时间:2023-03-27 16:38:53
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇信号与通信论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
数字信号处理涉及到用数的序列表示的信号的处理,而多维数字信号处理则涉罚用多维阵列表示的信号的处理,例如对同时从几个传感器所接收的抽样图像和抽样的时间波形的处理。由于信号是因而它可以用数字硬件处理,同时可以将信号处理的运算规定为算法。
促使人们采用数字方法的是不言而喻的。数字方法既有效灵活。我们可以用数字系统使其有自适应性并易于重新组合。可以很方便地把数字算法由一个厂商的设备上转换到另一个厂商的设备上去,或者把专用数字硬件来实现。同样,数字算法也可用来处理作为时间函数或空间信号,数字算法自然地和逻辑算符如模式分类相联系。数字信号能够长时间无差错地存储。对很多种应用而言,数字方法Ⅸ其它方法更为简单,对另外一些应用,则可能根本不存在其他方法。多维信号处理是不同于一维信号处理,想在多维序列上实现的多运算,例如抽样、滤波和交换等,用于一维序列,然而,严格芯说,我们不得不说多终信号处理与一维信弓有很大差别的。
信号处理与一维信号处理还是有很大差别的,这是由三个因素造成的;(l)二维通常比一维问题包含的数据量大得多;(2)处理多维系统在数些上不如处理一维系统那样完备;(3)多维信号处理有更多的自由度,这给系统设计音以一维情况中无法比拟的灵活性。虽然所有递归数字滤波器都是用差分方程实现的,一维情况下差分方程是全有序的,而在多维情况下差分方程仅是部分有序的,冈而就存在着灵活性,在一维情况小,离散传里旰变换CDET)可以用快速傅里叶变换CEPT)算法来计算,而在多维情况下,有多且每一个OFT又可用多种AFT算法来计算。在一维情况下,我们可以调整速率。而且也可以调整抽排列。从另一方面来说,多维多项式不能进行因式分解,而一维多项式是可以进行因式分解的。因而在多维情况下,我们不能论及孤立的极,气、孤立的零点及孤立的根。所以,多维信号处理与一维信号处理有相当大的差别。在20世纪60年代初期,用数字系统来模仿模拟系统的想法,使得一维数字信号处毫的各种方法得到了发展。这样,仿照模拟系统理论,创立了许多离散系统理论.随后,当数字系统可以很好地模仿模拟系统时,人们认识到数字系统同时也可以完成更多的功能。由丁这种认识及数字硬件工艺的有力推动,数字信号处理得到了发展,而且现今很多通用的方法,已成为数字方法所特有的,没有与其等效的模拟方法,在发展多维数字信号处理时,可观察到同一发展趋向。因为没有连续时间的(或模拟的)二维系统理论可以仿效,因而最初的二维系统是以一维系统为基础的,80年代后期,多数二维信号处理都是用可分的二维系统。可分的二维系统与用于二维数据的一维系统几乎没有差别。随后,发展了独特的多维算法,该算法相当于一维算法的逻辑推理。这是一段失败的时期,由干许多二维应用要求数据量很大,且iT缺少二淮多项式太分解理论,很多一维方法不能很好地推广到二维上来。我们现在正处于认识的萌芽时代。计算机工业以其部件的小型化和价格日趋低廉而有助于我们解决数据量问题。尽管我们总是受限于数学问题,但仍然认识到,多维系统也给了我们新的自由度。以上这些,使得该领域既富于挑战性又无穷乐趣,电子信息技术的结合之软件结台,传统产业中可用电产信息技术的地方,仍然可以在生产或很低的条件下使用人力或传统机械。电予信息技术应到限制,在不同领域和不同水平有各种原因,但烂有一个共大原因是缺乏认识。没有认识,便没有应层。
事实上,在一维和二维信号处理理论之间有实质性的差别,而在二维和更高维之间,除了计算上的复杂世方耐差异之外,似乎差别较小。
参考文献:
[1]吴云韬,廖桂生,田孝华.一种波达方向、频率联合估计快速算法[J]电波科学学报,2003,(04).
[2]吕铁军,王河,肖先赐.利用改进遗传算法的DOA估计[J]电波科学学报,2000,(04)
[3]刘全,雍玲,魏急波.二维虚拟ESPRIT算法的改进[J]国防科技大学学报,2002,(03).
[4]吕泽均,肖先赐.一种冲击噪声环境中的二维DOA估计新方法[J]电子与信息学报,2004,(03).
[5]金梁,殷勤业,李盈.时频子空间拟合波达方向估计[J]电子学报,2001,(01).
[6]金梁,殷勤业.时空DOA矩阵方法的分析与推广[J]电子学报,2001,(03).
