时间:2023-04-06 18:36:22
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇自动识别技术论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
关键词:档案管理;RFID技术;流程设计
中图分类号:TP311.52文献标识码:A文章编号:1007-9599 (2010) 10-0000-01
RFID-based File Management System
Zheng Fu’e Shang Deji
(Zhengzhou Radio&TV University,Zhengzhou450000,China)
Abstract:The paper firstly analyzes the current situation of the current archives management,then designs a management system based on RFID technology to improve the status of records management.And describes the functional design and business process.
Keywords:File Management;RFID technology;Process design
一、档案管理的现状[1][2]
近年来随着信息技术的发展,我国档案事业取得了较大的发展,档案的种类日益多样化,信息量迅速膨胀。但是传统档案管理手段与技术所导致的问题日益突显:档案编目流程繁琐低效、整理时间冗长;档案存放次序较易被打乱;档案查阅耗时长;档案的盘点操作不科学;对失效档案的管理滞后等等。
RFID(无线射频识别)技术作为新一代物流跟踪与信息识别的技术,可以促进档案管理的自动化、智能化。
二、RFID技术简介
RFID(Radio Frequency Identification),即无线射频识别,是兴起于20世纪90年代的一项自动识别技术。RFID射频识别是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据。一个典型的RFID系统由射频电子标签、读写器或阅读器以及天线三部分构成。实际应用中,读写器把关于物品的数据写入RFID标签,然后将标签贴在待识别物体的表面。读写器可无接触地读取并识别电子标签中所保存的数据,从而可以实现对物体识别信息的远距离、无接触式采集、无线传输等功能,并且同时能识别多个RFID标签。[3]
RFID技术应用于档案管理可以促进档案管理的自动化、智能化,具有较多优点,比如:远距离快速扫描、安全性高。[4]
三、基于RFID的档案管理设计
本文设计的基于RFID技术的档案管理系统,其主要由RFID数据管理模块和档案管理信息模块两部分组成,如图1所示。
(一)RFID数据管理模块
该模块由信息采集和终端管理器组成,是系统的数据存取中心与信息输入输出终端。终端管理器包括读写器或阅读器,是中心数据库获取信息与输出信息的重要端口。读写器的作用是负责将数据库中的信息写入标签或是将标签中的信息导入数据库。[3]
信息采集部分包括物品、物品电子标签、读写器等,主要完成物品的识别和物品EPC码的采集和处理。存储有EPC码的电子标签在经过读写器的感应区域时,档案的EPC码会自动被读写器捕获,从而实现自动化EPC信息采集,采集的数据将交由上位机信息采集软件进行进一步的处理,如数据校对、数据过滤、数据完整性检查等,这些经过整理的数据可以为档案信息管理模块所使用。
(二)档案信息管理模块
档案信息管理模块可以在档案信息管理系统的基础上改进增加与RFID数据管理模块交换数据的接口。
RFID数据管理模块与档案信息管理模块通过系统接口实现模块间的对接,由RFID数据管理模块实现档案数据的收集、储存、读写电子标签;档案信息管理模块实现对档案信息的应用与管理。同时,可对系统用户设置不同权限,以实现对用户的安全性管理。
四、系统流程设计[1]
该系统流程主要有档案入库、日常管理、查找和盘点、防盗管理和销毁等,下面将分别介绍几个重要流程。
(一)档案入库
新的档案入库前,首先要对新档案进行编目,并把该档案信息写入RFID标签,同时标签数据会被传送到中心数据库里,以备系统其他模块调用和查询。
(二)档案日常管理
对于档案的日常管理,均需要通过读写器对标签进行读写操作完成,在数据库中存储工作记录,同时在档案RFID芯片中写入借出和归还记录。同时,每次借出和归还操作产生时,必须通过手持机对存储该档案的档案架标签进行写操作,更新档案架标签中的存放记录。
(三)档案查找和盘点
在查询相关档案时,管理员通过系统按编号提取中心数据库里所储存的数据信息,核对无误后发出出库指令,档案自动识别部分将根据编目号找出该档案存放的档案架编号即其物理位置。
(四)档案防盗管理
在档案室出入口安装有读写器,并与该管理系统连接。当档案经过出入口时,读写器自动读取档案数据,若判断档案未经办理领用操作,则装置发出异常警报。
(五)销毁
当档案在入馆时,将档案保管期限写入RFID标签并存储于中心数据库中。当有档案达到保管期限前,系统将提示该档案将于何时失效,由管理员做出销毁或继续保管处理,以减少对档案室资源的占用。
五、结束语
RFID技术应用于档案管理中可以解决现有档案管理中的一些问题,它使档案管理自动化,可以提高档案管理的效率,减少人员的使用,免去了计算机档案管理和人工档案管理的繁琐。
参考文献
[1]严林.电子档案管理―计算机技术在档案管理中的应用[J].机电兵船档案,2010,(03):81-82
[2]何佩婷.档案管理中的问题分析及其安全防范措施[J].建筑安全,2010,(02):53-54
[关键词] RFID 物资流动 设备管理
一、绪论
高校是教学和科学研究的重要基地,无论是教学还是科学研究都需要完整的实验及试验设备。在高校,教学可分为基础课、专业基础课及专业课,因此配合教学的实验设备及仪表是非常完整并系统的。在高校,设备经费投入很有限,各学校在长期的教学积累过程,使设备及仪表得到完整及系统。当学校资源包括图书及查阅相关资料内容时,高校具备非常好的科学研究条件。高校设备按用途可分为教学使用设备和科学研究用设备,它们之间是相互依赖又相互促进发展,完备的教学实验设备是实现科学研究的前提,高水平科学试验又研究推动教学水平的提升。而高水平的科学过程研究需要高精的设备,许多高精的设备它具备在不同学科的通用性。
