的工作效率并降低运营成本。污水处理系统的设立是为了科学的处理污水,工作时肯定会需要多种设备、大量电力和劳动力,因此污水处理单位初期需投入大量的运营资金。分析目前的市场经济规律发现,污水处理企业最科学的工作方式是依据污水排量的差异来制定阶梯处理费收取制度,这样能促进污水处理企业更好的发展。现今较科学的工作方式是收取称量污水处理费,其制定依据是系统运行中投入的费用总额和污水处理总量。收取称量污水处理,可以很好的体现“多用水多交费”的公平交易原则,不仅能够增强用户的合理用水和节约用水观念,还能够保护环境。2定额累进计量污水处理费。定额累进计量收取污水费的工作方式是以具体的标准来制定用户的用水定额的,若用户的用水总量大于这个定额,就需要对高出部分收取更高的污水处理费用。但是实际用水总量小于该定额时,则应对节约部分实行奖励。我国现今的污水处理费管理现状是不能将费用定的很高,可是总体的水资源总量又是非常匮乏的,所以使用定额累进计量收取法是最合适的。价格较低的定额水量,可以保证居民的基本生活用水,还能减轻居民的生活负担,对于超出的部分收取高价,很好的体现了节能的思想,有助于提高用户在日常生活中的节水意识。借助价格的杠杆作用来激励用户节水的方式为定额累进收取污水处理费。现今的大部分水源都用于供给人们的基本生活用水,从节约用水的角度分析发现,居民生活用水是有着很大的节水潜力的,并且工作难度也不大,但是非居民生产用水在总水量中占得比例较小,并且变数大,静态定额不能很好的管理水量的动态变化,所以不使用定额累进计量污水处理费的收费方式。使用定额累进计量法收取污水处理费的首要前提是合理设定基本的用水定额。在制定这一标准时,要先确定人均用水量,然后根据每户的人数来确定各户用水量。在收取定额累进污水处理费时,要科学的确定级数,因为技术过少无法体现价格杠杆的作用,导致热能的浪费;但级数太多又会使污水处理费体制更加复杂,对社会的发展产生不利的影响。通常情况下,在定额累进计量污水处理费系统中都将级数分为3级。第一级要能保证居民的日常生活用水量和污水处理系统的运行成本,主要是为了收回成本。第二级级数则要以提高居民的生活质量为标准,利润也是比较低,是第一级的1.5倍。第三级级数按市场价格满足某些特殊需要来确定,收费应是第一级的2倍,或者等于经营性污水处理费。

三、结语

篇2

1.1供试材料和堆肥方式

1.1.1污泥来源和条垛式堆肥技术于2008、2010年同季采集(均在夏季),初始城市污泥均来自北京高碑店、卢沟桥及吴家村污水处理厂的混合污泥,并进行条垛式堆肥处理,温度50~60℃,之后浓缩、脱水,大约25~30d后成为腐熟的干污泥.然后风干、碾碎,过筛,把污泥中的较大块物体等进行细化,经过筛选使之粒度达到60~80目,备用测定.以上以A型堆肥污泥表示.

1.1.2污泥来源和高速活性堆肥工艺于2012、2013年同季采集(均在春季),初始城市污泥均来自北京市昌平区南口污水处理厂的污泥,并采用一种高速活性堆肥工艺进行处理(high-raterecoveryoforganicsolidwtessystem,HiRosSystem).该工艺采用机械热化学稳定及活化法,处理工艺中的所有反应釜、储槽、传送器等均为密闭系统,在高温高压下,完全杀菌及杀寄生虫性、并可分解有毒有机化合物,有效去除重金属危害,从而将有机固体废弃物转化为无味无臭、高品质的有机肥.之后再进行风干、碾碎及过筛,把污泥中的较大块物体等进行细化,经过筛选使之粒度达到60~80目,备用测定.以上以B型堆肥污泥表示.

1.2测定方法

供试A、B型堆肥污泥的理化性质均采用常规测定方法[19];pH采用pH酸度计法(HANNA,pH211酸度计);汞(Hg)、砷()含量的测定采用原子荧光光度计测定(AFS3000,北京科创海光仪器有限公司);全磷、全钾及Cu、Zn和Cd等其他金属或元素含量的测定均采用酸溶-等离子发射光谱法测定(等离子发射光谱仪IRISIntrepidⅡXSP,美国Thermo公司).每个测定项目均设置3个重复,最后算平均值,并以干基表示.以上测定在国家林业局森林生态环境重点实验室进行.

2结果与分析

2.1堆肥污泥的营养含量如表1和表2所示,在A型(条垛式)和B型(高速活性)堆肥污泥中均含有可观的营养含量,且不同类型堆肥污泥和年份间的各项营养指标均表现出较大的差异.A、B型污泥的有机质、全氮、全磷和氮磷钾总养分(N+P2O5+K2O)与往年相较均有所增加,譬如A型污泥的氮磷钾总养分在2010年较2008年增加了15.6%,B型污泥的氮磷钾总养分在2013年较2012年增加了29.7%;而A型污泥的速效氮和全钾与往年相较则表现为减少,譬如A型污泥的速效氮含量在2010年较2008年减少了50.7%,与之相反的是B型污泥的速效氮和全钾则比往年都有所增加.由表1和表2所示,A、B型堆肥污泥不同年份的pH平均值分别为7.1和7.2,有机质的平均值分别为203338.0mg•kg-1和298531.5mg•kg-1,氮磷钾总养分(即N+P2O5+K2O)平均值分别为41111.7mg•kg-1和65901.5mg•kg-1.以上A、B型污泥各项营养指标的平均值与表3比较而言,A型堆肥污泥的有机质含量达到了《城镇污水处理厂污泥处置-农用泥质》(CJ/T309-2009)中A、B级污泥和《城镇污水处理厂污泥处置-土地改良用泥质》(GB/T24600-2009)的标准要求,但未达到《城镇污水处理厂污泥处置-园林绿化用泥质》(GB/T23486-2009)中的有机质标准要求,而A型污泥的pH和氮磷钾总养分以及B型污泥的pH、有机质含量和氮磷钾总养分均符合各城镇污水处理厂污泥处置类型的标准限值要求。

