欢迎访问爱发表,线上期刊服务咨询

数学思想论文8篇

时间:2023-03-25 10:44:01

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇数学思想论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

数学思想论文

篇1

数学教学中,怎样寓知识、技能、方法、思想于一个学过程中,是数学教学的重要课题。由于数学的高度抽象性、严谨的逻辑性、结论的确定性以及应用的广泛性这些特征,决定了数学教学的难度。如果教师只是注重单纯地传授知识,而不注重学习方法的指导和能力的培养,学生就会跟在老师的后面跑,整天忙忙碌碌,全是死记硬背。听老师讲时还会,自己做时就错,临到考时就蒙,这样下去是越来越糊涂。所以,要使学生变书本知识为自己知识,就必须学会学习知识的方法。下面就其怎样使学生在原有知识基础上学习新知识的方法谈些教学体会。

新知识的获得,离不开原有认知基矗很多新知识都是学生在已有知识基础上发展起来的。因此,对于学生来讲,学会怎样在已有知识的基础上掌握新知识的方法是非常必要的。这就需要教师在教学中精心设计、抓住知识的生长点、促进正迁移的实现。

例如,在研究多边形内角和定理时,可向学生提出:我们已经知道三角形的内角和等于180°,那么,你能根据三角形的内角和求出四边形的内角和吗?这样简单、明了的一句话就勾通了新旧知识间的内在联系。问题的提出,激发了学生学习的兴趣,促使了学生思维的展开,提供了回答问题的机会,创造了活跃的教学气氛,学生会准确地回答出四边形的内角和等于360°。又问:你是根据什么说四边形的内角和等于360°呢?是猜想的?还是推理得到的?学生的回答是作四边形的对角线,将四边形分为两个三角形,而每个三角形的内角和等于180°,两个三角形的内角和等于360°。教师马上对学生的回答给以肯定和鼓励,再问:五边形、六边形的内角和等于多少度?学生很快就会回答出五边形的内角和等于540°,六边形的内角和等于720°。接着又问:你知道十边形、一百边形、一千边形的内角和是多少度吗?这是老师故意设置“知识障碍”,激发学生的求知欲望。及时引导、启发、迁移、总结规律。让学生观察、发现求四边形、五边形、六边形的内角和,都是从它们的一个顶点作对角线将它们转化为三角形来求得的,并且内角和是由从它们的一个顶点作对角线所分得三角形的个数确定的,而三角形的个数又是由这个多边形的边数确定的。从而可知从n边形的一个顶点作对角线可将n边形分成(n-2)个三角形,所以n边形的内角的和等于(n-2)·180°,即得多边形的内角和定理。这个定理的出现,是教者通过设疑、引导、启发学生思维,寻求解题方法,由个性问题追朔到共性问题,总结出了一般规律。这样做,不但使学生学会了在原有知识基础上学习新知识的方法,又培养了学生分析问题和解决问题的能力,还渗透了把多边形转化为三角形来研究的数学转化思想。

当学生在原有知识的基础上掌握了学习新知识的方法和数学的转化思想,对于诸如此类的问题就迎刃而解了。如,研究梯形中位线定理,学生很自然就会将它转化为三角形中位线来解决。对于平行四边形、梯形的问题学生也很容易就想到转化为已有知识来研究。又如,对于解二元二次方程组,学生根据已学过的解一元二次方程等知识,自然就会想到通过消元将原方程组转为一元二次方程来解之,或将二元二次方程组通过降次转化为一次方程或有一个一次方程和一个二次方程组来解决。对于分式方程要通过去分母或换元转化为整式方程来解。对于无理方程需把方程两边乘方或换元化为有理方程来解。

在数学教学中,教师只要做到精心设计教学环节,科学的提出问题,采取得体的教学方法、适时疏导,帮助学生学会用自己的语言对所学知识进行概括和总结,以知识讲方法,以方法取知识,就能够调动学生学习数学的积极性,达到开发学生智力、提高学生能力的目的。

篇2

一、对中学数学思想的基本认识

“数学思想”作为数学课程论的一个重要概念,我们完全有必要对它的内涵与外延形成较为明确的认识。关于这个概念的内涵,我们认为:数学思想是人们对数学科学研究的本质及规律的理性认识。这种认识的主体是人类历史上过去、现在以及将来有名与无名的数学家;而认识的客体,则包括数学科学的对象及其特性,研究途径与方法的特点,研究成就的精神文化价值及对物质世界的实际作用,内部各种成果或结论之间的互相关联和相互支持的关系等。可见,这些思想是历代与当代数学家研究成果的结晶,它们蕴涵于数学材料之中,有着丰富的内容。

通常认为数学思想包括方程思想、函数思想、数形结合思想、转化思想、分类讨论思想和公理化思想等。这些都是对数学活动经验通过概括而获得的认识成果。既然是认识就会有不同的见解,不同的看法。实际上也确实如此,例如,有人认为中学数学教材可以用集合思想作主线来编写,有人认为以函数思想贯穿中学数学内容更有利于提高数学教学效果,还有人认为中学数学内容应运用数学结构思想来处理等等。尽管看法各异,但笔者认为,只要是在充分分析、归纳概括数学材料的基础上来论述数学思想,那么所得的结论总是可能做到并行不悖、互为补充的,总是能在中学数学教材中起到积极的促进作用的。

关于这个概念的外延,从量的方面讲有宏观、中观和微观之分。

属于宏观的,有数学观(数学的起源与发展、数学的本能和特征、数学与现实世界的关系),数学在科学中的文化地位,数学方法的认识论、方法论价值等;属于中观的,有关于数学内部各个部门之间的分流的原因与结果,各个分支发展过程中积淀下来的内容上的对立与统一的相克相生的关系等;属于微观结构的,则包含着对各个分支及各种体系结构定内容和方法的认识,包括对所创立的新概念、新模型、新方法和新理论的认识。

