线上期刊服务咨询,期刊咨询:400-808-1701 订阅咨询:400-808-1721

传感器技术论文8篇

时间:2023-03-27 16:39:41

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇传感器技术论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

传感器技术论文

篇1

在通信中没有稳定通道,且在路由方面会出现极高延迟,无法保证网络通信中的安全问题,例如一些重要信息可能会被拦截并对其泄露,因此网络通信的安全性不够强,则不能够有效的保证信息安全的传输。

2对无线传感器的安全技术造成破坏的因素

2.1破撞攻击。在发包作用处于正常的节点中时,破坏方则会附带的将另一个数据包进行发送,使得破坏的数据由于出现数据的叠加无法有效的被分离开,从而严重的阻碍了正常情况下的网络通信,并且破坏了网络通信的安全性,即为碰撞攻击。建立监听系统则是最好的防卸方法,它是利用纠错系统来查找数据包的叠加状况,并及时的对其进行清除,从而确保数据安全的传输。

2.2拥塞攻击。拥塞攻击指就是破换方对网络通信的频率进行深入的了解之后,通过通信频率附近的区域的得知,来发射相应的无线电波,从而进行一步对干扰予以加大。对于这种状况,则需要采用科学合理的预防方式,来将网络节点装换成另一个频率,才能进行正常的通信。

3加强无线传感器网络安全技术的相关措施分析

3.1密钥管理技术。通常在密钥的管理中,密钥从生成到完毕的这一过程所存在的不同问题在整个加密系统中是极其薄弱的一个环节,信息的泄漏问题尤为频繁。目前我国对密钥管理技术上最根本的管理是对称密钥机制的管理,其中包括非预共享的密钥模式、预共享密钥模式、概率性分配模式以及确定性分配模式。确定性分配模式为一个共享的密码钥匙,处于两个需要进行交换的数据节点间,且为一种非常确定的方式。而概率性分配则是将密码钥匙的共享得以实现,则要根据能够进行计算的合理概率,从而使得分配模式予以提出。

3.2安全路由技术。路由技术的实施就是想节省无线传感器网络中的节点所拥有能量,并最大程度体现无线传感器网络系统。但由于传播的范围较大,因此在传输网络数据信息时常常不同程度的遭受攻击,例如DD路由中最根本的协议,一些恶意的消息通过泛洪攻击方式进行拦截及获取,并利用网络将类似虚拟IP地址、hello时间以及保持时间这样的HSRP信息的HSRP协议数据单元进行寄发的方式,来对正常情况下的传输实行阻碍,使得网络无法进行正常且顺利的通信流程。但通过HSRP协议和TESLA协议进行有效结合所形成的SPINS协议,则可以有效的缓解且减少信息泄露的情况的出现,同时进一步加强了对攻击进行预防的能力,从而保证无线传感器网络整体的系统具有安全性。

3.3安全数据相融合。无线传感器网络就是通过丰富且复杂的数据所形成的一种网络,其中的相关数据会利用融合以及剔除,来对数据信息进行传送,因此在此过程中,必须谨慎仔细的对数据融合的安全性问题予以重视。同时数据融合节点的过程中,必须将数据具体的融合通过安全节点进行开展,并且在融合之后,将一些有效的数据通过供基站予以传送,才能进一步对监测的评价进行开展,从而保证融合的结果具有真实性以及安全性。

3.4密码技术。针对无线传感器网络中的一些极其不安全的特性,可通过密码设置、科学化的密码技术,从而进一步保证网络通信能够安全的进行。同时通过加大密码中相关代码以及数据的长度,来大大降低信息泄露的情况,从而可以有效的保证通信数据的安全性。由于出现的密钥算法无法达到对称性,其中所具备的保护因素较大,并且拥有简单方便的密码设置,从而广泛、普遍的被人们运用到日常生活中。而在应用不同的通信设备时,则需要将相应的密码技术进行使用。

4结束语

篇2

本文所设计传感器节点无线传感网络实时监测系统可以分为3个部分:无线传感器网络部分,广域网(移动网络或Internet)部分,远端用户部分。无线传感器网络的各个节点被安置在每个冷藏箱内,并组成通讯网络。每个节点上集成了温湿度、二氧化碳、乙烯、震荡检测器等传感器。温度是冷链运输过程中最重要的参数,直接影响食物的保鲜时间,湿度能体现出食物的失水程度,二氧化碳能表现出食物内部的代谢情况,乙烯能反映运输过程中的果实成熟过程,震荡检测则能体现一些突况。各个传感器受嵌入式CPU控制并将信息交给CPU处理,同时嵌入式CPU与Zigbee协议处理芯片通信已实现协议层面的各种操作。以此方式实现对传感器采样周期、工作状态等的设置和调控。各节点将各种传感器采集的数据进行存储、压缩并发送给上一级路由器,再由路由器发送到协调器。在协调器上,安装有GPRS和WiFi空中接口,能够根据具体环境选择一种方式将各路由器发送到协调器的食品所处环境信息发送到广域网中。

广域网部分在本文系统中指移动服务器或者Internet。协调器将监测到的环境信息发送到广域网中,而广域网则提供中转的功能,便于物流管理者在远端获取这些环境信息。远端用户部分指物流管理者通过在PC上开发的用户界面或者在手机上开发的相关应用程序从广域网获取实时的冷鲜食品信息,并根据这些信息对出现的异常情况及时地做出判断和调整。

