欢迎访问爱发表,线上期刊服务咨询

移动通信技术论文8篇

时间:2023-03-27 16:39:49

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇移动通信技术论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

移动通信技术论文

篇1

【论文关键词】移动通信;3G;发展;展望

伴随着移动通信市场的快速发展,用户对更高性能的移动通信系统提出了更高要求,希望享受更为丰富和高速的通信业务。第二代移动通信运营商发展速度趋于缓和而竞争越加激烈,为寻找新的增长点,通过发展数据业务来提高自身的服务质量和业务类型,需要3G的支持。同时由于第二代移动通信无线频率资源日趋紧张,已不能满足长期的通信需求发展需要。

一、移动通信的发展历程

第一代移动通信系统是在20世纪80年代初提出的,它完成于20世纪90年代初。第一代移动通信系统是基于模拟传输的,其特点是业务量小、质量差、交全性差、没有加密和速度低。

第二代移动通信系统(2G)起源于90年代初期。欧洲电信标准协会在1996年提出了GSMPhase2+,目的在于扩展和改进GSMPhase1及Phase2中原定的业务和性能。它主要包括CMAEL(客户化应用移动网络增强逻辑),SO(支持最佳路由)、立即计费,GSM900/1800双频段工作等内容,也包含了与全速率完全兼容的增强型话音编解码技术,使得话音质量得到了质的改进;半速率编解码器可使GSM系统的容量提高近一倍。在GSMPhase2+阶段中,采用更密集的频率复用、多复用、多重复用结构技术,引入智能天线技术、双频段等技术,有效地克服了随着业务量剧增所引发的GSM系统容量不足的缺陷;自适应语音编码(AMR)技术的应用,极大提高了系统通话质量;GPRS/EDGE技术的引入,使GSM与计算机通信/Internet有机相结合,数据传送速率可达115/384kbit/s,从而使GSM功能得到不断增强,初步具备了支持多媒体业务的能力。尽管2G技术在发展中不断得到完善,但随着用户规模和网络规模的不断扩大,频率资源己接近枯竭,语音质量不能达到用户满意的标准,数据通信速率太低,无法在真正意义上满足移动多媒体业务的需求。

二、第三代移动通信系统概述

第三代移动通信业务主要是话音和中低速数据,码率为384kb/s(局域网可达2Mb/s),因而可传送比目前GSM(第二代移动通信)更高码率的信息。随着多媒体业务的发展,2Mb/s的码率将越来越不能满足用户各种新的宽带业务的需要,因此国际上已开始研究第四代移动通信系统,第一步目标是10Mb/s以上。我们国内则尚未启动。因此需尽早开始研究其关键技术。需要解决的关键技术有:宽带多媒体移动通信系统的体系结构,包括频段、多址方法、无线接入技术、软件无线电的硬件和软件、多载波调制和OFDM技术、自适应天线阵、高效信道编码技术(如Turbo码)等。

第三代移动通信系统(3G),也称IMT2000,是正在全力开发的系统,其最基本的特征是智能信号处理技术,智能信号处理单元将成为基本功能模块,支持话音和多媒体数据通信,它可以提供前两代产品不能提供的各种宽带信息业务,例如高速数据、慢速图像与电视图像等。如WCDMA的传输速率在用户静止时最大为2Mbps,在用户高速移动时最大支持144Kbps,所占频带宽度5MHz左右。但是,第三代移动通信系统的通信标准共有WCDMA,CDMA2000和TD-SCDMA三大分支,共同组成一个IMT2000家庭,成员间存在相互兼容的问题,因此已有的移动通信系统不是真正意义上的个人通信和全球通信;再者,3G的频谱利用率还比较低,不能充分地利用宝贵的频谱资源;第三,3G支持的速率还不够高,如单载波只支持最大2Mbps的业务,等等。这些不足点远远不能适应未来移动通信发展的需要,因此寻求一种既能解决现有问题,又能适应未来移动通信的需求的新技术(即新一代移动信:nextgenerationmobilecommunication)是必要的。第三代移动通信技术的基本特点:(1)全球统一频段,统一标准,全球无缝覆盖和漫游。(2)频谱利用率高。(3)在144kbps(最好能在384kbps)能达到全覆盖和全移动性,还能提供最高速率达2Mbps的多媒体业务。(4)支持高质量话音、分组多媒体业务和多用户速率通信。(5)有按需分配带宽和根据不同业务设置不同服务等级的能力。(6)适应多用户环境,包括室内、室外、快速移动和卫星环境。(7)安全保密性能优良。(8)便于从第二代移动通信向第三代移动通信平滑过渡。(9)可与各种移动通信系统融合,包括蜂窝、无绳电话和卫星移动通信等。(10)终端(手机)结构简单,便于携带,价格较低。

三、第四代移动通信系统

4G系统中有两个基本目标:一是实现无线通信全球覆盖;二是提供无缝的高质量无线业务。目前正在构思中的4G通信具有以下特征:(1)网络频谱更宽。要想使4G通信达到100Mbps的传输速率,通信运营商必须在3G网络的基础上进行大幅度的改造,以便使4G网络在通信带宽上比3G网络的带宽高出许多。据研究,每个4G信道将占有100MHz的频谱,相当于W-CDMA3G网络的20倍;(2)通信速度更快。人们研究4G通信的最初目的是为了提高蜂窝电话和其他移动终端访问Internet的速率,因此,4G通信最显著的特征就是它有更快的无线传输速率。据专家估计,第四代移动通信系统的传输速率速率可以达到10M~20Mbps,最高可以达到100Mbps;(3)通信更加灵活。从严格意义上说,4G手机的功能已不能简单划归“电话机”的范畴,因为语音数据的传输只是4G移动电话的功能之一而已。而且4G手机从外观和式样上看将有更惊人的突破,可以想象的是,眼镜、手表、化妆盒、旅游鞋都有可能成为4G终端;(4)智能性更高。第四代移动通信的智能性更高,不仅表现在4G通信的终端设备的设计和操作具有智能化,更重要的是4G手机可以实现许多目前还难以想象的功能;(5)兼容性更平滑。要使4G通信尽快地被人们接收,还应该考虑到让更多的用户在投资最少的情况下较为容易地过渡到4G通信。因此,从这个角度来看,4G通信系统应当具备全球漫游、接口开放、能跟多种网络互联、终端多样化以及能从3G平稳过渡等特点。

总之,随着新问题、新要求的不断出现,第四代移动通信技术将会相应地调整、完善和进一步发展。纵观移动通信技术的发展规律和第四代通信技术的优点,我们相信,不远的将来,人们将不受时间、地点限制,可以自由自在地利用移动网络获取和传递信息。从而人们的学习、工作、生活将会发生更深刻的变化。

参考文献:

[1]胡可刚,王树勋,刘立宏.移动通信中的无线定位技术[J].吉林大学学报,2005,23(4)

篇2

2网络业务数据化、分组化

2.1无线数据——生机无限当前移动数据通信发展迅速,被认为是移动通信发展的一个主要方向。近年来出现的移动数据通信主要有两种,一种是电路交换型的移动数据业务,如TACS、AMPS和GSM中的承载数据业务以及GSM系统的HSCSD;另外一种是分组交换型的移动数据业务,如摩托罗拉的DataTAC、爱立信的Mobitex和GSM系统的GPRS。