从质的方面说,还可分成表层认识与深层认识、片面认识与完全认识、局部认识与全面认识、孤立认识与整体认识、静态认识与动态认识、唯心认识与唯物认识、谬误认识和正确认识等。

二、数学思想的特性和作用

数学思想是在数学的发展史上形成和发展的,它是人类对数学及其研究对象,对数学知识(主要指概念、定理、法则和范例)以及数学方法的本质性的认识。它表现在对数学对象的开拓之中,表现在对数学概念、命题和数学模型的分析与概括之中,还表现在新的数学方法的产生过程中。它具有如下的突出特性和作用。

(一)数学思想凝聚成数学概念和命题,原则和方法

我们知道,不同层次的思想,凝聚成不同层次的数学模型和数学结构,从而构成数学的知识系统与结构。在这个系统与结构中,数学思想起着统帅的作用。

(二)数学思想深刻而概括,富有哲理性

各种各样的具体的数学思想,是从众多的具体的个性中抽取出来且对个性具有普遍指导意义的共性。它比某个具体的数学问题(定理法则等)更具有一般性,其概括程度相对较高。现实生活中普遍存在的运动和变化、相辅相成、对立统一等“事实”,都可作为数学思想进行哲学概括的材料,这样的概括能促使人们形成科学的世界观和方法论。

(三)数学思想富有创造性

借助于分析与归纳、类比与联想、猜想与验证等手段,可以使本来较抽象的结构获得相对直观的形象的解释,能使一些看似无处着手的问题转化成极具规律的数学模型。从而将一种关系结构变成或映射成另一种关系结构,又可反演回来,于是复杂问题被简单化了,不能解的问题的解找到了。如将著名的哥尼斯堡七桥问题转化成一笔画问题,便是典型的一例。当时,数学家们在作这些探讨时是很难的,是零零碎碎的,有时为了一个模型的建立,一种思想的概括,要付出毕生精力才能得到,这使后人能从中得到真知灼见,体会到创造的艰辛,发展顽强奋战的个性,培养创造的精神。

三、数学思想的教学功能

我国《九年义务教育全日制初级中学数学教学大纲(试用修订版)》明确指出:“初中数学的基础知识主要是初中代数、几何中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法”。根据这一要求,在中学数学教学中必须大力加强对数学思想和方法的教学与研究。

(一)数学思想是教材体系的灵魂

从教材的构成体系来看,整个初中数学教材所涉及的数学知识点汇成了数学结构系统的两条“河流”。一条是由具体的知识点构成的易于被发现的“明河流”,它是构成数学教材的“骨架”;另一条是由数学思想方法构成的具有潜在价值的“暗河流”,它是构成数学教材的“血脉”灵魂。有了这样的数学思想作灵魂,各种具体的数学知识点才不再成为孤立的、零散的东西。因为数学思想能将“游离”状态的知识点(块)凝结成优化的知识结构,有了它,数学概念和命题才能活起来,做到相互紧扣,相互支持,以组成一个有机的整体。可见,数学思想是数学的内在形式,是学生获得数学知识、发展思维能力的动力和工具。教师在教学中如能抓住数学思想这一主线,便能高屋建瓴,提挈教材进行再创造,才能使教学见效快,收益大。

(二)数学思想是我们进行教学设计的指导思想

笔者认为,数学课堂教学设计应分三个层次进行,这便是宏观设计、微观设计和情境设计。无论哪个层次上的设计,其目的都在于为了让学生“参与”到获得和发展真理性认识的数学活动过程中去。这种设计不能只是数学认识过程中的“还原”,一定要有数学思想的飞跃和创造。这就是说,一个好的教学设计,应当是历史上数学思想发生、发展过程的模拟和简缩。例如初中阶段的函数概念,便是概括了变量之间关系的简缩,也应当是渗透现代数学思想、使用现代手段实现的新的认识过程。又如高中阶段的函数概念,便渗透了集合关系的思想,还可以是在现实数学基础上的概括和延伸,这就需要搞清楚应概括怎样的共性,如何准确地提出新问题,需要怎样的新工具和新方法等等。对于这些问题,都需要进行预测和创造,而要顺利地完成这一任务,必须依靠数学思想作为指导。有了深刻的数学思想作指导,才能做出智慧熠烁的创新设计来,才能引发起学生的创造性的思维活动来。这样的教学设计,才能适应瞬息万变的技术革命的要求。靠一贯如此设计的课堂教学培养出来的人才,方能在21世纪的激烈竞争中立于不败之地。

(三)数学思想是课堂教学质量的重要保证

数学思想性高的教学设计,是高质量进行教学的基本保证。在数学课堂教学中,教师面对的是几十个学生,这几十个智慧的头脑会提出各种各样的问题。随着新技术手段的现代化,学生知识面的拓宽,他们提出的许多问题是教师难以解答的。面对这些活泼肯钻研的学生所提的问题,教师只有达到一定的思想深度,才能保证准确辨别各种各样问题的症结,给出中肯的分析;才能恰当适时地运用类比联想,给出生动的陈述,把抽象的问题形象化,复杂的问题简单化;才能敏锐地发现学生的思想火花,找到闪光点并及时加以提炼升华,鼓励学生大胆地进行创造,把众多学生牢牢地吸引住,并能积极主动地参与到教学活动中来,真正成为教学过程的主体;也才能使有一定思想的教学设计,真正变成高质量的数学教学活动过程。

有人把数学课堂教学质量理解为学生思维活动的质和量,就是学生知识结构,思维方法形成的清晰程度和他们参与思维活动的深度和广度。我们可以从“新、高、深”三个方面来衡量一堂数学课的教学效果。“新”指学生的思维活动要有新意,“高”指学生通过学习能形成一定高度的数学思想,“深”则指学生参与到教学活动的程度。

