时间:2023-03-28 14:59:33
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇水电站设计论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
六百丈二级水电站位于安徽省石台县舒溪河上游的龙井河上,属于龙井河梯级开发项目,也是“十五”期间石台县农村水电电气化建设的骨干电源工程。该站是利用上游的六百丈一级水电站发电尾水,直接引入渠道至龙井河下游集中落差发电的引水式电站。六百丈一级站建有年调节水库,来水面积为18.1km2,总库容660万m3,兴利库容424万m3,装机容量2×800kW,具有不完全年调节性能,担任池州地区电网的调峰任务。
六百丈二级水电站的枢纽工程有:引水渠道、压力前池、压力钢管、厂房及升压站等。电站设计引用流量1.92m3?s,设计水头53.9m,总装机容量2×400kW,工程于2002年7月开工建设,2003年5月并网发电,总工期仅10个月。
2方案选择
六百丈二级水电站工程已于1997年经安徽省水利厅以皖水〔1997〕316号文批复了初设报告,同意兴建。但由于工程总投资较大,单位电能投资效益较差等原因,迟迟未能开工建设。
2001年11月,受石台县水务局委托,安徽省水电科技咨询中心水电技术咨询部会同石台县水务局勘测设计室,共同承担了该工程施工图的设计咨询任务。在本次设计的过程中,根据实际情况的变化以及从提高电站运行效益、降低工程造价、实现减员增效等方面的考虑,对原初步设计方案进行了一定的改进。
原初步设计文件中六百丈二级水电站是通过2910m渠道引至石台县七都镇查上桥附近,集中水头约61.39m,电站总装机为2×500kW,设计多年平均发电量341万kW·h。但通过实地勘察发现,该渠道后段占用较大范围的林场土地,设计征地赔偿较大,工程实施有一定的难度。故在本次设计中将渠道总长由原先的2910m,缩减至2081m,避开了林场土地,相应设计水头减少至53.9m,电站装机容量更改为2×400kW,设计多年平均发电量为240万kW·h。同时电站电气部分装置由高压改为低压,工程总投资由原先的718.86万元降至398.86万元,其中建筑工程总投资为169.12万元,机电设备及安装工程投资110.86万元(其中自动化监控系统投资20万元),金属结构安装工程投资38.55万元,临时工程、征地补偿费及其他费用80.33万元,主要设计参数比较(见表1)。
3渠道泥沙问题的解决
在我省山区小型水电站的建设过程中,尤其是低坝引水式电站,泥沙淤积问题非常严重,严重威胁小水电站的运行和使用效益。六百丈二级电站位于我省皖南山区,由于雨量丰富,常常有大量山坡上的泥沙被冲入渠道内,长期下去会影响渠道的输水能力,加快水轮机组的磨损和锈蚀,不利于电站的运行管理。
该工程引水渠道断面尺寸为2.0m×1.3m,且引水渠道较长,原先仅在压力前池设置拦沙坎和冲沙孔,根据类似经验,冲沙效果不太理想。后决定在渠道桩号1+730处设置沉沙池1座,尺寸为长10.0m,宽4.0m,前后渐变段长为1.5m,深0.7m。同时在渠道与压力前池衔接处增设拦污栅1座,栅条间距较压力钢管进水口处拦污栅尺寸稍大,主要用于拦截落入渠道的树枝、石块、动物尸体等。通过运行发现对泥沙有较好的沉淀作用,大大减轻了前池的工作负担。
4区间来水的利用
六百丈二级水电站属于中高水头的发电站,因此增加流量对增加电站的发电量,提高电站的发电效益有很大帮助。因此在设计中,在引水渠道渠首处建小型浆砌石挡水坝1座,坝顶为开敞式溢流,坝高2.5m,长10.1m,工程总投资仅1.02万元。引用六百丈一级电站和二级电站之间的区间来水约0.1~0.2m3?s,主要补充六百丈二级电站枯水季节的发电来水,有效提高了电站的发电效益和运行稳定性。
5自动化监控系统的设置
六百丈二级水电站厂房为地面式,厂房内安装2台HLD46-WJ-50型水轮机和2台SFW400-6?850型发电机。电站建成后通过35kV线路T接于六百丈一级电站至池州地区6510变电所的35kV输电线路上。
关键词:小水电站;设计;经验
1水轮机的选择
水轮机是水电站一个十分重要的设备,水流的动能和势能转换成机械能就是通过水轮机来实现的。水轮机选择合理与否,直接影响到机组的效率和运行的安全性、经济性。
1.1机组台数的选择
农村小水电站机组台数与电站的投资、运行维护费用、发电效益以及运行人员的组织管理等有着密切的关系。通过多年设计和运行经验表明:农村小水电站机组台数一般为1~4台,且型号应尽量相同,以利于零部件通用和维修管理方便,其中每座电站2台机组居多。
1.2水轮机型号的选择
水轮机型号的选择合理与否,直接影响到水轮机的运行效率、汽蚀和振动等。选择型号时,既要考虑水轮机生产厂家的技术水平和运输的方便程度,又要确保水轮机常处于较优的运行工况,即尽量处于水轮机运转特性曲线图的高效区。尤其是机组运行时,水头的变化不要超过水轮机性能表的水头范围,否则会加剧水轮机汽蚀和振动,降低水轮机效率。
1.3机组安装高程的确定
水轮机的安装高程不能超过水轮机允许的最大吸出高度,否则会引起水轮机转轮的汽蚀、振动等不良现象,因而缩短机组的运行寿命。
(1)卧式机组:安=Z下+hs-/900-D/2
(2)立式机组:安=Z下+hs-/900
式中Z下——尾水渠最低水位(m);
hs——水轮机理论吸出高度(m),查水轮机应用
范围图及hs=f(H)曲线;
D——水轮机转轮直径(m);
——水电站厂房所在地的海拔高程(m)。
为了消除或减轻水轮机汽蚀,可将计算出的安降低0.2~0.3m确定安装高程。
2电气主接线的拟定
小水电站的电气主接线是运行人员进行各种操作和事故处理的重要依据之一。农村小水电站装机容量往往有限,一般装机台数不超过4台,相应电站的电压等级和回路数以及主变的台数都应较少。考虑到小水电站(尤其是单机100kW以下的微型电站)的机电设备供应比较困难,运行和管理人员的文化、业务素质普遍较差,从进站到熟练掌握操作、检修、处理故障及优化运行等也有一个过程。因此,农村小水电站的电气主接线在满足基本要求的前提下,应力求采用简单、清晰而又符合实际需要的接线形式。