目前的广播电视信号传输质量可谓是良莠不齐,很多有线电视用户反映,传输信号质量令人十分不满意。而这些问题主要原因就是因为广播电视信号的传输过程中受到了干扰,由于信号传输过程中信号内部产生的噪音和外部干扰产生的噪音信号,都会对真正的电视信号有所影响,因此,笔者下面将会讨论一下关于广播电视信号系统的维护与管理问题。关于广播电视信号传输系统的维护,主要有几个方面:
第一,对信道的抗干扰能力进行有效的提高。在信号传输的过程中,增加多个基站,是让信号在传输过程中信号增强的有效手段;在广播电视信号传输系统中,信道的抗干扰能力是系统本身的配置问题,由于信号强度从初始发射端发出后会有所衰减,如果不能对信道进行有效的抗干扰,那么无线信号的传输将会变成无用信号传输通道。在信道中传输信号,多采用高频高压发射器,这样的信号发射器发出的信号传输距离远,抗干扰能力也是比较强的。同时配合多个基站的中转传输,有效信号的传输距离将会大大增加,这也是为什么距离广播电视信号塔较近的用户,信号接收效果较好,而距离广播电视信号塔较远的用户信号较弱的原因所在。如果可以增加信号基站,或信号中转站,那么就相当于增加了广播电视信号塔,而周边的用户就会受益良多。
第二,做到定期维护传输系统设备。对信号传输过程中的信号传输设备,例如对光纤等传输设备做到定期维护。众所周知,光纤是埋在地下进行工作的,而对于光纤的维护最重要的一点就是不要让光纤受到损坏。通常我们都会在地下埋一个管道,在管道里面布上光缆,这样即可以保证光纤不被人为破坏,也可以保证光纤不会被外界的客观因素破坏掉,尤其是阴雨天气对光纤的腐蚀。信号传输系统中传输设备不仅仅是有光纤,还有无线信道,对于无线信道的维护,可以选择高频信道进行传输信号。
第三,要注意信号传输过程中的信息安全性。信号传输过程中会出现多个接受信号的端点,电视广播信号的安全性要求高,在信号传输过程中需要进行加密处理。尤其是当前这个信息通讯十分发达的时代,对于任何信号都会有一定的信息价值在其中,如果信号在传输过程中不能够保证信息传输的安全性,无论是对于国家还是个人都是严重的损失。所以对于广播电视信号传输系统来说,首先传输的信号要进行信源加密处理,信号传输过程中的信道或者传输设备也需要进行信道加密。这样才能保证信息安全,保证信息传输的过程中不被人为干扰破坏。
第四,关于维护维修人员的管理需要制定详细的管理制度,定期对技术人员进行专业培训。对于广播电视信号传输系统的维护来说,做好技术支持是必要的,而有人工的维护也是必须的。对于技术人员来说,定期对信号传输系统进行巡查,排除任何有关于信号传输系统可能出现的故障,是非常重要的,如果可以从日常的巡查当中找到一些关于信号传输系统损坏或可能出现故障的迹象,就可以说是未雨绸缪了。对于日常维护人员来说,巡查回来后,要按照规定填写好巡查表格,巡查时应该对每一个细节进行详细的观察,这样才会找到可能出现故障的隐患,对于技术维护人员的培训也需要广播电视信号传播系统的管理部门定期举行。这主要是由于技术不断地进步,而故障也在不断的出新,很多技术如果不能进行革新,那么就不能及时的解决故障问题,也就无法做到真正的维护广播电视信号传输系统了。
二、结语
关键词:二维信号处理
随着集成电路的运算速度更快,集成度更高,就有可能耐复杂目益增加均一些多维数字信号处理。所它在最近才开始出现的一个新领域。尽管如此,多维信号处埋仍然对以下一些间提了解决的办法,这些问题是:计算机辅动断层成术(CAT),即综合来自不同方向的X射线的投影,以重建人体某一部分的三维图,源声纳阵列的设计及通过人造卫星地球资源。多维数字信号处理除具有许多引人注目和浅显易行的应用之外,它还具有坚卖的数学基础.,这不仅使我们能了解它的实现情况,而且当新问题出现时,也当及时解决。
典型的信号处理任务就是把信息从一种信号传递到另一种信号上,例如,可将一张照片加以扫描、抽样,并将共存储在计算机的存储器中。在这种情况下,信息是从可变的银粒密度转换戌可见光束,再变成电的波形,最后变戍数字的序列,随后该数字序列用。磁盘上磁畴的排列来表示CAT扫描器是一个比较复杂,经过处理,最后显赤射线管(CRT)的荧光屏上或胶片上。数字处理能增加信息,但可以重新排列信息,使观察者能更方便地理解它.观察者不必观看多个不同测面的投影而可直接观察截面图。
人们感兴趣的是信号所包含的信息,而不管信号本身是什么形式。也许可以概括地说,信号处理涉及两个基本任务一一信息的重新排列和信息的压缩。
数字信号处理涉及到用数的序列表示的信号的处理,而多维数字信号处理则涉罚用多维阵列表示的信号的处理,例如对同时从几个传感器所接收的抽样图像和抽样的时间波形的处理。由于信号是因而它可以用数字硬件处理,同时可以将信号处理的运算规定为算法。促使人们采用数字方法的是不言而喻的。数字方法既有效灵活。我们可以用数字系统使其有自适应性并易于重新组合。可以很方便地把数字算法由一个厂商的设备上转换到另一个厂商的设备上去,或者把专用数字硬件来实现。同样,数字算法也可用来处理作为时间函数或空间信号,数字算法自然地和逻辑算符如模式分类相联系。数字信号能够长时间无差错地存储。对很多种应用而言,数字方法Ⅸ其它方法更为简单,对另外一些应用,则可能根本不存在其他方法。多维信号处理是不同于一维信号处理,想在多维序列上实现的多运算,例如抽样、滤波和交换等,用于一维序列,然而,严格芯说,我们不得不说多终信号处理与一维信弓有很大差别的。