提出将射频识别技术应用于高校自动化物资管理,解决自动化立体仓库信息管理与控制调度的自动化、智能化、信息化。提出了以计算机控制为核心,以射频识别为信息采集手段、以AGV和堆垛机为执行单元的集成系统。基于射频识别的立体仓库信息管理系统设计的目的是实现物品出入库控制、物品存放位置及数量统计、信息查询过程的自动化,方便管理人员进行统计、查询和掌握物资流动情况,以达到方便、快捷、安全、高效等要求。
而这类设备购置要花费大量的资金,在高校多学科并存的环境下,当把高精的设备统一购置及管理后,可避免高校多学科这类设备重复购置,又使这类设备达不到到较高性能的现象。这就是提出对高精设备统一购置及管理的目的,使有限的资金发挥更大的作用。本论文提出的设想其前提是把这类高精的设备在无线射频识别技术管理条件下,有效解决制约学校物资管理的资金利用率和管理手段的瓶颈问题。利用校园资源共享,建立起集中式高性能公共服务设备平台,搭建环境,它会大大提高这类高精设备的利用率及管理的科学性。
二、无线射频识别技术研究
1.自动识别技术的应用背景
在现实生活中,各种各样的活动或者事件都会产生这样或者那样的数据,这些数据包括人的、物质的、财务的,也包括采购的、生产的和销售的,这些数据的采集与分析对于我们的生产或者生活决策来讲是十分重要的。如果没有这些实际工况的数据支援,生产和决策就将成为一句空话,将缺乏现实基础。在计算机信息处理系统中,数据的采集是信息系统的基础,这些数据通过数据系统的分析和过滤,最终成为影响我们决策的信息。在信息系统早期,相当部分数据处理都是通过人工手工录入,这样,不仅数据量十分庞大,劳动强度大,而且数据误码率较高,也失去了实时的意义。为了解决这些问题,人们就研究和发展了各种各样的自动识别技术,将人们从繁沉的重复的但又十分不精确的手工劳动中解放出来,提高了系统信息的实时性和准确性,从而为生产的实时调整,财务的及时总结,以及决策的正确制定提供正确的参考依据。
例如,在当前比较流行的物流研究中,基础数据的自动识别与实时采集更是物流信息系统的存在基础,因为,物流过程比其他任何环节更接近于现实的“物”,物流产生的实时数据比其他任何工况都要密集,数据量都要大。
无线射频识别技术(简称RFDI),融合了无线定位、产品电子编码(EPC)和互联网技术,近年得到快速发展,被广泛用于社会、经济、国防等领域,成为新一轮技术变革的催化剂,得到发达国家的普遍关注,RFID产业与应用正加速发展。
随着芯片技术和无线通信技术的快速发展,电子标签芯片日趋微型化,天线多样化,并能以多种介质作为载体,封装成各种形式以适应不同的应用。电子标签具有防水、防磁、使用寿命长、可以在一定距离内读取数据等优点,标签上存储的数据安全、可靠、具有可重复改写等特点。
2.国内研究现状
(1)物流管理领域:生产线自动化、仓储管理、铁路运输监控、民航行李或速递包裹管理、图书或文档管理、强制检验的产品(如压力容器)管理。
(2)防伪领域:商品防伪、证件防伪。
(3)金融收费领域:公路(不停车)自动收费、电子票证及小额支付门票等。
(4)其他领域:汽车防盗、物品跟踪等。
3.射频识别技术原理及系统组成
射频识别技术(RFID)是从20世纪80年代走向成熟的一项自动识别技术。自动识别技术主要功能是能提供关于个人、动物、货物和商品的区别于它物的信息。在当今的服务领域,商品销售、后勤分配、材料流通等领域已得到了快速的普及和应用。RFDI系统是C1卡技术的延伸和发展,它具有非接触、无污染、识别率高、保密性强等优点。射频识别系统的数据存储在电子数据载体之中。应答器的能量供应,以及应答器与阅读器之间的数据交换不是通过电流的触点接通而是通过磁场或电磁场,并采用了无线电和雷达技术。射频识别是无线电频率识别的简称,通过无线电波进行识别。同其他识别系统相比,射频识别系统具有许多优点。射频识别系统组成图如下:
4.功能
(1)存储设备标识信息。
(2)借还信息(包括开启密码)。
(3)状态记录。
(4)与读头之间的通信(合法性验证、信息交换)。
5.举例
全世界的许多大型图书馆都已经使用了射频识别技术,以加快资料的检入、检出、书架库存,以及安全应用。低成本的弹性智能标签可以插入书籍内部,让顾客无法看到。柜台人员可在几秒钟内检入或检出十几本书,无需对每件物品进行人工拿取和对准方向的操作。这种签条还可以用于防盗,与当前零售商使用的防店内行窃技术很相似。图书馆人员可以使用带有射频识别读取器的便携计算机来查看库存,只要沿着书架通廊走过即可发现归档错误的资料,读取器可以自动探测丢失的材料并警告操作员。图书馆的无线射频识别应用属于库存管理应用,这种方式同样适用于其他许多行业。
无线射频识别(RFID)是当今自动识别数据收集行业发展最快的板块之一,在实际应用中,采用无线射频识别技术极大地改善了信息管理的能力。射频识别技术实际上克服了条形码应用当中所发现的某些限制,因为它不属于条形码之类的光学技术,在读取器与贴有标签的射频识别目标之间无需直视线。此外,射频识别以无线方式发送数据,属可读写技术,因此它可以在跟踪周期内更新或改变编制在标签内的数据。
三、总结及展望
1.总结
学校高精设备管理需要应用大量的先进技术和加强信息化管理手段,射频识别技术的使用可以提高信息采集效率和准确性有效加强了高精设备管理及使用者、设备之间相互联系,降低了信息交换成本,可大大提高了采购设备要求的高精度,为节省资金提高设备利用率得到保障。
2.展望
无线射频识别技术(RFID)利用无线射频方式进行非接触式双向通信交换数据以达到自动识别目的,具有防水、防磁、耐高温、使用寿命长、读取距离大、标签上数据可以加密、存储数据容量更大、存储信息更改自如、可识别高速同时识别多个标签等优点,操作快捷方便,因此更适合于实现全校物资系统的自动化管理。解决数据融合的各种瓶颈问题。
本论文讨论的内容是RFID系统与各学校物资管理系统进行集成时的关键技术。随着各校物资管理的加强,可以实现资源即时掌握、设备状态实时可控等目标。在这个过程中,不断完善RFID技术的应用研究,应用RFID技术实现各学校物资管理的思路和想法,将使各校在物资管理领域实现节约、设备高效利用、科学物资管理、资产共享的创新。
参考文献:
[1]周之等:SQLServer参考大全.北京:清华大学出版社,2002年5月第一版,P227~282
