时间:2023-03-30 10:38:58
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇数学物理论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
与图1不同,铁有三种固态,分别是α-Fe、γ-Fe和δ-Fe,其中γ-Fe为密排面心立方结构,α-Fe和δ-Fe为体心立方结构。并且,图2中有三个三相点,分别为气-液-δ-Fe;气-γ-Fe-δ-Fe和气-γ-Fe-α-Fe。通常情况下,Fe是磁性的α-Fe,组织类型有铁素体、珠光体和贝氏体等;通过成分和工艺控制常温下可得到γ-Fe,如奥氏体不锈钢304、310等。Fe的p-T相图的讲解,增强学生识别单组分相图的能力。课堂上通过工业生产实例,加深了同学们对Fe的认识;并建立了物理化学相图知识与学生专业—金属材料之间的联系。解决学生“材料专业为什么学物理化学?”的困惑。
2两组分液态完全互溶系统的相图
虽然二组分系统的气—液平衡相图依据组分在液态的互溶情况各有其特点,但液态完全互溶系统构成了这部分内容的学习基础[4]。对于这种相图,我们除了让学生掌握相图中各相区的组成、相态和杠杆规则外,还注重让学生学习气相线和液相线的绘制方法和细节信息。其绘制过程如图3所示,先配制不同比例的二组分混合物,再升高温度测试混合物的熔点,通过描点—连线得到相图。从而培养学生设计实验绘制相图读取相图细节信息的全面能力。通过学习绘制相图,可使学生对相图的全部信息有较深刻的认识、理解及较好的运用。为了便于学生掌握此类相图及其应用,在教学中我们通过物相点随温度的变化的实例,讲解其液相与气相及组成在该过程的演变情况。重点分析了第一个气泡点产生的压力、组成及最后一滴混合液消失的压力、组成,以及其逆过程这一难点。并将相图理论与工业精馏装置联系起来,激发学生对该部分内容的学习兴趣。
3具有转变温度的二组分固态部分互溶、液态完全互溶的液固平衡相图
具有转变温度的二组分固态部分互溶、液态完全互溶的液固平衡相图,是学生学习中最难掌握的内容。我们通过讲解物相点的降温过程的物相变化和步冷曲线的绘制,并借助动画展示具体过程,使该部分内容更加形象和生动,便于理解和掌握。同时,提高了学生的学习兴趣和动手能力。
4相图在金属材料中的应用
4.1在金属材料设计中的应用在工业生产和科研实践涉及到的金属材料通常为多组分的平衡系统,所以其相图更为复杂。为了得到材料的拟服役性能,需要对材料进行设计和加工。相图在材料设计中起着至关重要的作用,例如,在设计奥氏体不锈钢时,为了得到单一奥氏体组织,需扩大相图中奥氏体区,使其在冷却过程中不发生γ-Feα-Fe的转变。根据相图,改变系统的组成,增加稳定奥氏体元素,如Ni、C等是最常用的方法。当然,为了系统的平衡,其他元素也需做相应的改变。应用相图时,为了提高设计组织的准确性,需要考虑平衡相图与实际相图的差别。
4.2在金属材料加工中的应用在金属材料的热加工过程中,随着加工温度的不同,其物相也发生相应的变化。可通过控制轧制参数和冷却过程,改变材料的相变温度和组织类型,得到高性能的金属材料。例如,在钢铁生产中,热轧钢板控制轧制与控制冷却(TMCP)工艺,通过加大压下量增加累积位错,为相变过程提供更多的高能量相变形核点,以得到细小晶粒组织,提高钢的强韧性。通过控制冷却速率,可改变相变后的组织形态,在650℃以上发生相变得到珠光体和铁素体组织,在450~600℃区间主要得到贝氏体组织的钢材,在更低温度下发生相变得到马氏体组织,不同的组织赋予材料的不同的性能[5]。4.3在金属热处理中的应用相图不仅在金属材料的设计和加工中具有指导下作用,而且在材料的热处理过程中也具有重要的应用价值。例如,在金属材料的退火、淬火和正火中具有重要作用。淬火过程主要是控制冷却速率,使相变温度发生在较低温度区,得到低温转变组织。正火温度需在γ-Fe相区,需要根据相图和化学成分判断其奥氏体化温度,从而确定正火的加热温度。严格的说,确定热处理的升温速率和降温速率也需要参考相应的相图。通过相图在金属材料领域的应用的介绍,学生对本专业和学习物理化学的重要性均有了清晰的认识,他们的学习积极性也显著提高。
5结语
在《匀变速直线运动》章节中,“自由落体运动”是其知识的综合运用,构成难点;但是对于“平抛运动”的学习,“自由落体运动”却是起码的基础知识.因此,许多优秀物理教师选取教学内容之前,往往做大量的学情调查,了解学生最近已经学习的物理学科内容(其中包括这部分内容涉及的概念、方法与思想)还不够,更为关键的是,物理教师必须从新课标的三个维度逐一了解学生对已学内容掌握的程度,之后才能辨证地把握每节课教学内容的难易程度,才能精准选取每节课的内容,把握好每节课的突破点.