信号处理与一维信号处理还是有很大差别的,这是由三个因素造成的;(l)二维通常比一维问题包含的数据量大得多;(2)处理多维系统在数些上不如处理一维系统那样完备;(3)多维信号处理有更多的自由度,这给系统设计音以一维情况中无法比拟的灵活性。虽然所有递归数字滤波器都是用差分方程实现的,一维情况下差分方程是全有序的,而在多维情况下差分方程仅是部分有序的,冈而就存在着灵活性,在一维情况小,离散传里旰变换CDET)可以用快速傅里叶变换CEPT)算法来计算,而在多维情况下,有多且每一个OFT又可用多种AFT算法来计算。在一维情况下,我们可以调整速率。而且也可以调整抽排列。从另一方面来说,多维多项式不能进行因式分解,而一维多项式是可以进行因式分解的。因而在多维情况下,我们不能论及孤立的极,气、孤立的零点及孤立的根。所以,多维信号处理与一维信号处理有相当大的差别。在20世纪60年代初期,用数字系统来模仿模拟系统的想法,使得一维数字信号处毫的各种方法得到了发展。这样,仿照模拟系统理论,创立了许多离散系统理论.随后,当数字系统可以很好地模仿模拟系统时,人们认识到数字系统同时也可以完成更多的功能。由丁这种认识及数字硬件工艺的有力推动,数字信号处理得到了发展,而且现今很多通用的方法,已成为数字方法所特有的,没有与其等效的模拟方法,在发展多维数字信号处理时,可观察到同一发展趋向。因为没有连续时间的(或模拟的)二维系统理论可以仿效,因而最初的二维系统是以一维系统为基础的,80年代后期,多数二维信号处理都是用可分的二维系统。可分的二维系统与用于二维数据的一维系统几乎没有差别。随后,发展了独特的多维算法,该算法相当于一维算法的逻辑推理。这是一段失败的时期,由干许多二维应用要求数据量很大,且iT缺少二淮多项式太分解理论,很多一维方法不能很好地推广到二维上来。我们现在正处于认识的萌芽时代。计算机工业以其部件的小型化和价格日趋低廉而有助于我们解决数据量问题。尽管我们总是受限于数学问题,但仍然认识到,多维系统也给了我们新的自由度。以上这些,使得该领域既富于挑战性又无穷乐趣,电子信息技术的结合之软件结台,传统产业中可用电产信息技术的地方,仍然可以在生产或很低的条件下使用人力或传统机械。电予信息技术应到限制,在不同领域和不同水平有各种原因,但烂有一个共大原因是缺乏认识。没有认识,便没有应层。
事实上,在一维和二维信号处理理论之间有实质性的差别,而在二维和更高维之间,除了计算上的复杂世方耐差异之外,似乎差别较小。
参考文献:
[1]吴云韬,廖桂生,田孝华.一种波达方向、频率联合估计快速算法[J]电波科学学报,2003,(04).
[2]吕铁军,王河,肖先赐.利用改进遗传算法的DOA估计[J]电波科学学报,2000,(04)
[3]刘全,雍玲,魏急波.二维虚拟ESPRIT算法的改进[J]国防科技大学学报,2002,(03).
[4]吕泽均,肖先赐.一种冲击噪声环境中的二维DOA估计新方法[J]电子与信息学报,2004,(03).
[5]金梁,殷勤业,李盈.时频子空间拟合波达方向估计[J]电子学报,2001,(01).
[6]金梁,殷勤业.时空DOA矩阵方法的分析与推广[J]电子学报,2001,(03).
【关键词】中压宽带 电力线 通信接入方式 信道特征 测试 分析
一、中压电力线路的结构与特征
中压电网构成相对简单。与低压线路相比,它能够克服距离长短的限制,噪音较低,然而,供电系统仅适合于几十赫兹低频信号传输,如果进行高频信号传输,附加宽带PLC的使用,就会产生一系列影响信号传输质量的不良因素,如:通信串扰、信号泄漏、信号的干扰等,解决这些问题的唯一方法就是发明更加高端、更为先进的PLC接入设备与调制方式。其中宽带PLC中压耦合接入设备成为重点探究的对象,经研究其符合我国电网结构与特征。我国电网结构与数据图如下所示:
从上图可看出:我国电网结构包括:高、中、低三个层次级别,变压器将各个等级层次连接起来,这无疑成为了高载频数据通信的一大障碍,所以,要想解除变压器的限制,就要通过分级接入的方式来处理PLC宽带链接,也就是要根据各个电压级别层次来对应设计出适应性的接入设备。如图展示,只有在中低压中间设置合适的接入设备,才能确保远距离通讯的实现。
二、中压宽带PLC系统接入方式
这一系统接入涵盖PLC 以及同其他宽带通信网络(互联网服务供应商)之间的接口, 传统的互联网与这一接口链接起来得到相关的数据信息,其中包括传输信号于中压线路的设备接口,这些传输的信号需要途经MV-PLC主调制设备以及MV耦合装置这两项设备。
MV-PLC主调制设备是对中压与低压连接处的接口进行调节,主要作用为将中压线中所附带的宽带PLC数据信息进行转换与调制,直接目标为低压线路,终极目的为网络用户。下面就第一个中压PLC实验线路展开测试,把这一测试当作理论探究的依据。
三、中压线路信道测试与分析
(一)测试的目的与结果分析