由于终端节点是通过电池供电的,而在一次长途运送过程中无法更换电池,所以终端节点的功耗是在设计中需要考虑的重要问题。合理利用Zigbee协议栈中提供的节点睡眠功能将有效地优化终端节点的能量利用效率。因为传感器采集的环境信息将按照一定周期上传给路由节点或协调器,所以在不需要发送信息时,可以将发送模块以及嵌入式CPU中与发送有关的功能置于睡眠状态,在需要发送数据时再由设置好的系统时钟进行唤醒。这样通过软件的编写,控制各个模块的工作时间,对能量进行分时合理利用将大幅提高终端节点的电能使用时间,使整个传感器节点网络更加适用于实际的冷鲜食品物流监控应用。

2结语

篇3

关键词:贝叶斯估计信息融合障碍探测智能驾驶

随着传感器技术、信息处理技术、测量技术与计算机技术的发展,智能驾驶系统(辅助驾驶系统一无人驾驶系统)也得了飞速的发展。消费者越来越注重驾驶的安全性与舒适性,这就要求传感器能识别在同一车道上前方行驶的汽车,并能在有障碍时提醒驾驶员或者自动改变汽车状态,以避免事故诉发生。国际上各大汽车公司也都致力于这方面的研究,并开发了一系列安全驾驶系统,如碰撞报警系统(CW)、偏向报警系统(LDW)和智能巡游系统(ICC)等。国内在这些方面也有一定的研究,但与国外相比仍存在较大的差距。本文将主要讨论多传感器信息融合技术在智能驾驶系统(ITS)中的应用。

1ICC/CW和LDW系统中存在的问题

1.1ICC/CW系统中的误识别问题

ICC/CW系统中经常使用单一波束传感器。这类传感器利用非常狭窄的波束宽度测定前方的车辆,对于弯曲道路(见图1(a)),前后车辆很容易驶出传感器的测量范围,这将引起智能巡游系统误加速。如果前方车辆减速或在拐弯处另一辆汽车驶入本车道,碰撞报警系统将不能在安全停车范围内给出响应而容易产生碰撞。类似地,当弯曲度延伸时(见图1(b)),雷达系统易把邻近道路的车辆或路边的防护栏误认为是障碍而给出报警。当道路不平坦时,雷达传感器前方的道路是斜向上,小丘或小堆也可能被误认为是障碍,这些都降低了系统的稳定性。现在有一些滤波算法可以处理这些问题并取得了一定效果,但不能彻底解决。

1.2LDW系统中存在的场景识别问题

LDW系统中同样存在公共驾驶区场景识别问题。LDW系统依赖于一侧的摄像机(经常仅能测道路上相邻车辆的位置),很难区分弯曲的道路和做到多样的个人驾驶模式。LDW系统利用一个前向摄像机探测车辆前方道路的地理状况,这对于远距离测量存在着精确性的问题,所有这些都影响了TLC(Time-to-Line-Crossing)测量的准确性。现常用死区识别和驾驶信息修订法进行处理,但并不能给出任何先验知识去识别故障。

2多传感器信息融合技术在ITS系统中的应用

针对以上系统存在的一些问题,研究者们纷纷引入了多传感器信息融合技术,并提出了不同的融合算法。基于视觉系统的传感器可以提供大量的场景信息,其它传感器(如雷达或激光等)可以测定距离、范围等信息,对两方面的信息融合处理后能够给出更可靠的识别信息。融合技术可以采用Beaurais等人于1999年提出的CLARK算法(CombinedLikelihoodAddingRadar)和InstitudeNeuroinformatik提出的ICDA(IntegrativeCouplingofDifferentAlgorithms)算法等方法实现。

2.1传感器的选择

识别障碍的首要问题是传感器的选择,下面对几种传感器的优缺点进行说明(见表1)。探测障碍的最简单的方法是使用超声波传感器,它是利用向目标发射超声波脉冲,计算其往返时间来判定距离的。该方法被广泛应用于移动机器人的研究上。其优点是价格便宜,易于使用,且在10m以内能给出精确的测量。不过在ITS系统中除了上文提出的场景限制外,还有以下问题。首先因其只能在10m以内有效使用,所以并不适合ITS系统。另外超声波传感器的工作原理基于声,即使可以使之测达100m远,但其更新频率为2Hz,而且还有可能在传输中受到其它信号的干扰,所以在CW/ICC系统中使用是不实际的。

表1传感器性能比较

传感器类型优点缺点

超声波

视觉

激光雷达

MMW雷达价格合理,夜间不受影响。

易于多目标测量和分类,分辨率好。

价格相合理,夜间不受影响

不受灯光、天气影响。测量范围小,对天气变化敏感。

不能直接测量距离,算法复杂,处理速度慢。

对水、灰尘、灯光敏感。

价格贵

视觉传感器在CW系统中使用得非常广泛。其优点是尺寸小,价格合理,在一定的宽度和视觉域内可以测量定多个目标,并且可以利用测量的图像根据外形和大小对目标进行分类。但是算法复杂,处理速度慢。

雷达传感器在军事和航空领域已经使用了几十年。主要优点是可以鲁棒地探测到障碍而不受天气或灯光条件限制。近十年来随着尺寸及价格的降低,在汽车行业开始被使用。但是仍存在性价比的问题。