目前,无线数据业务只占GSM网络全部业务量中的很小一部分,但是在未来的两年中这种状况将开始扭转,并大大改变。1999年以后,随着HSCSD、GPRS等新的高速数据解决方案显露峥嵘,并成为数据应用的新焦点,无线数据将成为运营商经营计划中越来越重要的部分,它预示着未来大量的商业机遇。

(1)应用驱动市场

无线数据业务的主要驱动力在于用户的应用。话音是单一的、易于被大众所接受的业务,然而无线数据则不同,无线数据最初的应用重点放在运输管理这样的专业市场。近期无线数据业务的目标市场是销售人员或现场工程师这样的用户群。从这些先发目标的应用中积累无线数据的经验,并从中受益。

在过去的十年里,传统的生活方式已经在迅速改变,人们更经常性地移动,职业和个人生活之间的分界变得模糊,人们需要不分时间、地点访问很重要的信息。发生在用户身上的这种生活方式的改变将成为驱动无线数据业务发展的重要因素。

(2)因特网的影响

和通信的其他领域一样,无线数据业务的一个最重要的驱动力来自Internet。根据最近的研究,未来两年欧洲的因特网用户数量将翻一番。在我国,因特网用户的年增长率将高达300%,显然用户在运动中接入因特网的需求将会增长。

为了满足接入因特网的需求,一个全球性的开放协议——无线应用协议(WAP)应运而生。WAP为将Internet的信息内容以及增值业务传送到移动终端提供了一种开放的通用标准,实现了IP与GSM网络的桥接,是一个为厂商提供加速市场增长、避免网络割接、保护运营商投资的标准,WAP确保任何与WAP兼容的GSM手机都能工作。

(3)数据速率的发展

GSM承载业务所提供的GSM数据速率最高只能达到9.6kbit/s。国际上1998年引入的高速电路交换数据(HSCSD)技术将实现57kbit/s的数据速率,对要求连续比特率和传输时延小的应用是理想的,如会议电视、电子邮件、远程接入企业的局域网和无线图像。1999年商用化的GPRS是第一个GSM分组数据应用,将实现超过100kbit/s的数据速率。对较短的“突发”类型业务是理想的,如信用卡认证、远程测量和远程事务处理。EDGE(增强数据速率GSM改进模式)使用修改过的GSM调制方式来实现超过300kbit/s的数据速率。EDGE会让GSM运营商特别受益,他们不但可以赢得第三代移动通信的经营执照,还可以提供有竞争力的宽带数据业务。

2.2个人多媒体通信——网络演进的方向

对随时随地话音通信的追求使早期移动通信走向成功。移动通信的商业价值和用户市场得到了证明,全球移动市场以超凡的速度增长。移动通信演进的下一阶段是向无线数据乃至个人移动多媒体转移,这一进展已经开始,并将成为未来重要的增长点。个人移动多媒体将根据地点为人们提供无法想像的、完善的个人业务和无线信息,将对人们工作和生活的各个方面产生影响。在个人多媒体世界里,话音邮件和电子邮件被传送到移动多媒体信箱中;短信将成为带有照片和视频内容的电子明信片;话音呼叫将与实时图像相结合,产生大量的可视移动电话,还将实现移动因特网和万维网浏览。像无线会议电视这样的应用将随处可见,电子商务将蓬勃开展。对于运动中的用户还有随时随地的各种信箱和娱乐服务。

3网络技术的宽带化

在电信业历史上,移动通信可能是技术和市场发展最快的领域。业务、技术、市场三者之间是一种互动的关系,伴随着用户对数据、多媒体业务需求的增加,网络业务向数据化、分组化发展,移动网络必然走向宽带化。

通过使用电话交换技术和蜂窝无线电技术,70年代末诞生了第一代模拟移动电话。AMPS(北美蜂窝系统)、NMT(北欧移动电话)和TACS(全向通信系统)是三种主要的窄带模拟标准。第一代无线网络技术的一大成就就是去掉了将电话连接到网络的用户线。用户第一次能够在他们所在的任何地方无线接收和拨打电话。

第二代系统引入了数字无线电技术,它提供更高的网络容量,改善了话音质量和保密性,并为用户引入了无缝的国际漫游。今天世界市场的第二代数字无线标准,包括GSM、MMPS、PDC(日本数字蜂窝系统)和IS95CDMA等,均仍为窄带系统。

第三代移动系统,即IMT-2000,是一种真正的宽带多媒体系统,它能够提供高质量宽带综合业务并实现全球无缝覆盖。2000年以后,窄带移动电话业务需求将依然很大,但随着Internet等高速数据通信及多媒体通信需求的驱动,宽带多媒体综合业务将逐步增长,而且就未来信息高速公路建设的无缝覆盖而言,宽带移动通信作为整个移动市场份额的子集将显得愈来愈重要。

第三代系统预计在2002年投入商用。

从第二代到第三代系统的变化并不像从第一代模拟网络到第二代数字网络那样存在重大的技术变迁。从目前的技术发展现状和趋势来讲,第二代系统将逐步子滑过渡到第三代系统,在此演进过程中,移动网络所能实现的数据速率逐步升级:GSM承载业务所能提供的数据速率为9.6kbit/s,1998年商用的HSCSD技术实现了57kbit/s的数据速率,1999年引入的GPRS将实现超过100kbit/s的数据速率,将在2000年引入的EDGE技术可实现超过300kbit/s的数据速率。2001年后投入商用的第三代系统将能够在广域网上实现384kbit/s的数据速率,在办公室和家中还可以达到2Mbit/s。

4网络技术的智能化

移动通信需求的不断增长以及新技术在移动通信中的广泛应用,促使移动网络得到了迅速发展。移动网络由单纯地传递和交换信息,逐步向存储和处理信息的智能化发展,移动智能网由此而生。移动智能网是在移动网络中引人智能网功能实体,以完成对移动呼叫的智能控制的一种网络,是一种开放性的智能平台,它使电信业务经营者能够方便、快速、经济、有效地提供客户所需的各类电信新业务,使客户对网络有更强的控制功能,能够方便灵活地获取所需的信息。移动智能网通过把交换与业务分离,建立集中的业务控制点和数据库,进而进一步建立集中的业务管理系统和业务生成环境来达到上述目标。通过智能网,运营公司可以最优地利用其网络,加快新业务的生成;可以根据客户的需要来设计业务,向其他业务提供者开放网络,增加收益。

关于移动智能网的研究,早在1995年就已开始,刚开始并没有具体的标准协议出现,各厂商各自制定了自己的标准,并且据此进行了不少的研究工作,如Alcatel、Nortel、Ericsson等都先后推出了自己的初期产品。这些工作为最终移动智能网标准的形成积累了经验。

1997年末,美国蜂窝电信工业协会(CTIA)制定了移动智能网的第一个标准协议——IS-41D协议。1998年1月,欧洲电信标准研究所(ETSI)在GSMphase2+阶段引入了CAMEL协议(移动通信高级逻辑的客户化应用程序),当时的版本是Phase1。1998年4月,ITU-T在新推出的智能网能力集一2标准中描述了移动接入的功能实体,称为CAMELphase2标准。