2.2堆肥污泥的营养元素含量和重金属污染由表4和表5所示,A、B型堆肥污泥中不仅含有丰富的营养元素,同时也含有诸多重金属,而且不同年份间的各元素/金属总量均呈现明显的差异.2010年与2008年比较而言,A型污泥中Cu、Zn、Ca、Fe、Mg和Na的总量均表现为增加,而Mn则有所减少;2013年与2012年相较而言,B型污泥中的Cu、Zn、Ca、Na、Al、Cd、Cr、Hg、S的总量均明显增加,而Mn、、B、Pb、Fe、Ni、Mg总量则有所减少.另外,各金属/元素的总量在A、B型污泥中亦呈现较大的差异.譬如,A型污泥不同年份的Zn、Fe总量平均值较B型污泥的分别高出85.9mg•kg-1和1913.0mg•kg-1;而B型污泥不同年份的Mn、Mg总量平均值较A型污泥的分别高出819.3mg•kg-1和8827.1mg•kg-1。从不同污泥处置类型中重金属的控制限值可知(见表6),我国的《城镇污水处理厂污泥处置-农用泥质》(CJ/T309-2009)中A级污泥的标准限值,在各种污泥处置类型中是最为严格的.由表4和表5所示,A、B型堆肥污泥不同年份的Cu总量平均值分别为188.5mg•kg-1(范围为183.4~193.6mg•kg-1)和188.6mg•kg-1(范围为135.2~241.9mg•kg-1)以及Zn总量平均值分别为896.1mg•kg-1(范围为781.5~1010.7mg•kg-1)和810.2mg•kg-1(范围为755.0~865.4mg•kg-1),与我国城镇污水处理厂污泥处置类型的标准限值比较得知(见表6),其不仅符合《城镇污水处理厂污泥处置-土地改良用泥质》(GB/T24600-2009)和《城镇污水处理厂污泥处置-园林绿化用泥质》(GB/T23486-2009)中的Cu、Zn总量的标准限值要求,而且远低于最为严格的《城镇污水处理厂污泥处置-农用泥质》(CJ/T309-2009)中A级污泥的标准限值(即总Cu<500mg•kg-1和总Zn<1500mg•kg-1).A型堆肥污泥中的Cd、Cr、Pb、和B的总量(仅为2010年数值)分别为2.9、82.0、105.1、17.0和42.1mg•kg-1(见表4);如表5所示,B型堆肥污泥不同年份的Cd总量平均值为2.8mg•kg-1(范围为2.6~3.0mg•kg-1)、Cr总量平均值为140.1mg•kg-1(范围为130.1~150.0mg•kg-1)、Pb总量平均值为69.2mg•kg-1(范围为67.9~70.5mg•kg-1)、总量平均值为7.9mg•kg-1(范围为5.4~10.4mg•kg-1)以及B总量平均值为80.2mg•kg-1(范围为78.7~81.6mg•kg-1).上述A、B型污泥中的重金属含量与表6中的标准限值比较得知,各金属总量均达到了我国各类型污泥处置的标准限值要求(见表6),其中包括达到最为严格的《城镇污水处理厂污泥处置-农用泥质》(CJ/T309-2009)中A级污泥的标准限值要求(即总Cd<3mg•kg-1、总Cr<500mg•kg-1、总Pb<300mg•kg-1、总<30mg•kg-1).但是,B型堆肥污泥的Hg、Ni总量存在超标的情形,且不同年份间存在明显的差异(见表5).具体而言,B型污泥不同年份的Hg总量平均值为12.8mg•kg-1以及2012年的Hg总量为7.1mg•kg-1,符合《城镇污水处理厂污泥处置-农用泥质》(CJ/T309-2009)中B级污泥的标准限值要求(即总Hg<15mg•kg-1),以及《城镇污水处理厂污泥处置-土地改良用泥质》(GB/T24600-2009)和《城镇污水处理厂污泥处置-园林绿化用泥质》(GB/T23486-2009)中的中性和碱性土壤(pH≥6.5)的标准限值要求(即总Hg<15mg•kg-1),但其它的标准限值要求则不符合(见表6);Hg总量在2013年为18.4mg•kg-1,对任何污泥处置类型中的限值要求均不符合.另外,B型污泥2013年的Ni总量为120.0mg•kg-1,符合《城镇污水处理厂污泥处置-农用泥质》(CJ/T309-2009)中B级污泥的标准限值要求(即总Ni<200mg•kg-1),以及《城镇污水处理厂污泥处置-土地改良用泥质》(GB/T24600-2009)和《城镇污水处理厂污泥处置-园林绿化用泥质》(GB/T23486-2009)中的中性和碱性土壤(pH≥6.5)的标准限值要求(即总Ni<200mg•kg-1),但其它的标准限值要求均不符合(见表6);B型污泥不同年份的Ni总量平均值为246.4mg•kg-1和2012年为372.8mg•kg-1(见表5),均不符合任何污泥处置类型中的限值要求(见表6).