为了克服这些问题,利用信息融合技术提出了一些新的方法,利用这些方式可以得到较单一传感器更为可靠的探测。

2.2信息融合的基本原理

所谓信息融合就是将来自多个传感器或多源的信息进行综合处理,从而得出更为准确、可靠的结论。多传感器信息融合是人类和其它生物系统中普遍存在的一种基本功能,人类本地地具有将身体上的各种功能器官(眼、耳、鼻、四肢)所探测的信息(景物、声音、气味和触觉)与先验知识进行综合的能力,以便对其周围的环境和正在发生的事件做出估计。由于人类的感官具有不同度量特征,因而可测出不同空间范围的各种物理现象,这一过程是复杂的,也是自适应的。它将各种信息(图像、声音、气味和物理形状或描述)转化成对环境的有价值的解释。

多传感器信息融合实际上是人对人脑综合处理复杂问题的一种功能模拟。在多传感器系统中,各种传感器提供的信息可能具有不同的特片:对变的或者非时变的,实时的或者非实时的,模糊的或者确定的,精确的或者不完整的,相互支持的或者互补的。多传感器信息融合就像人脑综合处理信息的过程一样,它充分利用多个传感器资源,通过对各种传感器及其观测信息的合理支配与使用,将各种传感器在空间和时间上的互补与冗余信息依据某种优化准则结合起来,产生对观测环境的一致性解释或描述。信息融合的目标是基于各种传感器分离观测信息,通过对信息的优化组合导出更多的有效信息。这是最佳协同作用的效果,它的最终目的是利用多个传感器共同或联合操作的优势来提高整个系统的有效性。

2.3常用信息融合算法

信息融合技术涉及到方面的理论和技术,如信息处理、估计理论、不确定性理论、模式识别、最优化技术、神经网络和人工智能等。由不同的应用要求形成的各种方法都是融合方法的个子集。表2归纳了一些常用的信息融合方法。

表2信息融合方法

经典方法现代方法

估计方法统计方法信息论方法人工智能方法

加权平均法经典推理法聚类分析模糊逻辑

极大似然估计贝叶斯估计模板法产生式规则

最小二乘法品质因素法熵理论神经网络

卡尔曼滤波D-S证据决策理论遗传算法

模糊积分理论

2.4智能驾驶系统中信息融合算法的基本结构

由于单一传感器的局限性,现在ITS系统中多使用一组传感器探测不同视点的信息,再对这些信息进行融合处理,以完成初始目标探测识别。在智能驾驶系统中识别障碍常用的算法结构如图2所示。

3CLARK算法

CLARK算法是用于精确测量障碍位置和道路状况的方法,它同时使用来自距离传感器(雷达)和摄像机的信息。CLARK算法主要由以下两部分组成:①使用多传器融合技术对障碍进行鲁棒探测;②在LOIS(LikelihoodofImageShape)道路探测算法中综合考虑上述信息,以提高远距离道路和障碍的识别性能。

3.1用雷达探测障碍

目前经常使用一个雷达传感器探测前方的车辆或障碍。如前面所分析,雷达虽然在直路上的性能良好,但当道路弯曲时,探测的信号将完全可靠,有时还会有探测的盲点或产生错误报警。为了防止错误报警,常对雷达的输出进行标准卡尔曼(Kalman)滤波,但这并不能有效解决探测盲点问题。为了更可靠地解决这类问题,可以使用扫描雷达或多波束雷达,但其价格昂贵。这里选用低价的视觉传感器作为附加信息,视觉传感器经常能提供扫描雷达和多波束雷达所不能提供的信息。

3.2在目标识别中融合视觉信息

CLARK算法使用视觉图像的对比度和颜色信息探测目标,使用矩形模板方法识别目标。这个模板由具有不同左右边界和底部尺寸的矩形构成,再与视觉图像对比度域匹配,选择与雷达传感器输出最接近的障碍模板。

CLARK算法首先对雷达信号进行卡尔曼滤波,用于剔除传感器输出的强干扰,这出下列状态和观测方程处理:

D(t)=R(t)+v(t)

式中,R(t)为前方障碍的真实距离(未知),R(t)是其速度(未知,)D(t)为距离观测值,Δt为两次观测的问题时间,w(t)和v(t)为高斯噪声。给定D(t),由Kalman滤波器估计R(t)和R(t)的值,并把估计值R(t)作为距离输入值,使用R(t)和D(t)的差值确定所用矩形模板的偏差。由于使用雷达探测的位置与雷达作为补偿。

使用上述算法可以有效提高雷达探测的可靠性,但当图像包含很强的边缘信息或障碍只占据相平面一个很小的区域时,仍不能得到满意的结果。因此,除对比度外,又引入视觉图像的颜色域。

3.3相合似然法

在探测到障碍后,CLARK算法将这些信息整合到道路探测算法(LOIS)中。LOIS利用变形道路的边缘应为图像中对比度的最大值部分且其方位应垂直于道路边缘来搜索道路。如果只是简单地将两个信息整合,则障碍探测部分的像素被隐藏,其图像梯度值不会影响LOIS的似然性。这样可以防止LOIS将汽车前方障碍的边缘误认为是道路的边缘来处理。但是当道路的真实边缘非常接近障碍的边缘时,隐藏技术则失效。

为了使隐藏技术有效,可以在障碍和道路探测之间采取折中的处理方法。这种折中的处理方法就是相合似然法。它将探测障碍固定的位置和尺寸参数变为可以在小范围内变化的参数。新的似然函数由LOIS的似然和小探测障碍的似然融合而成。它使用七维参数探测方法(三维用于障碍,四维用于道路),能同时给出障碍和道路预测的最好结果。其公式如下:

式中,Tb、Tl、Tw为相平面内矩形模板的底部位置、左边界和宽度的三个变形参数,[xr(t),xc(t)]为变形模板相平面的中心。[yr(t),yc(t)]为由雷达探测并经Kalman滤波的障碍在相平观的位置。将地平面压缩变化为相平面,的实时估计,为相平面内一个路宽的值(3.2m)。tan-1的压缩比率在相平面内不小于Tmin(路宽的一半),不太于Tmax(路宽)。通过求解七维后验pdfP(k'''',b''''LEFT,b''''RIGHT,vp,Tb,Tl,Tw|[yr(t),yc(t)],ObservedImage)的最大值获得障碍和道路目标。

3.4CLARK算法的局限性

篇4

1 多传感器融合技术简介

多传感器融合技术可类比于人类逻辑系统中自然实现的基本功能,是用机器实现人类由感知到认知过程的模仿。在人类对客观事物的认知过程中,首先使用来自人体中的传感器(眼、耳、鼻、皮肤等)通过听、嗅、视、触、味五觉对客观事物信息(景物、声音、气味等)进行多方位、多种类的感知,从中获得大量冗余和互补的信息。然后根据人脑的先验知识去对这些信息进行相关分析与处理,进而估计、理解周围环境和正在发生的事件,获得对客观事物统一与和谐的理解与认识。这就是人的复杂的,同时也是自适应的认知过程。人类的感官由于具有各自不同的度量特征可以在不同空间范围内对各种事件进行反应。人脑把各种信息(图像、声音、气味、形貌、上下文等)转换成对事物有价值的一致性解释,需要大量不同的智能处理,以及适用于解释组合信息含义的知识库。

传感器可以类比于人的感知器官:通过不同的原理对自然界的光、热、声、磁等信号进行捕捉,由换能器将其转换成电信号,再数字化后经通讯系统传递给计算机进行处理。单传感器系统只能从单个度量维度获得片面的、局部的特征信息,信息量十分有限。同时单个传感器本身的累计误差对系统造成的影响也无法消除。[2]因此,想要获得对事物的一致性准确解释,单一传感器系统力有不足。

多传感器融合技术把多个不同种类的传感器集中于同一个感知系统中,将各个传感器来的数据进行数据融合,形成对[( dylw.NEt) 专业提供专业论文写作和发表教育论文的服务,欢迎光临]被测事物更准确认识。它出现在20世纪70年代初期,最早应用于军事领域,后于20世纪80年展起来。近年来随着计算技术、遥感技术、通讯技术以及微电子制造业的迅猛发展,多传感器信息融合技术成为了一个热门的研究方向,获得了更广泛的应用。例如,在人机交互领域,要实现人机交互所追求的最终目标“自然人机交互”,对于人、环境的解读尤为重要,[3]这正是多传感器融合技术的优势所在。

2 多传感器融合系统的基本组成及技术原理

多传感器融合技术,虽然没有一个严格的定义,但可以基本概括为: (1)充分利用多传感器数据资源(来自不同时/空范围)。 (2)在一定的规则下对多传感器所得检测数据进行综合分析。 (3)获得一致性解释并根据所设算法实现相应的决策或估计,实现整个系统获得比各单传感器更加充分的信息。[4]多传感器融合系统一般由如图1所示的三个部分组成:传感器部分(包括数据获取及预处理)、数据融合部分、结果输出部分。

多传感器融合系统就像一个为了实现“对被测对象的一致性解释或描述”而有机装配而成的整体,可类比于人的身、脑综合信息处理系统。其中多传感器系统是整个系统获取数据的硬件基础和手段,所得多源信息成为数据融合的对象;融合是指对数据的协调优化和综合处理,也是联系整个系统的核心。它无法用单一的技术来解决,而是多种跨学科技术、理论的综合。

多传感器融合系统同单传感器系统相比,其系统的复杂性大大增加的同时从自然界所获得的信息量也成倍增长。多个传感器的存在从时间和空间的角度都扩展了信息获取的覆盖范围,[5]而传感器之间的协同作业则提高了信息获取的概率,对于某个传感器不能顾及的检测对象,可由其他传感器完成工作。在某个传感器出现故障、受干扰或不可用的情况下,系统仍有其他传感器可以提供信息,不易受到破坏。

各传感器在信息融合系统中所得的数据、信息具有不同的特征,可以是实时/非实时,快变/缓变,模糊/确定,相互支持/互补,相互矛盾/竞争等等。在系统中,这些复杂的数据不是孤立而是融合的,所得最终信息并不是各传感器信息的简单加和,需要根据各传感器之间的逻辑关系依据智能算法进行联合、相关、组合推导出更多的信息。利用多个传感器协同作业的多传感器融合相比由它的各个传感器分别构成单独系统再加和而成的系统集更有优势。