[2]康立忠 杨 江 李锋华:浅谈军事仓储高新技术发展的对策.仓储管理与技术2001年,第五期P13~15
[3]郎为民:射频识别(RFID)技术原理与应用[M].北京:机械工业出版社,2006
[4]游战清 李苏剑等:无线射频识别技术(RFID)理论与应用[M].北京:电子工业出版社,2004
[5]杨 君 刘 云:无线射频识别技术及应用[J].现代通信,2003(6)
关键词:车牌定位 字符分割 字符识别
1.引言
随着汽车数量的不断递增,摆在面前的是巨大的交通压力,现代交通的发展迫切要求实现交通管理的自动化。因为车牌号码是车辆的唯一“身份”标识,所以车牌识别系统可以作为车辆自动识别的一种重要形式, 对于交通管理、治安处罚等工作的智能化起着十分重要的作用。它可广泛应用于交通流量检测,交通控制于诱导,机场,港口,小区的车辆管理,停车自动收费,闯红灯等违章车辆监控以及车辆安全防盗等领域。因此对基于特征的车牌识别算法的研究在大型停车场的管理系统和交通事故的破案方面具有特别重要的实际应用意义。
2.车牌识别原理及流程
车牌自动识别是利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。包括车牌定位算法、车牌字符分割算法和车牌字符识别算法等。
本文设计的车牌识别系统总结了车牌识别技术的历史,分析了车牌识别的研究现状,对存在问题和意义提出了本设计的新方案。本设计的流程包括车牌图像采集,图像预处理,车牌定位,车牌字符分割,车牌字符的识别等几个部分。
3.各模块的实现
3.1 图像采集。考虑图像对后续操作的影响,图像在拍摄时采用人工拍摄选取车牌最佳拍摄环境。
3.2 图像预处理。本算法中预处理是对图像进行图像转换、图像增强、边缘检测和二值化,。目的是突出车牌的主要特征,以便更好地提取车牌。
3.3 车牌定位。从预处理后的汽车图像中分割出车牌图像。即在一幅车辆图像中找到车牌的位置。本文采用基于数学形态学和边缘特征的车牌定位方法。即先对车牌图像进行预处理,然后再对预处理后的图像进行大范围搜索, 再用开闭合运算来填补车牌区域内细小孔洞和去除噪声, 进而增强车牌区, 使车牌区成为一个连通区域, 找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为牌照区域,并将其从图象中分割出来。该方法有效改进了传统的车牌定位方法, 提高了车牌定位的速度和准确度。
3.4 字符分割及归一化。即对获得的车牌分离出单个字符以便字符识别。本文采用改进的投影法。即将垂直投影法和固定边界法相结合,达到了更好的分割效果。计算出列方向像素值之和。选取一较小的像素和阈值,找到车牌上汉字的左端,在用该阈值继续寻找汉字右端的同时,根据车牌标准,利用高与宽的比例关系找到汉字的右端。重复该方法找到其他字符的左右端,然后将字符逐一分割。归一化则是将分割出来的字符大小归一化。
3.5 字符识别。将字符转换为文本形式直接显示出来。 本文采用的识别方法是基于模板匹配的车牌识别方案。首先取字符模板,接着依次取待识别字符与模板进行匹配,将其与模板字符相减,得到的0越多那么就越匹配。把每一幅相减后的图的0值个数保存,然后找数值最大的,即为识别出来的结果。
4.识别结果
5.结论
本文主要解决了以下问题:⑴在背景的图象中如何定位分割牌照区域;⑵对分割下来的牌照字符如何提取具有分类能力的特征;⑶如何识别字符。在车牌字符识别系统的研究领域,近几年出现了许多可行的识别技术和方法,从这些技术和方法中可以看到两个明显的趋势:⑴单一的识别技术无法达到理想的结果,多种方法的有机结合才能提高系统有效识别能力。本文的设计,也汲取了以上一些算法的思想,反复比较,综合分析;⑵在有效性和实用的原则下。通过多次实验,表明该车牌识别系统可有效地识别多幅车牌,但对于识别倾斜、污损比较严重的车牌方面的技术还有待解决。
参考文献:
[1]刘屹松.基于模板匹配车牌识别系统的研究实现[硕士学位论文].北方工业大学,2009
[2]刘智勇.基于MATLAB的车牌定位.中国科学院,2000
关键词:车牌识别;人脸检测;VC++;OpenCV
中图分类号:TP311.52
1 引言
随着社会科技的进步和经济的迅猛发展,医院的业务也日渐增多,如何为医院提供一种安全、舒适、方便、快捷和开放的信息化生活空间,是本文重点讨论的问题。下文中,依托先进的科学技术,实现医院内部管理的高效、互动和快捷。对医院的出入口进行实时智能监控,达到维护治安和防止破坏的作用,及时的把一切可能发生的或即将发生的案件制止,以及对进出医院的可疑人物及车辆进行信息采集,把安全隐患降低到最小,对确保医院安全具有十分重要的作用。本论文工作,是基于VC++和openCV设计开发了一款实用的医院车辆及人员进出管理系统。能够对来访车辆进行自动车牌识别,根据车辆的数据库信息查询,实现门禁系统的自动控制;同时系统还包含人脸检测模块,能够对每天来访的人员进行人数统计。
2 系统总体设计
本系统功能主要分为两大模块:监控管理和数据库信息管理。具体功能图如下所示:
3 系统详细设计
打开和关闭摄像头:通过调用opencv中的函数cvCaptureFromCAM();初始化从摄像头中获取视频,获得每一帧的图像,并显示在窗口的图片控件上。通过调用opencv中的函数cvReleaseCapture();释放资源,并将视频窗口销毁,实现关闭摄像头的功能。
实时信息采集:通过函数cvSaveImage();将图片保存,并进行命名,可将当前摄像头所捕捉到的状况进行采集,可对进出医院的可疑人员和车辆进行抓拍。
人脸检测:在opencv中含有根据人脸模板训练的人脸分类haarcascade_frontalface_alt2.xml。通过加载分类器,可以对当前帧的图像中出现的人脸进行识别,并通过cvCircle()将人脸圈出,实现人脸检测功能。通过检测出来的人脸可以知道今天目前为止该医院共进出了多少人次,并将信息通过定时器定时刷新信息,反馈给保安人员。
车牌识别:车辆检测可以采用埋地线圈检测、红外检测、雷达检测技术、视频检测等多种方式。采用视频检测可以避免破坏路面、不必附加外部检测设备、不需矫正触发位置、节省开支,而且更适合移动式、便携式应用的要求。
系统进行视频车辆检测,需要具备很高的处理速度并采用优秀的算法,在基本不丢帧的情况下实现图像采集、处理。若处理速度慢,则导致丢帧,使系统无法检测到行驶速度较快的车辆,同时也难以保证在有利于识别的位置开始识别处理,影响系统识别率。因此,将视频车辆检测与牌照自动识别相结合具备一定的技术难度。