3讨论

城市污泥通过制肥,不仅可解决农田、园林及绿地急需的有机肥料的来源问题,同时也能寻求城市污泥的合理处置途径,并成为最有效的资源化途径之一.近年来,我国污泥资源化处置技术投产项目显著上升,其中农业对污泥制肥的吸纳量很大,且污泥制肥资源化处置技术的应用已占30%,具有较好的发展前景.已有研究表明,污泥经堆肥处理后,可使污泥中腐殖质含量增加,而腐殖质因含有多种多样的官能团从而吸附重金属,或者改变重金属的化学形态,促使污泥中重金属稳定化,即大多数重金属以稳定残渣态或以残渣态和有机结合态兼具的形式存在,从而降低生物毒性和土壤的污染风险.特别是堆肥污泥相较其它处理方式(譬如厌氧消化和颗粒污泥)而言,堆肥过程更有利于降低Mn、Ni及Zn等的有效性.由此说明,堆肥处理是降低污泥在农田、土地改良及园林绿化中重金属污染风险的重要途径.北京不同城镇污水处理厂堆肥污泥(即A、B型),不仅含有较为丰富的有机质和植物所需的氮、磷等多种营养元素及微量元素,而且污泥的一些营养成分/元素诸如有机质、全氮、全磷和氮磷钾总养分等含量与往年相比均有所增加.据马学文等[26]对全国范围111个城市共193个污水处理厂污泥营养含量的调查可知,有机质、氮、磷、钾的平均含量分别为41.15%、3.02%、1.57%、0.69%,除了北京地区A、B型堆肥污泥的磷含量平均值与全国平均水平基本相当外,其有机质、氮和钾含量均低于全国平均水平,但A、B型污泥的有机质、氮、磷含量比往年均有所增加则与全国的略增走向是一致的.在B型堆肥污泥中,Cu含量比往年有所增加,而Pb含量则比往年有所减少.这与我国城市污泥中Cu、Pb含量在短期的趋势一致[26].但是,从长期而言,我国城市污水处理厂污泥中Cu含量则是下降趋势[27].除Hg、Ni有超标现象外,A、B型污泥的其他重金属含量均低于我国最为严格的《城镇污水处理厂污泥处置-农用泥质》(CJ/T309-2009)中A级污泥的标准限值,这与姚金玲等对我国东北、华北、华东和西北地区116家污水处理厂污泥的研究结果一致.另据张丽丽等[27]对我国城市污泥中重金属分布特征及变化规律的研究结果表明,近10年,污泥中Ni、Cd、Hg含量的超标倍数最高.这与本研究B型堆肥污泥中存在Hg、Ni超标现象相吻合.此外,来自北京不同污水处理厂的A、B型堆肥污泥,其营养和重金属/元素含量存在着明显的差异.即污泥的不同来源可能是主要原因;亦可能受其它因素诸如污水处理规模、处理工艺和运行条件以及污泥堆肥工艺的影响[11].另有研究表明,污泥成分有时会因工艺过程和分析技术而产生显著的差异.而今后,北京地区A、B型堆肥污泥的资源化应用中,一方面,可能面临着潜在的Hg、Ni环境污染情况,需要优先关注;另一方面,则需要进一步探索污泥堆肥过程中重金属钝化的调控措施,从而最大限度地降低重金属的危害,譬如可利用铁氧化菌对一些重金属进行生物浸矿,可能是污泥制肥的一种可行策略,以及在堆肥过程中加入石灰等物质亦能降低重金属的有效性.另外,除了污泥资源化应用中的重金属污染外,还有一些因素诸如粪大肠菌群菌、多环芳烃(PAHs)等影响着污泥处置类型的选择,而本研究未涉及这些方面,因此还需进一步研究和分析北京堆肥污泥中其他污染物的含量,从而进行合理、有效的污泥处置.

4结论

篇3

现场控制单元实时采集各个终端站传送的各类数据和信号,通过人机界面展现设备工艺运行情况,包括工艺流程图、系统供电图、工艺参数、电气参数、电气设备运行状态等;操作站以人机对话方式指导操作,相关人员按照界面提示操作设备;在进行数据处理时,要严格校验检测来自各现地控制单元的实时数据和设备状态信息,对故障报警信息进行突出和集中显示。中央控制单元实现系统具有强大的故障检测和诊断功能,能够有效分析和检测出各种常见故障。它通过收集和整理各现地控制单元的数据及状态信息的方式,有效地判断了数据的准确性和可靠性,并可根据具体需要生成数据报表、历史数据、历史曲线等。远程人机终端,能够实时显示各现地控制单元的状态。通过总网络控制计算机及通讯装置;根据从中控站上传的分站数据进行系统的分析,实时刷新系统的相关数据和画面;能够对系统的运行数据和记录进行智能分析,在保证能耗不变的情况下实现效益最大化;最重要的是系统采用分层分布式控制方式,降低总线网络的通讯负荷、通讯误码率,同时使网络结构更清晰、检修维护更方便。

2系统特点

2.1系统结构特点系统基础通讯网络为光纤冗余环型工业以太网,可根据具体要求增加或删除任意一个节点,同时影响其他通讯设备的功能。系统采用先进的监控操作站技术进行控制,它能够支持系统在不同网络条件正常运行,实现了多对象、多任务、多用户操作。同时,控制系统能够利用其自我诊断功能进行故障诊断,判断故障部位。在系统发生故障后,I/O的状态会返回到系统根据工艺要求预设置的状态上。

2.2系统功能优点在分配相应的权限之后,现场任意分站点任一设备的启、停、数据读取等操作都可由中央控制室和云端系统进行控制。系统具备各种通用工业通信接口,如CAN工业总线接口、以太网络接口、IDE接口、和USB接口等等;操作系统和监控软件采用知名工控品牌,具备冗余、容错及灾难性恢复的功能。

2.3系统集网特点将具备条件的污水厂接入物联网自动系统后,云端平台将具备可以查看多个污水厂的权限。实现辖区内所有污水厂的集中管理,对水量、水质等信息进行综合分析,集中处理,并制作数据统计报表,统计下发报警信息,形成一个自下而上反馈、自上而下监控、多方分管、集中控制的高效、有序的控制结构。