3 多传感器融合技术在公共艺术设计中的应用

利用多传感器融合技术进行公共艺术设计,将前沿科技与传统艺术方式集成在一起,是一种全新的尝试。从字面意思的理解来看,公共艺术分为公共和艺术两个独立的定义,可以理解为:具有“公共性”含义的艺术形式。其界定的核心原则就是“公共性”。“公共”就意味着公共艺术作品必须是能与民众产生自由交流的一种艺术形式,要以公众自主、自由参与到公共艺术中为前提,任何缺少与民众之间自由评论和互动的艺术形式都不是公共艺术。[6]因此,公共艺术不能仅仅是“艺术家创作”的艺术,而是一种“公共互动”的艺术。如何让公众自主自由参与到艺术作品中,形成真正的“公共艺术”是艺术家们亟待解决的重要问题。完整的公共艺术作品必须是“表达”与“吸收”经互动过程的完整呈现。“吸收”的是来自公众的思想,由公众的行为进行表达,通过互动产生交流。因此,艺术家们需要考虑的一个重要问题是,如何由公众的行为导向公众思想的表达,形成有效的交互。在日本艺术家草间弥生(Yayoi Kusama)创造的作品The Obliteration Room中,草间弥生构建了一个纯白色的房间,每个参观者都将被发放一张彩色波点贴纸,参观者可以根据喜好将贴纸贴在房间中的任意位置。空间中的每一个彩色波点都是参观者对此次参观经历的一种表达。[7]

从参观者的行为、思想的角度进行考虑,人类对于思想的表达具有多样性,有显 式的主动动作、行为、语言等等,也有隐式的如表情、眼动、甚至气味及生化物质(如唾液、汗液、荷尔蒙等)的分泌。传统的艺术作品(如图2例)[( dylw.NEt) 专业提供专业论文写作和发表教育论文的服务,欢迎光临]主要是从公众显式的主动作为中获得表达形成交互,所受限制较大,参与门槛较高。将多传感器融合系统应用于公共艺术,首先拓宽了公众思想的行为来源,降低了公众参与的门槛。目前,在国内外已出现了一些基于单传感器的公共艺术作品,但单传感器的单一数据来源、不可靠、易受干扰、不稳定等技术局限性使其发展受到限制。随着先进传感技术的飞跃,除了人类的主要信息来源声音、光、力等自然信号之外,甚至在人传感器力所不及的范畴如红外、紫外等非可见光区域,次/超声波区域,非挥发性痕量生化物质等,我们也能够通过先进传感技术获得所需要的信息。通过多传感器融合技术所带来的巨大优势,科技比人类更懂得人类已经不再是梦想。将多传感器融合系统应用于公共艺术,降低了公众参与公共艺术的阈值。多传感器融合系统对于公众行为的捕捉不是被动的,而是主动地感知公众的行为,将公众“拉”入参与公共艺术的行为中,为公共艺术的设计提供了一种崭新的思路。

以城市中某广场为例,在人们进入广场时,形成参观经历。假设给每个人分发一张彩色波点纸,通过张贴彩色波点纸的显示行为进行表达,即形成类似草间弥生洁净之屋的效果。在没有彩色波点纸的情况下,人们对其参观经历产生隐式的表达。例如,不同的面部表情、走路的步长、速度、方向等等。公众的这些隐式表达可以使用多传感器融合系统进行捕捉。使用彩色数字投影代替彩色波点纸,每一种颜色对应多传感器融合系统所得到的一致性结论。例如,红色对应热情、绿色对应平静、不同程度的黑色对应一些负面情绪如沮丧等,形成交互。此例的多传感器融合系统中,使用摄像装置及压力感应装置对人群进行检测,即通过摄像装置对公众面部表情进行捕捉、压力传感器对公众步态进行捕捉。二类传感器所得数据需进行时间、空间二个层面的融合。时间融合主要是将单传感器的数据进行融合,是指对不同时间点的检测数据进行融合。空间融合适用于多传感器所得信息的一次融合处理,是指对不同位置、类型传感器在同一时刻的检测数据进行融合。在融合过程中,需要结合图像识别技术、步态分析对公众的面部表情、步态行为进行特征数据提取、分析,从而得出对该参与个体的一致性结论,并根据设计需求予以分类。此处可分为热情、平静、沮丧等类别,每一个类别对应于一种颜色,由数字投影进行表达。该“波点”设计的简单模型如图3所示。

随着多传感器融合系统中传感器数量、种类的不断增加,可根据归属将公共艺术装置中使用的传感器分为两类:第一类传感器从属于装置艺术本身,由艺术家根据艺术表达的需求进行设计安装。第二类传感器从属于公众,来自公众随身携带的电子设备,艺术装置提供数据接口,从中获取数据。二类传感器协同作业,通过融合中心进行数据融合,得到全方位多角度的“立体信息”。将多传感器融合系统应用于公共艺术装置,是实现公共艺术公共性的有力保障。

从设计目的的层面考虑,根据马斯洛的理论,将人的需求由低级层次到高级层次依次分为5个层次:生理、安全、社会、尊重以及自我实现。公共艺术的实质就是满足人的真正需求,而不是公共艺术装置的物质形态本身。多传感器融合系统对所得多元数据进行多种层次上的融合,实现对人脑综合信息处理的高级模仿,深刻挖掘公众[( dylw.NEt) 专业提供专业论文写作和发表教育论文的服务,欢迎光临]表面行为背后的含义,帮助艺术家们分析、理解、满足公众的真正需求。随着分布式计算、通讯、云计算、物联网等技术与多传感器数据融合技术的共进发展,多传感器数据融合技术所能实现的功能也越来越强大。可以预见,随着数字化进程的进一步深入,多传感器融合技术与公共艺术的结合必将带给我们更多的惊喜。

参考文献:

[1] 付志勇.设计的重构——论计算机对设计的变革[J].装饰,1995(04):46-47.

[2] 杨万海.多传感器数据融合及其应用[M].西安电子科技大学出版社,2004.

[3] 王熙元.交互设计中的信息传达研究[J].包装工程,2010,31(12):12-14.