车牌识别流程如图2所示:
图2 车牌识别流程
车牌图像处理:对于车牌图像,由实时监控录像进行实时保存,在进入车牌识别过程时打开。用dlg.GetPathName()得到图片的路径,将图片打开。因为保存的图片是倒着的,所以将图片显示在图片控件前需要将图片进行旋转。利用函数cvCreateImage()将图片转化为二值化时的大小,用函数cvCvtColor()转化为灰度图,并用cvSmooth()进行高斯滤波,为图片二值化做准备。
图片二值化:所有灰度大于或等于阈值的像素被判定为属于特定物体,其灰度值为255表示,否则这些像素点被排除在物体区域以外,灰度值为0,表示背景或者例外的物体区域。程序中没有用opencv函数库中的cvAdaptiveThreshold()和cvThreshold()进行二值化,而是通过调用AdaptiveThreshold()获得第一个阈值,将最大像素的*0.7作为第二个阈值,进行图片二值化,并将这两个阈值用来做边缘检测函数cvCanny()的参数。
牌照定位:本程序中通过对二值化的图像进行边缘检测后,在对得到的图片进行垂直和水平扫描,在对水平方向从左往右扫描的过程中,对最大信息量的区域圈出,然后进行垂直分割,将得到的区域即为车牌区域,之后再用cvResize()将得到的图片变为统一的大小。也就是车牌定位的过程为:水平分割、垂直分割、二值化牌照字符分割。完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。
牌照字符识别:字符识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择最佳匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。
是否放行:在识别车牌号之后,将得到的车牌号的字符串与数据库中的车牌号的字符串进行对比,如果数据库中有该车牌则是医院的车,放行,否则不放行。
4 论文下一步的工作
本系统基本实现了医院车辆进出的自动化管理,以及进出人员的人次统计。但是目前系统只实现了一个摄像头的视频监控,这还不能满足目前医院多个监控摄像头同时工作的现状。因此,论文下一步的改进工作,是实现医院内多个监控摄像头的同时调取与管理。
参考文献:
[1]钟志光,卢君,刘伟荣.Visual C++.NET 数字图象处理实例与解析[M].北京:清华大学出版社,2003,6.
[2]何斌,马天予,王运坚,朱红莲.Visual C++ 数字图象处理第二版[M].北京:人民邮电出版社,2002.
[3]夏良正.数字图象处理[M].南京:东南大学出版社,1999,9.
[4]葛亮.Visual C++从入门到实践[M].北京:清华大学出版社,2009.
[5]康晓林,袁建州.Visual C++6.0实用教程[M].北京:电子工业出版社,2008.
【关键词】 技术形态分析 有效性 核回归
一、引言
股票技术形态分析,作为证券投资分析的主要方法之一,一直是证券投资者经常使用的一种工具。但这种“看图艺术”的方式,也使得技术分析一直被诟病主观性太强。本文试图通过使用一种系统性的,科学的方法对技术分析进行定义,使用数量化的方法来度量技术分析形态,通过实证的检验,从而在技术分析与量化金融分析之间搭建一座桥梁。同样,本文也尝试增加技术分析的方法和工具,使用量化的手段进行技术分析。
二、技术形态分析的有效性研究
2.1 平滑统计量与核回归
核函数为非参数方法,其函数形式是未经设定的,因此对函数形式的约束较少,从而其具有更大的适用性。本文使用最普遍采用的核函数形式――正态核来进行权数的构造。
2.2 技术形态的自动识别技术
本文将构造一种可以使计算机自动识别价格图形形态的算法,我们的算法包括下面三个方面:
1.通过图形的几何性质定义技术形态,例如利用局部极值来确定技术形态;
2.通过给定的价格时间序列,构造核回归估计量,这样局部极值便可以由数值来确定;
3.分析,找出局部极值,确定每一种技术形态发生的频率。
本文重点分析在传统技术分析中常常使用的两对技术形态:头肩顶(HS)和头肩底(IHS),三角形顶(TTOP)和三角形底(TBOT)。我们只需要五个连续的极值即可定义头肩形态。
三、实证分析
在研究中,我们选取的时间跨度为2006年1月1日至2015年12月31日。在具体个股的选择上,我们从51个证监会股票行业分类挑选30个行业规模较大的行业,再从每一个行业中分别选取1只在行业内具有领先地位的龙头股票,共30只个股。我们对四种形态的频数及收益率数据进行加总,得到下表。
从上表可以看出,在5%的显著性水平下,三角形顶与三角形底这一对形态,其条件收益率与无条件收益率的分布具有显著差异。而头肩顶形态的条件收益率也与无条件收益率有显著差异。这也表明@三种形态能够提供有价值的信息,即此种形态出现会对收益率产生显著的影响。
四、结论
首先,本文使用了非参数核回归来对股票日收盘价进行拟合,得到局部极值点;然后我们则对四种形态进行了数学化的定义并实现了计算机的自动识别;最后,我们选取了30只具有代表性的股票与上证综指一起,根据数学定义进行形态发生频率的统计以及其收益率的描述性分析,得出结论:形态出现频率最高的是头肩形,头肩顶与头肩底分别出现664次和685次。就收益率的统计分析来说,出现次数最多的头肩底,其收益率均值只有-0.401%;次数第二多的头肩顶,收益率均值为0.295%。而收益率均值最高的形态为三角形底,其值为1.56%,可以看出,出现频率高的形态往往收益率不高,而收益率高的形态则出现频率较低。
然后,我们采用Kolmogorov-Smirnov检验方法,对收益率序列进行对比分析,得出结论:三角形底与头肩顶比较显著,我们认为三角形底确实能获得更高的收益率,而头肩顶只在三分之一的个股中有效,其效果不如三角形底。
【参考文献】
[1] Andrew W, Harry M and Jiang Wang: Foundations of Technical Analysis: Computational Algorithms, Statistacal Inference, and Empirical Implementation, NBER working paper series, 2000.