伴随着移动网络向第三代系统的演进,网络的智能化程度也在不断地提升。智能网及其智能业务是构成未来个人通信的基本条件。

5更高的频段

从第一代的模拟移动电话,到第二代的数字移动网络,再到将来的第三代移动通信系统,网络使用的无线频段遵循一种由低到高的发展趋势。1981年诞生的第一个具有国际漫游功能的模拟系统NMT的使用频段为450MHz,1986年NMT变迁到900MHz频段。我国目前的模拟TACS系统的使用频段也为900MHz。在第二代网络中,GSM系统的开始使用频段为900MHz,IS-95CDMA系统为800MHz。为了从根本上提高GSM系统的容量,1997年出现了1800MHz系统,GSM900/1800双频网络迅速普及。2002年将投入商用的第三代系统IMT-2000则定位在2GHz频段。

6更有效利用频率

无线电频率是一种宝贵资源。随着移动通信的飞速发展,频谱资源有限和移动用户急剧增加的矛盾越来越尖锐,出现了“频率严重短缺”的现象。解决频率拥挤问题的出路是采用各种频率有效利用技术和开发新频段。

模拟制的早期蜂窝移动通信系统采用频分多址方式,主要通过多信道共用、频率复用和波道窄带化等技术实现频率的有效利用。随着业务的发展,模拟系统已远不能满足用户发展的需求。数字移动通信比模拟移动通信具有更大的容量。同样的频分多址技术,数字系统要求的载干比较小,因而频率复用距离可以小一些,系统的容量可以大一些。而且,数字移动通信还可采用时分多址或码分多址技术,它比模拟的频分多址制在系统容量上大4-20倍。

GSM作为最具代表性和最为成熟的数字移动通信系统,其发展历程就是一部频率有效利用技术的演进史。GSM采用时分多址制式,其对频率的有效利用主要是通过频率复用技术的不断升级实现的。从传统的4×3方式,到3×3、1×3、MRP、2×6等新的复用技术,频率复用的密集度逐步提升,频谱效率快速提高,GSM系统的容量得到逐步释放。1995年开始投入商用的IS-95CDMA(窄带)系统,以无线技术的先进性和大容量等特点著称。它以扩频技术为基础,不同用户的信号靠不同的编码序列来区分,如果从频域或时域来观察,多个CDMA信号是相互重叠的,故理论上CDMA系统的频谱利用率比GSM系统更高,网络容量更大。同时CDMA系统具有一定的过载能力,即系统具备软容量。作为未来第三代移动通信系统主流无线接入技术的WCDMA(宽带码分多址)能够更高效地利用无线电频率。它利用分层小区结构、自适应天线阵和相干解调(双向)等技术,网络容量可得到大幅提高,可以更好地满足未来移动通信的发展要求。

7网络趋于融合,走向统一

7.1第三代移动通信系统的结构

第三代系统的主要目标是将包括卫星在内的所有网络融合为可以替代众多网络功能的统一系统,它能够提供宽带业务并实现全球无缝覆盖。为了保护运营公司在现有网络设施上的投资,第二代系统向第三代系统的演进遵循平滑过渡的原则,现有的GSM、D-AMPSIS-136等第二代系统均将演变成为第三代系统的核心网络,从而形成一个核心网家族,核心网家族的不同成员之间通过NNI接口联结起来,成为一个整体,从而实现全球漫游。在核心网络家族的,形成一个庞大的无线接入家族,现有的几乎所有的无线接入技术以及WCDMA等第三代无线接入技术均将成为其成员。

篇3

高职专业人才培养目标定位依据一方面是专业面向的岗位群业务规格要求确定职业知识、职业能力、职业素质结构。另一方面是岗位职业资格标准及职业技能鉴定标准确定作业规范与职业道德。通过对区域内移动通信运营商、移动通信设备供应商、移动代维公司等企业的深入调研和近3届毕业生的跟踪调查,将毕业生主要从事岗位划定为“移动机房管理维护、移动通信基站维护、移动通信安装测、移动通信网络优化”等岗位。邀请企业技术人员与校内专家一起对上述岗位从事的典型工作任务进行分析,归纳出共性职业能力,确定“移动通信设备配置维护、移动通信网络设计实施、移动通信网络分析优化”为本专业人才培养的核心职业能力,并最终将本专业人才培养目标定位为:掌握移动通信系统、移动通信网络、移动通信工程建设等方面的基础知识,具备移动通信基站安装、维护、管理,通信工程勘察、设计、规划,移动通信网络设计、分析、优化等能力,面向移动通信领域的机房基站维护、设备安装调测、网络设计优化等岗位的生产、服务、管理第一线需要的高端技能型人才。

2构建“四阶递进、工学结合”人才培养模式

人才培养模式的构建可以依据不同专业的特点和不同学院的实际情况进行设计。自2011年起,学院先后与数家业内知名企业签署“订单”培养协议。依托订单合作企业,以工作过程为载体,建立“四阶递进、工学结合”人才培养模式。其中“四阶递进”是指职业能力培养分解为四个阶段逐级进阶,即第1、2学期在校内实训基地进行,完成专业基础能力培养;第3、4学期校企交替进行,完成专业核心能力培养;第5学期校企交替进行,完成协岗能力训练;第6学期到企业进行顶岗能力实习“。工学结合”是指第1、2学期利用校企共建的移动通信综合实训平台,开展“教学做一体”的仿真实训;第3、4学期聘请企业技术人员担任指导教师,开展“教学做一体”的全真实训;第5学期在企业技术人员的指导下,协助完成基本岗位工作;在第6学期在校外实习基地开展顶岗综合实习。

3设计以工作过程为导向的课程体系

通过对移动通信运营商、移动通信设备供应商、移动代维公司等企业实地走访及毕业生的跟踪调研,确定移动通信行业面向高职院校毕业生的岗位群。邀请企业技术人员与校内专家组一起对岗位群进行分析,归纳整理典型工作任务。基于这些典型工作任务分析从业所需的职业能力,典型工作任务分解过程如表1所示。再将这些职业能力按照专业能力、方法能力和社会能力进行分类、汇总,并以此为依据构建移动综合职业能力课程体系。由于移动系统有GSM/WCDMA/CDMA2000/TD-SCDMA等,需要从典型岗位任务推演到各系统的典型工作任务,选取岗位工作技能为逻辑载体,分别以对象系统、工作顺序为线索,提炼学习领域课程,形成专业核心课程。

4实施一体化教学模式改革

依托实训条件,创设情境,实施专业核心课“教学做”一体化教学模式改革,启发学生思维、学生在教师的引导下完成各子项目任务,利用情境进行真实配置、在线实际处理,激发学生学习动力和兴趣,并在教学做的过程中锻炼协作、分析、整理的方法能力和社会能力。丰富教学案例视频,展现特色教学方法。充分发挥校企合作的优势,结合实践,收集整理更多案例素材,制作更多的实际案例教学视频,丰富教学内容和教学方法。利用专业教学资源信息化,建成开放、共享的专业与课程资源库,可随时学习自学。搭建资源服务平台,为院校、教师、学生和企业从业人员提供服务,移动通信技术专业教师、学生和从业人员,免费共享个性化学习。改变传统的反馈及测试方式,提高学习质量,激发学生创新思维。通过专业资源平台在线答疑,反馈信息。

5结语语

篇4

4G移动通信技术可以弥补3G移动通信技术在覆盖范围、通信质量和宽频带的现有不足。4G移动通信技术可以容纳海量移动通信用户,改善网络通信质量,提高数据传输速率。4G移动通信技术提供高速数据和高分辨率的无线网络,它包括语音、数据、影像等信息的传输。3D视频技术也将会应用到4G通信上,可以在4G手机上看立体的视频。