目的:研究出更先进的设计依据以及技术储备为宽带PLC逐步发展到中压线路打下基础,为全程中压线路长距离接入做好技术与信息资源上的准备。
(二)测试结果分析
1.阻抗特性分析
经过实践的操作运行得出:中压10kv配电线路的阻抗性能会受到测量方位、时间以及频率等的影响,会随着它们去变化,变化幅度由数十到上百的量,通过高频信号发生器所出现的正弦电压信号,设定1MHZ-30MHZ的频率范围,在500KHZ的频率间查看阻抗变化。通过采集V1、V2来对应计算出线路的阻抗值。下图为测试整理后得出的中压线路输入阻抗变化图:
2.噪声特征分析
经过实践测试得出:中压线路的有色背景噪声大概在―60dBV/hz―80dBV/hz,同低压线路的平均噪音对比起来,大约多出10 dBV/hz。而且其窄带扰乱性噪音则更高。而且测试发现:中压线路中各个测试点有色背景噪声的PSD数值间没有很大差别,其窄带干扰也发生在小于25MHZ的范围内。由此可见,展开对线路上噪声频域以及进行时等方面的分析是十分必要的。
3.衰减性分析
与低压线路相比,中压线路更容易发生衰减现象,而且相对严重。大概每100米衰减8―11db,但是,在1.7千米线路范围内也能够顺利进行通信。当将调制解调器的功率放大时,在各个测试长度中都能够达到信息传输与通信通话等目的,实现了通讯水平的提高。各个测试点距离下的测试内容与数据如下图:
四、总结
为了提高通信质量与水平就要促进宽带PLC系统向着中压电力线路前进,经过不断的实验与测试来提供大量宝贵的信息数据资源,并且在阻抗性、衰减性等加以发展与更新。
参考文献:
[1]丁道齐把握世界通信发展趋势确立电力通信发展战略[期刊论文]-电力系统自动化 1999(07)
[2]王乔晨;郭静波;王赞基低压配电网电力线高频噪声的测量与分析[期刊论文]-电力系统自动化 2002(01)
由于高校实际情况限制,所开设的移动通信实验课很难全面涵盖这些内容,尤其是涉及到移动通信网络的内容时,更显得力不从心。这样在有限学时内就导致实验内容只能侧重于基本调制技术、信道特性等基础简单实验,即便是开设GSM/CDMA的相关实验,也只是停留在相应模块的功能应用上,很难有深层次的提高[11-13]。这就使得学生反映移动通信理论课程很精彩,实验课程很乏味。为了改变这一现状,必须探索新的实验教学思路,创立新的实验教学体系。
新的移动通信实验教学体系,将先修课学习、工业实习、理论课学习、实验课开展、毕业论文等多个教学环节进行整合,形成从基础理论仿真到专业实验操作、工程技术实训、创新实验等一个开放的实验教学体系通过通信类先修课程的学习,使学生准备好相关的基础知识,同时也对移动通信在课程体系中的地位有明确的定位[14,15]。相应编程语言类课程的学习更为实验仿真提供了良好的基础。
移动通信理论课程的讲授为实验课程的开设提供了直接的理论平台。工业实习安排在移动通信实验课开设前一学期开展,实习内容是到各通信运营商公司和设备厂家进行跟岗实习,涉及到的内容有:移动通信系统基站的建设与维护;交换与传输系统管理和维护;光纤传输设施维护;移动终端制造与维修;3G应用等多个方面。通过工业实习使学生对当前移动通信所涉及到具体问题有了充分的感性认识,这对之后实验教学的开展,特别是移动网络方面实训的进行有很好的促进作用。移动通信实验教学的开展涵盖以下几个方面:基础理论仿真、专业实验操作、工程技术实训、创新实验、毕业设计。基础理论仿真是利用MATLAB软件实现:QPSK调制及解调;MSK、GMSK调制及相干解调;QAM调制及解调;OFDM调制解调;m序列产生及特性分析;Gold序列产生及特性分析;数字锁相环载波恢复;Rake接收机仿真实验。例如,OFDM调制解调实验,按照图2OFDM仿真结构图,利用MATLAB程序实现图2中不同测试点处的信号波形。专业实验操作则是在南京润众RZ6001实验平台基础之上,利用TMS320和GSM模块实现:直接序列扩频编解码;跳频通信;DS/CDMA码分多址;利用AT命令实现GSM/GPRS移动台短信收发、语音呼叫;CDMA数据传输实验。例如,直接序列扩频实验,利用DSP编程实现图3结构功能,并用示波器测量比较各测试点的信号波形。
工程技术实训阶段则是利用3G天线获取实际信号,利用频谱分析仪等仪器实现CDMA2000、WCDMA、TD-SCDMA信号的分析。同时实现基站放大器、塔顶放大器性能指标的测试。例如,图4中给出利用频谱分析仪所测得实际CDMA2000和WCDMA信号的频谱特性。创新实验阶段主要是针对有兴趣参加各类设计竞赛的学生开展,将全国及各省、校级电子设计大赛题目进行改造,从中选取与移动或无线通信有关,且具有创新性、前瞻性、实用性的方案,经过适当修改作为创新实验阶段的实验案例。学生可以通过这样的实验案例了解各级大赛的要求及特点,教师则也可以在实验教学过程中,选拔优秀学生参加各级大赛,进而提高学生的能力和水平。毕业设计阶段主要是利用实验室实验条件,从学院承担的科研项目中,将某些项目进行简化、修改、重组,转化成通信专业类论文题目,或从本专业最新的科技论文中选择其中合适的内容进行改进,作为通信专业类综合性毕业设计案例,从而将先进的科研成果打造为优质教学资源,实现基础与前沿、经典与现代的结合。为通信类专业学生提供了广阔的选择空间和开放的培养环境。