对于1台机组,宜采用发电机—变压器组单元接线;对于2~3台机组,宜采用单母线不分段接线,共用1台主变;对于4台机组,宜采用2台主变用隔离开关进行单母线分段,以提高运行的灵活性。
3电气测量及同期装置
并入电网运行的小水电站电气测量应包括:三相交流电流、三相交流电压(使用换相断路器和1只电压表测量三相电压)、有功功率、功率因数、频率、有功电能、无功电能、励磁电流和励磁电压等的监视和测量。发电机的测量、监视表计、断路器、互感器及保护装置等装在控制屏上(发电机控制屏);电网的表计、断路器、同期装置等装在同期屏上(总屏)。
保护装置
农村小水电站主保护装置的配置应在满足继电保护基本要求的前提下,力求简单可行、维护检修方便、造价低及运行人员容易掌握等。
4.1过电流保护
单机750kW以下的机组,可以采用自动空气断路器的过电流脱扣器作为过流及短路保护,其动作整定值可以通过调整衔铁弹簧拉力来整定,整定值一般为发电机额定电流的1.35~1.7倍。为了提高保护的可靠性,还可采用过流继电器配合空气断路器欠压脱扣器作过流及短路保护,继电器线圈电源取自发电机中性点的1组(3只)电流互感器,继电器动作值亦按发电机额定电流的1.35~1.7倍整定。
原理:当发电机出现短路故障时,通过过流继电器线圈的电流超过其动作值,过流继电器常闭接点断开,空气断路器失压线圈失电而释放,跳开空气断路器主触头,切除故障元件——发电机。
4.2欠压保护
当电网停电时,由于线路上的用电负荷大于发电机容量,此时电压大幅度降低,空气断路器欠压线圈欠压而释放,跳开空气断路器,以防电网来电造成非同期并列。
4.3水阻保护
当发电机因某种原因(如短路、长期过载、电网停电等)突然甩负荷后,机组转速会迅速升高,这种现象叫飞逸。如果不及时关闭调速器和励磁,可能造成事故。一般未采用电动调速的农村小水电站可利用三相水阻器作为该保护的负荷。
水阻器容量按被保护机组额定功率的70%~80%左右考虑。如果水阻容量过大,机组甩负荷瞬间,将对机组产生较大的冲击电流和制动力,影响机组的稳定,严重时可能造成机组基础松动。反之,如果水阻容量过小,达不到抑制机组飞逸转速的目的。水阻器采用角钢或钢板制成三相星型、三角型均可。
对于单机125kW及以下的电站,水阻池内空,以长为机组台数×(0.7~1)m,宽为(0.7~1)m,深为0.6~0.8m为宜,同时考虑机组容量大小,应在短时间内(如3~5min)不致于将池中的水煮沸。
在调试水阻负荷大小时,应在水中逐渐施加水阻剂,调试水阻负荷,直到达到要求为止。
4.4变压器过载、短路保护
变压器高压侧采用跌落式熔断器(或SN10-10型少油断路器)作过载、短路保护。运行经验表明,额定电压为6~10kV的跌落式熔断器只能用在560kVA及以下的变压器,额定电压为10kV的跌落式熔断器只能用在750kVA及以下的变压器。当变压器容量超过750kVA时,应采用油断路器。跌落式熔断器熔丝按下列公式选择:
当Se<100kVA时,熔丝额定电流=(2~2.5)×高压侧额定电流;当Se≥100kVA时,熔丝额定电流=(1.5~2)×高压侧额定电流。
4.5变压器的防雷保护
关键词:小水电站;设计;经验
1水轮机的选择
水轮机是水电站一个十分重要的设备,水流的动能和势能转换成机械能就是通过水轮机来实现的。水轮机选择合理与否,直接影响到机组的效率和运行的安全性、经济性。
1.1机组台数的选择
农村小水电站机组台数与电站的投资、运行维护费用、发电效益以及运行人员的组织管理等有着密切的关系。通过多年设计和运行经验表明:农村小水电站机组台数一般为1~4台,且型号应尽量相同,以利于零部件通用和维修管理方便,其中每座电站2台机组居多。
1.2水轮机型号的选择
水轮机型号的选择合理与否,直接影响到水轮机的运行效率、汽蚀和振动等。选择型号时,既要考虑水轮机生产厂家的技术水平和运输的方便程度,又要确保水轮机常处于较优的运行工况,即尽量处于水轮机运转特性曲线图的高效区。尤其是机组运行时,水头的变化不要超过水轮机性能表的水头范围,否则会加剧水轮机汽蚀和振动,降低水轮机效率。
1.3机组安装高程的确定
水轮机的安装高程不能超过水轮机允许的最大吸出高度,否则会引起水轮机转轮的汽蚀、振动等不良现象,因而缩短机组的运行寿命。
(1)卧式机组:安=Z下+hs-/900-D/2
(2)立式机组:安=Z下+hs-/900
式中Z下——尾水渠最低水位(m);
hs——水轮机理论吸出高度(m),查水轮机应用
范围图及hs=f(H)曲线;
D——水轮机转轮直径(m);
——水电站厂房所在地的海拔高程(m)。
为了消除或减轻水轮机汽蚀,可将计算出的安降低0.2~0.3m确定安装高程。
2电气主接线的拟定
小水电站的电气主接线是运行人员进行各种操作和事故处理的重要依据之一。农村小水电站装机容量往往有限,一般装机台数不超过4台,相应电站的电压等级和回路数以及主变的台数都应较少。考虑到小水电站(尤其是单机100kW以下的微型电站)的机电设备供应比较困难,运行和管理人员的文化、业务素质普遍较差,从进站到熟练掌握操作、检修、处理故障及优化运行等也有一个过程。因此,农村小水电站的电气主接线在满足基本要求的前提下,应力求采用简单、清晰而又符合实际需要的接线形式。
对于1台机组,宜采用发电机—变压器组单元接线;对于2~3台机组,宜采用单母线不分段接线,共用1台主变;对于4台机组,宜采用2台主变用隔离开关进行单母线分段,以提高运行的灵活性。
3电气测量及同期装置
并入电网运行的小水电站电气测量应包括:三相交流电流、三相交流电压(使用换相断路器和1只电压表测量三相电压)、有功功率、功率因数、频率、有功电能、无功电能、励磁电流和励磁电压等的监视和测量。发电机的测量、监视表计、断路器、互感器及保护装置等装在控制屏上(发电机控制屏);电网的表计、断路器、同期装置等装在同期屏上(总屏)。
4保护装置
农村小水电站主保护装置的配置应在满足继电保护基本要求的前提下,力求简单可行、维护检修方便、造价低及运行人员容易掌握等。
4.1过电流保护
单机750kW以下的机组,可以采用自动空气断路器的过电流脱扣器作为过流及短路保护,其动作整定值可以通过调整衔铁弹簧拉力来整定,整定值一般为发电机额定电流的1.35~1.7倍。为了提高保护的可靠性,还可采用过流继电器配合空气断路器欠压脱扣器作过流及短路保护,继电器线圈电源取自发电机中性点的1组(3只)电流互感器,继电器动作值亦按发电机额定电流的1.35~1.7倍整定。