24G移动通信关键技术

4G移动通信信道传输、抗干扰、多接入等功能的实现依靠无线网络的结构,4G移动通信系统网络结构分为:物理网络层、中间环节层和应用网络层。三个分层,物理网络可提供网络接入和网络路由选择功能;中间环节层的主要功能是实现映射、地址变换和实现管理的子系统,是主要的控制功能层;应用网络层实现着数据无缝高速连接,可以运用多个频带实现跨网络、地域和标准的服务。

2.1OFDM技术

4G移动通信系统主要以OFDM技术为核心,OFDM技术是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流。OFDM技术具有较高的频谱利用率,其频谱效率比其他串行系统高将近一倍;OFDM技术具有较强的抗衰落能力,OFDM通过多子载波传输,使子载波信号与相同速率的单载波信号时间长,从而降低了其衰落能力;OFDM技术具有较高的传输速率,其采用自适应调制机制使变化调制方式。通过信道和加载算法来提高信息传送的速率;OFDM技术抗码间干扰能力强,用循环前缀的方式对抗码间的干扰。

2.2智能天线技术(SA)

SA技术选择的是空时多址技术,利用信号在传传输方向上的差异性,将同频率、同时隙的传输信号进行区分。通过智能天线技术可以有效改善信号质量,增强其抗干扰能力,增加数据传输容量。

2.3多输入多输出技术(MIMO)

MIMO技术是指在基站和移动终端利用多发射、多接受天线进行空间分集和空间复用的技术。能有效地将通信信道分解成多信道,从而降低了系统的衰减性,提高了系统通信质量、传输速率和天线系统的容量。

2.4软件无线电技术

4G移动通信技术是以软件无线电为基础,软件无线电技术以开放性的平台构造一个具有开放性、标准化、模块化的通用硬件平台,允许多方运营的介入。其具有灵活性和适应性,能兼容不同接口的多模式终端设备和基站。

2.5IPv6技术

IPv6具有巨大的网络地址的空间,其能提供一个独一无二的地址给通信网络中的所有设备;IPv6具有自动配置路由地址能力;IPv6具有移动性,IPv6技术可以帮助移动通信设备在保证通信质量不变的情况下改变地理位置;IPv6服务质量高于传统的IPv4,便于形成基于服务级别的系统。

34G移动通信技术的展望

篇5

1前言

移动通信业务之所以发展迅猛主要是其满足了人们在任何时间。任何地点与任何个人进行通信的愿望。移动通信是实现未来理想的个人通信服务的必由之路。在信息支撑技术、市场竞争和需求的共同作用下,移动通信技术的发展更是突飞猛进,呈现出以下几大趋势:网络业务数据化、分组化,网络技术宽带化,网络技术智能化,更高的频段,更有效利用频率,各种网络趋于融合。了解、掌握这些趋势对移动通信运营商和设备制造商均具有重要的现实意义。

2网络业务数据化、分组化

2.1无线数据——生机无限当前移动数据通信发展迅速,被认为是移动通信发展的一个主要方向。近年来出现的移动数据通信主要有两种,一种是电路交换型的移动数据业务,如TACS、AMPS和GSM中的承载数据业务以及GSM系统的HSCSD;另外一种是分组交换型的移动数据业务,如摩托罗拉的DataTAC、爱立信的Mobitex和GSM系统的GPRS。

目前,无线数据业务只占GSM网络全部业务量中的很小一部分,但是在未来的两年中这种状况将开始扭转,并大大改变。1999年以后,随着HSCSD、GPRS等新的高速数据解决方案显露峥嵘,并成为数据应用的新焦点,无线数据将成为运营商经营计划中越来越重要的部分,它预示着未来大量的商业机遇。

(1)应用驱动市场

无线数据业务的主要驱动力在于用户的应用。话音是单一的、易于被大众所接受的业务,然而无线数据则不同,无线数据最初的应用重点放在运输管理这样的专业市场。近期无线数据业务的目标市场是销售人员或现场工程师这样的用户群。从这些先发目标的应用中积累无线数据的经验,并从中受益。

在过去的十年里,传统的生活方式已经在迅速改变,人们更经常性地移动,职业和个人生活之间的分界变得模糊,人们需要不分时间、地点访问很重要的信息。发生在用户身上的这种生活方式的改变将成为驱动无线数据业务发展的重要因素。

(2)因特网的影响

和通信的其他领域一样,无线数据业务的一个最重要的驱动力来自Internet。根据最近的研究,未来两年欧洲的因特网用户数量将翻一番。在我国,因特网用户的年增长率将高达300%,显然用户在运动中接入因特网的需求将会增长。

为了满足接入因特网的需求,一个全球性的开放协议——无线应用协议(WAP)应运而生。WAP为将Internet的信息内容以及增值业务传送到移动终端提供了一种开放的通用标准,实现了IP与GSM网络的桥接,是一个为厂商提供加速市场增长、避免网络割接、保护运营商投资的标准,WAP确保任何与WAP兼容的GSM手机都能工作。

(3)数据速率的发展

GSM承载业务所提供的GSM数据速率最高只能达到9.6kbit/s。国际上1998年引入的高速电路交换数据(HSCSD)技术将实现57kbit/s的数据速率,对要求连续比特率和传输时延小的应用是理想的,如会议电视、电子邮件、远程接入企业的局域网和无线图像。1999年商用化的GPRS是第一个GSM分组数据应用,将实现超过100kbit/s的数据速率。对较短的“突发”类型业务是理想的,如信用卡认证、远程测量和远程事务处理。EDGE(增强数据速率GSM改进模式)使用修改过的GSM调制方式来实现超过300kbit/s的数据速率。EDGE会让GSM运营商特别受益,他们不但可以赢得第三代移动通信的经营执照,还可以提供有竞争力的宽带数据业务。

2.2个人多媒体通信——网络演进的方向

对随时随地话音通信的追求使早期移动通信走向成功。移动通信的商业价值和用户市场得到了证明,全球移动市场以超凡的速度增长。移动通信演进的下一阶段是向无线数据乃至个人移动多媒体转移,这一进展已经开始,并将成为未来重要的增长点。个人移动多媒体将根据地点为人们提供无法想像的、完善的个人业务和无线信息,将对人们工作和生活的各个方面产生影响。在个人多媒体世界里,话音邮件和电子邮件被传送到移动多媒体信箱中;短信将成为带有照片和视频内容的电子明信片;话音呼叫将与实时图像相结合,产生大量的可视移动电话,还将实现移动因特网和万维网浏览。像无线会议电视这样的应用将随处可见,电子商务将蓬勃开展。对于运动中的用户还有随时随地的各种信箱和娱乐服务。

3网络技术的宽带化

在电信业历史上,移动通信可能是技术和市场发展最快的领域。业务、技术、市场三者之间是一种互动的关系,伴随着用户对数据、多媒体业务需求的增加,网络业务向数据化、分组化发展,移动网络必然走向宽带化。

通过使用电话交换技术和蜂窝无线电技术,70年代末诞生了第一代模拟移动电话。AMPS(北美蜂窝系统)、NMT(北欧移动电话)和TACS(全向通信系统)是三种主要的窄带模拟标准。第一代无线网络技术的一大成就就是去掉了将电话连接到网络的用户线。用户第一次能够在他们所在的任何地方无线接收和拨打电话。