例如洛伦兹力的教学,教师在课前必须认真了解学生对如下知识点的掌握程度:点电荷q定向移动的平均速度与形成的电流之间的关系I=nqvS;安培力大小F安=ILB和方向,圆周运动中向心力、向心加速度.对这些知识点掌握的程度起码应关注:对重要概念(匀速圆周运动、向心力、向心加速度)的物理内涵的理解?对重要关系(I=nqvS)的推导过程掌握程度?对F安=ILB作为空间力的方向如何判断是否熟悉?使用条件是否知晓?在分析了众多的难点之后,辩证对比,如图1中对I=nqvS的推演是借助自由电荷导电的微观模型进行的,它实际上也是推演洛伦兹力公式F洛=qvB的关键难点.这节教学洛伦兹力的新授课,其实不妨从复习对I=nqvS的推演开始,帮助学生理解并学会建立微观模型,学生学习物理的方法和思维能力同时也得到了提升.
2 对每节课的教学过程实施中的教学节奏,辨证把握,形成律动
2.1在学生的学习行为调控上,恰当处理“动”与“静”
此处“动”指课堂教学过程中,师生双方处于活跃的互动中,学生处于热烈的讨论、激烈的争辩或紧张的推理计算之中;“静”则指学生的学习行为或整个班级的学习气氛处于相对平静之中(专心听教师较为冗长的讲解、有序阅读学习的文本材料、整理教师的讲解内容等).高效的物理课中,“动”与“静”辩证处理的恰到好处,过犹不及,“动”多了这会导致学生始终处于亢奋之中,在教学秩序的控制上会给教师造成极大困难,影响组织教学;但是也不能处于较长的“冷场”状态,沉闷的课堂气氛必然导致学生思维受到抑制,影响学习效率.例如:在《动能定理》的教学中,可以按照:“静动静动静”的顺序构思如下的教学节奏:先组织学生复习上节课学过的动能定义和前一阶段学过的功的定义及正、负功的物理意义,这是一个相对“静”的阶段;接着组织实验探究作用在物体上的外力所作的功与物体动能变化的关系,这是一个极为活跃的“动”阶段;然后,教师让学生分组概括所得结果,并让一位学生作为代表到黑板讲解,这又是一个相对“静”的阶段;接着,教师以投影方式举出一道难度不大的运用动能定理解决的问题,让学生讨论,这又进入“动”的阶段;最后,教师对本节课进行了较为系统、深入的总结,在“静”中有序、理性地完成了本课时的学习.这样的一节物理课,貌似平平常常,却蕴藏了教师深厚的课堂节奏的把握能力.
2.2在学习的知识容量处理上,对同样时长的授课过程,容量“大”、“小”搭配
物理课堂学习,毕竟是在物理教师组织下进行的,因此从物理知识、物理方法到物理实验与物理思想的学习进程其实是受教师的控制的.有些教师崇尚“大密度”、“大容量”教学.这样做容易导致很多中等及以下学生出现问题,只要在学习进程中的某一个环节出现问题,没有时间反馈、纠正、巩固,更谈不上形成技能.
例如,在教学“牛顿第二定律”时,在新授课上,教师不应一开始就引入过难的问题,可以通过简单的二力作用下的变速直线运动,说明正交分解的物理思想如何运用在处理力与加速度的关系上:与加速度共线的力的合力等于质量乘以加速度;与加速度垂直的力的合力为零.然后,列举几道常见的生活情境下的三力作用下的变速问题,“已知力,求加速度”或“已知加速度求未知力”.这样安排,看似教学内容肤浅,其实不然.学生正是在貌似简单的问题中,领悟了牛顿第二定律如何运用的基本思路,领悟了正交分解这一物理思想,对后续的曲线运动学习很有裨益.
但是,在随后几天进行的“牛顿第二定律”的习题课上,教师可以逐步引入较为复杂的问题.在受力条件、运动状态变化、过程的阶段性上设置较为困难的障碍,让学生在解决问题中进一步深化对基本方法的理解.并且对学习内容的容量逐步提高.