原理:当发电机出现短路故障时,通过过流继电器线圈的电流超过其动作值,过流继电器常闭接点断开,空气断路器失压线圈失电而释放,跳开空气断路器主触头,切除故障元件——发电机。
4.2欠压保护
当电网停电时,由于线路上的用电负荷大于发电机容量,此时电压大幅度降低,空气断路器欠压线圈欠压而释放,跳开空气断路器,以防电网来电造成非同期并列。
4.3水阻保护
当发电机因某种原因(如短路、长期过载、电网停电等)突然甩负荷后,机组转速会迅速升高,这种现象叫飞逸。如果不及时关闭调速器和励磁,可能造成事故。一般未采用电动调速的农村小水电站可利用三相水阻器作为该保护的负荷。
水阻器容量按被保护机组额定功率的70%~80%左右考虑。如果水阻容量过大,机组甩负荷瞬间,将对机组产生较大的冲击电流和制动力,影响机组的稳定,严重时可能造成机组基础松动。反之,如果水阻容量过小,达不到抑制机组飞逸转速的目的。水阻器采用角钢或钢板制成三相星型、三角型均可。
对于单机125kW及以下的电站,水阻池内空,以长为机组台数×(0.7~1)m,宽为(0.7~1)m,深为0.6~0.8m为宜,同时考虑机组容量大小,应在短时间内(如3~5min)不致于将池中的水煮沸。
在调试水阻负荷大小时,应在水中逐渐施加水阻剂,调试水阻负荷,直到达到要求为止。
4.4变压器过载、短路保护
变压器高压侧采用跌落式熔断器(或SN10-10型少油断路器)作过载、短路保护。运行经验表明,额定电压为6~10kV的跌落式熔断器只能用在560kVA及以下的变压器,额定电压为10kV的跌落式熔断器只能用在750kVA及以下的变压器。当变压器容量超过750kVA时,应采用油断路器。跌落式熔断器熔丝按下列公式选择:
当Se<100kVA时,熔丝额定电流=(2~2.5)×高压侧额定电流;当Se≥100kVA时,熔丝额定电流=(1.5~2)×高压侧额定电流。
板桥电站为在建山区小型水电站,设计正常工作水头为110米,是典型的高水头小型水电站,电站明钢管(光滑管)结构稳定性分析在山区高水头小型水电站压力钢管结构稳定性分析中具有很好的代表性。
一、初拟压力钢管内径
已知Q设=1.4m3/s,取V经为3.5m/s
即:D==0.713m
按《水利发电》中介绍的经验公式:
D=7√(1.03Qmax/H)=0.816m
式中:Qmax设计正常引用流量
H毛水头
为计算方便,取D=800mm作为试算内径。
板桥电站压力钢管纵断面图
二、水损计算
1)进口水头损失
h1=Σ·=0.024m
式中:Σ取0.05
V===3.11m/s
2)拦污栅水头损失
h2=ζ·=0.066m
式中:ζ=KIβ·()1.33+β2()1.33Isin2=1.94
V===0.816
3)管道水损
管中流速:V==Q设/=2.78m/s
流速水头:=0.394m
2#镇墩弯管末端至前池钢管起点:
=90L1=130.974m
C=R1/6=()1/6=68.83m12/s
入==0.0165
hf1=入··=1.064m
hj1=(ζ1+ζ2+ζ3+ζ4)=0.276m
式中:ζΣ11#弯管水损系数为0.1
ζ22#弯管水损系数为0.1
ζ3平板门槽水损系数为0.4
ζ4前池弯管水损系数0.1
即:hw1=hf1+hj2=1.34m
2#镇墩弯管末端至岔管轴线交点段:
L2=69.747m入=0.0165
hf2=入··=0.567m
hj2=(ζ1+ζ2)=0.335m
式中:ζ1岔管局部水损系数为0.75
ζ23#弯管局部水损系数为0.1
Hw2=hf2+hj2=0.902m
岔管轴线交点中心O点至支管渐变段
L3=1.5mD=800入=0.0165
V==1.39m/s
=0.0975
hf3=入··=0.003m
支管渐变段(D800—D500)
Ď=650mmŪ=2.48m/s
D1=800mmD2=500mmV1=1.39m/s
V2==3.57m/sC2=()1/6=63.63m1/2/s
入==0.0193Q取50L4=1.715m
hf4=入··=0.04m
hj4=ζ.=0.004m
式中ζ=0.025/(8sim)=0.072
hw4=hf4+hj4=0.044m
渐变段末端至闸阀末端段
L5=4.675mD=500mmV2=3.57m/s入=0.0193
hf5=入··=0.117m
hj5=(ζΣ1+ζ2)=0.32m
式中:Σ1为1350弯管水损系数
(ζ1=I0.131+0.1632()7/2I())1/2=0.0936
取p=1.96/mR=2.0mQ=450)
水损系数ζ2=0.4
hw5=hf5+hj5=0.437m
即前池进口至2#镇墩湾管末端
H净1=1346.45-1.34-1261.53=83.58m
岔管轴线交点O处
H净2=1346.45-1.34-0.902-1229.985=114.263m
支管闸门未端
H净3=1346.45-1.34-0.902-0.003-0.044-0.437-1229.842
=113.922m
工作净水头
H净=123.922—1.5=112.422m
三、水击压力计算
1管壁厚度拟定
水电站(8-5)式;δ=γHD/2φ[σ]
H=123.922m
φ=0.85
[σ]=127.5*103*0.75KPa
取8mm计算厚度,再考虑锈蚀等原因,各管段壁厚取值如下:
Ⅰ#δ=10mmD=0.8mV=2.78m/s
L1=130.974m
Ⅱ#δ=12mmD=0.8mV=2.78m/s
L2=69.747m
Ⅲ#δ=12mmD=0.8mV=1.39m/s
L3=1.5m
Ⅳ#δ=12mmD=0.65mV=2.48m/s
L4=1.715m
Ⅴ#δ=12mmD=0.5mV=3.57m/s
L5=4.675m
1)判别水击类型
取Ts=5sα0取1435m/s
a1==1070m/s
a2==1111m/s
a3==1111m/s
a4==1156m/s
a5==1206m/s
②ā=
=1087.12m/s
V最大==2.785m/s
ρ==1.247
Q==0.0956
水击波的相tΥ==0.383
TΥ<Ts=5s故发生间接水击
导叶由全开到全关时
I始=1pI始=1.247σ=0.0956