第二代系统引入了数字无线电技术,它提供更高的网络容量,改善了话音质量和保密性,并为用户引入了无缝的国际漫游。今天世界市场的第二代数字无线标准,包括GSM、MMPS、PDC(日本数字蜂窝系统)和IS95CDMA等,均仍为窄带系统。

第三代移动系统,即IMT-2000,是一种真正的宽带多媒体系统,它能够提供高质量宽带综合业务并实现全球无缝覆盖。2000年以后,窄带移动电话业务需求将依然很大,但随着Internet等高速数据通信及多媒体通信需求的驱动,宽带多媒体综合业务将逐步增长,而且就未来信息高速公路建设的无缝覆盖而言,宽带移动通信作为整个移动市场份额的子集将显得愈来愈重要。

第三代系统预计在2002年投入商用。

从第二代到第三代系统的变化并不像从第一代模拟网络到第二代数字网络那样存在重大的技术变迁。从目前的技术发展现状和趋势来讲,第二代系统将逐步子滑过渡到第三代系统,在此演进过程中,移动网络所能实现的数据速率逐步升级:GSM承载业务所能提供的数据速率为9.6kbit/s,1998年商用的HSCSD技术实现了57kbit/s的数据速率,1999年引入的GPRS将实现超过100kbit/s的数据速率,将在2000年引入的EDGE技术可实现超过300kbit/s的数据速率。2001年后投入商用的第三代系统将能够在广域网上实现384kbit/s的数据速率,在办公室和家中还可以达到2Mbit/s。

4网络技术的智能化

移动通信需求的不断增长以及新技术在移动通信中的广泛应用,促使移动网络得到了迅速发展。移动网络由单纯地传递和交换信息,逐步向存储和处理信息的智能化发展,移动智能网由此而生。移动智能网是在移动网络中引人智能网功能实体,以完成对移动呼叫的智能控制的一种网络,是一种开放性的智能平台,它使电信业务经营者能够方便、快速、经济、有效地提供客户所需的各类电信新业务,使客户对网络有更强的控制功能,能够方便灵活地获取所需的信息。移动智能网通过把交换与业务分离,建立集中的业务控制点和数据库,进而进一步建立集中的业务管理系统和业务生成环境来达到上述目标。通过智能网,运营公司可以最优地利用其网络,加快新业务的生成;可以根据客户的需要来设计业务,向其他业务提供者开放网络,增加收益。

关于移动智能网的研究,早在1995年就已开始,刚开始并没有具体的标准协议出现,各厂商各自制定了自己的标准,并且据此进行了不少的研究工作,如Alcatel、Nortel、Ericsson等都先后推出了自己的初期产品。这些工作为最终移动智能网标准的形成积累了经验。

1997年末,美国蜂窝电信工业协会(CTIA)制定了移动智能网的第一个标准协议——IS-41D协议。1998年1月,欧洲电信标准研究所(ETSI)在GSMphase2+阶段引入了CAMEL协议(移动通信高级逻辑的客户化应用程序),当时的版本是Phase1。1998年4月,ITU-T在新推出的智能网能力集一2标准中描述了移动接入的功能实体,称为CAMELphase2标准。

伴随着移动网络向第三代系统的演进,网络的智能化程度也在不断地提升。智能网及其智能业务是构成未来个人通信的基本条件。

5更高的频段

从第一代的模拟移动电话,到第二代的数字移动网络,再到将来的第三代移动通信系统,网络使用的无线频段遵循一种由低到高的发展趋势。1981年诞生的第一个具有国际漫游功能的模拟系统NMT的使用频段为450MHz,1986年NMT变迁到900MHz频段。我国目前的模拟TACS系统的使用频段也为900MHz。在第二代网络中,GSM系统的开始使用频段为900MHz,IS-95CDMA系统为800MHz。为了从根本上提高GSM系统的容量,1997年出现了1800MHz系统,GSM900/1800双频网络迅速普及。2002年将投入商用的第三代系统IMT-2000则定位在2GHz频段。

6更有效利用频率

无线电频率是一种宝贵资源。随着移动通信的飞速发展,频谱资源有限和移动用户急剧增加的矛盾越来越尖锐,出现了“频率严重短缺”的现象。解决频率拥挤问题的出路是采用各种频率有效利用技术和开发新频段。

模拟制的早期蜂窝移动通信系统采用频分多址方式,主要通过多信道共用、频率复用和波道窄带化等技术实现频率的有效利用。随着业务的发展,模拟系统已远不能满足用户发展的需求。数字移动通信比模拟移动通信具有更大的容量。同样的频分多址技术,数字系统要求的载干比较小,因而频率复用距离可以小一些,系统的容量可以大一些。而且,数字移动通信还可采用时分多址或码分多址技术,它比模拟的频分多址制在系统容量上大4-20倍。

GSM作为最具代表性和最为成熟的数字移动通信系统,其发展历程就是一部频率有效利用技术的演进史。GSM采用时分多址制式,其对频率的有效利用主要是通过频率复用技术的不断升级实现的。从传统的4×3方式,到3×3、1×3、MRP、2×6等新的复用技术,频率复用的密集度逐步提升,频谱效率快速提高,GSM系统的容量得到逐步释放。1995年开始投入商用的IS-95CDMA(窄带)系统,以无线技术的先进性和大容量等特点着称。它以扩频技术为基础,不同用户的信号靠不同的编码序列来区分,如果从频域或时域来观察,多个CDMA信号是相互重叠的,故理论上CDMA系统的频谱利用率比GSM系统更高,网络容量更大。同时CDMA系统具有一定的过载能力,即系统具备软容量。作为未来第三代移动通信系统主流无线接入技术的WCDMA(宽带码分多址)能够更高效地利用无线电频率。它利用分层小区结构、自适应天线阵和相干解调(双向)等技术,网络容量可得到大幅提高,可以更好地满足未来移动通信的发展要求。

7网络趋于融合,走向统一

7.1第三代移动通信系统的结构

第三代系统的主要目标是将包括卫星在内的所有网络融合为可以替代众多网络功能的统一系统,它能够提供宽带业务并实现全球无缝覆盖。为了保护运营公司在现有网络设施上的投资,第二代系统向第三代系统的演进遵循平滑过渡的原则,现有的GSM、D-AMPSIS-136等第二代系统均将演变成为第三代系统的核心网络,从而形成一个核心网家族,核心网家族的不同成员之间通过NNI接口联结起来,成为一个整体,从而实现全球漫游。在核心网络家族的,形成一个庞大的无线接入家族,现有的几乎所有的无线接入技术以及WCDMA等第三代无线接入技术均将成为其成员。

篇6

1前言

移动通信业务之所以发展迅猛主要是其满足了人们在任何时间。任何地点与任何个人进行通信的愿望。移动通信是实现未来理想的个人通信服务的必由之路。在信息支撑技术、市场竞争和需求的共同作用下,移动通信技术的发展更是突飞猛进,呈现出以下几大趋势:网络业务数据化、分组化,网络技术宽带化,网络技术智能化,更高的频段,更有效利用频率,各种网络趋于融合。了解、掌握这些趋势对移动通信运营商和设备制造商均具有重要的现实意义。

2网络业务数据化、分组化

2.1无线数据——生机无限当前移动数据通信发展迅速,被认为是移动通信发展的一个主要方向。近年来出现的移动数据通信主要有两种,一种是电路交换型的移动数据业务,如TACS、AMPS和GSM中的承载数据业务以及GSM系统的HSCSD;另外一种是分组交换型的移动数据业务,如摩托罗拉的DataTAC、爱立信的Mobitex和GSM系统的GPRS。