3系统控制方式

3.1现场控制级在现场控制级的智能控制柜负责管理子站点下属所有设备的运行、数据采集、视频采集的工作。在智能控制柜上有手动和自动两种控制模式,就地控制系统手动模式具备最高权限。能够直接操作现场设备,而不需要经过中央控制室授权。这种方式拜托了以前中控系统复杂的管理体系。现场人员只需要获取授权密码进行解锁,然后切入手动模式即可,安全可靠。

3.2中央控制级系统具有多安全等级、操作权限设置、口令确认、设备连锁、自动报警等功能,并按照实际需要对重大事件进行到责任人,保证了系统的高效稳定运行。系统具有操作权限设置功能,可根据具体的操作需要,进行权利分配,有效地避免了设备的误动。此外,系统还具有软件自诊断功能,可以对相关设备进行故障诊断,一旦发现故障部位,系统便通过报警系统启动报警程序,报警画面随之弹出。系统可以及时将故障画面完整记录下来,以供使用者按照故障的时间、次序、名称等顺序进行查询。

3.3网络控制级现场控制级完成了工控信号的采集,中央控制级完成了数据的分析、处理及汇总,网络控制级最终将控制系统接入物联网,实现了污水站系统整体的网络的云端链接。系统由监控管理级、过程控制级和现场级组成。系统的分级控制功能体现在对管理权限和报警信息的及时准确有效分配;充分考虑网络安全的需要,严格加密系统逐级分配管理权限,使管理工作井然有序。

4结束语

篇4

城市污水处理厂的主要建设内容有硬件系统和软件系统。硬件系统包括污水收集系统和处理系统,污水收集系统包括城区污水收集管网、污水输送管道及污水提升泵站;污水处理系统包括污水处理工程的构筑物、配套的泵站、设备、自控系统等。软件系统包括设计的处理规模和处理工艺,处理规模即日处理的污水量,处理工艺即处理工艺技术、路线、自控性能等。

2城市污水处理厂对环境的影响

2.1对生态的影响

由于城市污水处理厂通常建在城市周边的郊区,从城区收集的污水需要通过输送的管道及污水提升泵站方可送到污水处理厂,输送管道的建设将破坏穿过的土地、河流等生态系统,其建设过程中产生的弃土堆置不仅需要占用土地,同时还破坏土地原有的生态系统。在城区的污水管网建设和改造中,施工过程的噪声、粉尘、施工废水对城区居民产生影响,产生的弃土对占用土地生态系统产生影响。

2.2恶臭的影响

城市污水处理厂的恶臭主要来源于格栅、泵房、沉砂池、反应池、污泥池等,由于废水中含有氮、硫、氯、磷等污染物,随着废水的腐殖发酵产生如NH3、CH3S?蛳OH、H2S等,形成恶臭。

2.3噪声的影响

城市污水处理厂的噪声源主要有风机、水泵及水流等,尤其是风机的噪声,声级高达105dB。尽管一般情况城市污水处理厂远离居民区,对周围的居民区影响很小,但对于操作人员,长期处于强噪声的工作环境中可能导致耳聋,并对人体的中枢神经、植物神经产生损害。

2.4污泥的影响

城市污水处理中产生污泥,一般情况下为污水处理量的1%~2%,污泥的发生量大。污泥中不仅含有大量的病原体、微生物、寄生虫、病菌及有机物,还含有汞、铬、镉、铅等重金属,处理不当将对土壤、地下水、地表水等产生影响。

2.5排水的影响

城市污水处理厂处理后的最终排水对收纳的水体产生影响。城市污水经正常处理达标的情况下,排水进入河流后在排水口附近形成一段混合区,在此混合区内,水质不能达到相应的水质标准,对该段河流的水体功能产生不良影响,影响沿线居民的生产、生活。尤其是非正常工况下,污水经处理后不能达标排放,在收纳排水的水体将形成很大的超标带,并将对沿线的生产、生活带来严重的影响。

3防治对策

3.1合理选址

城市污水处理厂选址,要根据城区总体规划要求,选择城区的下风向、收纳废水河流的下游、远离居民区;在排水口设置时,按照水源保护区设置的要求避开集中式饮用水源的取水口、渔业养殖等。

3.2建设花园式厂区

在厂区因地制宜种植花草树木,充分利用不同植物对污染物的吸收作用。如利用地衣、山楂、夹桃竹、丁青等吸收二氧化硫,女贞、美人蕉、大叶黄吸收氯气,水葫芦、浮萍、金鱼藻等吸收水中的汞、铅、镉,阔叶植物吸收大气中的飘尘。在污水处理厂建设中,将绿化、人工湖、景点与处理构筑物、出水相结合,既能减少污染对环境的影响,又可美化厂区。

3.3建设全封闭式污水处理厂通常对恶臭主要处理方法有焚烧法、催化氧化法、吸附法等,将发生恶臭的构筑物安置于室内,通过引风设备收集恶臭气体,再将臭气采取相应的净化措施,不仅可以吸收恶臭气体,厂房还对噪声起到封闭隔离降低效果。

3.4选择合理设备

既要根据所在地的自然条件和经济状况,选择经济可行的处理工艺设备,满足处理效果要求和经济承受能力;还要采用先进的自动化控制系统和全线监控系统,减少人工操作,避免因人为因素对处理效果的影响。

3.5确定合理建设规模

在城市污水处理厂建设中,要按照城市的发展规划和环境保护规划,合理确定规模,分步实施。

3.6选择合理的工艺

污水处理厂的处理工艺应根据原水水质、出水要求、处理规模、运行成本、自然条件和社会状况等因素慎重考虑。不同的工艺技术都有其优点、特点、适用条件和不足之处,因此,工艺选择应符合技术合理、经济节能、易于管理、重视环保等方面的要求。