查图表知,将产生末项正水击
I始=0.5pI始=1.345×0.5=0.6725
即查表知,发生第一相水击
3正水击压力升高值
Z间末==0.101
闸阀未端水击压力升高值
Δh1闸末=Z间末H0=0.101×123.922=12.516m
H01=123.922+12.516=136.438m
按直线分布规律:
岔管轴线交点O处
Δh岔0=×Δh闸末=20.732m
H02=114.263+12.042=126.305m
2#镇墩弯管轴线交点处
Δh2#=×Δh闸末=7.83m
H03=83.58+7.85=91.411m
末跨1-1断面
Δh1-1=×Δh闸末=11.69m
H1-1=111.705+11.69=123.395m
末跨2-2断面
Δh2-2=×Δh闸末=11.514m
H2-2=110.305+11.514=121.819m
本计算只对钢管作结构计算,在进行压力钢管、线路布置时已满足规范规定管线高于最低压力线的要求,故不需作负水击值计算。
四、明钢管(光滑管)结构稳定分析
1、钢管稳定校核
f=0.01-0.012m>==0.0062
故钢管稳定,不需设置刚性环。
末跨钢管布置图
2、钢管未跨跨中断面受力分析(1—1)断面
1)1—1断面环向力计算
P=rH=9.8×123.395=1209.271(Kpa)
式中:r—水容重9.8KN/m3
H—包括水击升高值在内的净水头。
2)1—1断面法向力计算
管身米重:g管=πDδγОγ=3.14×0.8×0.012×7.85×103×9.8
=2.31(kN/m)
每米长水重:g水=πD2γ=4.92(kN/m)
支墩承受的法向力η=(g管+g水)LcoS2
=(2.31+4.92)×6×coS28.001700
=38.3(kN)
3)轴向力计算
A1=gLSina=2.31×60.885×Sm28.0017=66.03(kN)
式中L为未段钢管长度
温度升高时,9个支墩对管壁的磨擦力为:
A3=(g管+g水)*L*9*fО*coSa
=(2.31+4.92)×6×9×0.5×coS28.00170
=172.357(kN)
伸缩节接头管壁受的车向水压力为:
A7=πDδ¹γH=3.14×0.8×0.012×9.8×93.101=27.503(kN)
式中δ¹—伸缩节处管壁厚度0.012m
H—伸缩节处水头93.101m
温度升高时,伸缩节接头填料对管壁的磨擦力为:
A8=πDb1fγ¹H¹=3.14×0.8×0.1×0.3×9.8×93.101
=68.757(kN)
3、未跨中1—1断面应力校核
1)径向内水压力在管壁中产生的环向应力:
σz1=γR/f(H-Rcos2cosφ)(Kpa)
式中:γ—水容重9.8KN/m3
R—钢管内半径0.4m
H—1-1断面中心水头123.395m
φ—管壁某计算点半径与垂直线的夹角
在管顶(φ=0)处
σz1=(123.395-0.4cos28.00170cos00)
=40193(Kpa)
在管水平轴线(φ=1800)处
σz1=(123.395-0.4cos28.00170cos1800)
=40424(Kpa)
2)法向力在管壁中产生的抽向力σX1
σX1=-cosφ=
=-
=-3811(Kpa)
=3811(Kpa)
式中:M—1-1断面弯矩
W—钢管横断面条数
3)轴向力在横断面上产生的轴向应力σX2
∑А=А1+А3+А7+А8=66.03+172.357+27.503+68.757
σX2=-=-=-11101(Kpa)
4)内水压力在管壁产生的径向压应力为
σY=-p=-rcA-rcosφ1=-9.8[123.395-0.4cos28.00170cos]
=(Kpa)
5)跨中断面1-1的剪应力ZX2
Q=0即ΤX2=0
6)跨中断面1-1的复合应力校核
总轴向应力
σX=σX1+σX2=-11101=(Kpa)
总环向应力
σZ=(Kpa)
总径向应力
σX=(Kpa)
各向剪应力均为零
根据规范要求,采用第四强度理论进行强度校核。
σ=
≤φIQI=0.85×127.5×103=108375(Kpa)
φ=00处
σ=
=49690Kpa<108375Kpa符合规范要求
φ=1800处
σ=
=44984Kpa<108375Kpa符合规范要求
4、未跨支座附近2-2断面应力校核:
1)2-2断面径向内水压力生产的环向应力为:
σz1=(H-rcosacosφ)
式中:H—2-2断面中心水头129.995m。其余符号同前。
在管顶(φ=00)处:
σz1=(129.995-0.4cos28.00170cos00)=42349(Kpa)
在管水平轴线(φ=900)处:
σz1=(129.995-0)=42465(Kpa)
在管底(φ=1800)处:
σz1=(129.995-0.4×cos28.00170cos1800)
=42580(Kpa)
2)轴向力在横断面上产生的轴向应力(同跨中断面):
σx2=-11101(Kpa)
3)法向力在管壁中产生的抽向力
σX1=-cosφ=0(Kpa)(φ=900)
4)内水压力在管壁产生的径向压应力为:
σY=-p=-9.8(129.96-0.4cos28.00170cosφ)=-1274(Kpa)(φ=900)
5)断面2-2的剪应力:
剪力
Q=(g管+g水)Icosa=19.15
剪应力
Tx2=sinф=sinф=1270(Kpa)
6)支座断面2-2的复合应力校核:只需校核ф=900处的应力即可,因ф=00、1800处应力以跨中断面(1-1断面)控制。
总轴向应力σX=σX1+σX2=-11101Kpa(ф=900)
总环向应力
σz=42465Kpa(ф=900)
总径向应力
σY=-1274Kpa(ф=900)
剪应力
Tx2=1270Kpa
TxY=0
Txz=0
根据第四强度理论,校核2-2断面复合应力(ф=900)
σ=
=49391(Kpa)<φ[σ]=108375(Kpa)
符合规范要求。
五、结论
通过计算分析,电站明钢管结构是符合稳定要求的。结合其它已建工程的设计工作,笔者主要有以下几点体会:
1.对于无压引水式高水头小型水电站,工作水头大于150米的明钢管,导叶由全开到全关时发生第一相水击;工作水头大于150米的明钢管,导叶由全开到全关时将产生末相正水击。