目前,无线数据业务只占GSM网络全部业务量中的很小一部分,但是在未来的两年中这种状况将开始扭转,并大大改变。1999年以后,随着HSCSD、GPRS等新的高速数据解决方案显露峥嵘,并成为数据应用的新焦点,无线数据将成为运营商经营计划中越来越重要的部分,它预示着未来大量的商业机遇。

(1)应用驱动市场

无线数据业务的主要驱动力在于用户的应用。话音是单一的、易于被大众所接受的业务,然而无线数据则不同,无线数据最初的应用重点放在运输管理这样的专业市场。近期无线数据业务的目标市场是销售人员或现场工程师这样的用户群。从这些先发目标的应用中积累无线数据的经验,并从中受益。

在过去的十年里,传统的生活方式已经在迅速改变,人们更经常性地移动,职业和个人生活之间的分界变得模糊,人们需要不分时间、地点访问很重要的信息。发生在用户身上的这种生活方式的改变将成为驱动无线数据业务发展的重要因素。

(2)因特网的影响

和通信的其他领域一样,无线数据业务的一个最重要的驱动力来自Internet。根据最近的研究,未来两年欧洲的因特网用户数量将翻一番。在我国,因特网用户的年增长率将高达300%,显然用户在运动中接入因特网的需求将会增长。

为了满足接入因特网的需求,一个全球性的开放协议——无线应用协议(WAP)应运而生。WAP为将Internet的信息内容以及增值业务传送到移动终端提供了一种开放的通用标准,实现了IP与GSM网络的桥接,是一个为厂商提供加速市场增长、避免网络割接、保护运营商投资的标准,WAP确保任何与WAP兼容的GSM手机都能工作。

(3)数据速率的发展

GSM承载业务所提供的GSM数据速率最高只能达到9.6kbit/s。国际上1998年引入的高速电路交换数据(HSCSD)技术将实现57kbit/s的数据速率,对要求连续比特率和传输时延小的应用是理想的,如会议电视、电子邮件、远程接入企业的局域网和无线图像。1999年商用化的GPRS是第一个GSM分组数据应用,将实现超过100kbit/s的数据速率。对较短的“突发”类型业务是理想的,如信用卡认证、远程测量和远程事务处理。EDGE(增强数据速率GSM改进模式)使用修改过的GSM调制方式来实现超过300kbit/s的数据速率。EDGE会让GSM运营商特别受益,他们不但可以赢得第三代移动通信的经营执照,还可以提供有竞争力的宽带数据业务。

2.2个人多媒体通信——网络演进的方向

对随时随地话音通信的追求使早期移动通信走向成功。移动通信的商业价值和用户市场得到了证明,全球移动市场以超凡的速度增长。移动通信演进的下一阶段是向无线数据乃至个人移动多媒体转移,这一进展已经开始,并将成为未来重要的增长点。个人移动多媒体将根据地点为人们提供无法想像的、完善的个人业务和无线信息,将对人们工作和生活的各个方面产生影响。在个人多媒体世界里,话音邮件和电子邮件被传送到移动多媒体信箱中;短信将成为带有照片和视频内容的电子明信片;话音呼叫将与实时图像相结合,产生大量的可视移动电话,还将实现移动因特网和万维网浏览。像无线会议电视这样的应用将随处可见,电子商务将蓬勃开展。对于运动中的用户还有随时随地的各种信箱和娱乐服务。

3网络技术的宽带化

在电信业历史上,移动通信可能是技术和市场发展最快的领域。业务、技术、市场三者之间是一种互动的关系,伴随着用户对数据、多媒体业务需求的增加,网络业务向数据化、分组化发展,移动网络必然走向宽带化。

通过使用电话交换技术和蜂窝无线电技术,70年代末诞生了第一代模拟移动电话。AMPS(北美蜂窝系统)、NMT(北欧移动电话)和TACS(全向通信系统)是三种主要的窄带模拟标准。第一代无线网络技术的一大成就就是去掉了将电话连接到网络的用户线。用户第一次能够在他们所在的任何地方无线接收和拨打电话。

第二代系统引入了数字无线电技术,它提供更高的网络容量,改善了话音质量和保密性,并为用户引入了无缝的国际漫游。今天世界市场的第二代数字无线标准,包括GSM、MMPS、PDC(日本数字蜂窝系统)和IS95CDMA等,均仍为窄带系统。

第三代移动系统,即IMT-2000,是一种真正的宽带多媒体系统,它能够提供高质量宽带综合业务并实现全球无缝覆盖。2000年以后,窄带移动电话业务需求将依然很大,但随着Internet等高速数据通信及多媒体通信需求的驱动,宽带多媒体综合业务将逐步增长,而且就未来信息高速公路建设的无缝覆盖而言,宽带移动通信作为整个移动市场份额的子集将显得愈来愈重要。

第三代系统预计在2002年投入商用。

从第二代到第三代系统的变化并不像从第一代模拟网络到第二代数字网络那样存在重大的技术变迁。从目前的技术发展现状和趋势来讲,第二代系统将逐步子滑过渡到第三代系统,在此演进过程中,移动网络所能实现的数据速率逐步升级:GSM承载业务所能提供的数据速率为9.6kbit/s,1998年商用的HSCSD技术实现了57kbit/s的数据速率,1999年引入的GPRS将实现超过100kbit/s的数据速率,将在2000年引入的EDGE技术可实现超过300kbit/s的数据速率。2001年后投入商用的第三代系统将能够在广域网上实现384kbit/s的数据速率,在办公室和家中还可以达到2Mbit/s。

4网络技术的智能化

移动通信需求的不断增长以及新技术在移动通信中的广泛应用,促使移动网络得到了迅速发展。移动网络由单纯地传递和交换信息,逐步向存储和处理信息的智能化发展,移动智能网由此而生。移动智能网是在移动网络中引人智能网功能实体,以完成对移动呼叫的智能控制的一种网络,是一种开放性的智能平台,它使电信业务经营者能够方便、快速、经济、有效地提供客户所需的各类电信新业务,使客户对网络有更强的控制功能,能够方便灵活地获取所需的信息。移动智能网通过把交换与业务分离,建立集中的业务控制点和数据库,进而进一步建立集中的业务管理系统和业务生成环境来达到上述目标。通过智能网,运营公司可以最优地利用其网络,加快新业务的生成;可以根据客户的需要来设计业务,向其他业务提供者开放网络,增加收益。

关于移动智能网的研究,早在1995年就已开始,刚开始并没有具体的标准协议出现,各厂商各自制定了自己的标准,并且据此进行了不少的研究工作,如Alcatel、Nortel、Ericsson等都先后推出了自己的初期产品。这些工作为最终移动智能网标准的形成积累了经验。

1997年末,美国蜂窝电信工业协会(CTIA)制定了移动智能网的第一个标准协议——IS-41D协议。1998年1月,欧洲电信标准研究所(ETSI)在GSMphase2+阶段引入了CAMEL协议(移动通信高级逻辑的客户化应用程序),当时的版本是Phase1。1998年4月,ITU-T在新推出的智能网能力集一2标准中描述了移动接入的功能实体,称为CAMELphase2标准。