关键词:射频识别 物流 RFID
一、射频识别技术综述
射频识别技术(Radio Frequency Identification Technology,简称RFID)是一种非接触式的自动识别技术,它主要依靠射频信号来自动定位目标对象并获取相关的数据,整个识别过程不需要人工参与,实现自动识别。
从八十年代开始这项技术走向了成熟,它比同期或早期的接触式识别技术更灵活,RFID系统的射频卡和读写器不用接触就可以完成识别的工作,因此它可以应用在更广泛的场合。它的产品形状和大小各异,如:卡片型、硬币型和有印刷天线的纸张等,但它们的基本的功能是一样的,只要配合专用读写器,就能够从外部写入或读取信息。
虽然RFID的功能比较单一,却在服饰业、食品业和物流业等许多行业起到了革命性的影响,主要体现在传统的条形码系统已经逐渐被RFID系统代替。在诸如美国的WalMart、英国的特易购Tesco和德国的Metro等大型世界级连锁零售企业,都为了提升企业内部物流系统的效率,采用RFID系统。由此可见,这项技术已经在全世界的零售业产生了巨大的影响,而零售业又与现代物流业关系密切,应当考虑基于射频识别技术来建立智能化的物流管理体系。
二、射频识别技术的优势分析
射频识别具有技术方面的优势。以前的条形码技术已经使用了很长时间,但现在这种技术在许多情况下已经不能满足使用者的需要了,条形码虽然成本便宜,但它的存储量很小,而且使用时不能改写,这些缺点都限制了它在物流领域的应用前景。在信息时代的背景底下,用户对大存储量信息载体和无线信息交流方式有了强烈的需求,并且要在现代物流管理中实现自动识别,提高物流管理的效率,RFID技术在技术上的优势就有了更加广阔的应用空间。
射频识别具有应用方面的优势。在物流领域,无论是传统的管理方式,还是在更强调智能化管理的今天,物流管理最终的目标都是要通过向商品流通过程中的对象提品或服务,用来换取更多的利润。而将RFID技术应用到商品从生产、仓储、运送以及商品流通的完整物流管理流程里,能在很大程度上帮助物流企业提高业务的效率。
三、基于射频识别技术的智能化物流管理
将射频识别技术RFID与现代的物流管理相结合,将会极大地提升物流管理的智能化水平,其必将成为现代物流发展的趋势。
1、货物运输
RFID系统可以在货物运输过程中,实时跟踪货物运输的地点,自动收集货物的信息,减少了货物运输过程中人为参与的环节,以此获取更准确的货物信息,实现货物的在途控制。这样,就可以随时地监控全局,更好地调整资源和劳动力的配置,合理调度和分配运输工具,有效利用了工作时间,降低了物流成本,提高生产效率。
2、入库发货
在仓库的进货口处,贴有电子标签的货物通过阅读器自动采集信息,完成盘点并将信息输入主机系统数据库。入库时,RFID系统可以根据货物标签中所记录的相关数量和体积等信息,给出最合适的仓储位置,以达到仓储空间的最优化利用。入库后,则通过阅读器自动完成清点作业,并更新库存信息;发货时,由另一读写器识别并将信息输入中央管理器,告知它被放在哪个位置。尤其在危险品货物的入库和发货时,有更大的优势,避免的工作人员直接接触货物所可能造成的伤害。
3、商品库存
将RFID系统应用于商品的库存管理,可以通过无线射频自动收集信息,完成商品入库的记录工作,管理中心可以实时地了解仓库储存了多少商品,能够精确地监控货物的流动情况,实现库存情况的实时控制,这样可以增加处理货物的速度,还可以监视货物的其他信息,极大地增加了清点工作的透明度,提高了管理效率。
4、仓库安全
电子物品监视系统(EAS)是一种设置在需要控制物品出入的门口的RFID技术,这个系统用来保证仓储安全,防止商品被盗,主要应用在商店、图书馆和数据中心等地方,当未被授权的人从这些地方取走物品时,EAS系统会及时发出警告。首先在将EAS标签粘在物品上,当物品被正常购买或者合法移出时,在出口通过一定的设备使EAS标签失活,就可以顺利取走。非法物品经过门口时,EAS装置能自动检测标签的活性,立刻发出警告。
5、搬运装卸
在火车运输中,将射频卡安装在车厢顶部,读写器安装在铁路运输沿线上,通过读取的数据,能获取火车的身份和监控火车的完整性,以防止遗漏在铁轨上的车厢发生撞车事故。目前,射频自动识别系统已经遍布全国14个铁路局。
6、流通加工
用RFID技术在生产流水线上实现自动控制、监视,提高生产率,改进了传统的生产方式,降低了生产成本。将RFID设备装配在加工流水线上,应用智能标签有助于大量地生产用户特殊定制的产品。用户可以从上万种零部件中,选择自己需要的特殊颜色、型号和样式等,而且这种射频卡可重复使用,每个射频卡上保存有描述产品的详细要求,流水线的每个工作点都有读写器,这样可以保证产品在流水线上能顺利的完成装配和加工的任务。
7、事故监控
当事故发生,即使司机不知自己所在位置,也可以通过在沿途设置的RFID监测点得到反馈的信息,管理中心可以迅速准确地了解事故发生的位置与运送货物的安全情况,保证在最快是时间内紧急救援,减少货物的损失,降低物流风险和成本,提高物流效率。
四、射频识别技术在应用上的局限性
射频识别技术可以广泛应用到物流的很多方面,但是也存在了一些制约其发展的因素:
1、价格是RFID走向大面积市场应用的最大障碍
RFID标签的成本比较高,如果应用在集装箱或者汽车、电器冰箱之类的大宗商品上,成本不算什么;但如果商品本身价格比较低,这一技术的成本就显得比较高了。
2、RFID技术存在安全隐患
RFID标签无法对阅读器进行身份验证,当RFID标签接近阅读器时,就会无条件的发出信号,无法辨别阅读器是否合法,这会带来比较大的安全隐患,可能造成货品信息的泄露。
3、RFID技术缺少统一的行业标准
目前RFID技术存在两个基础技术协议,分别是MIT Auto-ID Center与日本的Ubiquitous ID Center提出的,两种标准都有不同厂商支持,采用何种协议会影响对应厂商的市场份额,进而影响整个射频识别产业的发展。
参考文献:
1 张敏;现代物流与可持续发展[D];山东农业大学;2004年
2 包建荣;基于以太网传输射频识别应用系统的研究与设计[D];浙江工业大学;2004年
论文摘要:介绍了八钢物流道路运输实现可视化的设想,将其分为公路运输和铁路运拾两个部分,分别介绍了实现可视化的方式、所需技术和主要功能.