篇3

实践说明,大部分的学生对数学家的事迹是非常感兴趣的,教师在教学中,可以在适当的时候向学生介绍一些著名数学家的感人事迹。比如中国著名科学家钱学森不但在学术上取得了巨大的成就,在美国的生活也享有丰厚的待遇,但是他始终想念着自己的祖国,经过重重困难终于回到祖国。在他的领导下,中国实现了“二弹一星”,提高我国的国防能力,保卫我们国家的安全。在国外的数学家中,著名数学家欧拉从19岁就开始,他依靠顽强的毅力和孜孜不倦的精神,使他在双目失明以后,也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文。教师通过这些数学家感人事迹的介绍,可以培养学生努力攀登,勇于探索,为社会主义事业而奋斗的献身精神。将最近几年中国中学生在国际数学奥林匹克竞赛中取得的一些成绩向学生介绍,激励同学们奋力拼搏的精神,树立学好数学、为国争光的思想。

二、用辩证唯物主义观点对学生进行教育

在数学中到处充满着辩证的方法和思维,中学数学的教学大纲指出:“要用辩证唯物主义观点来阐明教学的内容,这样学生既有利于学习基础知识,学生又有利于形成唯物主义世界观。”在数学的教学中可用以下几点来渗透辩证唯物主义的观点。

1.科学是在不断发展的,任何事物都不是一成不变的,人们的认识水平也是在不断提高的。数的扩充、代数与几何的结合,某些定理、推论的推广,发展的观点由此得到体现。

2.物质的根本属性是运动。在数学当中,面可以看成点线运动的轨迹,旋转体也是平面图形运动的结果,直线是向两边无限延伸的,在教学的过程当中强调这些,使同学们在潜移默化中,接受到辩证法中运动的观点。

3.在数学教学过程中,正数与负数、有理数与无理数、实数与虚数等,这些不同的概念是对立的,同时又是统一的。加与减的转化,乘与除的统一,乘方与开方的互逆,在教学中强调这些数学规律,让学生从中接受到矛盾与对立统一及相互转化观点。

4.将辩证唯物主义观点渗透于教学中,数学来源于实践又反过来作用与实践,同时在数学教学中,也要加强对学生数学精神的培养,加强德育的渗透,让学生领悟到数学中的辩证关系,从而初步形成辩证唯物主义的观点。

三、运用教师的言传身教对同学们进行思想教育

篇4

一、了解《大纲》要求,把握教学方法

所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。

1、明确基本要求,渗透“层次”教学。《数学大纲》对初中数学中渗透的数学思想、方法划分为三个层次,即“了解”、“理解”和“会应用”。在教学中,要求学生“了解”数学思想有:数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。这里需要说明的是,有些数学思想在教学大纲中并没有明确提出来,比如:化归思想是渗透在学习新知识和运用新知识解决问题的过程中的,方程(组)的解法中,就贯穿了由“一般化”向“特殊化”转化的思想方法。

教师在整个教学过程中,不仅应该使学生能够领悟到这些数学思想的应用,而且要激发学生学习数学思想的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性地解决问题。在《教学大纲》中要求“了解”的方法有:分类法、类经法、反证法等。要求“理解”的或“会应用”的方法有:待定系数法、消元法、降次法、配方法、换元法、图象法等。在教学中,要认真把握好“了解”、“理解”、“会应用”这三个层次。不能随意将“了解”的层次提高到“理解”的层次,把“理解”的层次提高到“会应用”的层次,不然的话,学生初次接触就会感到数学思想、方法抽象难懂,高深莫测,从而导致他们推动信心。如初中几何第三册中明确提出“反证法”的教学思想,且揭示了运用“反证法”的一般步骤,但《教学大纲》只是把“反证法”定位在“了解”的层次上,我们在教学中,应牢牢地把握住这个“度”,千万不能随意拔高、加深。否则,教学效果将是得不偿失。

2、从“方法”了解“思想”,用“思想”指导“方法”。关于初中数学中的数学思想和方法内涵与外延,目前尚无公认的定义。其实,在初中数学中,许多数学思想和方法是一致的,两者之间很难分割。它们既相辅相成,又相互蕴含。只是方法较具体,是实施有关思想的技术手段,而思想是属于数学观念一类的东西,比较抽象。因此,在初中数学教学中,加强学生对数学方法的理解和应用,以达到对数学思想的了解,是使数学思想与方法得到交融的有效方法。比如化归思想,可以说是贯穿于整个初中阶段的数学,具体表现为从未知到已知的转化、一般到特殊的转化、局部与整体的转化,课本引入了许多数学方法,比如换元法,消元降次法、图象法、待定系数法、配方法等。在教学中,通过对具体数学方法的学习,使学生逐步领略内含于方法的数学思想;同时,数学思想的指导,又深化了数学方法的运用。这样处置,使“方法”与“思想”珠联璧合,将创新思维和创新精神寓于教学之中,教学才能卓有成效。

二、遵循认识规律,把握教学原则,实施创新教育

要达到《教学大纲》的基本要求,教学中应遵循以下几项原则:

1、渗透“方法”,了解“思想”。由于初中学生数学知识比较贫乏,抽象思想能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。因而只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。如初中代数课本第一册《有理数》这一章,与原来部编教材相比,它少了一节——“有理数大小的比较”,而它的要求则贯穿在整章之中。在数轴教学之后,就引出了“在数轴上表示的两个数,右边的数总比左边的数大”,“正数都大于0,负数都小于0,正数大于一切负数”。而两个负数比大小的全过程单独地放在绝对值教学之后解决。教师在教学中应把握住这个逐级渗透的原则,既使这一章节的重点突出,难点分散;又向学生渗透了形数结合的思想,学生易于接受。

在渗透数学思想、方法的过程中,教师要精心设计、有机结合,要有意识地潜移默化地启发学生领悟蕴含于数学之中的种种数学思想方法,切忌生搬硬套,和盘托出,脱离实际等错误做法。比如,教学二次不等式解集时结合二次函数图象来理解和记忆,总结归纳出解集在“两根之间”、“两根之外”,利用形数结合方法,从而比较顺利地完成新旧知识的过渡。