3.7污泥的处置

污泥处置应按减量化、资源化、无害化的处置原则,首先对污泥进行浓缩脱水,减少污泥发生量;再通过消化、厌氧,去除污泥中的有机物、病菌和微生物等,并对污泥进行成分测定,达到要求后可以进行堆肥,充分利用污泥中丰富的氮、磷、钾等营养成分,如不能利用,则进行无害化填埋处置。

3.8城市污水的深度处理

为减轻城市污水处理厂的排水对收纳水体的不良影响,节约水资源、保证水资源的持续利用,可对污水进行深度处理后重复利用。尤其是缺水地区,对污水进行深度处理后重复利用,是解决淡水资源的重要途径。

所谓深度处理,就是在污水经过物化生化处理、达到排放标准后,对污水进一步采取处理措施,降低水中的污染物,使水质接近或优于可以直接利用的水质,如居民生活中的水、工业冷却水、道路绿化浇洒水、农田灌溉用水等。通过城市污水的深度处理,使污水达到重复使用,节约水资源,减轻对收纳水体的污染。

论文关键词城市污水;环境影响;工艺技术;防治对策;深度处理

论文摘要分析了城市污水处理厂的环境影响,提出相应的防治对策,以期正确引导城市污水处理厂的建设。

篇5

1.1污水处理水平和方法

生化处理,同初级处理一样,采用的是传统的生化技术。生化技术的主要工作原理是利用污泥本身。在污泥中存在着一些对有机质的化学结构有破坏作用的特殊细菌和真菌,如此一来对污水中的BOD和病菌能降低十分之一左右。举个例子来说,农村新能源中的沼气,就是采用的厌氧技术的处理污水的,在污泥中厌氧菌的作用下,有机质就会在被处理,在这个过程中沼气就产生了。深度处理,是对二级处理的优化过程。除了一级中的化学絮凝剂、二级中的活性炭,还会投放一些交换树脂,或者是进行一些反渗透的工艺,污水中的残留的溶于水的糖分、盐类和一些碳水化合物,达到杀菌消毒的效果。当地的社会经济发展水平和污水来源及其处理后的用途是污水处理技术的选用必须考虑的。农村地区的污水来源主要是生活污水,主要成分就是各种固体的悬浮物,还有一些病原菌等有机污染物。经过处理后的污水即再生水,可以用来灌溉农田、浇花浇树、美化环境、观赏水池、拖地洗车等生活生产的各个方面。

1.2生活污水的处理系统

1.2.1集中处理系统。主要是传统的物理手段,比如在农村建立污水处理厂,通过地下管道等把生活污水集中到一起,然后进行。或者是开放一块森林或湿地,根据土地与地下水联结的特点,或者是植物(主要是大树)的自身净化作用进行处理。

1.2.2分散处理系统。主要是科学的化学手段,也是建立一个污水处理厂。不过在厂子里,采用拦截、沉淀、消毒、杀菌等方式,对收集起来的污水采取高度化的科学手段进行,使得处理的结果更安全。随着经济的发展,科学技术日趋完善,这种分散的污水处理系统越来越受到管理者和技术人员的青睐。

2农村污水处理问题

在我国从20世纪80年代,就开始对生活污水分散处理技术进行了研发工作,能源消耗上采用的是微动力或无动力,也创造性地发明了一些污水处理装置,由于技术的不成熟,因此在实际应用上不尽人意。

2.1赤潮现象抑制技术不稳

由于水中含有的磷和氮元素超标,水体就会出现赤红色,导致鱼虾大量死亡。这就是我们所说的赤潮,也就是水体富营养化。目前我们国家的污水处理系统中还不能完全突破这种生物处理技术,因此对未来的发展也是大为不利的。

2.2再生水的回收利用不完善

虽然现在的分散处理技术已经能够对污水进行有效处理后的排放工作。但是没有实现再生水的就地应用,不仅造成了水资源的浪费,还造成了科学技术的价值大打折扣。农村地区面对严重的生活污水窘状,不得不采取一些行之有效的措施。在发达地区,人民越来越清醒地认识到生活污水对生活质量带来的弊端,处理生活污水成为其工作的中心之一。在对生活污水处理上,采取了一些实效性很强的措施,利用耗能较低费用较少的经济实惠的实用技术。在经济稍微不发达的地区,尤其是在人口集中区,人民也意识到了生活污水带来的困扰,因此在寻求如何有效地处理生活污水技术上,也有了实际的行动。

3污水处理系统选择

污水处理系统有集中处理和分散处理两种模式。不同的地区有不同的特点,因此采用的手段也不尽相同。适合集中处理模式的地区有:东部沿海地区、村落密集地区、污水量大地区;适合分散处理模式的是村落较分散的山区。对于排水设施不健全的北方和中部地区,也要采取一些措施:安装带有节水器的卫生马桶、修建沼气池、链接污水管网络。

4农村污水处理投入和产出效益分析

4.1农村污水处理工程投入

4.1.1集中处理系统的投资。污水深度处理的工程费与要求的出水水质是密切相关的。污水处理的投入与出水水质是成正比的。一般而言,污水处理厂的建设工程费用和运行费用比较高,土地处理系统和人工湿地系统的处理费用相对较低。

4.1.2分散处理系统的投资。目前的成套模块化生活污水纳滤膜污水处理设备,每套售价在几万到十几万不等。4.2农村污水处理效益分析

4.2.1经济效益。利用再生水灌溉农田、浇花洗车,可以减少对干净淡水资源的使用;同时也能降低脏乱差的环境造成疾病带来的损失,增加当地的经济效益。

4.2.2能源效益。污水处理装置都采用微动力,对能源消耗较小,而且在二级处理时还会产生沼气,可以用来燃烧发电等,产生巨大的能源效应。

4.2.3环境效益。污水横流,破坏了居民的生活环境。治理生活污水,不仅改善了居住环境,还能够提高人民的生活质量。

4.2.4社会效益。污水处理后带动了经济的发展、能源的增长、环境的提升,在促进人与自然的和谐发展上,在经济与环境的和谐发展上,在农业与工业的和谐发展上,都有客观的社会效益。