[4] 刘同明,夏祖勋,解洪成.数据融合技术及其应用[M].国防工业出版社,2000.

[5] 王祁,聂伟.分布式多传感器数据融合[J].传感器技术,1997,16(5):8-10.

[6] 王峰,过伟敏.数字化城市公共艺术交互性内涵研究[J].包装工程,2010,31(24):124-127.

篇5

关键词:HMP45D,温湿度传感器,原理,维护

 

引言

HMP45D温湿度传感器是芬兰VAISALA公司开发的具有HUMICAP技术的新一代聚合物薄膜电容传感器,目前大连周水子国际机场空管气象部门已投入业务运行的自动气象站[1],均采用该传感器。论文范文,。由于该传感器的测量部分总是要和空气中的灰尘和化学物质接触,从而使传感器在某些环境中产生漂移。论文范文,。而仪器的电气参数会随时间的推移、温度变化及机械冲击产生变化,因此传感器需要进行定期维护和校准。

1.HMP45D温湿度传感器的结构

HMP45D温湿度传感器应安装在其中心点离地面1.5米处。其中,温度传感器是铂电阻温度传感器,湿度传感器是湿敏电容湿度传感器[2],即HMP45D是将铂电阻温度传感器与湿敏电容湿度传感器制作成为一体的温湿度传感器,如图1所示。

图1 HMP45D温湿度传感器外型图

2.HMP45D温湿度传感器的工作原理

2.1 温度传感器工作原理

HMP45D温湿度传感器的测温元件是铂电阻传感器Pt100,其结构如图2。铂电阻温度传

感器是利用其电阻随温度变化的原理制成的。标准铂电阻的复现可达万分之几摄氏度的精确度,在-259.34~+630.74范围内可作为标准仪器。铂电阻材料具有如下特点:温度系数较大,即灵敏度较大;电阻率交大,易于绕制高阻值的元件;性能稳定,材料易于提纯;测温精度高,复现性好[3]。

图2 铂电阻温度传感器结构图

由于铂电阻具有阻值随温度改变的特性,所以自动气象站中采集器是利用四线制恒流源供电方式及线性化电路,将传感器电阻值的变化转化为电压值的变化对温度进行测量[4]。铂电阻在0℃时的电阻值R0是100Ω,以0℃作为基点温度,在温度t时的电阻值Rt为

(1)

式中:α,β为系数,经标定可以求出其值。由恒流源提供恒定电流I0流经铂电阻Rt,电压I0Rt通过电压引线传送给测量电路,只要测量电路的输入阻抗足够大,流经引线的电流将非常小,引线的电阻影响可忽略不计。所以,自动气象站温度传感器电缆的长短与阻值大小对测量值的影响可忽略不计。论文范文,。测量电压的电路采用A/D转换器方式。

2.2 湿度传感器工作原理

HMP45D温湿度传感器的测湿元件是HUMICIP180高分子薄膜型湿敏电容,湿敏电容具有感湿特性的电介质,其介电常数随相对湿度的变化而变化,从而完成对湿度的测量。湿敏电容主要由湿敏电容和转换电路两部分组成,其结构如图3所示。它由上电极(upper electrode)、湿敏材料即高分子薄膜(thin-film polymer)、下电极(lower electrode)、玻璃衬底(glass substrate)几部分组成。

图3 湿敏电容传感器结构图

湿敏电容传感器上电极是一层多孔膜,能透过水汽;下电极为一对电极,引线由下电极引出;基板是玻璃。整个传感器由两个小电容器串联组成。湿敏材料是一种高分子聚合物,它的介电常数随着环境的相对湿度变化而变化。当环境湿度发生变化时,湿敏元件的电容量随之发生改变,即当相对湿度增大时,湿敏电容量随之增大,反之减小,电容量通常在48~56pF。传感器的转换电路把湿敏电容变化量转换成电压量变化,对应于湿度0~100%RH的变化,传感器的输出呈0~1V的线性变化。由此,可以通过湿敏电容湿度传感器测得相对湿度。

3.HMP45D温湿度传感器的校准和维护

对HMP45D 传感器的维护,要注意定期清洁,对于温度传感器测量时要保证Pt100 铂电阻表面及管脚的清洁干燥。论文范文,。在清洗铂电阻时一定要将湿度传感器取下,使用酒精或异丙酮进行清洗。其具体步凑如下:

1) 旋开探头处黑色过滤器,过滤器内有一层薄薄的白色过滤网,旋出过滤网,用干净的小毛刷刷去过滤网上的灰尘,然后用蒸馏水分别将它们清洗干净。

2) 等保护罩和滤纸完全风干之后,将其安装到传感器上。然后再将传感器通过外转接盒连接到采集器上,再和湿度标准传感器一起放入恒湿盐湿度发生器进行对比。恒湿盐容器的温湿参数[4]如表1。

表1HMP45D校准前后数据对比

篇6

关键词:压力传感器,薄膜,敏感栅

 

随着社会的发展,信息处理技术、微处理器和计算机技术的快速发展和广泛应用,都需要在传感器的开发方面有相应的进展。现在非电物理量的测试与控制技术,已越来越广泛地应用于航天、航空、常规武器、船舶、交通运输、冶金、机械制造、化工、轻工、生物医学工程、自动检测与计量、称重等技术领域[1],而且也正在逐步引入人们的日常生活中。免费论文参考网。可以说测试技术与自动控制技术水平的高低,是衡量一个国家科学技术现代化程度的重要标志。传感器是信息采集系统的感应单元,所以,它是自动化系统和控制设备的关键部件,作为系统中的一个结构组成,在科技、生产自动化领域中的作用越来越重要[2]。