2.对于山区小型水电站,根据实际设计工作经验,《水工设计手册》压力钢管内径拟定公式仅实用于单机组情况,对于供多机组的压力钢管按《水工设计手册》公式拟定内径,实践证明其计算值一般都有点偏小。
甘溪三级水电站位于浙江省临安市甘溪中游,是甘溪梯级开发的第三级水电站,属典型的中水头引水式电站。工程枢纽主要由渠首枢纽、无压输水隧洞、前池、高压管道、发电厂房和尾水渠组成。电站装机容量2×400kW,设计水头34.6m,单机最大过流量1.5m3/s。多年平均发电量223万kW·h,年利用小时数2788h。电站出线T接至10kV甘溪线并网,输电线路长度为500m。
甘溪是天目溪的一条支流,上游建有甘溪一级水电站和甘溪二级水电站。甘溪一级水电站装机容量2×160kW,坝址控制流域面积19.6km2,水库总库容214万m3。甘溪二级水电站装机容量3×500kW,利用集雨面积33.5km2。甘溪流域内雨量充沛,多年平均降雨量1625mm。多年平均气温15.6℃,极端最高气温41.6℃,极端最低气温-13.2℃。
甘溪三级水电站渠首枢纽位于甘溪二级水电站尾水出口下游20m处,坝址控制流域面积40.3km2,区间引水集雨面积2km2。多年平均流量1.18m3/s,年径流量3721万m3。坝址设计洪水流量386m3/s(P=10%),校核洪水流量522m3/s(P=3.33%)。工程区地质条件简单,出露基岩为奥陶系上统於潜组页岩和砂岩,河床处砂砾石覆盖层厚1~3m,山坡处覆盖层厚0.5~2m,两岸台地覆盖层较厚。河道中水质清澈,泥沙含量很少。
2方案选择
2.1坝址选择
甘溪三级水电站是甘溪二级水电站的下一个梯级电站,坝址选择的原则为:1)满足与上级电站尾水位的衔接;2)满足进水闸和溢流堰的布置要求;3)不淹没耕地和房屋;4)使渠首枢纽工程造价最低。根据地形地质条件,坝址选定在甘溪二级水电站尾水出口下游20m处,该段河床宽约35m,坝型采用浆砌石溢流坝。
2.2厂址选择
厂址位于潘家村乌浪口,电站尾水排入支流乌浪溪中。设计中对上厂址方案和下厂址方案进行比选,下厂址方案与上厂址方案相比,水头增加3.6m,电能增加23万kW·h,效益增加9万元,投资增加25.2万元,差额投资经济内部收益率35.5%,故选用下厂址方案。
2.3无压输水系统方案选择
无压输水系统有隧洞方案和明渠结合隧洞方案两种布置形式,两方案的轴线长度基本相同。明渠结合隧洞方案是进水闸后接长度为425m的浆砌石明渠,其后仍为隧洞。经过比较,隧洞方案较明渠结合隧洞方案减少投资6.2万元,隧洞方案日常维护工作量少,且不占林地,故无压输水系统选用隧洞方案。
3主要建筑物
3.1渠首枢纽
渠首枢纽由拦河堰、进水闸和拦沙坎组成。拦河堰为折线型浆砌块石实用堰,溢流段长31.1m,堰顶高程224.63m,最大堰高2.23m,堰顶宽1.5m,上游面垂直,下游面坡度1∶2。堰体采用M7.5浆砌块石砌筑,外包30cm厚C20混凝土。由于上下游水位差小,溢流堰仅设置4m长的浆砌块石护坦来消能,堰体防渗采用混凝土防渗墙。
进水闸位于甘溪的左岸,紧邻甘溪二级水电站的进厂公路,采用侧向引水,引水角15°。设置1孔宽2m的闸孔,闸底板高程223.35m,后接无压隧洞。进水闸为胸墙式结构,闸室长4.46m,设1道拦污栅和1扇铸铁工作闸门,手动螺杆启闭机启闭,启闭机平台高程227.70m。由于河道中泥沙很少,且大部分淤积在上游的水库中,渠首枢纽不设置排沙设施,进水闸前设有拦沙坎,拦沙坎前考虑人工定期清沙。
3.2无压输水隧洞
进水闸至前池之间为无压隧洞段,长2354.947m。根据地形条件及施工要求,无压隧洞段由1号隧洞、2号隧洞、3号隧洞和1号钢筋混凝土埋管、2号钢筋混凝土埋管组成,1号隧洞长124.100m,2号隧洞长855.485m,3号隧洞长1315.362m。1号隧洞、2号隧洞、3号隧洞之间由钢筋混凝土埋管连接,1号钢筋混凝土埋管长50m,2号钢筋混凝土埋管长10m。隧洞沿线分布的岩性为奥陶系上统於潜组砂岩、页岩互层,上覆岩体厚度30~90m,整体性较好,属Ⅱ~Ⅲ类围岩。隧洞断面采用城门洞型,开挖断面宽2.4m,高2.65m(其中直墙高1.45m,矢高1.2m,半径1.2m),纵坡为1?2000,洞底采用10cm厚的C15素混凝土找平。隧洞进出口及断层地段采用钢筋混凝土衬砌,衬砌厚度30cm。连接段钢筋混凝土埋管采用箱型结构,净宽1.8m,高2.05m,壁厚0.3m。
在桩号2+139.35处设置溢流支洞,把进入隧洞多余的来水排入支流乌浪溪中。溢流支洞长65m,断面呈城门洞型,开挖断面开挖宽2.4m,高2.65m。
3.3前池及压力管道
前池布置在厂房上游的山坡上,采用钢筋混凝土结构,总长21.2m。正常运行水位223.2m,最低运行水位221.9m,前池工作容积94.1m3,边墙顶高程224.7m。前池进水口前设拦污栅和事故钢闸门。
压力钢管布置在山坡中开挖出的管槽内,全长52.68m。因设计引用流量不大,压力钢管采用一管二机的供水方式,在厂房外45°卜形分岔成两支管。选定主管管径1.2m,钢板壁厚12mm。支管与蝶阀同直径,管径0.8m,钢板壁厚8mm。压力钢管在桩号管0+021.44处设镇墩,每7米增设支墩,前池压力墙及镇墩后各设1个伸缩节。钢管槽底宽2.6m,左侧布置踏步,以便于压力钢管的日常维护。
3.4发电厂房
发电厂房位于潘家村山麓下,厂房基础全部座落在基岩上,根据机电设备的布置,采用地面式厂房。厂房内布置2台卧式水轮发电机组,机组轴线与厂房纵轴线平行,机组间距7.4m,上游侧布置蝴蝶阀和控制保护屏,安装间位于厂房的右端。发电机层地面高程188.64m,安装场地面高程189.60m。因发电机层与安装场之间存在高差,为便于设备的安装和检修,厂房内设1台5t的单轨手动葫芦,架设于屋面大梁下。厂房采用混凝土排架结构,砖墙围护,长22.0m,宽8.7m。