5结语

篇6

1.1污水处理量与污水处理率2011年贵州省全年污水排放总量55619万m3,各污水处理厂全年实际处理污水量45615万m3,污水平均处理率82.01%。从市(地)污水处理情况看(见表1),贵阳市、毕节市和黔东南州城镇污水处理率较高,高于85%;遵义市、安顺市、黔西南州和黔南州的城镇污水处理率低于80%,处理率相对较低。从各地级市城市污水处理看,平均污水处理率87.52%,高出全省城镇污水处理率5.5个百分点。其中毕节市和贵阳市污水处理率高于95%;遵义市和六盘水市低于80%。从各污水处理厂的处理情况看,污水处理率低于60%的污水处理厂有开阳、湄潭、习水、仁怀、玉屏、安龙、普定、镇宁、长顺、龙里等30座污水处理厂,其中晴隆、望谟、普定三县的污水处理率低于30%。

1.2污水处理负荷率全省各污水处理厂平均处理负荷率73.19%,有51座污水处理厂的负荷率高于80%,其中负荷率高于90%的污水处理厂有小河污水处理厂(一期)(100.07%)、龙里县污水处理厂(111.75%)等25座,但金阳、盘县、红果、赤水、仁怀、茅台、万山、兴义顶效、晴隆黄果树、剑河、黄平、镇远等18座污水处理厂的负荷率低于50%,其中红果(25.08%)、德坞(16.05%)、遵义北部(26.76%)、兴义顶效(28.33%)、晴隆(21.33%)、黄果树6座污水处理厂的负荷率低于30%。从各市(地)污水处理负荷率看,贵阳市、毕节市、黔南州的城镇污水处理厂平均污水处理负荷率高于80%,而六盘水市和黔西南州的城镇污水处理厂平均污水处理负荷率低于55%。相当部分城镇污水处理厂运行负荷率不高。

1.3运行效果2012年52座城镇污水处理厂COD实际进水范围为97~550mg/L,进水平均值为194.85mg/L;COD出水范围为11~58mg/L,出水平均值为26mg/L;COD去除率范围为69.89~94.89%,去除率平均值为86.34%。BOD实际进水范围为32~160mg/L,进水平均值为80.51mg/L;BOD出水范围为4~20mg/L,出水平均值为9.41mg/L;BOD去除率范围为44.23~94.74%,去除率平均值为85.98%。氨氮实际进水范围为7.67~60mg/L,进水平均值为26.2mg/L;氨氮出水范围为0.40~9.94mg/L,出水平均值为4.27mg/L;氨氮去除率范围为17.24~98.90%,去除率平均值为84.14%。出水COD、BOD、氨氮均达到城镇污水处理厂污染物排放标准(GB18918-2002)一级B标准的要求。TP实际进水范围为0.12~8.81mg/L,进水平均值为2.69mg/L;TP出水范围为0.14~1.19mg/L,出水平均值为0.68mg/L;TP去除率范围为32.61~96.97%,去除率平均值为71.77%。除颜村、仁怀、安龙、凯里4座城镇污水处理厂出水总磷超标外,其他污水处理厂均达到城镇污水处理厂污染物排放标准(GB18918-2002)一级B标准的要求。从不同工艺总磷的去除率看,氧化沟、IBR、活性污泥法、曝气生物滤池、A-TF工艺的总磷去除率在75%左右,效果较好;而AB法的总磷去除率不足40%,相对较差。

1.4减排情况2012年52座城镇污水处理厂共削减COD78039.25吨,减排效果显著。其中,贵阳市COD削减总量最大,削减量占到了贵州全省的35%左右;遵义市和毕节市次之,二者占到了贵州全省的25%左右;黔西南州、安顺市和六盘水市的COD削减量较少,三者全年削减量占到不足贵州全省的13%。从不同处理工艺看,活性污泥法单位建设规模COD削减量最高,曝气生物滤池次之,而生物湿地法、AB法等较差。全年52座城镇污水处理厂BOD、氨氮、总磷削减量分别为22874.17吨、5806.40吨、547.05吨。不同地市、不同工艺BOD、氨氮、总磷削减情况与COD情况类似,但总磷削减以AB法和A-TF法较差。

1.5单位能耗、药耗贵州省2012年各污水处理厂能耗统计结果显示,污水处理厂单位能耗范围为0.02~1.33kwh/m³,单位能耗范围跨度较大;全省单位能耗平均为0.35kwh/m³,其中,单位能耗低于0.20kwh/m³的污水处理厂有小河、新庄、花溪、镇远等12座污水处理厂,其中多为贵州省大中型污水处理厂;单位能耗于高于0.45kwh/m³的污水处理厂有赤水、仁怀市、下午屯、晴隆、从江、雷山、三穗等16座污水处理厂,基本为小型污水处理厂。说明污水处理厂运行能耗与污水处理厂建设规模关系较为密切。不同处理工艺单位能耗统计见图4,生物湿地、IBR工艺单位能耗高,单位能耗在0.50kwh/m3左右;氧化沟、曝气生物滤池、微波处理三工艺单位能耗介于0.35~0.42kwh/m3之间;AB工艺、SBR工艺和A-TF工艺单位能耗较省,均低于0.20kwh/m3.贵州省2012年各城镇污水处理厂单位药耗范围为0.06~1.70g/m³,单位药耗平均为0.41g/m³,单位处理水量药耗的跨度范围也较大;其中,单位药耗低于0.20g/m³的污水处理厂有小河(二期)、二桥、花溪、朱家河、颜村、龙坑、榕江等18座城镇污水处理厂;单位药耗高于0.80g/m³的有遵义北部、仁怀、兴仁、织金、赫章、岑巩、麻江、三穗8座城镇污水处理厂,这些城镇污水处理厂多为一体化氧化沟、IBR等工艺。不同处理工艺技术单位药耗统计见图5,AB工艺、A-TF工艺以及SBR、活性污泥法、生物湿地和微波处理单位药耗较省,单位药耗在0.20g/m3及以下;而HASN工艺、A/O工艺、IBR工艺和氧化沟单位药耗在0.40g/m3及以上。由此可知,污水处理工艺技术对单位污水处理药耗有明显的影响。