伴随着移动网络向第三代系统的演进,网络的智能化程度也在不断地提升。智能网及其智能业务是构成未来个人通信的基本条件。

5更高的频段

从第一代的模拟移动电话,到第二代的数字移动网络,再到将来的第三代移动通信系统,网络使用的无线频段遵循一种由低到高的发展趋势。1981年诞生的第一个具有国际漫游功能的模拟系统NMT的使用频段为450MHz,1986年NMT变迁到900MHz频段。我国目前的模拟TACS系统的使用频段也为900MHz。在第二代网络中,GSM系统的开始使用频段为900MHz,IS-95CDMA系统为800MHz。为了从根本上提高GSM系统的容量,1997年出现了1800MHz系统,GSM900/1800双频网络迅速普及。2002年将投入商用的第三代系统IMT-2000则定位在2GHz频段。

6更有效利用频率

无线电频率是一种宝贵资源。随着移动通信的飞速发展,频谱资源有限和移动用户急剧增加的矛盾越来越尖锐,出现了“频率严重短缺”的现象。解决频率拥挤问题的出路是采用各种频率有效利用技术和开发新频段。

模拟制的早期蜂窝移动通信系统采用频分多址方式,主要通过多信道共用、频率复用和波道窄带化等技术实现频率的有效利用。随着业务的发展,模拟系统已远不能满足用户发展的需求。数字移动通信比模拟移动通信具有更大的容量。同样的频分多址技术,数字系统要求的载干比较小,因而频率复用距离可以小一些,系统的容量可以大一些。而且,数字移动通信还可采用时分多址或码分多址技术,它比模拟的频分多址制在系统容量上大4-20倍。

GSM作为最具代表性和最为成熟的数字移动通信系统,其发展历程就是一部频率有效利用技术的演进史。GSM采用时分多址制式,其对频率的有效利用主要是通过频率复用技术的不断升级实现的。从传统的4×3方式,到3×3、1×3、MRP、2×6等新的复用技术,频率复用的密集度逐步提升,频谱效率快速提高,GSM系统的容量得到逐步释放。1995年开始投入商用的IS-95CDMA(窄带)系统,以无线技术的先进性和大容量等特点著称。它以扩频技术为基础,不同用户的信号靠不同的编码序列来区分,如果从频域或时域来观察,多个CDMA信号是相互重叠的,故理论上CDMA系统的频谱利用率比GSM系统更高,网络容量更大。同时CDMA系统具有一定的过载能力,即系统具备软容量。作为未来第三代移动通信系统主流无线接入技术的WCDMA(宽带码分多址)能够更高效地利用无线电频率。它利用分层小区结构、自适应天线阵和相干解调(双向)等技术,网络容量可得到大幅提高,可以更好地满足未来移动通信的发展要求。

7网络趋于融合,走向统一

7.1第三代移动通信系统的结构

第三代系统的主要目标是将包括卫星在内的所有网络融合为可以替代众多网络功能的统一系统,它能够提供宽带业务并实现全球无缝覆盖。为了保护运营公司在现有网络设施上的投资,第二代系统向第三代系统的演进遵循平滑过渡的原则,现有的GSM、D-AMPSIS-136等第二代系统均将演变成为第三代系统的核心网络,从而形成一个核心网家族,核心网家族的不同成员之间通过NNI接口联结起来,成为一个整体,从而实现全球漫游。在核心网络家族的,形成一个庞大的无线接入家族,现有的几乎所有的无线接入技术以及WCDMA等第三代无线接入技术均将成为其成员。

篇7

类似于固定中继系统,移动中继系统由基站、移动中继和用户终端组成。其中,基站和移动中继之间的链路为回程链路(BackhaulLink),移动中继和用户终端之间的链路为接入链路(AccessLink)。若基站和用户设备之间的信道状况良好,还可以考虑直连链路(DirectLink)。移动中继可以选择放大转发和解码转发等模式。由于移动中继具有运动性和随机性,而这种特点与性能密切相关,如何建立合理的移动中继运动模型是移动中继系统研究领域的首要问题。当前研究中有的采用较简单的随机游动模型,或采用二维泊松过程来表示用户终端的放置位置,使用M/M/∞排队模型来表示用户终端的移动性。在实际部署移动中继系统时,需要考虑不同的应用场景。在3GPPR11版本中,高铁是主要应用。在文献[8]中,主要考虑以下两种典型场景:场景1移动中继服务静止用户场景说明如图1所示。在该场景下,中继被安装在交通工具的顶部,中继天线被分别放置在车辆的内外,分别用于和基站与用户终端通信。若不使用中继辅助传输,该场景下的通信将会面临许多问题,如严重的车体损耗,多普勒频移,小区换带来的大量开销等。反之,则可以将较差的信道分为两段传输条件较好的链路,从而很好地解决了该场景下的通信问题。与直接传输相比,中继辅助传输的掉话率明显降低,为车内用户提供较高的吞吐量和较低的小区切换失败率,从而提高了通信质量,改善了用户体验。场景2移动中继服务非静止用户场景说明如图2所示。在该场景下,中继也被部署在车辆顶部,不过其目的不是为了为车内乘客提供服务,而是为街道和公园提供覆盖。闹市区的街道和公园,是行人比较集中的地方,通信业务量大,属于“热点”地区。在经过这些地方的公交车上部署中继,则可以增强覆盖,提高吞吐量,具有实际意义。

2移动中继系统中的关键技术

2.1信道建模与估计对于移动中继来说,由于其移动的特点,而且可能是高速移动,因此研究的首要问题是移动中继的信道建模问题,主要包括回程链路和接入链路的建模。不同链路的信道模型与各网络节点采用的天线数目、中继的转发模式和中继的运动模型密切相关,信道建模的准确度会极大地影响系统性能。如文献[9]分析了不准确的路径损耗模型对移动中继系统性能的影响。此外,基站到移动中继的信道会随着车辆的运动而急剧变化,同时车辆的运动会引起多普勒频移问题,因此在实际的移动中继系统中采用合适的信道预测和估计方法也是非常必要的。如文献提出了一种采用在车辆顶部使用预测性天线的信道预测和估计方法,从而较好地解决了移动中继的信道估计问题。

2.2中继选择在实际的移动中继系统中,可能会存在多个移动中继。现有研究表明,根据信道状态信息选择一个最好的中继进行协作,可以较低的复杂度获得满分集增益。因此,机会中继选择技术是移动中继系统中的关键技术。信令开销是中继选择算法的首要考虑因素。对于快速移动的用户,基于信噪比的方案会产生大量的信令开销,而基于位置或距离的选择方案在高速场景下开销较小,因而适用性更强。上述方案都是基于单个参数的选择,实际信噪比和时延等参数会同时影响中继选择,为此,文献[13]提出了一种具有服务质量(QoS)保证的多参数联合中继选择算法。由于信令开销和系统复杂度与每个目标用户的候选中继的数量成正比,文献[14]考虑了如何减少候选中继的数量而不影响使用中继带来的系统性能增益。文中所提算法限制了每个目标用户的数量从而减少了反馈开销。文献[15]提出了一种三步选择算法。该算法在保持中继增益的同时可以使中继信令开销维持在较低水平。虽然中继选择可以提高系统性能,但是不适宜的选择会引起频繁的中继切换,从而影响系统的整体性能。文献[16]从这个角度出发,提出了使中继活动时间最长和中继切换率最小的两种中继选择算法。研究结果表明,与现有方案相比,所提方案在不降低系统吞吐量的情况下可以获得较低的中继切换率和较长的中继活动时间。