2、训练“方法”,理解“思想”。数学思想的内容是相当丰富的,方法也有难有易。因此,必须分层次地进行渗透和教学。这就需要教师全面地熟悉初中三个年级的教材,钻研教材,努力挖掘教材中进行数学思想、方法渗透的各种因素,对这些知识从思想方法的角度作认真分析,按照初中三个年级不同的年龄特征、知识掌握的程度、认知能力、理解能力和可接受性能力由浅入深,由易到难分层次地贯彻数学思想、方法的教学。如在教学同底数幂的乘法时,引导学生先研究底数、指数为具体数的同底数幂的运算方法和运算结果,从而归纳出一般方法,在得出用a表示底数,用m、n表示指数的一般法则以后,再要求学生应用一般法则来指导具体的运算。在整个教学中,教师分层次地渗透了归纳和演绎的数学方法,对学生养成良好的思维习惯起重要作用。

篇5

他指出,儿童发展任何时候不是仅仅由成熟的部分决定的。他说,至少可以确定儿童有两个发展的水平,第一个是现有的发展水平,表现为儿童能够独立地、自如地完成教师提出的智力任务。第二个是潜在的发展水平。即儿童还不能独立地完成任务,而必须在教师的帮助下,在任何活动中,通过模仿和自己努力才能完成的智力任务。这两个水平之间的幅度则为“最近发展区”。

在维果茨基看来,“最近发展区”对智力发展和成功的进程,比现有水平有更直接的意义。他强调,教学不应该指望于儿童的昨天,而应指望于他的明天。只有走在发展前面的教学,才是好的教学。因为它使儿童的潜在发展水平不断提高。

依据“最近发展区”的思想,“最近发展区”是教学发展的“最佳期限”,即“发展教学最佳期限”。即,在最佳期限内进行的教学是促进儿童发展最佳的教学。教学应根据“最近发展”。“如果只根据儿童智力发展的现有水平来确定教学目的、任务和组织教学,就是指望于儿童发展的昨天,面向已经完成的发展程”。这样的教学,从发展意义上说是消极的。它不会促进儿童发展。教学过程只有建立在那些尚未成熟的心理机能上,才能产生潜在水平和现有水平之间的矛盾,而这种矛盾又可引起儿童心理机能间的矛盾,从而推动了儿童的发展。例如,初中一年级负数的教学,学生过去未认识负数。教师可以举一些具体的、具有相反意义的量。如,可用温度计测温度的例子,在零摄氏度以上与在零摄氏度以下的时候的温度怎样表示,以吸引学生,使他们渴望找到表示这些量的数。从而解决他们想解决未能解决的问题。这样的教学过程中的矛盾而引起的心理机能的矛盾,使学生很快掌握了负数的概念,并能运用其解决实际问题。

依据“最近发展区”教学也应采取适应的手段。教师借助教学方法、手段,引导学生掌握新知识,形成技能、技巧。要实现这一目的关键在“最近发展”区域,因此,教学方法、手段应考虑“最近发展区”。如,在初中二年级相似三角形教学,可先带学生做教学实验,让学生应用已有知识测量学校校园内国旗旗杆的高,这样学生感到兴趣,旗杆不能爬,怎样测量呢?心里感到纳闷,这时教师可以充分学校的资源,带领学生进行实地测量,得到一些数据。怎样处理这些数据,当然学生未学相似三角形知识是不懂的。这样必然会引起学生的心理机能的矛盾,再顺水推舟,然后回到课堂。这样比单一的教学方法效果好,从而达到培养他们注意自己不感兴趣的东西。

篇6

所谓数学思想,是指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动。所谓数学方法,是指某一数学活动过程的途径、程序、手段,它具有过程性、层次性和可操作性等特点。数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,人们把它们称为数学思想方法。

小学数学教材是数学教学的显性知识系统,许多重要的法则、公式,教材中只能看到漂亮的结论,许多例题的解法,也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程。因此,数学思想方法是数学教学的隐性知识系统,小学数学教学应包括显性和隐性两方面知识的教学。如果教师在教学中,仅仅依照课本的安排,沿袭着从概念、公式到例题、练习这一传统的教学过程,即使教师讲深讲透,并要求学生记住结论,掌握解题的类型和方法,这样培养出来的学生也只能是“知识型”、“记忆型”的,将完全背离数学教育的目标。

在认知心理学里,思想方法属于元认知范畴,它对认知活动起着监控、调节作用,对培养能力起着决定性的作用。学习数学的目的“就意味着解题”(波利亚语),解题关键在于找到合适的解题思路,数学思想方法就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的数学思想方法,提高学生的元认知水平,是培养学生分析问题和解决问题能力的重要途径。

数学知识本身是非常重要的,但它并不是惟一的决定因素,真正对学生以后的学习、生活和工作长期起作用,并使其终生受益的是数学思想方法。未来社会将需要大量具有较强数学意识和数学素质的人才。21世纪国际数学教育的根本目标就是“问题解决”。因此,向学生渗透一些基本的数学思想方法,是未来社会的要求和国际数学教育发展的必然结果。

小学数学教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强学生数学观念,形成良好思维素质的关键。如果将学生的数学素质看作一个坐标系,那么数学知识、技能就好比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教学,不仅不利于学生从纵横两个维度上把握数学学科的基本结构,也必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。

二、小学数学教学中应渗透哪些数学思想方法

古往今来,数学思想方法不计其数,每一种数学思想方法都闪烁着人类智慧的火花。一则由于小学生的年龄特点决定有些数学思想方法他们不易接受,二则要想把那么多的数学思想方法渗透给小学生也是不大现实的。因此,我们应该有选择地渗透一些数学思想方法。笔者认为,以下几种数学思想方法学生不但容易接受,而且对学生数学能力的提高有很好的促进作用。

1.化归思想

化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。应当指出,这种化归思想不同于一般所讲的“转化”、“转换”。它具有不可逆转的单向性。

例1狐狸和黄鼠狼进行跳跃比赛,狐狸每次可向前跳41/2米,黄鼠狼每次可向前跳23/4米。它们每秒种都只跳一次。比赛途中,从起点开始,每隔123/8米设有一个陷阱,当它们之中有一个掉进陷阱时,另一个跳了多少米?