传感器亦称换能器,是将各种非电量(包括物理量,化学量,生物学量等)按一定的规律转换成便于处理和传输的另外一种物理量(一般为电量、磁量等)的装置[3],它能把某种形式的能量转换成另一种形式的能量。传感器一般由敏感元件、传感元件和测量电路3部分组成,有时还需加上辅助电源。免费论文参考网。其原理如图1所示。

其中:①敏感元件直接感受被测物理量,如在应变式传感器中为弹性元件;②传感元件将感受到的非电量直接转换成电量,是转换元件,如固态压阻式压力传感器;③测量电路是将传感元件输出的电信号转换为便于显示、控制和处理的有用电信号的电路,使用较多的是电桥电路。由于传感器元件输出的信号一般较小,大多数的测量电路还包括放大电路,有的还包括显示器,直接在传感器上显示出所测量的物理量;④辅助电源是供给传感元件和测量电路工作电压和电流的器件。

国际电工委员会IEC则将传感器定义为测量系统中的一种前置部件,它将输入变量转换成可供测量的信号[4]。传感器是传感器系统的一个组成部分,是被测量信号输入的第一道关口。对传感器在技术方面有一定的要求,而同时亦要考虑尽可能低的零点漂移、温度漂移及蠕变等[5]。近年来,传感器有向小型化、集成化、智能化、系列化 、标准化方向发展的趋势[6]。

电阻式传感器的工作原理是将被测的非电量转换成电阻值,通过测量此电阻值达到测量非电量的目的。这类传感器大致分为两类:电阻应变式和电位计式。利用电阻式传感器可以测量形变、压力、力、位移、加速度和温度等非电量参数。

压力传感器是将压力这个物理量转换成电信号的一种电阻应变式传感器。传统的电阻应变式压力传感器是一种由敏感栅和弹性敏感元件组合起来的传感器[7]。如图2所示,将应变片用粘合剂粘贴在弹性敏感元件上,当弹性敏感元件受到外施压力作用时,弹性敏感元件将产生应变,电阻应变片将它们转换成电阻变化,再通过电桥电路及补偿电路输出电信号。它是目前应用较多的压力传感器之一,因具有结构简单、使用方便、测量速度快等特点而广泛应用于航空、机械、电力、化工、建筑、医学等诸多领域。

传统的电阻应变式压力传感器的电阻敏感栅是刻录在一层绝缘脂薄膜上,而薄膜又通过粘结剂粘合到弹性基片上,由于弹性元件与粘结剂及绝缘脂膜之间的弹性模量不同,弹性元件的应变不能直接传递给敏感栅,而是要通过粘结剂、绝缘脂膜才能到达敏感栅,从而产生较大的蠕变和滞后,影响传感器的灵敏度、响应度、线性度等性能。另外,由于粘结剂不能在高温条件下使用,这也使它的应用范围受到限制。

为了消除绝缘薄膜层和粘结剂层对传感器性能的影响,可以尝试采用真空镀膜方法及光刻技术,在弹性元件上直接刻录敏感栅,弹性元件与敏感栅直接接触,以克服常规工艺导致的滞后和蠕变大的缺陷。另外,如果弹性材料和结构选择恰当,还可制成耐高温、耐腐蚀的全隔膜式薄膜压力传感器。

一、器件研制

采用真空镀膜技术在弹性基片上蒸镀一层约300nm金属栅材料的薄膜,用半导体光刻技术,在弹性基片上直接形成电阻敏感栅,最后利用耐高温、耐酸碱腐蚀的环氧树脂粘结剂,将制作好的芯片封装在工件中,组成压力传感器探头。经过热老化、电老化,待封装应力趋于稳定后,进行电性能测试。

在制作薄膜电阻应变式压力传感器中,采用的工艺流程如图3所示。

篇7

关键词:双轴加速度传感器,ADXL210E,三维鼠标

 

一、引言

ADXL210E是美国模拟器件公司生产的含有用多晶硅表面微机械加工技术制作的传感器的两坐标轴加速度计单片集成电路。论文写作,ADXL210E。ADXL210E是一种低成本,低功耗,完整2轴加速度传感器,该电路可以测量诸如振动这样的动态加速度和重力之类的静态加速度,测量范围为±10g。ADXL210E的占空因数输出在没有A/D转换器或胶着逻辑(Gluelogic)的情况下,可通过微处理器直接测量。论文写作,ADXL210E。事实上,器件的占空因数(即脉冲宽度与周期之比值)正比于加速度。论文写作,ADXL210E。ADXL210E常用于两轴倾斜传感器、信息家电、报警和移动探测器及汽车安全等领域。

其性能特点如下:

(1)利用3V~5.25V的单电源工作,电源电流低于0.6mA;

(2)集成了两坐标轴采用多晶硅精细机械加工技术制作的传感器;

(3)经占空因数输出端可直接与低成本的微控制器接口;

(4)加速度计的带宽可由引脚XFILT和引脚YFILT上的电容器(CX、CY)设定;(5)满度测量范围为±10g,在60Hz下的分辨力是2mg;

(6)占空因数周期T2由引脚2上的电阻器RSET设定(T2=RXET(Ω)/125MΩ)。(7)有专门设计的数字输出,通过占空因数滤波或者利用引脚XFILT与引脚YFILT输出,也可提供模拟输出。