论文关键词:扩频通信原理特点发展应用
论文摘要:扩频通信是现代通信系统中新的通信方式,它具有较强的抗干扰、抗衰落和抗多径性能,频谱利用率高。本文介绍了扩频通信的工作原理、特点、及其发展应用。
一、扩频通信的工作原理
在发端输人的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。可见,一般的扩频通信系统都要进行3次调制和相应的解调。一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,以及相应的信息解调、解扩和射频解调。与一般通信系统比较,多了扩频调制和解扩部分。扩频通信应具备如下特征:(1)数字传输方式;(2)传输信号的带宽远大于被传信息带宽;(3)带宽的展宽,是利用与被传信息无关的函数(扩频函数)对被传信息的信元重新进行调制实现的;(4)接收端用相同的扩频函数进行相关解调(解扩),求解出被传信息的数据。用扩频函数(也称伪随机码)调制和对信号相关处理是扩频通信有别于其他通信的两大特点。
二、扩频通信技术的特点
扩频信号是不可预测的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中必须有与宽带载波同步的副本。扩频系统具有以下特点。
1.抗干扰性强
扩频信号的不可预测性,使扩频系统具有很强的抗干扰能力。干扰者很难通过观察进行干扰,干扰起不了太大作用。扩频通信系统在传输过程中扩展了信号带宽,所以即使信噪比很低,甚至在有用信号功率低于干扰信号功率的情况下,仍能不受干扰、高质量地进行通信,扩展的频谱越宽,其抗干扰性越强。
2.低截获性
扩频信号的功率均匀分布在很宽的频带上,传输信号的功率密度很低,侦察接收机很难监测到,因此扩频通信系统截获概率很低。
3.抗多路径干扰性能好
多路径干扰是电波传播过程中因遇到各种非期望反射体(如电离层、高山、建筑物等)引起的反射或散射,在接收端的这些反射或散射信号与直达路径信号相互干涉而造成的干扰。多路径干扰会严重影响通信。扩频通信系统中增加了扩频调制和解扩过程,利用扩频码序列间的相关特性,在接收端解扩时,从多径信号中分离出最强的有用信号,或将多径信号中的相同码序列信号叠加,这样就可有效消除无线通信中因多径干扰造成的信号衰落现象,使扩频通信系统具有良好的抗多径衰落特性。
4.保密性好
在一定的发射功率下,扩频信号分布在很宽的频带内,无线信道中有用信号功率谱密度极低,这样信号可以在强噪声背景下,甚至在有用信号被噪声淹没的情况下进行可靠通信,使外界很难截获传送的信息,要想进一步检测出信号的特征参数就更难了.所以扩频系统可实现隐蔽通信。同时,对不同用户使用不同码,旁人无法窃听通信,因而扩频系统具有高保密性。
5.易于实现码分多址
在通信系统中,可充分利用在扩频调制中使用的扩频码序列之间良好的自相关特性和互相关特性,接收端利用相关检测技术进行解扩,在分配给不同用户不同码型的情况下,系统可以区分不同用户的信号,这样同一频带上许多用户可以同时通话而互不干扰。
三、扩频技术的发展与应用
在过去由于技术的限制,人们一直在走增加信号功率,减少噪声,提高信噪比的道路。即使到了70年代,伪码技术已经出现,但作为相关器的“码环”的钟频只能做到几千赫兹也无助于事.近几年,由于大规模集成电路的发展,几十兆赫兹,甚至几百兆赫兹的伪码发生器及其相关部件都已成为现实,扩频通信获得极其迅速的发展.通信的发展史又到了一个转折点,由用信噪比换带宽的年代进入了用宽带换信噪比的年代.从最佳通信系统的角度看扩频通信.最佳通信系统一最佳发射机+最佳接收机.几十年来,最佳接收理论已经很成熟,但最佳发射问题一直没有很好解决,伪码扩频是一种最佳的信号形式和调制制度,构成了最佳发射机.因此,有了最佳通信系统一伪码扩频+相关接收这种认识,人们就不难预测扩频通信的未来前景.从9O年代无线通信开始步人扩频通信和自适应通信的年代.扩频通信的热浪已经波及短波、超微波、微波通信和卫星通信,码分多址(CDMA)已开始广泛用于未来的峰窝通信、无绳通信和个人通信以及各种无线本地环路,发挥越来越大的作用.接入网是由传统的用户线、用户环路和用户接入系统,逐步发展、演变和升级而形成的.现代电信网络分为3部分:传输网、交换网和接入网.由于接入网发展较晚,往往成为电信发展的“瓶颈”,各国都很重视接入网的发展,因此各类接人技术和系统应运而生.由于ISM(IndustryScientificMedica1)频段的开放性,经营者和用户不需申请授权就可以自由地使用这些频段,而无线扩频技术所使用的频段(2.400~2.483)正是全世界通用的ISM频段,包括IEEE802.11协议架构的无线局域网也大部分选用此频段.在无线接人系统中,扩频微波与常规微波相比有着3个显著的优点:抗干扰性强、频点问题容易处理、价格比较便宜.而且,扩频微波接入技术相对有线接入技术来说,有成本低、使用灵活、建设快捷的优势,在接入网中起着不可替代的作用.