这是一个实际问题,但通过分析知道,当狐狸(或黄鼠狼)第一次掉进陷阱时,它所跳过的距离即是它每次所跳距离41/2(或23/4)米的整倍数,又是陷阱间隔123/8米的整倍数,也就是41/2和123/8的“最小公倍数”(或23/4和123/8的“最小公倍数”)。针对两种情况,再分别算出各跳了几次,确定谁先掉入陷阱,问题就基本解决了。上面的思考过程,实质上是把一个实际问题通过分析转化、归结为一个求“最小公倍数”的问题,即把一个实际问题转化、归结为一个数学问题,这种化归思想正是数学能力的表现之一。

2.数形结合思想

数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过作一些如线段图、树形图、长方形面积图或集合图来帮助学生正确理解数量关系,使问题简明直观。

例2一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就这样每次都喝了上一次剩下的一半。甲五次一共喝了多少牛奶?

附图{图}

此题若把五次所喝的牛奶加起来,即1/2+1/4+1/8+1/16+1/32就为所求,但这不是最好的解题策略。我们先画一个正方形,并假设它的面积为单位“1”,由图可知,1-1/32就为所求,这里不但向学生渗透了数形结合思想,还向学生渗透了类比的思想。

3.变换思想

变换思想是由一种形式转变为另一种形式的思想。如解方程中的同解变换,定律、公式中的命题等价变换,几何形体中的等积变换,理解数学问题中的逆向变换等等。

例3求1/2+1/6+1/12+1/20+……+1/380的和。

仔细观察这些分母,不难发现:2=1×2,6=2×3,12=3×4,20=4×5……380=19×20,再用拆分的方法,考虑和式中的一般项

a[,n]=1/n×(n+1)=1/n-1/n+1

于是,问题转换为如下求和形式:

原式=1/1×2+1/2×3+1/3×4+1/4×5+……+1/19×20

=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+……+(1/19-1/20)

=1-1/20

=19/20

4.组合思想

组合思想是把所研究的对象进行合理的分组,并对可能出现的各种情况既不重复又不遗漏地一一求解。

例4在下面的乘法算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,求这个算式。

从小爱数学

×4

──────

学数爱小从

分析:由于五位数乘以4的积还是五位数,所以被乘数的首位数字“从”只能是1或2,但如果“从”=1,“学”×4的积的个位应是1,“学”无解。所以“从”=2。

在个位上,“学”×4的积的个位是2,“学”=3或8。但由于“学”又是积的首位数字,必须大于或等于8,所以“学”=8。

在千位上,由于“小”×4不能再向万位进位,所以“小”=1或0。若“小”=0,则十位上“数”×4+3(进位)的个位是0,这不可能,所以“小”=1。

在十位上,“数”×4+3(进位)的个位是1,推出“数”=7。

在百位上,“爱”×4+3(进位)的个位还是“爱”,且百位必须向千位进3,所以“爱”=9。

故欲求乘法算式为

21978

×4

──────

87912

上面这种分类求解方法既不重复,又不遗漏,体现了组合思想。

此外,还有符号思想、对应思想、极限思想、集合思想等,在小学数学教学中都应注意有目的、有选择、适时地进行渗透。

三、小学数学教学应如何加强数学思想方法的渗透

1.提高渗透的自觉性

数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。教师讲不讲,讲多讲少,随意性较大,常常因教学时间紧而将它作为一个“软任务”挤掉。对于学生的要求是能领会多少算多少。因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。

2.把握渗透的可行性

数学思想方法的教学必须通过具体的教学过程加以实现。因此,必须把握好教学过程中进行数学思想方法教学的契机——概念形成的过程,结论推导的过程,方法思考的过程,思路探索的过程,规律揭示的过程等。同时,进行数学思想方法的教学要注意有机结合、自然渗透,要有意识地潜移默化地启发学生领悟蕴含于数学知识之中的种种数学思想方法,切忌生搬硬套、和盘托出、脱离实际等适得其反的做法。

篇7

1 数学思想的基本内涵

数学思想方法是前人探索数学真理过程中的精髓。而数学思想,是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的结果,它是对数学事实与数学理论的本质认识,是知识中奠基性的成分。首先,数学思想比一般说的数学概念具有更高的抽象和概括水平。其次,数学思想、数学观点、数学方法三者密不可分。如果人们站在某个位置、从某个角度运用数学方法去观察和思考问题,那么数学思想也就成了一种观点、一种认识。数学思想是对数学理论和方法在更高层次上的提炼和概括,属于理性认识的范畴。数学思想具有概括性和普通性,而数学方法它具有操作性和具体性。作为数学思想,它不仅比数学方法处于更高层次,而且是数学知识、数学方法的精髓和灵魂,其运用和发展有助于知识得到优化,有助于理性认识迅速构建,有助于将知识转化为能力。数学思想与数学方法既有联系又有区别。数学思想具有概括性和普遍性,数学方法具有操作性和具体性。数学思想是数学方法的理论基础和精神实质。数学思想都是通过某种方法来体现,而任何一种数学方法都反映了一定的数学思想。高职数学中的基本数学思想有:(1)符号化与变元表示思想。包括符号化思想、换元思想、方程思想、参数思想。(2)集合思想。包括分类思想、交集思想、补集思想、包含排除思想。(3)对应思想。包括映射思想、函数思想、变换思想、数形结合思想。(4)公理化与结构思想。包括基元与母结构思想、演绎推理思想、数学模式思想。(5)数学系统思想。包括整体思想、分解与组合思想、状态运动变化思想、最优化思想。(6)统计思想。包括随机思想、抽样统计思想。(7)辩证的数学思想。包括数学范畴的对立统一、普遍联系相互制约、量变质变、否定之否定、数学化归、极限思想。(8)整体与局部思想。