阿勒泰二级水电站位于新疆阿勒泰地区克兰河上,为引水式电站,1982年建成发电。原方案设计上游水位936m,下游水位883.6m,水泥管直径1.2m,长度222m。压力管一管二机,岔管直径800mm。前池有市自来水公司的取水口,尾水出口是T型。电站总装机容量为4×800kW,水轮机型号为HL220—WJ—50,设计水头50m,最小水头49m,最大水头52m,额定出力870kW,设计流量2m3/s,额定转速1000r/min,飞逸转速2040r/min,机组利用小时数6846h,保证出力600kW。发电机型号为SFW118/44—6,额定功率800kW,额定电压6.3kV,额定电流91.7A,额定转速1000r/min,满载励磁电压38V,满载励磁电流330A,绝缘等级为B级,频率50Hz,相数为3相,功率因数0.8(滞后),定子接法为Y型。机组整体结构为三支点结构,水轮机通过联轴器与发电机连接。
2二级水电站存在的问题
(1)电站自建成投运以来,引水渠道长4.56km,基本沿山坡布置,临外坡为悬空状态,采用填方渠道,其中2.5km渠道渗漏严重,每年都要大、小维修多次,维护费用较大,发电效率低。(2)电站压力钢管为覆土埋设,内径1.2m,长186m,受当时技术、工艺水平的制约,防腐处理措施不够,锈蚀严重,经现场实测局部厚度仅为8mm,比原设计12mm锈蚀3~5mm。由于年久失修,在20世纪90年代,3、4号机组压力管道曾出现过爆管现象,给电站的安全运行带来了一定的隐患。(3)尾水渠采用T型,长度为300m。由于多年疏于维护,尾水渠产生了淤积,致使电站运行尾水位抬高,降低了有效使用水头,影响了机组出力。(4)原水轮机型号为HL220—WJ—50,套用定型产品,不能满足电站水工设计要求,存在机型老化、运行工况严重偏离、制造工艺落后等(机组实际出力700kW)一系列问题,造成水轮机气蚀严重、效率低下、振动噪音大、出力不足。(5)由于地域关系,河道泥沙含量较大,水轮机蜗壳、导叶、顶盖、底环等过流部件磨损严重,经测量蜗壳局部厚度仅8~9mm,比原设计少4~5mm。密封结构未考虑多泥沙河流运行的实际情况,漏水量大,无法正常使用。(6)机组制动方式为老式单侧人工手动操作,无法满足安全运行的需求。(7)原电机设计、工艺水平落后,机组绝缘等级为B级,电机绝缘等部件已接近使用年限,存在较大的安全隐患。
3二级水电站技术方案设计的选择
根据水工建筑目前现状和河道来水量水文资料以及上、下游流量变化情况,经复核计算,确定对水轮机、发电机等部件进行系统改造,使原机组单机容量从700kW提高到900kW,发电量提高29%左右。
3.1机组参数的选
根据电站实测参数,阿勒泰二级电站毛水头为52.4m。考虑到本次改造水工部分的改进,水头与流量均有一定的富余,新机组设计水头按51m、引用流量按2.5m3/s进行设计计算。改造时充分考虑了电站吸出高度、引用流量、结构尺寸、布置形式、水力参数等各项技术指标的匹配性(见表1)。
3.2水轮机改造
根据电站现有水力参数,适合本次电站改造用的转轮有D74、A551、D41、A616等。通过对比,A616机组具有效率高、气蚀性能好、超发能力强、运行范围大等特点,故推荐采用A616转轮。(1)电站水工建筑前期改造升级完后,水头及流量均比以前有所增加,本次新转轮制造在满足现有结构尺寸空间的前提下,通过选用性能优良的模型转轮达到了增容增效的目的;新转轮在选型上留有较大的余量,没有过于追求水轮机效率,采用效率修正-2%,可保证增容出力要求。(2)针对电站泥沙含量较大的问题,转轮叶片及下环采用性能优良的0Cr13Ni5Mo不锈钢材料制作,并在转轮上冠处开设减压孔以减小推力轴承所承担的水推力。(3)机组尾水部分采用无尾水接管结构,通过变径尾水弯管直接与尾水锥管进行连接,减少了电站的改造费用。(4)蜗壳、导水机构、密封等部件重新进行制作。顶盖、底环及导叶配合部位加设不锈钢抗磨板,提高其抗磨蚀能力。导叶轴承套采用新型高分子材料制作,该轴承使用温度为-50~110℃之间,老化寿命大于50a,最大静载荷可达70MPa,具有耐磨程度高、承载能力大、拆装方便等特点。(5)由于电站泥沙含量较大,密封磨损严重,本次改造密封采用间隙、迷宫加盘根的多密封结构,有效地控制了机组漏水量(见图1)图1密封改造示意(6)刹车装置采用油刹方式,通过制动器与调速器之间的管路连接,实现对机组的制动。
3.3发电机改造
(1)更换定、转子线圈。线圈按F级制作,原B级允许温升80K,F级为105K。另外,通过更换绝缘材料,提高发电机绝缘耐热温度,达到增容改造的目的。(2)定子线圈双层叠绕组结构,F级绝缘,导线采用单丝双膜优质薄膜自粘性铜扁线(原机组采用玻璃丝线),对地绝缘为环氧云母带连续绝缘,并经热模压成型,再经防电晕工艺处理;整体机械强度好,绝缘性能优良,增加了定子线圈匝间可靠性,满足了电站的使用要求。(3)原发电机型号为SFW118/44—6,通过计算定子线规可放大8%,转子线规可放大9%,如此一来,可有效降低电机温度,以达到增加容量的目的。(4)转子线圈重新制作时,采用F级绝缘材料,线圈用扁铜带绕制而成,匝间用环氧坯布绝缘,首末匝用云母带及无碱带加强绝缘,然后与上下绝缘板热压成一个整体。(5)通过更换电机定、转子线圈后,发电机可在原出力基础上增加10%~15%左右。
4结语
关键词:水电站;机电设备;维护;检修;管理
水电站是我国基础设施中的重要组成内容,我国对水电站建设也给予了高度重视,各个区域都在加强水电站建设。水电站建设投资方都希望自己的投资可以在短时间内收回,那么就需要应用多种有效手段保障水电站安全、稳定运行。在此过程中加强水电站机电设备维护检修管理是非常重要的,与水电站运行的经济效益有着直接影响。加强水电站机电设备维护检修管理,可以使得机电设备长时间处于健康运行状态中,避免设备故障问题对水电站运行效率造成影响,对水电站的经济效益造成损害。对水电站机电设备维护检修管理进行研究是具有现实意义的,下面就对相关内容进行详细阐述。
1水电站机电设备维护检修管理的重要意义
水电站机电设备维护检修管理是水电站管理中的重要内容,与水电站实现可持续发展有着较深影响。维修检修管理工作与机电设备能否安全运行息息相关,所以,对机电设备维护检修管理工作落实必须要给予高度重视,保障水电站机电设备可以安全、稳定运行。在水电站机电设备维修检修管理工作开展过程中,技术人员必须要结合工作实践,不断地累积经验提升自身专业素质。生产工作人员也需要树立良好的终身学习意识,使得自身的技术水平和管理能力得到有效提升。要应用先进的机电设备维护检修技术,使得机电设备可以长时间处于健康运行状态中,避免设备运行故障对水电站运行经济效益造成损害。
