时间:2023-03-24 15:12:31
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇低功耗设计论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
随着测控技术的迅猛发展,以嵌入式计算机为核心的数据采集系统己经在测控领域中占到了统治地位。数据采集系统是将现场采集到的数据进行处理、传输、显示、存储等操作。数据采集系统的主要功能是把模拟信号变成数字信号,并进行分析、处理、存储和显示。
本论文工作所开发研制的数据采集系统由嵌入式微处理器、日历时钟芯片、模数转换器、非易失性存储器等器件组成。运用最小功耗设计理论设计,可以在电池供电的情况下长期采集和记录数据,可长时间处于工作状态。通过具有报警输出的日历时钟芯片等组成唤醒单元,可在设定时间开启电源。上电后,采用单片机控制数据采集、存储以及对时钟芯片的再设定等,而数码管作为设定指示和时间、采集到模拟量信号的显示。
系统通过仿真总线的方式扩展较大容量外部存储器,可存储的多次采集时间和采集数据。而利用更换存储器方式,或利用串行口通信方式可将存储器中的数据发送到便携式电脑中作进一步处理。
关键字:单片机,低功耗,数据采集,定时
摘要 1
Summary 2
第1章 文献综述 1
略………
第2章 定时采集系统的硬件设计 18
略………
第3章 定时采集系统的软件设计 38
略………
第4章 系统低功耗设计 48
略………
第5章 定时数据采集系统使用介绍 51
结论 56
致谢 58
参考文献 59
附录1 60(程序)
附录2 70(数字仪器)
附录3 76(Digital Instruments)
(附录不在论文字数内)
:33000多字的本科论文,适合自动化、电信与通信专业
有中英文摘要、目录、图、参考文献
400元
从嵌入式处理器来看,从最初的4位处理器,目前仍在大规模应用的8位单片机、到日益受到广泛青睐的32位MCU,以及更高性能的64位嵌入式处理器,目前具有嵌入式功能特点的处理器已逾千种,数十种常用的体系架构。广阔的市场应用前景吸引了大量的半导体公司参与竞争,其中从ASIC、MCU、DSP到FPGA以及因为结合了MCU和DSP优势而近年来异军突起的汇聚式处理器,处理器速度越来越快、性能越来越强,而功耗和价格却越来越低。目前。丰富的嵌入式处理器已经广泛应用到从国防、工业、汽车到医疗设备和消费电子等几乎所有的行业和领域。
汇聚式处理器解决嵌入式设计技术挑战
尽管嵌入式设计经过数十年的发展,在核心处理器硬件平台、嵌入式操作系统和开发工具上已经有广泛的选择,然而随着市场竞争加剧、系统日益复杂化,目标应用对系统的功能、性能、成本的要求也日趋苛刻。工程师所面临的设计挑战似乎并没有随着半导体技术的发展降低,甚至日益增高,工程师在进行方案选择时必须正确评估应用面临的挑战。
处理能力要求越来越高。系统本身的复杂功能、友好的界面设计要求、各种接口和通信需求都需要占用大量的MIPS处理能力,单一的传统MCU或ASIC很多时候难以满足系统高处理能力的需求,双芯片甚至三芯片解决方案日益增多,但随之而来的高设计复杂性、功耗和BOM(材料清单)成本让方案缺乏竞争性。此外,当前嵌入式系统设计,特别是一些新产品和功能复杂的嵌入式产品设计,要在设计周期很有限的条件下完全从零开始实现设计已经变得不现实,也不具成本效益。因此,是否能提供完善的开发工具套件、必要的软件模块、成熟的参考设计、系统设计支持,以及是否有完整的设计生态系统等,对于是否能按期高质量地完成系统设计非常关键。