2.3对教学反馈与评价的结果,要“快”、“慢”结合、“多元”评价
传统的高中物理教学往往从纯粹应试的角度要求学生做题越快越好,这在平时的物理课堂学习中要做辩证分析.学习过程是一个复杂的内化过程,人的主动性在其中起着决定性作用.有经验的物理教育工作者不会急于求成,而是耐心引导学生一步步思考、实践,再思考、实践,螺旋式上升解决问题的思想,允许有反复,允许有挫折.同样是教学牛顿第二定律,有些教师反复用同样题型机械训练学生,学生思维造成僵化;比如,教师训练中出现的问题往往是对力正交分解,于是学生在做与教师介绍的题型相似的问题时,思路很快,但是,一旦出现如下的问题便卡壳:
一物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a,在物体始终相对于斜面静止的条件下,下列说法中正确的是
A.当θ一定时,a越大,斜面对物体的正压力越小
B.当θ一定时,a越大,斜面对物体的摩擦力越大
C.当θ一定时,θ越大,斜面对物体的正压力越小
D.当θ一定时,θ越大,斜面对物体的摩擦力越小原因很简单,因为这道题要想简捷解出,对加速度正交分解是关键.抛出不同情境的问题,先不急于讲解,留给学生充足时间探究解决的方法,这样的学生养成独立思考的习惯,物理学习的能力明显强于前者.因此,教学速度的“快、慢”要适度.同样,在课堂教学中对于学生的评价,也不能以“对”、“错”作为标准,关键是学生回答问题或解决问题中是否有效运用所学的知识、方法?能力在解决问题中有否发展?有些问题,对于不同学生构成的难度是不一样的.所以优秀的物理学家费曼曾经说过:物理教师不必吝啬你的夸奖!对学生的评价不妨多元化.在对学生学习的训练与评价上,辩证分析、科学回归.
1利用现代信息技术提升教学实效性,激发学生学习物理的兴趣
因为高中物理知识面比较广,涉及的理论比较多,所以学生一般都有畏难情绪,这大大影响了学生学习高中物理的效果。作为高中物理教师,要从根本上解决问题,就要通过信息技术较强的直观性来丰富知识的表现方式,激发学生的兴趣,从而让学生畅游在高中物理的海洋中。例如,在学习平抛运动时,教师可以事先制作这样的fLas:一只青蛙蹲在荷叶上,发现同一高度的另一片荷叶上落着一只水蜘蛛,青蛙张开嘴巴,用长长的舌头去抓水蜘蛛,水蜘蛛在青蛙伸出舌头的瞬间从荷叶上落向水面,这一过程可以被视作自由落体运动,但是水蜘蛛还是没有逃脱青蛙的捕捉。生动有趣的动画吸引了学生的注意力,教师可以顺势提出问题,青蛙为什么还是捕捉到了水蜘蛛?激发学生的兴趣,让他们去发现动画里隐藏的物理知识,即平抛运动可以分解为水平方向上的匀速直线运动和竖直方向上的自由落体运动。通过利用fLas,先让学生进入丰富多彩的动画情境,教师再结合动画内容引入相应的物理知识,可以起到事半功倍的效果。
2利用现代信息技术优化实验教学,提升理解能力
物理是一门实验性很强的学科。学生通过动手操作各种实验仪器,去验证物理中各种经典的理论或者是自己感兴趣的问题,既锻炼了学生细致的观察能力,又提高了学生分析并解决问题的能力。但是,这种形式受实验时间和实验地点的影响,学生只能在规定的地点和有限的时间内进行实验操作,教学效果不能得到保障。此时,我们可以借助信息技术,比如fLash或者虚拟实验室等软件,制作出各种物理实验,让学生通过网络就可以进行实验,完全由学生自己控制实验的进度和次数,保证了学生对知识的掌握。例如,在进行让“探究平抛运动的规律”的实验教学时,为开阔学生的思路,达到预定的实验目的,笔者收集了大量的实验视频,并让学生进行分组实验,便于学生可以运用不同的实验方法进行实验,并把每组学生动手探究的实验环节拍摄下来,挂到学习网页上,让学生相互点击观看。这种搭建平台的方式让学生体验到了成为焦点的乐趣,进而达到督促实验的目的。在接下来的环节,笔者让学生自己总结实验规律,先点击规律按钮,里面有一个演示动画,是一个做平抛运动的小球。利用运动的合成与分解的知识,分别计算出物体在任意时刻的瞬时速度大小和方向及位移的大小和方向。然后再要求学生把推导过程写在纸上。通过将课堂笔记、公式推导落实在笔头上,可以大大提高学生在课堂教学、实验教学过程中获得的知识容量。同时,通过摄像机与投影仪的切换,把部分学生的推导过程呈现在大屏幕上,全班一起分析出现的问题。这样的方式可有有效减轻学生到黑板前做题的压力,也能为教学的课堂教学节省时间,可以展示更多学生的思路。
3充分挖掘网络资源,丰富学生的学习方式