扩频微波主要应用在以下几个方面.语音接入(点对点);数据接入;视频接入;多媒体接入;因特网(Internet)接入。
关键词:扩展频谱通信;跳频通信;Matlab
中图分类号:TN914.43 文献标识码:A 文章编号:1672-3791(2016)11(a)-0000-00
1 对跳频通信进行数学模型建立及对系统原理进行描述
对于跳频扩频通信,它的基本理论依据主要是根据信息论中的Shannon公式来的[4],下式为它的具体公式描述:
c Blb(1 P / N)
在上式中,对于参数c、B、P及N,它们所代表的含义分别如下。其中,N,表示为噪声功率;c,代表系统的信道容量(bits/s);P,表示为信号的平均功率;对于B,则表示为系统的信道带宽(Hz)。通过上式可以很明确、很清晰的知道,当满足一定条件(如在一定的信道容量之条件下),可以采用增加信道带宽的办法、或者通过减少发送信号功率的办法等,来对信道的带宽进行减少、或者采取一定的方式来对信道的容量进行提高,这样就能够增加发送信号方面的功率,更进一步,使得信道的容量发生变化,并且不断的得到提高 [5]。
对于跳频系统,由于它的载波频率是在不断发生变化的,如果想要在接收机中对载波相位进行跟踪,很明显,要实现该种情况是比较困难的,所以,在一般情况之下,我们是选择可非相干解调方式作为跳频扩频通信系统的调制方式,并且,该种调制方式所具有的优势是其它调制方式不能够相比的,而频移键控FSK调制则是经常采用的方式。对于数据载波为a(t),以及数据速度Ra,对它们的取值分别为+1和-1,当进行移频键控调制(即频率偏差为Δf)后,它所输出的等效低通信号为b(t)[6],具体的表达式如下式1-1所示:
b(t) exp( j2πa(t )f ) (1-1)
在跳频扩频通信系统中,我们把伪随机序列控制下的瞬时频率定义为f(t)[7],它会随着时间的不断改变,而对应的瞬时频率f(t)的取值在频率点fi,i=1,2,3,4…,N上也会发生改变[8]。那么,对于跳频载波信号,它的等效低通信号C(t)如下式:
c(t) exp(j2f (t)) (1-2)
对于跳频扩频通信系统,它主要是以跳频载波来实现对数据调制信号的频率进行搬移的一个过程[9],通过这样一个过程,则跳频扩频通信系统所输出的等效低频信号d(t)如下式1-3所示;
d(t) b(t)c (t)
exp(j2(a(t)f f (t))) (1-3)
在跳频扩频系统的接收端,采用同步伪随机码控制的频率、以及伪随机变化的载波和接收信号作为混频,在这样的条件下,所得到的系统输出信号为bxj,它的表达式如下式1-4所示: bsj (d(t) N(t) I(t))c (t)
exp(2 ja(t)f ) (N (t)
I(t))exp( j2f (t)) , (1-4)
对于上式1-4,它的参数N(t)、I(t)所代表的含义如下:N(t),它表示噪声;I(t),它则表示干扰信号。通过采用同步跳变的本地恢复载波来实现对接收信号进行混频后,在这样的情况下,就能得到解跳后的宽带干扰信号、窄带信号b(t)、以及信号噪声等。
2 跳频的主要技术指标及关键技术
对于一个跳频扩频通信系统而言,它所包括的技术指标主要有:①跳频频率的数目;②跳频的带宽;③跳频码的周期;④跳频的速率;⑤跳频系统的同步时间。对于这些技术指标,它们所代表的含义分别如下:①跳频频率的数目。在一般情况下,通过对跳频信号的处理增益 ,这样就能够得到相等的跳频点数。②跳频的带宽。在通常情况之下,跳频的带宽是与抗部分频带的干扰能力存在一定关系的。③跳频码的周期。倘若跳频图案的延续时间越长,那么,这样就会使敌方破译变得更加的困难,因此,其抗截获 的能力就越强。④跳频的速率。顾名思义,就是指每秒钟频率跳变的次数,决定跳频图案延续时间的长度。⑤跳频系统的同步时间。针对该同步时间的相关定义是非常多的,但这里主要是指对于跳频图案,要使其系统收发双方的时间达到一致,即完全同步,并且,对于通信所需要的相关时间也要进行建立。
3 对系统进行仿真模型的建立
3.1 对Simulink仿真工具进行概述
在本论文的研究过程中,采用的仿真工具是基于MATLAB提供的仿真平台Simulink。另外,采用Simulink仿真平台来建模是很方便的,它所带有的软件包是能够对相关的稻萁行仿真、进行分析的,是一个动态系统。它能够支持的系统也是非常多的,如连续系统、线性系统等。
3.2 模型建立
在基于Simulink仿真软件的基础上面建立起来的跳频扩频通信系统仿真模型,通常情况之下,它能够对跳频扩频通信系统的整个工作过程进行实时监控及反映相关的问题,对于系统扩频前后的频谱,通过该仿真软件能够实时的观测。
4 对仿真结果进行分析
为了更加准确、更加合理的得到本论文研究的跳频扩频通信系统的仿真精确结果,所设定的相关仿真条件如下:对于所采用的跳频载频,它是采用伪随机整数方面的信号控制系统来进行实现的;对跳频点数设定为64个;对于跳频的频率间隔,是把它设定为50跳/秒;数据调制采用FSK,并且频率的间隔为200HZ;对于每个符号,它的采样点数为120。我们把本次系统仿真实验的时间设定为1000s。
5 结束语
本论文首先对跳频扩频通信系统的数学建模进行了简单介绍,然后对跳频通信的系统工作原理进行了概述,对跳频的主要技术指标及关键技术进行了介绍,接着,对Simulink仿真工具进行概述及对其进行相关模型的建立,最后,就是采用Simulink仿真软件对跳频扩频通信系统进行模型的建立,并进行了仿真研究。在进行仿真实验前,设定了相关的仿真条件,如跳频点数、采样点数、跳频频率间隔等相关条件,这样设定的目的是为了保证仿真的实验结果更加准确。
参考文献
[1] 陈高平等.扩频通信技术在CDMA中的应用[J].通信技术,2012,(07):54-59.