2.3资源分配在中继系统中进行功率和带宽等资源的分配可以有效提高系统资源利用率和系统吞吐量,目前得到了广泛的研究。(1)功率分配。最简单的功率控制方法是开关算法。所谓开关功率控制算法就是给中继分配一定功率或者不分配功率。该算法可以提高小区吞吐量和覆盖范围。文献[17]根据不同的数据速率要求提出了一种最优的功率分配算法。该文献考虑了中继的移动性,建立了移动模型,使用所提出的最优功率分配方案可以提高数据速率。仿真结果表明,在一些实际的数据速率下该算法可以带来3dB增益。文献[18]提出了一种分布式的功率控制算法用以提高平均小区吞吐量。文章考虑了在多小区环境中,通过使用分布式移动中继功率分配方案,与传统的系统相比,平均小区吞吐量得到了改善。同时,也提升了小区边缘吞吐量,因此对小区边缘用户来说,该方案有助于改善其用户体验,是一种较好的解决方案。(2)带宽分配。对于不同的运营商分别安装不同的中继显然并不是高效的,文献[19]基于此提出了共享频谱分配算法来解决此问题。该方案中不同运营商使用相同的移动中继为某一区域内的用户服务,并根据链路质量为不同运营商分配相应的带宽,从而实现了无线资源的有效利用。借助于纳什均衡理论,该方案可以将吞吐量提升近20%。文献[20]以IEEE802.16j系统为研究对象,研究了子信道分配对系统性能的影响。文中提出了重叠子信道分配(OVSA)和正交子信道分配(ORSA)两种方案。研究结果表明,所提方案的小区吞吐量高于不使用中继情况下的吞吐量。文献[21]则利用博弈论理论联合考虑了动态服务选择和带宽分配的问题。为了获得更好的服务质量,移动中继执行基站选择和传输模式的选择,基站则为不同传输模式分配不同的带宽。当移动中继和基站的策略相互影响并且需要作出动态决定时,这将面临着挑战。为解决这个问题,该文提出了一个两层的基于进化博弈和微分博弈的博弈结构。在下层,动态服务选择可以建立为一个进化博弈模型;在上层,基站端的动态带宽分配可以形成一个微分博弈模型,最后得到了一个闭环纳什均衡。数值仿真结果表明了动态博弈带宽分配策略的有效性,并且系统性能和覆盖范围的优势得到了加强。

2.4小区切换在移动中继系统中,由于中继的移动性以及中继一般为多个用户同时服务等原因,如何设计中继高速移动情况下的小区切换策略便成为了一个关键问题,文献此进行了深入研究。在高速运动场景,大量用户很可能需要进行频繁的小区切换,因而如何保证较低的链路失败率和较高的切换成功率,将直接影响用户的通信服务质量和通信体验。对于移动中继系统的小区切换问题,现在比较好的一种方案是使用具有两根分布式天线的移动中继,即在车辆首尾分别装有天线。移动中继通过选择具有较好接收信号质量的天线作为接收天线。当车辆进入重叠区域时,前置天线执行切换至目标基站,后置天线将和服务基站保持连接。当前置天线完成切换后,再由后置天线将工作频率转移至目标基站。如果切换失败,后置天线将执行第二次切换。因此,这种切换方案使通信在切换过程中不会被中断,实现了通信的无缝体验,而且降低了切换失败率,是一种简单实用的方案。

2.5移动中继的其他问题使用移动中继来改善车辆用户的服务质量和吞吐量的效果明显,除了以上提到的关键问题外,仍然有其他的一些问题和挑战需要解决。首先是移动中继的移动性管理问题。这主要包括不同基站间移动中继的切换和不同移动中继间用户的切换。但是,现有LTE系统中没有针对移动中继的移动性支持,因此有必要修改当前的系统结构用以提供有效、可靠的移动性管理。目前,为了支持移动性管理,是在当前的固定中继架构上修改还是提出新的架构尚在讨论中。其次,由于移动中继的使用,干扰管理也是一个新的挑战。中继技术的优势在理论上已获得共识,但在实际部署中中继节点的引入必然导致更加严重的干扰问题。尽管接入链路干扰较小,但对于回程链路来说,不同移动中继间以及中继与宏小区用户间的干扰使问题变得复杂。预测性天线的使用将提高CSI的准确性,从而可以在回程链路中使用高级的干扰避免和干扰消除方案。

3结束语

篇8

4G移动网络通信技术相比于3G具有很强的优越性,首先4G通信技术速度更加的快,第二代移动通信系统最高的传输速率是32kbps,第三代组高速率为2mbps,经专家科学预测第四代移动通讯技术最高可达100mbps速度。其次,4G移动网络通信技术将实现高质量多媒体通信,第四代移动网络通信技术比第三代覆盖范围更广,质量更高,更能满足人们对高分辨率的多媒体需要。最后,能够为客户提供多样化的增值服务,4G是利用正教多任务分频技术来实现数字音频广播等多样化的增值服务,能够更好地满足使用者的多样化的需要。

二、4G移动通信技术的安全缺陷

1、安装的应用程序存在安全漏洞。

现阶段网络技术还处于不成熟阶段,软件中存在着许多的安全漏洞,网络浏览器和其他应用程序很容易出现故障。很多人对4G网络认识不清,对4G移动通信安全系统不了解,不正常的操作极易出现系统问题和死机现象导致信息的不安全和不完整。

2、病毒的破坏。

4G移动网络通信技术虽然有很多的优势,但它也跟其他网络一样惧怕病毒。病毒是安全系统的蛀虫,当病毒入侵网络系统后后不仅仅会对电脑网络的传输途径造成很大的破坏,而且会导致信号传播中出现乱码,妨碍信息的正确传递。

3、黑客的入侵。

黑客是指拥有高级知识的程序编辑人员,并且通过编程序来操作系统,利用电脑系统存在的漏洞非法的侵入他人系统,盗取他人的信息资料,非法获得自身所需要的东西的人。黑客的入侵通常会导致系统安全的破坏,使他人利益损坏,对他人造成危害。

三、完善4G移动通信技术

4G系统是一个业务多种多样的异构网络,现有的3G安全方案加/解密匙的方法并不适用于4G系统。4G安全系统将是一种轻量的具有复合特点的能够重复配置的系统。仅仅有防范和检查作用的安全系统是不能完全保卫系统的安全的,建立能够对病毒有一定的抵御能力和自动回复能力安全系统是非常必要的。所有的系统都会有一定的缺陷,一旦发生了信息的泄露将产生不可挽回的灾难性的损失。人为的缺失和自然灾害都会对网络系统,造成毁灭性的灾害。要在4G移动通信系统中加入系统容灾技术,一些自然灾害虽然会对通信系统产生危害但是在灾难过后就能快速准确的恢复原有数据,保卫系统安全。作为最后数据屏障的数据备份系统,不能有失误。要想保障数据不出现差错,数据容灾要选用两个存储器,这两个存储器内保存的内容虽然一致,但是他们两个相互独立一个出现问题不会直接影响另外一个,这两个储存器一个放在本地另外一个放在异地。它们通过IP连接在一起,是一个具有完整性、准确性、安全性的容灾系统,二者同时为为本地的服务器服务,同时使用。要不断地完善4G通信系统,无论是系统的硬件还是软件都要全面升级,不断地提升系统的安全性能。

四、小结

免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
推荐期刊
发表咨询 加急咨询 文秘咨询 杂志订阅 返回首页