高职数学中所蕴含的这些丰富的数学思想,它们与其基础知识、基本方法一起构成了高等数学的主要内容。同时,又由于这些思想往往隐含在基础知识和基本方法里,也就伴随着数学思想产出、发展和完善的过程。随着科学技术和人类社会的不断进步,数学思想其内涵也是会更丰富的,内容也是会不断的延展的。

2 数学思想对高职数学教学的启示

2.1 数学思想在数学教材内容体系中的呈现

高等职业院校的数学教学是以应用为重点,必需够用为度,突出职业教育特色。因此,使学生掌握日常生活、生产中必备的数学知识,能以数学为工具解决一定的实际问题应作为高职数学教学的主要目标之一。数学方法是指在提出问题,解决问题(包括数学内部问题和实际问题)的过程中所采用的各种方式、手段、途径等,其中包括交换数学形式。但数学教材并不是这种探索过程的真实记录。恰恰相反,教材对完美演绎形式的追求往往掩盖了内在的思想方法,颠倒了数学真理的发现过程。整个高等数学其主要思想观点就是运动与变化的观点,以运动与变化的观点去考察问题,从运动与变化中去认识事物,这是唯物辩证法在数学中的反映。例如,高等数学就是从圆的内接正多边形面积的变化中去认识圆的面积,从割线运动中去认识切线,从平均速度的变化中去认识瞬时速度等等。而初等数学基本上不涉及运动与变化,只是在几个相对固定量的关系中从已知求未知。研究对象从初等数学主要研究常量的运算和固定不变图形的性质,反映运动与变化的数学概念是变量与函数,到高等数学是以变量及变量之间的依赖关系函数作为研究对象。解决问题的基本方法是极限,这是因为在数学和科学技术应用发展中,所带来出现的问题表现出的矛盾,如“曲”与“直”、“均匀”与“非均匀”等等,虽然各自的具体意义千差万别,但表现在数量关系上都归结成“近似”与“精确”的矛盾。解决这一矛盾的有效方法就是极限方法,借助于这实质上深刻的辩证法,使人们清楚地看到,定不变的事物是过程、运动的结果。高职数学内容全面,结构严密,通过本课程的学习可以使学生初步获得从数和形两个方面洞察现实世界、用数学方法解决问题的能力。同时,它能提高学生的科学和文化素质。找到他们学习中遇到的问题和困难调动和激发学生在教和学中的积极性,发挥他们的潜能,为学生后续课程学习的奠定必需的数学基础。使学生明白高等数学这门课程正在渗透到许多专业基础课和专业课当中。高职数学既是工具,又是文化,学生自身也要加强对高等数学应用能力的培养。才能获得掌握和认识新理论、新知识、新方法强有力的工具。教师在传授知识的过程中应使数学思想的精神得以完整的体现。使学生了解和认识一个较为完整的数学知识体系。

2.2 数学思想是课堂教学实施的精髓,是学生能力培养的核心指导思想

数学既有一般科学的特征,又具有横向移植的特点,因而在整个科学领域中有着广泛应用。数学方法是指用数学语言表述事物的状态、关系和过程,并加以推导、演算和分析,以形成对问题的解释、判断和预言。数学思想以解决问题为根本,指导人们从数学概念、命题、规律、方法和技巧的本质认识中获取解决自然科学、技术科学或社会科学等各个方面问题的具体途径、策略和手段。数学是集严密性、逻辑性、精确性和创造性与想象力与一身的学科。它的这些特点决定着高职数学教学培养目标是使受教育者不仅具有一定的数学素质和应用数学知识去发现问题和解决问题的能力,而且要使学生通过学习数学,更具有敏锐的洞察能力、分析归纳和逻辑推理能力,将抽象性的逻辑思维和创造性的发散思维结合起来,创造性地应用数学知识去解决现代科学技术所面临的许多问题。进入高职学习的学生,他们在面临的学习方法和学习形式上都发生了重要的变化。目前对于入学的高职学生群体中体现入学起点较低,中学数学基础知识的能力水平参差不齐,由于高职数学要求的是“以应用为目的,以必须够用为度”教学原则,教学时间和教学内容上都进行了压缩和调整,对教师要求备课中要深入钻研教材和参阅有关参考材料,要善于从具体的数学知识中挖掘和提炼出数学思想方法,要预先把全书、每单元章节所蕴涵的数学思想方法及它们之间的联系搞明确具体,然后统筹安排,有目的、有计划和有要求地进行数学思想方法的课堂教学提出了更高的要求。教师在教学过程中应首先培养学生学习数学的兴趣,因为“兴趣是最好的老师”。教师要注重运用启发式教学原则,充分调动学生学习数学的积极性。备课充分、规范,教学态度端正,治学严谨,关心学生,做学生的知心朋友。教师在教学应教育学生树立学好数学的信心,调动和激发他们的学习热情,深刻去体会数学思想的作用和意义,逐步形成良好的学习能力,锻造学生的辨证观。例如,导数概念在工程技术上更多的是被称为在一点的变化率,在数学课上强调这一点,可使学生迅速地接受专业概念的数学描述;另一方面还要对数学概念的实质分析透彻,以使学生能够意识到哪类专业问题可以使用相应的数学概念去表述,应用相应的数学知识去解决。对于习题课的教学中,要尽可能注意避免陷入模式化的算式形式,着重要以应用为中心,生动活泼地突出应用,引导和启发学生运用数学思想和方法去思维,而去解决实际问题作用,也还要能使不同水平的学生都能意识到数学的意义,从中领略到自己需要的东西。