1 总体设计方案 本文由wWW. DyLw.NeT提供,第一 论 文 网专业写作教育教学论文和毕业论文以及服务,欢迎光临DyLW.neT
本设计采用CAN总线作为数据采集与系统控制的通信方式,以ATMEL公司生产的AT91SAM9263 ARM芯片为主控单元,结合A/D转换技术、故障诊断专家系统实现某型火箭炮随动系统的故障检测。总体设计框图如图1所示。
数据采集单元由信号调理模块和A/D转换模块组成,其中信号调理模块用于模拟信号的放大、滤波和提高电路负载能力,A/D转换器完成模拟信号向数字信号的转换,ARM主控单元实现系统控制与故障诊断,数据采集单元与ARM系统控制与故障诊断模块之间以CAN 总线的方式进行通信,工作人员通过操作触摸屏显示界面完成故障检测。
2 系统硬件设计
2.1 数据采集单元
数据采集单元由信号调理电路和A/D转换模块组成,用于采集某型号火箭炮随动系统液压泵、高平机等被测部件的液压或气压的状态信号,其结构图如图2所示。
信号调理电路如图3所示,采用OP27运算放大器进行设计,它的作用是把传感器输入的信号进行放大,同时利用其输入阻抗高、输出阻抗小的特点以满足A/D转换芯片对驱动源阻抗的要求。
A/D转换电路将经过信号调理模块调理后的模拟信号转换为数字信号,文中选用TLC2543CN和STC89C52分别作为A/D采样芯片和微控制器[3],其设计如图4所示。TLC2543CN是TI公司生产的12位串行模/数转换器,使用电容开关逐次逼近技术,12位分辨率,10 μs的转换时间,11路模拟输入,输出数据长度可通过编程调整[4]。A/D转换模块与51单片机之间以I2C总线的方式进行通信,只需要一条串行数据线SDA(DATA_OUT)和一条串行时钟线SCL(CLOCK),具有接口线少,控制方式简单,器件封装形式小,通信速率较高等优点。 经信号调理后的11路模拟量数据分别通过端口NO0?NO10进入TLC2543CN进行A/D转换,TLC2543CN通过[CS],DATA_INPUT,DATA_OUT,MEOC,I/O CLOCK这5个引脚与STC89C52单片机进行通信。为了减小外界环境及器件本身引入的噪声和扰动,提高系统的稳定性,在这5个信号与单片机之间进行光电耦合隔离处理。由于光信号的传送不需要共地,所以可将光耦器件两侧的地加以隔离,达到提高系统信噪比的作用,光耦隔离器件选用Avago Technologies 生产的6N137,电路如图5所示。需要注意的是,电路板中6N137两端的电源不能共用,否则起不到隔离的作用。
2.2 CAN总线通信模块
数据采集单元和ARM系统控制与故障诊断模块之间以CAN总线的方式进行数据通信和控制。CAN总线具有可靠性高、实时性强、较强的抗电磁干扰能力、传输距离远等特点,尤其适用于随动系统传感器多、各检测点信息交换频繁和干扰源复杂的情况。CAN总线通信模块的实现有2种解决方案[5]:一类是采用带有片上CAN的微处理器,如Philips的80C591/592/598、Atmel的AT90CAN128/64/32等;另一类是采用独立的CAN控制器,如Philips的SJA1000。考虑到应用的灵活性,本文采用独立的CAN控制器SJA1000。CAN总线通信模块结构框图如图6所示,选用STC89C52单片机作为CAN总线通信模块的微控制器,CAN总线控制器和收发器分别选用Philips公司生产的SJA1000和PCA82C250[6]。CAN总线规范采用三层结构模型,STC89C52单片机用以实现应用层的功能,SJA1000和PCA82C250则分别对应于数据链路层和物理层。为了增强CAN总线通信模块的抗干扰能力,在CAN控制器与CAN收发器之间进行光电耦合隔离处理,与数据采集单元一样,本文也选用6N137进行处理。
CAN总线通信模块接口电路主要由4部分组成:微控制器STC89C52、独立CAN控制器SJA1000、光电隔离器件6N137和CAN总线收发器PCA82C250。微控制器STC89C52用于数据处理、实现对SJA1000的初始化、通过对SJA1000的控制实现数据接收和发送等通信任务;独立CAN控制器SJA1000和收发器PCA82C250经过简单总线连接可实现数据链路层和物理层的全部功能。STC89C52通过DATA_INPUT向TLC2543CN发送一定格式的指令,在DATA_OUT引脚可获取到A/D转换的数据;由于SJA1000的数据线与地址线是共用的,所以将STC89C52的P0口与AD0?AD7直接连接的同时,还要将地址锁存信号线ALE进行连接,以便区分在同一时刻AD线上传递的是地址还是数据;SJA1000的中断管脚INT连接单片机的外部中断INT0;MODE管脚与高电平VCC连接以选择Intel模式;为了保证上电复位的可靠,复位电路采用IMP708芯片进行智能控制,IMP708芯片集看门狗定时器、掉电检测电路、电源监控电路等于一体,保证SJA1000芯片的可靠运行;RX0和TX0是数据的收发管脚,经光电耦合器件6N137后连接到CAN收发器上,用以电气隔离;PCA82C250有3种工作模式:高速、斜率控制和待机,本文选择斜率控制模式,通过在Rs引脚与地之间接一个100 kΩ的电阻来实现;为了消除在通信电缆中的信号反射,提高网络节点的拓扑能力,需要在CAN总线两端接入两个120 Ω的终端电阻[5]。
2.3 系统控制与故障诊断模块