二、基本结构与原理

ADXL210E采用尺寸为5mm×5mm×2mm的8引脚LCC型封装,引脚排列如图1所示。各个引脚的功能见表1。

图1 ADXL210E引脚排列图

表1 ADXL210E的引脚功能

篇8

关键词:电子汽车衡,故障,维修

 

曹 鑫

延安市计量测试所

本文列举了在实际操作中的一些实例以供大家参考书

随着电子汽车衡的广泛应用,其维修工作随之日渐需求,然而由于用户难以得到完整详细的技术资料,给维修工作带来了困难,为我们将几例故障现象及解决办法整理出来,介绍如下:

1、故障现象:零点示值正负跳变,称量示值也欠稳定。

分析与处理:用称重信号模拟器试验,判断出故障原因不在称重仪表,故在接线调整盒中检测,发现总绝缘电阻约为20MΩ,但分别检测每个传感器的绝缘电阻却都能达到200 MΩ,因而臆断接线调整盒中的印刷电路板受潮污绝缘下降。免费论文。对印刷电路板单独测量,绝缘电阻只有30MΩ,左右,后用无水酒精擦洗,电吹风吹干,再测其绝缘电阻正常。在拆卸各传感器时,发现接线盒的接线端子螺钉有微微的松动现象,提示接触不良可能也是仪表示值不稳的隐蔽原因。经上处理,零中心指示光标亮,故障消失。

因接线盒内电路板绝缘下降的故障,在几台不同的电子衡中均有发生。生产厂家一般都是把接线盒置于户外称台磅坑内,我们将其由户外移至操作室内,有效消除了接线盒受潮绝缘电阻下降的弊端。在迁移接线盒时,又有意识的去掉盒内的连线端子,改螺丝连接为焊锡焊接,杜绝了接线螺丝松动造成的隐患,减少了故障点。

2、故障现象:称重仪表(8142-0007)雷击反仪表显示:

“ ”

分析处理:检查发现一只称重传感器输入端呈开路状态,激励电压加不上。更换一只新传感器后,进行高度调试标定,仪表显示数据基本正常,但在进行偏载压点检测时,发现其中一有承重点示值比其余五个承重点示值少约200kg,反复调整无法达到6个承重点示值的一致性。机械传力机构方面也未发现异常,于是再测量各传感器的Ri、R0、Rs,发现对应于重量偏的传感器Ri=420Ω、 R0=350Ω、Rs=200MΩ,而其余五只传感器的Ri为380Ω-390Ω不等,R0为349Ω-350Ω,Rs>2000Ω。两者对比,主要是Ri相差30多欧,约为10%,从理论不难看出在同一个桥压下,输入电阻大的,输出信号小。故再换一个称重传感器,经设定调试,衡器顺利通过检定。

此例故障提示我们,多个称重传感器并联使用,不仅要注意输出电阻的一致性,还要注意输入电阻的分散性不可太大,要小于5%为好。

3、故障处理举例

(1)故障现象:一台60电子汽车衡开机后有时能正常工作,重车上后显示负超载,重新开机后又有时能恢复正常,这种现象经常发生。

故障分析:故障时有时无,秤台部分和仪表部分都可能发生这种故障,经模拟器判断,故障发生在秤台部分。按上表进行故障分析,发现一个传感器的信号线被老鼠咬破,造成线之间的接触不良。

故障排除:重新焊接好传感器信号线。免费论文。用胶密封后再用热缩管密封。免费论文。开机后,汽车衡恢复正常。

(2)故障现象:一台50t电子汽车衡在称量约15t时,前后相差很多。

故障分析:这种故障发生的在秤台部分,检查发生其中一个传感器的偏载测试时比标准少约700kg,相邻的传感器比标准少约200-400kg。估计误差最大的传感器坏损。

故障排除:用万用表测量怀疑的传感器输入、输出电阻、发现阻值异常。更换传感器,汽车衡恢复正常。

4、故障处理举例

(1)故障现象:一台60t电子汽车衡,仪表显示负号,清零不起作用。

但重车仪表有显示,且示值显示稳定。

故障分析:这种故障有可能是传感器输出信号太小,也有可能是仪表调零电路出现故障,造成零点输出很低超出接收范围,经模拟器判断,故障发生在仪表部分。

故障排除:重新标定,可以解决故障。否则,送专门技术部门维修或更换称重显示仪。

(2)故障现象:一台30t电子汽车衡,示值显示不稳定。

故障分析:经模拟器判断,故障发生的仪表部分,按上表进行故障分析,发现显示仪损坏,可能是电源部分出现的故障,也有可能是放大器滤波电容损坏。

故障排除:更换电源部分滤波电容和放大器滤波电容,汽车衡恢复正常。

5、维护保养

(1)保持秤台台面清洁,经常检查限位间隙是否合理。

(2)经常清理秤台四周间隙,防止异物卡住秤体。

(3)连接件支承柱要注意检查保养。

(4)保持接线盒内干燥清洁、盒内干燥剂定期更换。

(5)经常检查接地线是否牢固。

(6)排水通道应及时清理、以防暴雨季节排水不通畅浸泡秤体。

(7)车辆应低速驶入秤台,车速应≤5km,然后缓慢刹车,停稳后计量。

(8)禁止在没有断开输出信号总线与稳重显示仪连接进行电弧焊作业。

(9)操作人员要严格遵守操作规定,进行日常维护。

参考文献:

唐文炳:《电子衡器使用与维修》中国计量出版社2005年11月

推荐期刊