2.3 数学知识背景学习能深化学生对数学思想的认识

学生在数学教学过程和学生的学习过程中,教材是按知识的体系编写的,是逻辑的,严谨的。对于知识产生的背景和解决的过程介绍的甚少。适当地给学生介绍有关数学发展史,适时开展一些数学讲座如“数学热门话题”,“数学史上的三次危机”等,开阔学生眼界。在高职数学教学中适时去介绍和挖掘教学内容与所学专业和实际生活中实例的联系,也会对学生学习数学知识起到一定的作用,对他们也能够形

成良好思维和学习兴趣也有帮助。这样既能突出高职的培养目标,学生充分了解数学的发展、数学的价值,培养学生战胜困难的决心,去激发学生的求知欲望。

2.4 数学思想对教师素质的要求

数学知识在当今的国民经济发展和科学技术中得到广泛的应用,同时也在不断的知识扩充和延展。对于我们教师来说,自己知识的学习和提高从来都是必要的,也是重要的。同时,数学教师还应充分发挥其自身的人格魅力,以增强数学教学的实效性。这样的高职数学教学中,自然也会对教师素质的要求会更高。面对高职学生的能力培养,同时也是一个复杂的系统工程,让教师和学生都要意识到数学知识的传授和学习,不单单仅是各自单方面所要完成的任务,也是在“教”与“学”的过程中,对学生的数学素质、科学的思维能力建立与培养的过程。这样才能去提高学生的综合素质,培养出基础知识扎实,应用能力好,具有良好品格的高等技能型适用人才。

篇8

1.以“儿童”为基本立场的儿童数学教育思想体系

首先,我们确立了以“儿童”作为数学教育研究和实践的基本立场“。儿童数学教育”就是以儿童发展为本,满足儿童发展需求,符合儿童认知规律的教育。进一步,我们需要提炼能反映儿童数学教育系统本质特征的因素。英国学者欧内斯特(P.Ernest)在《数学教育哲学》中,提出了数学教育哲学应围绕以下四个基本问题展开:数学的本质、数学学习活动的本质、数学教育的目的、数学教学活动的本质。参考这一框架,儿童数学教育思想提出了儿童观、儿童数学教育价值观、数学观。(1)儿童观儿童数学教育思想的“儿童观”是:儿童是活生生的人、儿童是发展中的人。“儿童是活生生的人”,意味着儿童是具有丰富情感、有个性、有独立人格的完整的生命体。因此,教师要尊重儿童、理解儿童、善待儿童,使得每一个儿童都能有尊严地生活在集体中。“儿童是发展中的人”,意味着儿童是有潜力的人,但又同时具备不成熟的特点,因此教师要充分相信儿童,要注意开发、挖掘儿童身上的潜能,儿童能做到的教师一定不要包办代替,促进儿童的自我成长,让其在自主探索中形成自信和创新能力。儿童又是未成熟的个体,所以教师要包容、悦纳他们的错误,并善于利用错误资源,使之成为促进儿童再发展的新能源。因此,儿童的学习应是学生的主动建构及与同伴和教师互动交流的活动,是一个自产生、自组织与自发展的过程。教育的任务就是激发和促进儿童“内在潜能”,并使之循着儿童成长的规律获得自然和自由发展。(2)儿童数学教育价值观儿童数学教育思想的“价值观”是:数学教育的价值是促进学生的全面发展,数学教育的目标是使学生在数学学习的过程中汲取知识、增长智慧、浸润人格。为此,教师要教与生活联系的数学,要使学生体验数学知识产生的生活背景,感受数学的发生、发展和应用过程,感受数学的价值;要教相互联系的数学,在学习新知识中播下知识的“种子”,在沟通联系中体会数学的整体;教有思想的数学,注重数学的基本思想,使学生收获数学思考和问题解决的方法,启迪学生的智慧;教美的数学,使学生在学习过程中体会数学的内在魅力,从而产生好奇心和兴趣,进而为形成美的心灵和情操奠定基础;教能完善人格的数学,使学生形成“做真人、懂自律、负责任、有毅力和会自省”的品格。(3)数学观关于数学本质及其作用的认识对学校的数学课程,教学与教学研究的发展有着关键的影响(J.Dossey)。M.Niss更是强调数学教师数学观的重要性,他有一段应当引起所有数学教师深思的话:“缺乏多元多维的数学观也许是今天数学教师的致命弱点。”对于“多元多维”的理解,至少可以体现在如下方面:数学不仅仅是计算,而是包括着数量、关系、图形、规律、不确定性、解决问题等丰富的内容。数学不仅仅包括静止的结果,更包括生动活泼、富有创造的发生、发展和应用过程。数学不仅仅需要演绎推理和证明,还需要观察、分析、类比、归纳、实验等火热的思考,还需要好奇、自信、毅力、实事求是…………

2.以特色课堂为核心的教学策略

在数学教学实践中,吴正宪团队创造了体现儿童数学教育的八种特色课堂:真情流淌的生命课堂、经验对接的主体课堂、思维碰撞的智慧课堂、机智敏锐的灵动课堂、纵横联通的简捷课堂、以做启思的实践课堂、追本溯源的寻根课堂、充满魅力的生活课堂。“真情流淌的生命课堂”的基本特征是:用真心引领学生进行学习;用真情营造学生敢说敢为的学习氛围;用真情唤起学生成长的力量。“经验对接的主体课堂”的基本特征是:运用情境唤起学生的经验;用学生经历过的例子帮助学生学习;鼓励学生形成自己的理解和表达方式。“思维碰撞的智慧课堂”的基本特征是:激发学生在“问题串”中不断深入地进行思考;鼓励学生在比较中辨析;促进学生在解决“冲突”中提升。“机智敏锐的灵动课堂”的基本特征是:预设灵动的学习资源;创造灵动的学习机遇;激发灵动的学习智慧。“纵横联通的简捷课堂”的基本特征是:梳理学生心中的数学;在联系中启发学生新的生长。“以做启思的实践课堂”的基本特征是:鼓励学生在操作和实践中体验;促进学生在体验中进行思考;激发学生在思考中进行创造。“追本溯源的寻根课堂”的基本特征是:体现数学发生和发展的创造过程;在数学思考过程中体验数学的思想方法;感受数学的文化价值。“充满魅力的生活课堂”的基本特征是:从生活实际中创设情境;鼓励学生运用数学解决实际问题;积淀生活经验回归数学。