数据处理与系统控制模块采用ATMEL公司生产的AT91SAM9263 ARM芯片作为主控单元,以触摸屏作为人机交互方式完成系统控制和故障诊断。AT91SAM9263主频 200 MHz;内置CAN总线控制器,全面支持CAN2.0A和CAN2.0B协议;内置TFT/STN LCD控制器,支持3.5~17英寸TFT?LCD 液晶屏,最高分辨率可达2 048×2 048。考虑到系统的可扩展性,本文将系统控制与故障诊断模块单独成板。技术保障人员可以通过操作触摸屏上显示的人机交互界面完成对随动系统的故障检测。
3 系统软件设计
系统软件设计主要分为A/D转换模块、数据 处理模块、CAN总线通信模块和系统控制与故障诊断模块4部分。主流程图如图7所示,首先对STC89C52单片机进行初始化,包括CAN总线工作方式的选择、验收滤波方式的设置、验收屏蔽寄存器和验收代码寄存器的设置、波特率参数设置、中断允许寄存器的设置以及A/D转换模块的初始化等;当单片机接收到故障检测命令时,进行A/D采样,然后由单片机对采集到的数据进行处理,通过量值转换得到实际的工况数据;最后由CAN总线通信模块将数据传输到系统控制与故障诊断模块进行故障检测,诊断结果由触摸屏显示以指导维修人员进行现场维修。
3.1 A/D转换模块软件设计
A/D转换模块程序设计流程图如图8所示。
3.2 数据处理模块软件设计
数据采集过程中难免受到噪声的影响,为了保证采到数据的准确性,可以对其进行一定的算法处理。本文在故障检测时,对同一采样点进行5次采样,然后用快速排序算法对这5个数据进行排序,取中值作为故障检测的有效数据,以减小误差带来的影响。采集到的数据与实际值之间成严格的线性关系,将采集到的数据值乘以系数K即可获得实际的工况数据,其流程图如图9所示。
3.3 CAN总线通信模块软件设计
CAN总线通信模块的程序设计主要分为初始化、数据发送和数据接收3个部分:
(1) 初始化。CAN总线初始化主要是对通信参数进行设置,通过对时钟分频寄存器、验收码寄存器、验收屏蔽寄存器、总线定时寄存器和输出控制寄存器的配置实现对CAN总线工作模式、接收报文的验收码、验收屏蔽码、波特率和输出模式的配置和定义[7]。值得注意的是,这些寄存器的配置需要在复位模式下进行,因此在初始化前应确保系统已进入复位状态。 (2) 数据发送。本文采用查询方式,进行CAN总线的数据发送,首先应将CAN总线的发送中断禁能。发送数据前,主控制器轮询SJA1000状态寄存器的发送缓冲器状态位TBS以检查发送缓冲器是否被锁定,若发送缓冲器被锁定,则CPU等待,直到发送缓冲器被释放,然后将从现场采集到的数据发送到发送缓冲区并置位命令寄存器的发送请求位TR,此时SJA1000将向总线发送数据。数据发送流程图如图10所示。
(3) 数据接收。同数据发送一样,本文采用查询方式进行数据的接收,也应将CAN总线的发送中断禁能。主控制器轮询SJA1000状态寄存器接收缓冲状态标志RBS以检查接收缓冲器是否已满,若未满则主控制器继续当前的任务直到检查到接收缓冲器已满,读出缓冲区中的报文,然后通过置位命令寄存器的RRB位释放接收缓冲器内存空间。数据接收流程图如图11所示。
3.4 系统控制与故障诊断模块软件设计
系统控制与故障诊断模块是在Linux平台下利用Qt SDK开发完成的,数据库采用嵌入式系统中广泛采用关系型数据库SQLite[8]。软件采用模块化设计思想,包括显示界面、系统控制、检测数据库和故障诊断等4部分。系统界面基于QT/GUI开发,用于故障检测结果显示、调取数据库辅助人工诊断等人机交互;系统控制模块用于系统启动与关闭、初始化及多线程处理;检测数据库用于对专家系统中经验知识、故障诊断规则集进行组织、检索和维护,及用于存储系统采集的工况参数;故障诊断模块是该检测装置核心,本文利用故障诊断专家系统对随动系统进行故障诊断,给出诊断结果。考虑到故障诊断的实时性要求,程序采用多线程编程来实现。
图10 CAN总线数据发送程序设计流程图
图11 CAN总线数据接收程序设计流程图
4 结 语
为了测试随动系统故障检测装置在各种情况下的故障检测能力, 本文通过人为制造故障的方式对该系统进行了大量实验。在反复的实验中,该系统均能正确定位故障,充分验证系统的可靠性和稳定性。本文研制的以AT91SAM9263 ARM芯片为核心基于CAN总线随动系统故障检测装置,可实现对随动系统液压、气压、电压等工况参数的测量,经故障诊断专家系统的推理,实现以自动故障诊断为主、人工诊断为辅的故障检测。文中采用的CAN总线通信方式使整个系统简洁紧凑、具有较强的抗干扰能力和实时性,这种CAN总线通信方案不但可用于随动系统故障检测装置的研发,还可推广至其他模拟量信号的机电设备故障检测,尤其是多机组的分布式状态监测与故障诊断中,具有非常实用的应用前景。
参考文献 本文由wWW. DyLw.NeT提供,第一 论 文 网专业写作教育教学论文和毕业论文以及服务,欢迎光临DyLW.neT
. Industrial Electronics, 2000, 47(4) : 951? 963.
[2] 张立云,宋爱国,钱夔,等.基于CAN总线的侦察机器人控制系统设计[J].测控技术,2013,32(1):65?68.
[3] 姚远,王赛,凌毓涛.TLC2543在89C51单片机数据采集系统中的应用[J].电子技术应用,2003,29(9):37?38.
. Texas: Texas Instruments Incorporated, 1997.