2水电站机电设备维护检修体制的发展过程
水电站设备维修体制是以保护水电站安全生产为核心的,使得水电站机电设备可以处于安全、稳定运行中。水电站机电设备维护检修体制可以分为以下几种:
2.1水电站维修预防
水电站维修预防属于一种较为科学的技术管理理念,在机电设备的设计阶段就开始考虑设备运行的可靠性,以及故障问题的维修,从源头上降低机电设备故障发生概率,缩减机电设备维修次数。本文以我国某一水电站维修工程的监理工作为例,该水电站最高水头达到了130m以上,水电站水流变化较大,同时,水体中含沙量较高。主轴密封受到水体泥沙的冲击,导致主轴密封受到严重损害,很有可没能会发生严重的漏水问题。最终建议施工单位将原有密封材料更换为聚氯乙烯,不仅使得主轴的密封性可以得到良好保证,同时,还能有效延长主轴密封的应用年限,使得维修工作开展取得良好成效[1]。
2.2水电站事后维修
水电站事后维修指的就是在机电设备发生故障之后再进行维修工作开展。水电站机电设备运行过程中,采用这种维修方法主要是因为在对机电设备进行检修过程中不能对设备运行存在的所有故障进行有效排查,导致机电设备在运行过程中也常有故障问题产生。与其他维修制度相比较,事后维修方法具备良好的经济性,对于一般性的机电设备就可以应用这种维修方法。这种维修方法在水电站较为重要的机电设备维修中并不适用,而且设备故障问题发生概率还会增长,机电设备维修时间也会增长,同时,维修工作的成本投入也会增加。
2.3水电站改良性维修
水电站改良性维修指的就是维修技术人员应用先进的技术工艺和方法,对设备运行进行优化和改良,找寻机电设备设计中存在的不良问题,应用有效措施进行改善,使得设备的先进性、可靠性得到有效提升,从而促使机电设备的运行效率进一步改善。设备的先进性是相对的,设计中难免会有一些不足之处,在对机电设备进行维修过程中进行技术性的改革,从而使得机电设备的性能更为优越。本文以某一水电站安装工程监理项目开展为例,该水电站受到区域水文地质条件的影响,前后水头高度存在较大的差异性,这一内容对水电站设计人员也带来了很多困扰。笔者对水电站相关数据进行了多次核算,并且与水电站设计人员进行了深入沟通,最终确定了适合该水电站的优质转轮。同时,还考虑到了蜗壳的进水口,从而使得水电站运行可以获得良好的经济效益,有效降低水电站运行的成本投入。笔者还认识到在对该问题进行解决过程中,能够使得自身的水轮机结构设计监理水平得到有效提升,这对于我国水电站建设发展是有着积极影响的。
2.4水电站的预防性维修
预防性维修主要是在日常中注重对设备进行检查,及时找寻机电设备运行中存在的故障隐患,应用有效措施进行改善,缩减机电设备故障问题影响时间。预防性维修也可以细致化的分为定期性维修和状态性维修两种。状态性维修是技术人员应用多种先进的检测设备和诊断技巧,对机电设备的运行状态进行综合性的检测,有针对性的对故障问题进行排除,避免机电设备故障停机对水电站运行效益造成损害。预防性维修可以缩减机电设备运行故障发生次数,缩减机电设备故障维修花费的时间,降低设备维修的成本投入。预防性维修是水电站技术人员依据水电站运行特点,合理、科学地确定机电设备维修周期,进行不同规模维修工作开展。
3水电站机电维修方法的类定
水电站故障维修也可以称之为水电站事后维修,主要是水电站机电设备发生不良故障问题后进行维修工作。水电站定期维修也可以被称为水电站预想维修,主要是依据水电站机电设备的运行时间,或者由技术人员确定维修时间间隔。水电站优化性维修,技术人员会对故障问题产生的原因进行深入分析,应用有效措施进行改善,对机电设备设计进行优化,从而使得机电设备的性能得到进一步提升。水电站运行状态维修是技术人员依据先进的设备仪器对设备运行状态进行综合性的检验,并且与标准性运行效率进行对比,全面审核机电设备是否处于健康运行状态中,在故障问题发生前应用有效措施进行改善,将故障问题扼杀在摇篮中[2]。
4水电站机电设备维护检修管理中存在的不良问题
4.1维修意识不强
现阶段,水电站管理工作人员只是注重水电站发展,认为机电设备只要可以正常运转就可以了。只有在机电设备发生不良故障问题后才会进行事后维修,在很大程度上限制了我国机电技术的发展,对机电设备的使用年限造成了非常不良影响。很多水电站维修工作开展都是以故障维修和定期性维修为主,但是对于优化性维修和生产性维修落实并没有给予相应的重视程度。
4.2维修管理制度不够完善
建立科学完善的维修管理制度,不仅可以对维修管理工作开展进行约束和规范,同时还能帮助水电站管理人员掌握全面的故障信息,对机电设备综合性能进行优化,使得水电站的运行效率得到有效提升。但是很对水电站建设的维修管理制度并不完善,其中存在着较多缺陷,不能保证机电设备故障问题进行排除,水电站管理较为混乱,很多故障问题不能及时进行排除。
4.3维修技术过于落后
很多水电站都建设在偏远地区,周围交通环境并不完善,对于现代化管理方式和先进机电设备维修技术引入受到了较多阻碍。维修技术过于落后是导致水电站维修效率较低的重要因素,不能从根源处对故障问题进行排除,致使水电站故障问题发生频繁。
4.4维修技术人员专业素质有限
在水电站机电设备维护检修管理工作实际开展过程中,维修技术人员的综合素质对水电站故障问题排除效率有着较深影响。水电站对维修技术人员培训并没有给予相应的重视程度,维修技术不能及时得到更新,对水电站运行经济效益造成了一定损害。
5水电站机电设备维护检修管理策略分析
5.1对水电站设备维护检修管理制度进行完善
水电站机电设备维护检修管理制度是维护检修管理工作开展的重要依据,在对制度进行建设前需要对机电设备的运行状况进行全面测量,对不同机电设备需要制定不同的机电设备维护制度。特别是机电设备日常维护工作开展,需要从以下几方面进行考虑:第一方面机电设备维护工作开展,必须要依据机电设备生产厂家提供的机电设备维修说明进行制定。第二方面要进行机电设备维修紧急预案的制定,便于机电设备运行突发状况下及时进行处理和应对。第三方面就是要根据机电设备运行的实际情况,对机电设备维修时间进行规划和调整,制定满足水电站工况的维修制度。对于定期维修制度的建设,必须要限定相应的有效的定期性检修节点。例如一些机电设备生产厂家要求,机电设备运行超过两万小时后必须要对设备运行进行检测,对机电设备运行进行适当调整。水电站管理人员可以根据实际需求对检测时间进行调整,从而进行预防性检修工作的开展。