冶金工业企业生产过程指从原材料的入厂开始,到半成品的流动、产成品的存储和交付、废弃物的处理等全过程,整个生产过程实际上就是系列化的物流活动。八钢是有50多年历史的老企业,通过艰苦奋斗,不断积累,形成了现在的发展格局。从目前的视角看,为使八钢整体生产物流顺畅,在物流布局及技术手段等方面都需要优化。以八钢物流道路运输为例,进行探讨。
在八钢的生产过程中,运输是生产的直接组成部分,八钢各生产单元通过运输使其空间状态联接在一起。在物流过程中很大一部分责任是由运输担任的,运输是物流的基础和主要组成部分.八钢本部的大宗原燃料的运输形式主要是道路运输和皮带运输,相对而言道路运输的不可控因素更多,主要探讨道路运输的两种方式:公路运输和铁路运输。
1公路运输可视化分析
可视化公路运输主要内容包括:车辆动态识别和定位技术应用、电子地图技术应用、车辆导航技术应用、交通管理、协作运输管理等。
1.1车辆识别
为了实时掌握公路运输的状况,对公路运输的基本单元的状态即车辆状态必须知道,这就涉及到车辆识别。基于空间信息技术的移动式车辆侦测自动识别技术在公路运输方面具有无可比拟的优势。
1.2电子地图
电子地图是公路运输实现可视化必需的人机界面(Interface),它具备了地理信息系统(GIS)的大多数功能。公路运输可视化的大部分信息都需要通过电子地图来表示。电子地图能够把数字信号(包括对数字地图、遥感数字图象及自行数字化采集的数据进行可视化处理后形成的数字信号)和模拟信号显示在计算机屏幕上。
电子地图主要有两方面作用:一是多维地图的静态显示和动态显示作用;二是动态环境下空间数据库与物流信息管理系统数据库的交流作用。总之电子地图要完成GIS中空间数据视觉化的任务。
电子地图主要通过点状要素(出入口、道口、交通灯等)、线状要素(公路、铁路等)、面状要素(停车场、料场等)来反映交通详细信息,满通运输服务的要求。
1.3车辆导航
车辆导航是指为具体的在厂内道路上的运输车辆提供导航,它是车辆驾乘人员重要的辅助工具,使之能在正常情况先按照预定的线路行驶,异常情况下按照指定的线路移动。
为实现车辆导航,必须将GP导航系统与电子地图、无线电通信网络及交通管理信息系统结合起来,最终通过车载GP设备为驾乘人员传递相关的图像和声音信息。
1. 4交通管理
随着八钢产能的不断扩大,厂内运输的车流量将进一步增加,为使道路交通完全处于受控状态,制定相关规则并监督执行非常必要(尤其对大型运输车辆的控制)。交通管理具体内容包括:车辆行进线路规划、车辆监控(路线、速度等)、停车位管理、交通道口监控、车辆指挥、故障处理和紧急救援等。
首先对所有进出八钢的大型运输车辆的行进线路按物品(对应相应的物资编码)做好规划,线路规’划本着线路最简捷的原则进行,同时要考虑出入口、道口、回车场地、道路状况、车流量、其它公路运输等因素,尽可能避免迂回运输和重复运输。线路规划是动态的,可根据需要适时调整。线路规划在大型运输车辆进入门禁的时候,以声、光和图像的形式通过车载GPS设备传递给驾乘人员,为其提供导航。
大型运输车辆进入八钢厂区的导航是强制的,为此需要实时跟踪和监控,确保其按照指定的线路、速度行驶,发现错误及时纠正。
随着车流量的增加,靠车辆自律管理厂内交通将不能满足要求,为此需要在重要道口建立交通信号控制系统和视频监控系统。交通信号系统主要用于管理道口现场交通;视频监控系统主要是将被监控点实时采集的交通视频图像传输给监控中心,以便监督和及时调整控制流量。
八钢有必要建立类似于城市交通指挥系统的交通管理系统,可以作为勺又钢物流信息管理系统”的一个独立的子系统。交通管理系统以电子地图和GPS数据库为工作平台,运用计算机网络,集成交通信号控制系统、电视监控系统、交通诱导系统、电子警察系统、通信系统和车辆导航等系统,实现各种交通管理信息集成整合,深化处理和增值服务,便于驾乘人员了解相应信息和交通状况,使指挥人员能够迅速决断、快速反应、及时修正交通计划,保证交通的安全与畅通。
1.5协作运输管理
从实现物流可视化的角度来探讨协作运输管理。
将来八钢的大宗原燃料的公路运输主要通过社会协作的方式进行,为使公路运输能够按照八钢的要求和意愿进行管理,在商谈协作的时候,必须要求协作方按照八钢的要求做一些必要的工作。
由于公路运输处于买方市场,在商谈协作运输时掌握一定的主动权。
首先,要考虑软硬件配备,主要包括:必须配备承担运输所需的车辆,车辆应装备符合实现八钢可视化物流所必须的GPS车载设备和车辆自动识别装置,具备车辆实时监控系统(主要监控八钢外部运输),具备与八钢联网的信息系统等。
其次是运输管理,主要包括:为了避免集中到达,要求公路运输商(可能是多家)按八钢的交通容量编制运输计划,尽可能减小每批次的车辆数量;为充分利用社会资源,要求公路运输商能实时控制在途车辆(必要时能提交八钢共享),按照预定的计划时间到达,同时要保证“运输的一致性”;在途车辆出现意外,有应急预案应对;对进入八钢厂区的车辆能够服从八钢交通管理的要求;按照八钢统一的电子结算方式进行运杂费结算等。
2铁路运输可视化分析
铁路运输占道路运输的比重在今后几年会逐步增加(大宗原燃料运输里程一般在200km以上),铁路运输需要高度关注。可视化铁路运输主要内容包括:车辆识别和定位技术应用、电子地图技术应用、铁路信号系统数据交换、车辆动态调度等。
2. 1车辆识别和定位技术应用
着重从机车跟踪的角度探讨车辆识别和定位。
为实现铁路运输可视化,需要知道机车行进方向、车辆数、车辆顺序、车厢数、车辆标签、所对应车辆的物品编码(含品名、规格、产地等信息)、计量信息、列检信息、装卸信息、运行时间和运行位置等信息。这些都需要依靠车辆识别和定位技术来实现。