在没有计算机网络的时代,人们掌握的知识量受到地域和时间的限制。而计算机网络的诞生和迅速发展,拉近了世界各地的人们之间的距离,促进了知识的传播,也大大开阔了人们的眼界。高中物理教学也可以充分利用计算机网络,改变以往资料收集困难而且无法满足学生对知识的需求的局面。通过计算机网络,教师要引导学生搜寻和高中物理相关的历史、音频、视频、动画等多媒体资源,与课本相比,学生更愿意接受这些通过自己努力收集来的知识。经过这样的体验,学生的主动性会大大加强。例如,在学习“激光”的内容时,教师可以把课堂教学中提到的重点,如激光的定义、特点和应用等内容挂在网上,方便学生根据自己的实际情况有针对性的学习。在互联网上,师生之间可以突破时空的限制,畅所欲言,实现相互学习与交流,最大程度的实现资源共享。与此同时,教师还可以让学生通过网络,根据自己的学习能力自由选择一些著名网站的试题来进行课外练习,也可以根据自己的喜好,搜集自己想要的学习资源,如:激光的起源、发展、规律,以及军事上提到的各种最新型的激光武器等,通过网络“冲浪”来扩展自己感兴趣的物理知识。可见,互联网有着强大的资源优势,不仅能搭建师生交流平台,突出学生的主体地位,还能拓宽学生学习的渠道,以网上“冲浪”弥补教材的不足和空白,大大丰富了学生的学习方式,让学生真正成为学习的主体。
1.思维转换困难
在教学要求上,与旧的课程标准相比,新课程标准的要求更加宏观,把握起来更加困难。新课程标准对物理教学中的实践活动和探究活动非常重视,很多教师难以在规定的课时中完成教学任务,因此往往采用单一的讲授法。这就造成了新课改“新瓶装旧酒”的情况,教学改革的效果不明显,仅仅做了表面功夫,反而加重了学生的学习负担。
2.缺乏足够的教学资源
这就要求学校配备专业的实验室及设备、实验人员和实验管理人员,很多学校都缺乏足够的物理教学资源,对开放性设施的建设比较滞后。教学资源的匮乏对高中物理教学的改革造成掣肘,严重影响新课改下高中物理教学的教学效果。有些学校由于资金紧张,难以建立电子阅览室、图书资料室和完备的物理实验室,即使建立了各种实验室,也不能提供学生完全的自由探究,使用率不高,学校之间的资源共享也没有建立起来。
二、如何提高新课改下高中物理教学的教学质量
1.高中物理教师要不断提高自身的综合素质
新课程改革对教师提出了更高的要求,作为推进高中物理教学改革的主体,高中物理教师必须具备更高的综合素质。高中物理教师不仅要钻研教材,不断提高自己的专业素质,还要对新课程改革的要求进行全面的把握,提高自己的创新能力和实践能力。在新课程改革的要求下,高中物理教学中要具备各种形式的实践活动,例如文献探究、调查活动、实验探索等,教师要能够在学生进行实践活动的过程中对其进行引导,对实践教学的方向予以把握,帮助学生更好地完成实践活动。高中物理教师要全面提高自己的授课水平,能够使用灵活的教学方法来调动学生的学习积极性,从而达到新课改的要求。
2.将网络技术引进高中物理教学
当前高中物理教学中普遍使用多媒体进行辅助教学,在此基础上,高中物理教师要充分利用网络资源,将网络技术引进高中物理教学中。通过运用网络技术,可以为学生打造一个广阔的学习平台,使学生能够接触到更多的物理知识,了解更多的物理现象。教师也可以利用网络向学生介绍国内外的前沿物理动态,与学生就物理发展中的一些问题进行探讨和交流。例如,在讲解人教版高中物理必修二“机械能守恒定律”一课时,教师就可以围绕能量守恒定律与学生展开探讨,让学生通过网络查找相关资料。教师可以向学生展示一些违背能量守恒定律的伪科学,让学生进行破解。这样一来,高中物理课堂的课堂气氛更加活跃,学生能够获取更多的物理知识,教师也可以获得更多的授课资源。
3.将物理知识与实际生活联系起来
信息技术与物理学科的整合是指在物理教学过程中,把信息技术、信息资源、信息方法、人力资源和物理教学内容有机地结合起来,使其相互渗透、相互作用、相互协调,利用信息技术支持物理的教与学,并在这一过程中提高学生的信息获取、分析、加工、交流、创新、利用的能力,培养学生的协作意识和能力,促进学生掌握在信息社会中的思维方法和解决问题的方法.信息技术与物理教学整合的本质是教学方法的变革.在整合过程中,信息技术在教学中的作用可以分为三个方面:演示工具(信息技术作为教学工具)、学习工具、环境建构工具.在两者整合中,信息技术不仅是物理教学的辅助工具,它更是促进学生自主学习的认知工具和情感激励工具.信息技术与物理教学的整合,不是简单地把信息技术仅仅作为辅助教师教学的演示工具,而是要实现信息技术与物理教学的“融合”.突出人的地位,实现人与物化的信息之间、网络虚拟世界与现实世界之间的融合.其本质是指信息技术有机地与课程结构、课程内容、课程资源以及课程实施等融合为一体,成为课程的有机组成部分.信息技术与物理教学的整合,不是被动地纳入,而是主动地适应和变革课程的过程,信息技术与物理教学的整合,将会对物理这门课程的各个组成部分产生变革性影响和作用.