1.6单位运行成本贵州省2012年各污水处理厂运行成本统计显示,污水处理厂单位运行成本较高的有晴隆、普安、红果、剑河、从江等11座污水处理厂,这些污水处理厂多为IBR、一体化氧化沟工艺的小型污水处理厂。不同处理工艺技术的单位运行成本统计见图6,IBR工艺、生物湿地工艺运行成本达1.0元/m³以上,氧化沟、HASN工艺、活性污泥法工艺运行成本在0.75~0.85元/m³之间,SBR、曝气生物滤池工艺运行成本在0.55~0.65元/m³之间,A/O工艺、AB工艺和A-TF工艺运行成本在0.30~0.45元/m³之间,微波处理单位运行成本低于0.10元/m³。可知污水处理单位运行成本与污水处理工艺、建设规模密切有关。

2贵州省已建城镇污水处理厂普遍存在的问题

2.1排水系统建设相对落后目前贵州省98座城镇污水处理厂中,合流制2座、分流制37座、混流制59座,雨污合流制和混流制占了62.24%。至2011年底,贵州省排水管网建设总规模为5976.84km,其中污水管网长度3124.91km、雨水管网长度1568.41km、雨污混流制管网长度1283.52km。其中雨污合流制管网长度比例在50%以上的城镇有修文、清镇、六盘水市、遵义市、绥阳、都匀市等共23个市县。从区域分布看,黔南州雨污合流制管网所占比例达50.89%、安顺市达46.19%、遵义市达40.57%、铜仁地区达36.21%、六盘水市达31.88%。

2.2建设规模偏小因贵州缺乏长期积累的污水水量资料,城镇污水处理厂设计往往基于规划面积、人口和工业发展的预测及其生活污水量、工业废水量和公建、商业设施污水量所占的比例计算确定污水量,由于贵州社会经济发展相对落后,致使水量计算估值趋于保守,城镇污水处理厂建设规模普遍偏小。根据2011年污水处理负荷率低于60%的城镇污水处理厂与2012年污水处理负荷率高于90%的城镇污水处理厂比较,修文、绥阳、湄潭、天柱、独山、龙里、瓮安共7座污水处理厂在列,管网建设有所完善的新建污水处理厂马上面临扩建问题,说明部分城镇污水处理厂建设规模论证上存在不够合理的地方。

3结论

篇7

油田在处理含油污水时,污水会先进入到调节隔油池中,之后进入加压溶气气浮,工作人员会将适量的化学药剂添加到气浮进水管路上,在提升泵提升的情况下,污水就能够与化学药剂充分的混合,在溶气气泡的带动下,含油污水中的悬浮物和油颗粒就会与化学药剂发生反应并共同上浮,实现了油水分离。从气浮池中出来的水之后会进入到油水分离器中,杂质会被吸附,油分也会被全部去除,之后出来的污水会进入到SBR反应池中,其具体的处理流程框图如图1所示。(1)调节隔油池。在调节隔油池中的废水,一些重量较大的颗粒就会发生沉淀,而重量较轻的颗粒则会漂浮到表面,其也起到了均匀水质的作用;(2)浮油回收。重量较轻的油粒在调节隔油池中会漂浮到表面,并且形成一层浮油层,而为了有效的去除表面的浮油,在这里会设置一个浮油吸收器,从而将浮油全部回收;(3)加压容器气浮。在这里不但可以有效的去除污水中的油类物质和悬浮物,同时还能够降低生物需氧量和化学需氧量的含量;(4)SBR反应池。作为一种新型的活性污泥污水处理技术,SBR反应池不但能够大幅度降低生物需氧量的含量,同时还能够有效的去除污水中含有的细菌。

2油田含油污水处理流程的评价

在我们对某油田的含油污水处理工作进行调查和研究时,我们监测到其污染物分别为石油类物质、硫化物、COD、SS以及挥发酚等,而污水的pH值是达标的。在分析含油污水的监测结果时,我们发现超标最为严重的两类物质是SS和石油类污染物。结合上述所介绍的油田含油污水的处理工艺,我们应先将SS和石油类污染物去除干净,先将含油污水引入到调节隔油池中,从而粗略的去除SS和石油类污染物,采用调节隔油池时,其处理量大并且处理效果好,同时也很好的节约了成本。针对我国含有污水的处理现状,油水分离器对进水水质是有着严格的要求的,SS不应超过150ppm,而含油量不应超过400ppm,所以,在油水分离器和调节隔油池之间就应设置气浮法除油,对含油污水进行再一次的处理,气浮法能够有效的去除污水中的悬浮物,而通常的做法就是在油水分离器和调节隔油池之间增加一个加压容器气浮处理。经过这样的处理流程后,污水中的悬浮物和含油量就都是符合国家标准的了,而为了更好的降低硫化物的含量,还应将适量的化学药剂加入到从调节隔油池中出来的污水中。

从油水分离器中出来的污水含有大量的致病菌,易导致疾病的蔓延和传播,同时污水中的生物需氧量的含量也是不达标的,而加入SBR反应池的目的就是要有效处理污水中所含有的大量细菌。在处理细菌的同时,SBR反应池还能降低生物需氧量的含量,经过这样的处理流程,污水中的各类物质的含量即可符合国家的排放标准。