铁路区域计算机连锁系统(RCIS)、动态自动识别称量系统、全球定位系统(G PS )、电视监控系统是进行车辆识别和定位的技术基础,它们各有侧重。
GPS在车辆定位方面有无可比拟的优势,是实现车辆定位的重要手段,在GPS基础上结合RCIS获取的各节点信息,可实现车辆全过程精确定位和车辆动态跟踪。
铁路区域计算机连锁系统和电视监控系统相结合,借助模拟运算工具,也可实现车辆定位和跟踪的功能。
用于车辆识别的技术手段包括图像自动识别技术、射频识别技术和移动式车辆侦测自动识别技术(CPS技术),由于车厢经常倒换,采用图像自动识别技术、射频识别技术进行识别更经济适用,尤其是射频识别技术在我国铁路运输管理中已得到广泛使用,也有相应的技术规范支撑。采用GPS用于机车识别无疑是最佳选择。将机车信息、车箱信息、编组信息等有效结合,即可得到完整的车列信息。
2.2电子地图技术应用
电子地图是铁路运输可视化重要的视觉平台,作用同公路运输,通过它可直接、快捷地了解到机车运行状况。
电子地图是实现可视化动态车辆调度十分重要的工具。电子地图有两类:一是基于地理信息系统(G IS)的电子地图,与实际地形相符,真实感强,但受幅面限制,一些信息不能直接反映在地图上;二是模拟的示意性的电子地图,可能与实际相差很大,但它幅面利用率高,可清晰显示更多信息。以前更多的选择后者,“鹰眼”技术使得前者的应用领域和范围越来愈多。通过“鹰眼”技术可以详细了解到每个区域的细部信息,通过链接甚至可以获取包括某个信号灯的状态、某个道岔的位置、某个摄像机获取的车辆和行人图像等信息。
2.3远程监控系统
在调度中心实现对道口、车站、铁路沿线环境和现场的远程监控,一是可大大减轻日常人员巡视的工作量;二是便于及时发现危险隐患,保障安全生产。
远程监控系统的主要功能包括:实时视频监控、信息存储、报警联动、远程遥控和校验等。
远程监控系统由现场设备(可变焦红外线数字摄像机、活动云台)、传输通道(有线或无线)、主站设备(服务器、存储装置、软件)、监控终端等组成。
远程监控系统已成为铁路运输管理不可缺失的一个重要组成部分,随着信息技术的发展,运用多媒体技术、基于wEB服务器的远程监视系统,可以为有权限的局域网用户提供实时的信息服务。
2.4铁路信号系统数据交换
八钢内部的铁路运输系统与公共铁路运输系统关联度很高,随着八钢产能不断提高,与外部公共铁路运输系统建立实时数字信息交换制度对双方都有必要。可通过约定数据交换范围、方式和格式,在双方的数据服务器之间设置防火墙,实现信息共享并融入各自的管理系统。
内部可视化的相关信息需要集成在电子地图上,这样就需要在“八钢物流信息管理系统铁路运输子系统”和现有的区域计算机连锁系统(Rcls)、拟建的车辆识别和定位系统、远程电视监控系统等之间实现信息无缝链接.由于现有的区域计算机连锁系统(RBI)建设时未考虑与其它系统信息交换,相应的软硬件不一定能满足要求,届时需要对服务器部分做相应的改动或升级。新建系统要充分考虑今后的拓展需求。
2.5车辆动态调度
车辆动态调度是“八钢物流信息管理系统铁路运输子系统”重要组成部分,结合物流管制中心的建设就可视化的铁路运输管理和车辆动态调度的功能和内容展开描述。
车辆识别和定位技术应用、电子地图技术应用、铁路信号系统数据交换等都是为可视化的铁路运输管理和车辆动态调度服务的。铁路运输管理系统主要功能包括铁路运输计划的管理、车辆运行信息显示、车辆追踪、物流信息显示、调车作业图表管理、列车运行图的管理、运行数据统计分析、系统自诊断等。
铁路车辆动态调度需要一个可视化的信息平台,其主界面就是集合各种相关信息的铁路运输电子地图(或称之为八钢铁路地理信息系统图)。铁路车辆动态调度是计划管理体系的一个重要组成部分,以计划为驱动,实现产供销运的紧密衔接,对采购、销售、生产物流实施跟踪管理。通过车辆调度模块生成、调整和发送车辆运行计划、维护和调整调度作业图表、发送调度指令;铁路运输过程中的物流管理作业过程(如列检、计量、装卸等)也需要依靠车辆调度模块来动态的实现控制;为使运输过程处于可控状态,车辆调度模块还要对车辆的动态跟踪;实时(或定时)对铁路运输计划的预测统计分析是车辆调度的重要工具和手段,通过它可获得与铁路运输相关的信息(如库存、消耗、待运、在途等信息),以便提前判断和制定相应的措施。
3结束语
本论文研究的是利用射频识别技术将电子施封锁应用于电动车防盗系统。该电子标签外壳与RFID芯片融为一体,在不影响现有施封锁功能的前提下,通过巧妙的设计使标签外壳附着在施封锁的一侧。
【关键词】射频识别读卡器RFID
1、引言
随着科学技术的发展,电子标签―RFID在国内外已被广泛的使用,如为减少行李遗失事故的发生,国际航空运输协会积极鼓励全球航空公司和机场,采用先进的RFID技术处理乘客的行李。它能通过射频信号自动识别目标对象并获取相关数据,识别过程无须人工干预,能够工作于各种恶劣环境之中,可用于高速运动目标的识别及多个目标的同时识别,操作快捷方便。由于具有高速移动物体识别、多目标识别和非接触识别等特点,RFID技术显示出巨大的发展潜力与应用空间,被认为是21世纪的最有发展前途的信息技术之一,曾被美《商业周刊》评为将掀起新产业浪潮的未来四大高技术之一。
RFID技术的应用已趋成熟。在北美、欧洲、大洋洲、亚太地区及非洲南部都得到了相当广泛的应用。目前国内RFID的应用已经涉及到铁路红外轴温探测系统的热轴定位、轨道衡、超偏载检测系统等。正在计划推广的应用领域还有电子身份证、电子车牌、铁路行包自动追踪管理等。
2、射频技术