2信息技术与物理学整合在物理教学中的作用
以计算机为核心的信息技术与物理学的有机整合,会给现在的物理教学带来根本性的变革:使教学信息传输网络化、教学过程智能化、学习资源系列化、教学形式多样化.突破现有的教学结构、教学模式,改变传统教学的方式、方法.其在物理教学中的作用具体体现在以下几点:
2.1易于突出重点、突破难点,有利于激发学生的学习兴趣、培养想象力
许多物理知识比较抽象,不容易理解,这是造成物理难学的一个原因.例如运动电荷在磁场中所受到的洛伦兹力和电场的双重作用时,它的运动轨迹是怎样的?交流发电机是怎样工作的?在传统教学方式下只能描述,而且很难说清楚,学生也很难想象出那种情景来.但在新技术下,利用Flash制作的动画利用多媒体在屏幕上演示出来,学生一看,马上记住了它的运动情景和工作情景,建立起感性认识,难点随即被突破.类似的问题还有好多,如运动的合成与分解(飞机投弹),机械运动(地球绕太阳公转),光学(双缝干涉)等,这些内容既是教学的重点,也是难点.在传统教学方式下不易被突破,但在信息技术下的多媒体中,利用虚拟实验室,可以非常形象、直观地演示出来.在信息技术下,学生感受到的不再只是语音和静止的图像.由于多媒体技术把电视机的视、听功能和计算机的交互功能合二为一,产生一种图文并茂、丰富多彩的画面,进行多方位地刺激,这有利于知识的获取和保持,还有利于右脑的开发.实验心理学家赤瑞特拉曾经做过一个关于人类获取信息途径的实验.实验表明:人类获取的信息其中83%来自视觉,11%来自听觉.可见,视听功能在学生的学习中有重要的作用.另外,网络的应用,使学生做物理实验的机会更多,学生得到的信息会更多,更方便,能够弥补由于教师或地域文化的不同所造成的教学质量信息技术与中学物理教学整合模式的教学设计研究的差异,最大限度地做到资源共享,聆听名师的授课.所有这些都有利于激发学生学习物理的兴趣,使其产生强烈的学习欲望,从而形成学习动机.信息技术在物理教学中的应用,学生不但比较容易地理解知识,而且还有利于培养想象力.通过动画模拟物理动态图景,能大面积地提高学生的想象力,能使学生建立起正确的动态物理情景,特别是对培养时空和微观动态方面的想象力,作用十分明显.
2.2有利于因材施教和个性的培养,发挥学生的主体作用
在信息技术下,利用人工智能技术构建的导师系统能够根据学生的不同特点和需求进行教学和提供帮助.学生可以自主选择适合自己的和自己喜欢的内容和方式进行学习,甚至可以选择个别化教学策略;学生选择的空间会更大,更有利于教师个别指导.信息技术与物理教学的整合有利于学生主体性的发挥.在传统的教学过程中,教师是课堂的主宰.从教学内容、教学过程、教学方式到作业,都由教师决定,学生只是被动地听、写、记,学生缺乏学习的主动性.但在整合的情况下,学生可以按自己的学习情况来选择适合自己的学习内容.这有利于因材施教和个性培养.基于信息技术的物理教学更是动态的.在教学中,通过人-机,人-人交互,通过亲自做实验,让学生更主动地思考、探索、发现,感受获得知识的过程.现代信息技术环境下,教师的指导性活动和学生的自主参与性活动增多,学生在学习过程中充分体验到了作为学习主体的感受.
2.3有利于学生经历知识的产生和培养学生的合作精神
由于物理学是一门以实验为主的学科,所以许多知识都源于实验.但在传统情况下,学生很难亲自体验知识的产生过程.这是因为很难做到每人都能亲自做每一个实验,没有有利于体验的环境,交流主要发生在师生之间.但在信息技术与物理教学整合的情况下,却很容易做到这一点.利用网络提供的虚拟实验室及所提供的器材,学生可以做各种各样的实验,而且还可以发挥自己的想象力,构建新的实验.学生利用计算机网络可以完成合作的小组作业,学生合作的频率也增大,另外,计算机还可以扮演同伴角色等等.所有这些都有利于学生体验知识的产生和培养合作的精神.
2.4有利于培养学生的创新精神、实践能力和信息能力
创新能力、实践能力和信息能力(包括对信息进行获取、分析、加工利用和评价)是信息社会的人所必备的能力.在整合的情况下,教学方式、方法是新的,再加上网络所提供的丰富材料和方案,学生会利用多种手段和方法达到目的.在这种方式下训练,这对学生创新信息技术与中学物理教学整合模式的教学设计研究意识、创新能力和实践能力的培养十分有利.在整合的情况下,教与学是开放的.教师提出问题后要靠学生自己收集信息、分析信息和应用信息来完成.信息技术和网络为这些能力的发展提供了理想的环境.因特网是世界上最大的知识库、资源库.它拥有丰富的教育资源.而且这些都是按照符合人类联想思维特点组织起来的,适合学生基于自主发现、自主探索的探究性学习.这种学习方式有利于培养学生收集信息、分析和处理信息的能力.并由此发展和带动学生的思维能力、解决问题的能力、决策能力和交流能力的发展.