5.2对检修维护方案进行合理设计
水电站受到众多因素影响,大都建设在偏远地区,这样会导致维护和管理技术提升存在一定的滞后性,水电站实际运行过程中很有能会出现维修资源供给不足的问题。要利用定期诊断方式对机电设备健康状态进行综合性检查,在发现不良问题后及时进行处理。最后需要注重的就是制定较为完整化的维修方案,维修内容也需要全面,促使水电站机电设备维修效率得到有效提升,争取一次维护工作开展过程中就可以进行全面性的检查,对故障隐患和故障问题进行有效处理。
5.3提高维护与检修的技术措施
在水电站机电设备维护检修管理工作开展过程中,相关技术人员需要及时对设备进行更新,特别是那些运行时间较长的机电设备,机电设备老化情况严重,同时,运行效率也并没有达到理想化。在维修工作开展过程中要更多的应用新型维修技术,使得机电设备和维修技术可以同时得到更新,促使维修工作开展更加便捷,水电站机电设备维护检修管理水平得到有效提升。
5.4加强机电设备运行管理,注重技术人员培训
机电设备运行管理不仅是水电站管理人员的责任和义务,同时也是水电站众多工作人员的责任和义务。要注重对水电站工作人员进行教育,帮助工作人员树立良好的机电设备运行管理意识,使得工作人员可以将日常工作中发现的故障问题及时向技术人员进行反馈。信息技术不断发展,扩展了技术人员的培训路径。水电站可以应用微信、微博等新媒体平台,将众多技术人员组织起来,一些先进的维护检修管理技术,扩展技术人员的知识层次。
6结语
机电设备安全稳定运行与水电站能够获得的经济效益有着直接影响。因此,需要找寻机电设备维护检修管理工作开展中存在的不良问题,应用有效措施进行改善,对维护检修管理制度进行完善,及时更新维护检修管理技术,保障设备长时间处于健康运行状态中,促进水电站长久持续发展。
作者:张进 单位:湖北省巴东县沿渡河电业发展有限公司
参考文献:
1.1 试运行前的检控
为确保设备调试工作的正常进行,在机组试运行前应全面检查系统的整套设备,利用综合检控过程消除设备存在的安全隐患,以避免出现连接部位螺栓松动、接线错误、漏气、漏油等问题。在检查时全体技术人员应坚持责任为本,严格按照检控程序进行细致检查[1]。
1.2 机组充水试验
进水流道充水试验、尾水流道充水试验及充水前的检修是充水试验的基本内容。通过这些环节可有效掌握水泵及闸门的工作状态,避免漏水问,且可用于探测后台监测数据及压力表数据的准确性。
1.3 空载试验
空载试验通常包括调速系统试验、机组手动启动试验、过速试验、手动停机及检查、发电机升压试验、无励磁自动开机与停机试验、励磁调节器调控试验、发电机短路试验及主变压器冲击合闸试验等。因试验内容较多,在进行调试前应准确制定试验程序,以确保试验结果可靠准确。
1.4 负载及甩负荷试验
在完成空载试验且结果在可靠范围内后,应开展机组负载、甩负荷、带负荷励磁调节器试验。利用此类试验掌握机组在负载状态下的工作情况。在试验合格后开展72h试运行。
1.5 72h试运行
在72h试运行时,应利用相关监控记录技术对设备运行状况信息进行采集,通过综合分析发现机组运行中的问题;试运行完成后应再次对系统进行检测,修复运行中存在的缺陷[2]。
2 水电站调试管理机电设备的措施
2.1 做好调制职责划分,恰当编制调试进度
为确保调试工作顺利进行,在水电站首台机组运行调试前,应明确划分参建单位的调试职责。第3方调试人员应重点加强对技术参数、设计图纸、二次接线的审核及检查,负责监督安装调试人员制定的调试方案、试验过程及试验接线等,依据《复核检测调试大纲》对关键设备实施二次审核,并参与机组启动试运行中《机组启动试运行大纲》的核定及相关试验的监督,且应给予调试人员正确的技术指导;安装调试人员应重点加强系统回路及接线的检查,同相关厂家技术人员协调开展系统的单体试验及调试;厂家技术人员应同以上人员共同开展系统设备的调试,并及时解决现场调试中存在的技术问题;相关生产运行单位应重点把控整体调试过程的组织管理,并追踪监控系统试验及调试过程,依据收集的数据检控测试问题整改状况;设计单位应依据调试中不合理的设计问题,重点修正图纸及相关参数;现场监理人员则应负责调试整体过程的质量管控,协调管理各级调试单位,加快调试进度。
2.2 加强调试安全管理
在调试过程中,因调试人员较多,调试机组多带电运行,部分机组也正处于安装状态,机组间的现场安全标示及隔离措施也相对欠缺,因此调试安全管理应是调试管理工作的关键环节之一。
在调试时,相关调试项目管理人应在每日施工前开展技术交底,将相关注意要点及事项详细列出,且应组织全体调试人员进行签字确认;主管单位应建立相应安全管理机构,综合管理机电设备调试全过程的安全工作;具体实施时应实行岗位责任制、联合监督检查制,确保各机构及人员了解责任内容及工作权限;在带点区域开展设备调试时,应安置临时遮拦,组织相关人员进行现场警戒,避免非工作人员进入工作区;设备调试前应做好安全教育,实行环节控制,以保证调试工作的安全性。
2.3 做好设备安装及调试过程中的审查
在水电站机电设备实际安装及调试过程中,部分项目通过机组验收程序很难发现问题,所以应做好设备安装及调试过程中的审核监督。具体实施过程中可引入第3方调试队伍,其与安装单位相互分离,可利用不同于安装单位调试的方式对容易影响机组运行稳定性和安全性的保护、调速、励磁、监控等系统实施复核调试,可审核修订安装部分技术人员制定的机组启动试运行方案及调试试验方案,并能对关键设备的调试及安装过程给予技术指导,可有效提升设备安装调试施工的科学性和安全性。如阿海水电站在设备调试初期便在传统调试队伍基础上引入设备调试管理新模式,选用了第三方专业调试队伍开展设备全程审查,相比安装单位单独调试,其在调试质量及组织管理方面提高了30%以上[3]。
2.4 积极开展机组启动试运行交接验收
因不同单位均有机组投产发电时间的标准,当前,水电站机组启动试运行及验收收件都相对紧迫,而安装部门在实际试运行过程中很难确保所有数据均在合格范围以内。因此在审核及验收时应安排专业调试监督单位,通过采用关键项目现场指导、一般项目核检问询、重复项目多次审核的方式,避免机组启动试运行中出现各类隐患、缺陷及漏项,确保各试验数据在规定行业标准以内,由此提升交接验收程序的专业性。
3 结束语