从信息传递的基本原理来说,射频识别技术在低中高频段基于变压器藕合模型(初级与次级之间的能量传递及信号传递),在超高频及微波频段基于雷达探测目标的空间藕合模型(雷达发射的电磁波信号碰到目标后携带目标信息返回雷达接收机)。射频标签与读卡器之间的电磁藕合包含两种情况:一是电感耦合方式,是低、中、高频段近距离非接触射频识别系统的基础。在电感耦合方式中,读卡器的天线相当于变压器的初级线圈,射频标签的天线相当于变压器的次级,因而电感藕合方式也称为变压器方式。电感耦合方式通过空间磁场实现耦合,耦合磁场在读卡器线圈(初级)与射频标签线圈(次级)之间构成闭合回路。二是电磁藕合方式,在电磁耦合方式中,读卡器的天线将读卡器产生的射频信号以电磁波的方式定向发送到空间范围内,形成读卡器的有效阅读区域,位于读卡器有效阅读区域中的射频标签从读卡器天线发出的电磁场中提取工作电源,并通过射频标签的内部电路及标签天线将标签内存的数据信息回传到读卡器。电磁耦合与电感藕合的差别在于电磁耦合方式中读卡器将射频信号以电磁波的形式发送出去;在电感藕合方式中,读卡器将射频信号束缚在读卡器电感线圈的周围,通过交变闭合的线圈磁场,形成读卡器天线与射频标签天线之间的射频通道,而没有向空间辐射电磁能量。电感耦合的RFID系统中,电子标签卡在天线上形成的接收信号的调制方式常采用副载波负载调制技术;电磁耦合的RFID系统中,电子标签卡在天线上形成的接收信号的调制方式常采用电磁波反向散射调制技术。
按照读写距离来划分,RFID系统可分为接触式和非接触式,而非接触式又分为近距离(密耦合)、中距离(遥耦合)和远距离。本论文中主要探讨的是遥耦合,读写距离从1米到10多米甚至更远的RFID系统称为远距离RFID系统。它是依靠电磁波在空间辐射形成空间电磁场,电子标签卡与读写器之间的通信方式类似雷达探测过程。工作时,射频标签位于阅读器天线辐射场的远场区内,标签与阅读器之间的耦合方式为电磁耦合方式。阅读器天线一般为极化(线极化或圆极化)天线,并在空间形成一个辐射场为无源标签提供射频能量。远距离RFID系统的工作频段为860―960MHz、2.4GHz和5.8GHz等,目前大量应用在车辆管理、码头集装箱等大物件的流通领域。
3、RFID技术的应用
本论文中的RFID技术是一种无线通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。它的工作原理是:无线电信号通过调成无线电频率的电磁场,把数据从附在物品上的标签上传送出去,以达到自动辨识与追踪该物品的目的。
目前大部分电动车的防盗系统的防盗原理是:当盗窃者触碰电动车时,车子自动发出警报鸣笛。这种防盗系统根本发挥不了防盗的作用:一、车子经常被非盗窃人员触碰,导致大家弄不清楚警报声到底是否是因为盗窃所产生的。二、即便是盗窃所产生的警报,户主也不能及时知道是有人在盗窃自己的车子。而本论文的构想是:把RFID技术应用在电动车防盗系统中。基本构思是:在电动车的电瓶安装处加装施封锁自动识别装置并在施封锁的一侧加上电子标签外壳与RFID芯片,只要是电瓶处或者机动车开锁处被解锁,通过RFID的读卡器,就会发出无线射频信号,户主手中的应答器就会接收到报警系统的提示。
整个系统的组成是基于主动射频激活后的动态识别系统,系统由电子施封锁,125KHZ低频激活系统,如图1所示。
读出装置的电路由单片机控制模块、射频收发模块、接口控制及125KHZ无线唤醒发射模块、其中接口用于控制系统中射频信号发射和接收。电子施封锁的电路由单片机控制模块、射频收发模块、125KHZ无线唤醒发射模块、电源管理几部分组成。
电子施封锁的电路由单片机控制模块、射频收发模块及无线唤醒电路、电源等四个部分组成。单片机用于控制射频收发模块和保存与电子施封锁相关的信息;无线唤醒电路则在收到读写器发送的特定信号后产生一个中断信号唤醒休眠的单片机和射频收发模块;射频收发模块则负责接收和发射读写器发送来的信号;电源电路控制电源的功耗,根据无线唤醒电路的指令及无线射频的信号强度控制电源的消耗,及计算电源的容量及寿命管理,确保电源能长时间可靠的工作。
系统单片机控制模块采用了NORDIC最新的无线和超低功耗技术,选择用NRF24LE1控制芯片,在一个极小封装中集成了包括2.4G无线传输,增强型51 FLASH高速单片机,丰富外设及接口等的单片FLASH芯片,是一个综合了性能及成本的完美结合,很适合应用于各种2.4G的产品设计。
读写器和电子施封锁都有工作及休眠二种工作模式。由安装在电动车上的震动传感器感应到电动车震动时,接口控制模块发出读写指令,启动读出装置的射频收发模块工作,同时启动125KHZ无线唤醒发射模块工作;电子施封锁受到读出装置唤醒信号后启动工作,实现与读出装置的数据交换,完成一次完整的数据交换后,读出装置将读取到的信息存在于单片机控制模块中,并迅速将车载信息发送到车主手中的报警器。读出装置和电子施封锁重新进入低功耗休眠状态,等待下一次的唤醒。
本论文中的电子施封锁采用电池供电,而电池是一种消耗性的电源,工作时间短,为了延长车载卡的工作时间,需要进行电源管理,以降低功耗。当前大多数的电源管理方法采用一种周密设计的唤醒、休眠方法。但大多数情况下,唤醒周期的大部分时间是徒劳无用的, 消耗能量。本系统中采用一种无线触发唤醒的电源管理方法,在这种方法中,车载卡进入休眠模式后就会一直保持睡眠状态,在读写器没有发送出特定频率的无线信号时,它是不会被唤醒的。当然,这个特定频率的无线信号会立即地唤醒休眠的电子施封锁这样,就节省了在唤醒前和监测期间的电源消耗。
高安全性,芯片内固化Gazell协议具有AES 128bit 高强度加密,确保数据传输的安全可靠;低功唤醒、高频数据交换,避免了同频干扰。唤醒脉冲通过特定频率是125KHZ低频发送,而数据通信采用另外的2.4G无线频率传送。一旦读写器与标签建立通信连接后,双方便跳到由读写器指定的固定频率上工作。这样,即使电动车或是整个停车场中其它电子施封锁在无线通信范围内也不会被唤醒,避免了同频干扰起到了抗干扰的作用。