2.5有利于丰富学生的情感和减轻教师的工作强度
在传统教学方式下,交流主要发生在教师和学生之间,而且往往是教师对学生的单向交流居多.但在信息技术与物理教学整合的情况下,现代媒体能同时提供多方位的、双向的及时地交流.在交流中,教学内容是纽带,学生交流的对象和渠道都增多了.通过这种多向的互动,很容易丰富学生的情感、促进学生的情感发展.当教师和学生利用媒体教学时,教师的一些重复性体力劳动就会减轻.例如在物理复习课中利用CAI制作的课件能浓缩内容,突出重点、突破难点,提高效率;另外如备课、板书、作业等方面都可以得到减轻,使教师把更多的精力投放到设计教学、关注学生的发展和自身的提高等方面.
2.6有利于实现对教学信息最有效的组织与管理
信息技术中的多媒体系统具有超文本特性.超文本(Hypertext)是按照人的联想思维方式,用网状结构非线性地组织管理信息的一种技术.它可以管理文字、图形、动画、图象、声音、视频等其他媒体的信息.利用多媒体的这种性质可以实现对教学信息最有效地组织与管理,例如:可按教学目标的要求,把包含教学信息的各种教学内容组成一个有机的整体,例如在《超导及其应用》中,把教学目标用文字、电流流过导体发热的机理用fls演示,超导研究用图片和声音给以呈现,这样就实现了图、文、音、像并茂,能更好地达到教学目的.再如,按教学内容的不同,把包含教学信息的资料组成一个有机的整体加以呈现,如把练习题、习题、测验题、答案及解答的过程、相应的演示或实验等组合在一起,而且这种组合条理清楚,可以大大节省课堂的时间,提高效率.
2.7有利于开拓学生的视野
信息技术与物理教学的整合可以按照学生不同的基础与水平把相关学科的预备知识和开阔眼界的资料组成有机的整体,实施因材施教.这种做法在传统教学中很难做到,但有了多媒体的帮助,这一点很容易做到.
3信息技术与物理学整合下的教学模式
研究和实践信息与物理课程的目的在于构建现代教育技术支持下的整合的教学模式.经过近年来的不断努力,根据不同教学内容,结合教学实践过程,初步形成了整合下的教学模式的基本框架.
3.1教学设计的指导思想
(1)现代教育技术的支持下,尊重学习的主体,将学生的主体能动性与教师的主导性相结合.建构主义理论指出,学习是主体对知识的主动建构的过程,不是在外部刺激作用下形成反映的过程.因此学生学习的过程中的主体能动性对学习效果的影响起着决定性的作用;当学生在思维和操作遇到困难或阻碍时,教师应发挥引导作用,合理借助现代教育技术调动学生的学习主动性,引导学生进行主动的意义建构.(2)以提高学生的科学素质为核心,结合学生已经掌握的知识结构和能力基础,从知识与技能、过程与方法、情感态度与价值观等方面确定多元的物理课堂教学目标,并充分考虑到学生认知水平和认知风格的差异将教学目标分层.为学生设计能帮助有效理解新知识的“先行组织者”.(3)在教学过程中,利用传统媒体和现代教育技术媒体精心组织教学活动,充分利用现代教育技术作为集体演示工具、信息加工工具和协作组织工具,创造条件让学生积极主动的参与物理课堂教学的全过程.强化物理概念和物理规律形成过程和实际运用过程,在强调基础知识学习和基本能力训练的同时,重视创新精神和创造能力的培养.
3.2教学设计的一般过程
教学设计过程就是运用系统方法分析教育教学问题、确定教育教学解决方案检验和评价解决方案的过程.物理课堂教学的教学设计流程为:分析教学目标(确定教学内容或教学主题)协作学习环境设计评价方式设计强化练习设计分析学习者特征确定教学起点,设计组织者情景创设信息资源设计与提供自主学习策略设计结束.一般来说,教学要经过“感知—理解—概括”三个过程,这种模式就是在演示实验的基础上,用计算机模拟实验现象的物理过程,从而强化学生的表象,促进学生识别实验现象发生及变化的条件,然后再进行抽象概括,形成概念规律或找出物理现象的共同特征.此模式以此流程为基础可以有多种变式.例如,可以有多次演示实验和模拟实验,也可以利用计算机呈现问题情景、物理模型等作为补充.该模式的基本课程流程如图所示.