二、“再起航”:儿童数学教育思想理论内涵的提炼与创新实践

2014年12月8日,北京教育科学研究院儿童数学教育研究所正式成立,研究所的成立是为了真正体现北京教科院基础教育教研工作的价值,促进实现既体现教育真谛又具有首都特色的北京儿童数学教育教学,提炼北京市儿童数学教育思想和教育教学研究成果。研究所的成立标志着儿童数学教育思想研究和实践进入了一个新的阶段,这一阶段的一项重要工作是开展“儿童数学教育思想理论内涵与创新实践”的研究。这项研究工作正是对儿童数学教育思想的深化。深化主要体现在三个方面。第一,在新课程背景下的深化。在课程标准中,对于数学教学提出了一些新要求,比如培养学生发现和提出问题的能力。这些应该在儿童数学教育实践中得以体现。第二,在价值分析、学生研究基础上的深化。儿童数学教学实践,离不开对于教育价值全面实现、遵循儿童学习规律的这些基本问题的叩问。本研究将选择小学数学的某些核心内容开展教育价值分析、学生学习路线的研究,并在此基础上进行教学和评价的整体设计。第三,在实践效果检验下的深化。教学研究和改革的效果如何,需要进一步做教学实验,在实践中加以检验。

1.进一步完善和构建“儿童数学教育思想”

本研究将进一步提炼和总结儿童数学教育思想的内涵,总结出具有普遍意义的儿童观、儿童教育观、数学观,指导数学教学的实践。具体说来,需要回答以下几个主要问题:第一,儿童数学教育思想下的儿童观、儿童教育观、数学观是什么?第二,儿童数学教育思想体系的核心要素及其关系是什么?第三,儿童数学教育思想指导下的课程设计、教学、评价的特点和原则是什么?

2.开展儿童数学教育视角下的整体教学实验

能够对课程与教学实践产生最直接、最为具体影响的教育研究可能非教学改革实验莫属,儿童数学教育思想指导下开展的教学实验必然具备“整体”的特征:第一,教育价值在儿童发展中的整体实现;第二,基于价值分析、学生研究的教学评价的整体设计。根据数学课程改革的新要求、教师实践中的困惑、本课题的研究基础,本课题选择以下两个方面作为研究的切入点:培养学生发现和提出问题能力的整体教学实验、发展学生数据分析观念的统计教学整体实验。(1)培养学生发现和提出问题能力的研究和实践自20世纪80年代以来,有关数学问题提出的教学研究引起了国内外数学教育界的关注。其主要原因在于:以“问题解决”为核心的数学教育改革运动的兴起,以及知识经济社会对数学教育提出的创新人才的培养要求。许多国家都把培养学生的问题提出能力作为一项重要的课程目标,在《义务教育数学课程标准(2011年版)》中,也把原来的“分析和解决问题能力”拓展为“发现和提出、分析和解决问题的能力”。围绕着“培养学生发现和提出问题的能力”,以下问题需要我们深入思考和实践:第一,一个“好”的数学问题发现和提出的过程一般经历了哪些环节?学生的思维过程是什么?第二,不同年级的学生在发现和提出数学问题的目标和过程方面有何差异?促进他们提高的策略方面有什么不同?第三,从整体设计上看,培养学生发现和提出问题能力不仅仅局限在学习之前,素材也不仅仅停留在根据情境提出问题上,特别是如何培养学生运用数学的眼光从生活中发现问题,还有哪些培养目标、培养时机、选择素材和活动设计?第四,发现和提出问题,对于不同学生的作用和价值是什么?(2)发展学生数据分析观念的统计教学研究在《义务教育数学课程标准(2011年版)》中将数据分析观念作为统计课程的核心,并阐述了数据分析观念的内涵“:了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴含着信息;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律,数据分析是统计的核心。”这实际上也体现了人们对统计课程教育价值的深入理解。在教学实际中,无论是教材编写还是教学实施,大家普遍感觉统计知识和技能的落实比较容易,但数据分析观念在各个年级的具体表现是什么,如何根据不同年级学生的特点设计合理的活动来发展数据分析观念,这些都是亟待解决的问题。针对以上的两个切入点,我们将采取教学实验的研究方法,设计基于价值分析、学生研究的整体教学实验方案;按照新的教学实验方案进行教学实验;对于教学实验过程中和之后学生的变化和发展进行评估;分析实验的效果,学生在解决实际问题方面的能力、学生的数据分析观念是否有提高,有哪些方面的提高,其典型表现(群体表现和个案学生表现)是什么;在实验的基础上对于教学和评价提出建议。

3.儿童数学教育思想指导下的课例研究

课例研究将主要通过以下两种途径:第一,运用量化和质性的方法刻画特色课堂的具体特征。本研究将进一步提炼和明确课堂的具体特征指标,一方面运用这些指标对于课例进行量化分析,另一方面对于具体案例进行质性分析,由此描述儿童数学教育思想指导下的课堂教学的具体特征。第二,分析和开发围绕着核心内容的课例。围绕着小学数学教学的核心内容,选择已有体现儿童数学教育思想的优秀案例进行再次验证和分析,并在此基础上开发新的课例,从而形成案例资源库。

推荐期刊
  • 数学研究
    刊号:35-1177/O1
    级别:省级期刊
  • 数学
    刊号:42-1163/O1
    级别:北大期刊
  • 数学进展
    刊号:11-2312/O1
    级别:北大期刊
  • 数学季刊
    刊号:41-1102/O1
    级别:省级期刊