3结语

篇8

华东油气田洲城联合站地处江苏北里下河地区,周边环境敏感。联合站生活基地现有的排水体制为雨污合流制,而只服务于厂区,排水管以混凝土管为主,由于建设历史比较长,滴漏严重。管网覆盖面积较小,污水直接排入附近河流。生活污水中含有一定量的油脂、洗涤剂、悬浮物和有机质等污染物,如果未经处理直接排入附近水体、农渠,会污染周边环境,破坏其原有的生态体系。目前生活污水经简单沉降池沉降后外排,污水水质达不到排放标准,已经影响了工农关系和企业形象。针对这一现象,华东油气田环保管理人员展开技术探讨和企业实地调研,了解了几种生活污水处理工艺后,结合本油田的实际情况,选择了A/O处理工艺对现有的排污系统进行改造,以满足生活污水外排的要求。

2工程概述

2.1A/O工艺原理

A/O工艺是由厌氧和好氧两部分反应组成的污水生物处理系统,利用厌氧微生物、兼性微生物和好氧微生物分段间断地氧化分解废水中的有机污染物,使有机污染物中的不溶性有机物或难以生化的那种组分在厌氧段内水解为有机酸,转化为可溶性有机物,减轻其后好氧段的有机负荷,当这些经厌氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性的效率,从而高效地降解水中的有机污染物。

2.2工艺流程

洲城联合站生活基地产生污水水量为15m3/d,根据采油厂总体发展规划,现以每年10%的污水增幅对污水产生量进行预测,根据上述分析,建议生活基地污水处理规模为24m3/d。同时,对生活基地已建成的雨污合流制排水体制进行改造,实现雨污分流,对尚未建成排水系统的地区一律实行雨污分流制,生活污水经集中处理后排放,排放水质将达到《污水综合排放标准》一级标准。污水经厂区各栋楼的化粪池消化沉淀后自流进入调节池,经调节池调节后自流进入污水处理系统。该处理系统为“水解酸化、好氧与沉淀”相结合的生物接触氧化工艺,水解酸化池内设置弹性生物填料,好氧池内设置PVC双通孔填料,其比表面积是普通固体填料的2倍,因此单位体积填料上附着的生物膜也大大高于常规固体填料,从而保证了污水处理的效果。曝气系统采用管式橡胶微孔曝气器,氧利用率高达35%以上,可大大节省能耗及运行费用,经过生物处理后的出水即可直接排放。

2.3工艺说明

2.3.1格栅

格栅主要用于拦截污水中的大颗粒固体物质,以保证后续处理构筑物的正常运行及有效减轻处理负荷,为系统的长期正常运行提供保证。格栅由不锈钢筋制成网箱形,栅条间隙为3mm,格栅采用2只,一用一备,规格为:500500500mm。经格栅拦截后的栅渣需按产生量的多少定期清理,可作生活垃圾处理。

2.3.2沉砂沉淀池

污水经格栅拦渣后,自流至沉砂沉淀池。该池采用玻璃钢结构与调节池成为一体,筑造于地面以下,主要用于沉淀污水中夹带的砂粒与大颗粒无机可沉杂物,以保证后续调节池不累积淤泥,沉砂沉淀设计水力停留时间为2小时。

2.3.3调节池

污水经沉砂沉淀池沉淀后自流至调节池,由于生活污水的排放极不规律,来自各时的水质、水量波动较大,一般高峰流量为平均处理量的4~6倍,因此为使污水处理系统连续稳定地运行,同时调节水量和均化水质,所以设置一座调节池。该池设计水力停留时间为6-8小时,调节池内设置提升潜污泵及回流措施,以保证一定的额定流量提升至污水处理设备。调节池为玻璃钢结构,工厂预制。

2.3.4生物接触氧化池

调节池内污水自流至生物接触氧化池,生化池按生物相的不同分二段设置,以提高生化处理的效果。水解酸化池可将大分子物质转化为小分子物质,将环状结构转化为链状结构,进一步提高了废水的BOD/COD比,增加了废水的可生化性,为后续的好氧生化处理创造了良好的环境。好氧生化工艺是结合生物滤池和生物曝气池的特点演变过来的,属于固着型生物处理方法。好氧生化工艺的实质之一是在池内填充填料,使充氧的污水浸没全部填料,并以一定的流速流经填料。在填料上布满生物膜,污水与生物膜广泛接触,在生物膜上微生物的新陈代谢功能作用下,污水中有机污染物得到去除,污水得到净化;实质之二是采用与曝气池相同的曝气方法,向微生物提供所需要的氧,并起到搅拌与混合的作用。

2.3.5沉淀池

污水经生物接触氧化池生化处理后自流进入沉淀池,以沉淀污水中的悬浮颗粒。该池设计采用竖流式沉淀,是根据重力作用的原理,当含有悬浮物的污水从上往下流动时,由于重力作用将物质沉淀下来形成污泥。沉淀池污泥采用空气提升方式,自动气提至污泥池内。气提分自动和手动两种控制方式,气提的频率视污泥的多少而设定,一般为每8小时气提一次,每次3-6分钟。。沉淀池本体采用防腐效果好的玻璃钢制作。

3处理效果

生活污水进水水质波动较大,各污染指标的进水浓度范围变化较大。但是经过YGD-1型地埋式一体化生活污水处理设备处理后,均能满足排放要求。说明污水处理设备抗冲击负荷能力强,对污染物去除效果好。其征污染物动植物油的去除效率在75%以上,氨氮的去除效率在95%以上,总磷的去除效率在90%以上。实践证明A/O法用来处理油田生活污水是完全可行的。

4评价与结论

(1)采用A/O活性污泥法为核心处理单元来处理采油厂生活污水能确保外排水的达标排放,污染物的去除率较高。并且对冲击负荷有较强的适应能力,出水水质好且稳定,无需污泥回流,不产生污泥膨胀现象。污泥产生量少,污泥颗粒大,易于沉淀。

推荐期刊