4教学案例
下面以《波的形成和传播》一节的教学为例,对这种模式进行探讨.
4.1教学目标
(1)知识与技能①知道波是怎样形成的②能分析波上各质点的运动③知道波是能量的一种传播形式(2)过程与方法①能优化和完善认知结构.②能掌握应用物理知识和物理思想解决实际问题的方法.(3)情感态度与价值观①培养学生的观察能力和分析能力②培养学生正确表述实验现象的能力③通过讨论培养学生合作学习的习惯,培养自信心
4.2学生分析
学习者是我校高二年级的学生,他们基础知识掌握的不很扎实,所以本节教学的起点为质点的振动和波的形成.
4.3教学方法情境导入式
4.4器材水波发生器、多媒体课件、实物投影仪
4.5教学过程
在医学护理中无菌技术的使用要求周围保持一个清洁宽敞的环境,在进行操作之前半个小时之内应该停止一切清扫活动,并减少除医护人员之外的一切人员的走动,避免周围环境尘土飞扬。在操作过程中应该保证操作台的清洁、无污染,在进行操作之前,要求护士对其进行全面的消毒处理“。
2操作前的准备工作
护士在无菌操作之前,应该将佩戴的各种饰品全部摘除,并对护士的指甲进行全面的检查消毒处理,按照临床护理的要求对手进行清洗和消毒,在操作过程中要求护士佩戴口罩。
3使用物品的准备
首先,应该对操作过程中使用的手套的包装、型号和大小进行全面的检查,对无菌治疗碗包的密封情况进行详细检查,查看其是否存在破损和返潮的现象,同时还应该对消毒条进行严格的消毒处理,看其是否在有效期内;其次,检查无菌持物钳包装是否存在破损的情况,无菌容器是否存在破损以及返潮的现象;再次,检查无菌溶液瓶El是否出现了松动的现象,整个瓶身是否存在损坏的情况,然后对容器内溶液的颜色、有无沉淀物、是否有絮状物以及是否澄清进行全面的检查,并保证容器内的溶液在有效期内使用;最后,检查棉签的使用期限,同时对消毒水的使用期限以及医用弯盘的清洁和干燥情况进行详细、全面的检查,在最大程度上保证操作过程中的无菌环境。
4操作过程
4.1无菌持物钳的使用方法
使用这种器械的主要目的是为了传递无菌材料和器械等,在使用过程中,正确的使用方法是,首先,将无菌钳包打开,将装置放置于操作台上,然后在标签上标注清楚打开的时间,在有效期内使用;其次,将标签贴于无菌持物钳的容器壁外侧,使用无菌持物钳时应该保证前端闭合向下,不能接触到容器的瓶口,使用完毕之后应该将持物钳迅速放人容器内,并把密封盖盖好。在加持远距离的无菌物品时,应该连同装持物钳的容器一起搬到距离物品较近的距离进行操作,在进行物品加持过程中应该将容器的瓶口盖紧,避免物品接触到容器的边缘。
4.2无菌包的使用方法
在使用无菌包过程中,首先,在打开无菌包过程中,手不能接触无菌包的内侧,用手轻轻的打开无菌包,然后将系带轻轻的放在操作台的一侧。在无菌包中,无菌治疗巾包内消毒指示条码是变色的。在使用无菌钳加持这些物品的过程中,无菌包内如果还存在没有使用的物品时,应该按照原来的包装重新包裹起来,无菌包系带都是横向结扎,其有效期在一天之内,在使用过程中应该将标签贴于无菌包的外侧。
4.3无菌容器的使用方法
在使用无菌容器的过程中,应该用手托住底部,从无菌容器内部加持物品,然后将盖子全部打开,这个过程中应该注意避免物品容器的边缘污染容器。物品取出后应该立即将容器的盖子盖住,使用过程中无菌容器的使用期限也是一天。
4.4无菌溶液的使用方法
舞蹈是一个享受艺术的过程,舞蹈教学是指舞蹈教师在指导学生练习舞蹈时,引导学生感受舞蹈所带来的文化魅力,激发学生对舞蹈表演的兴趣性,提高学生的艺术技能和文化素质水平,增强学生的舞蹈艺术表演力,使学生在进行舞蹈表演时更加投入的去表演。在舞蹈教学的过程中,舞蹈教师要重点发觉学生的独特之处,针对每个学生有不同是风格,制定相应的舞蹈技术进行教学,促使学生的独特情感与舞蹈技术相结合,学生也必须要根据已有的舞蹈风格体系和舞蹈表现形式去发现适合自身的舞蹈形式,努力将个人情感融入到舞蹈表演中,提升自己的舞蹈艺术表演能力。通过对学生进行不间断的舞蹈训练,使舞蹈基本动作成为每个舞者的基本能力,舞蹈教师不仅要培养学生感知艺术的能力,还要注重培养学生的创造力和想象力,使学生在练习舞蹈的过程中,开发和拓展自己的想象能力,为舞蹈表演动作赋予自己的理解,然后将自己的舞蹈意象添加到舞蹈表演中,进而对舞蹈表演有更加完美的诠释。从主观方面来看,学生通过将舞蹈表演动作和自身情感想象融为一体,就形成了自己独特的舞蹈艺术表演风格,从而推动了学生在舞蹈表演道路上的快速发展。
二、分析在舞蹈教学过程中的基本艺术原则
结合当代的舞蹈教学发展历史,在舞蹈教学过程中存在着很多的基本原则,这些原则主要是为了激励学生主动学习,在潜移默化中让学生真正的热爱上舞蹈。
(一)舞蹈教师必须要有严格的自我控制力,树立良好的教师形象,通过每一个舞蹈动作和舞蹈表演情节培养学生对舞蹈表演内容的感知能力,在一点一滴中,使学生在对舞蹈动作和舞蹈理论都能完全掌握,从而使学生能够形成以自我为主体的、系统的、完整的表演体系,提高舞蹈教学的效果。
(二)舞蹈教师不仅要指导学生学习舞蹈,更要鼓励学生在舞蹈领域要大胆创新,舞蹈艺术学科和其他的学科不同,支撑舞蹈艺术逐渐进步的力量是不断的创新和改革艺术内容。因此,舞蹈教师要摒弃传统的教学模式,不断的运用新型的教学方式,鼓励学生积极主动的参与舞蹈教学中,培养学生自我主动学习的态度,提高学生的舞蹈表演能力,鼓励学生自我创新是舞蹈教学中必须要遵循的原则。
三、探析如何在舞蹈教学中培养学生的艺术表演能力
(一)加强舞蹈基本功的训练:在舞蹈领域中,拥有坚实的舞蹈基本功是练习更高舞蹈动作的基础,没有最基本的舞蹈技术也就谈不上舞蹈表演力,因此,在舞蹈教学过程中,舞蹈教师必须要加强学生对舞蹈基本功的训练力度,使学生提高自己的柔韧性、灵活性和身体协调性等。基础的舞蹈训练是一个乏味的过程,而通过培养学生的艺术表演力,可以使学生领悟到每个基础动作所拥有的情感,使每个舞蹈动作都能拥有独特的灵魂,最终使学生能够将舞蹈动作做得完美,加强基础舞蹈动作的训练在培养学生艺术表演力中发挥着重要的作用。
(二)开发创新能力运用到舞蹈表演中:舞蹈艺术的魅力来源于舞蹈动作,而舞蹈动作又是舞蹈表演者利用对舞蹈的独特理解所编排的,因此,舞蹈教师必须培养学生对舞蹈动作的理解能力,提高学生对艺术的创新力和想象力,将自己对舞蹈动作的认知情感与舞蹈动作相结合,就重新组成了独特的舞蹈内容,舞蹈教师应该多开设一些类似舞蹈创编之类的活动,使学生积极参与到活动中,从而激发学生对舞蹈表演的兴趣性和积极性,使学生开发艺术的创新能力和想象能力,再加上对学生的情感认知培养,进而可以提高学生的舞蹈艺术表演力。
四、结语
数学可以简洁、系统的表述和论证物理概念和规律。数学自身具备有高度的抽象性,,丰富的思辨性和严密的逻辑性,是自然科学的基础。而对于物理来讲,特别是现代物理学,随着物理学的进步,其形式越来越复杂,内容越来越抽象,这些都要求必须借助于数学工具,此外,物理原理与物理概念表现的更为突出,它的表现形式就是量与量之间的关系,而这种量与量之间的关系就是通过测量,计算所得到的。数学的逻辑联系并不是孤立的,他适应于任何层次的特性和规律。物理学要想仅用各种概念与思想来解决问题是远远不够的,在具体的分析与解题计算过程中它必须要借助于数学工具。
二、数学逻辑方法在物理解题中的应用
数学思想方法解决物理问题的能力主要表现在两个方面:其一,分析法,通过归纳、概括、抽象化的方法,将物理现象与过程等物理问题转化为数学问题;其二,综合运用数学的方法,快速、准确的计算物理上的数据问题。物理问题的解决往往就需要分析法与综合法交叉使用,共同作用。因此,在解决物理问题中,数学逻辑方法的运用显得尤为重要,合理利用数学逻辑方法可以是物理现象、变化表现的更加直观,解答的过程更加简便。
三、函数知识在物理中的应用
函数思想是一种基本的数学思想,在所有的自然科学与社会科学研究中,都可以发现它的身影。对于物理来说,函数思想主要作用于分析、讨论、描述物理变化的规律。在实际的解题过程中,我们经常通过物理过程中的各个相关物理量之间的关系来建立函数关系,利用这一函数关系,描绘函数图像,通过函数定义与性质来讨论函数的特性,以此来加深对物理现象与物理规律的认识。