标准的多样性和不确定性带来产品升级换代的顾虑。当前在各个行业都面临一些创新型应用,例如智能电表和智能视频监控等,这些应用都具有一定开创性,目前没有或尚未形成行业统一的标准,如何在保证抢占市场窗口期的先机,同时确保当前的设计满足未来变化的市场和技术需求,必须考虑方案的可扩展性和性能裕量。
低功耗的要求日益苛刻。处理器性能要求越来越高,而系统功耗要求越来越低,这几乎形成一对矛盾。然而,实际设计过程中,工程师不得不面对这种近乎矛盾的需求。随着半导体工艺技术、嵌入式处理器架构优化以及设计技术的改进,低功耗设计技术日新月异,电压、工作频率自适应调整技术、多工作模式的节能技术、数字电源管理技术,以及低功耗的最新半导体工艺技术应用层出不穷。在众多方案中选择满足设计功率预算要求的系统方案也是系统设计成功的关键因素之一。
选择具有广泛嵌入式系统支持能力的解决方案非常重要。目前可用的嵌入式操作系统众多,各具优势,硬件平台方案对这些操作系统的支持能力是进行方案选型的考虑要点之一。
以Mcu或AsIc为核心器件的硬件平台方案在解决上述嵌入式系统设计要求上正面临挑战,有限的处理能力通常难以满足很多应用的高处理能力需求,或者缺乏进行功能扩展和产品升级换代的设计灵活性,某些设计为了满足系统的处理能力要求而增加DsP或协处理器,从而增加系统的复杂性、功耗和成本。
结合MCU和DsP性能优势的汇聚式处理器是有效解决上述设计挑战的方案之一,而ADI公司Blackfin处理器是目前市面上唯一的汇聚式处理器产品。汇聚式处理器典型应用有电力应用的智能电表,安防应用的视频监控,医疗设备的便携式房颤监测仪,工业应用的3DLevelScanner三维曲面测量仪等。预览全文,请访问本刊网。
科学大师是引用出来的
在一次期刊培训会上,我国一位期刊研究专家语出惊人:“科学大师不是评出来的,而是引用出来的。”例如达尔文的相对论、牛顿三大定律的引用率都属最高级。但目前,我国科技论文的引用量和引用率偏少,这不仅不利于众多科研成果传播,也不利于科研新人的显现,因此,应该鼓励科研人员在学术论文中多引用文章和著作。
关键词:MSP430单片机 低功耗 硬件设计
1.设计的意义
本次设计的温度采集报警系统是一种能够长期自动工作的设备,它使用的电源为电池也可为充电电池,因此其功耗的大小直接决定了其使用的时间的长短。而且一般情况下这类系统的工作环境都比较恶劣,因此,对该系统进行低功耗设计不仅便于延长使用寿命,便与安装、管理与维护,而且由于该系统具有其他无人值守自动设备相似的特点,对该系统进行低功耗设计的方式方法可以应用到其他设计中,这具有非常重要的社会效益和经济效益。本设计的应用性比较强,如稍加改装可做实验室温湿度监控系统、仓储温湿度监控系统、工业环境监控系统等。
2.系统的设计
2.1总体设计方案
本系统对温度数据进行采集,温度传感器通过某种关系的换算,就可以得到温度与输出电压的关系,单片机通过模拟口采集得到传感器输出电压,通过设置的参考电压就可以得到传感器的输入带电压,再通过一定关系的转换就获得温度参数,将得到的温度参数进行分析后进行相应的处理,比如显示或者报警。另外系统通过键盘输入来完成对报警温度的上、下限设置;通过显示电路将得到的数据显示出来;当温度超过上限和下限的时候,系统进行报警,报警通过驱动一个蜂鸣器来实现。
本设计的系统硬件部分主要包括CPU处理模块、传感器采集模块、键盘输入模块、电源及复位模块[1]、报警模块[2]、显示模块[3]以及串口通信模块等。整个系统的原理框图如图2-1所示:
2.2设计的基本思路
2.2.1系统的低功耗设计
一个单片机系统的功耗受多因素的影响,主要有系统的技术指标,芯片和元器件的选择,及系统的工作方式等。本次设计的温度采集报警系统是作为工业用表,故采用干电池或锂电池供电,而电池的容量有限,因此本系统的功耗问题成为设计的重点问题。具体设计方案如下:
(1)选择低功耗的CPU
在一个系统中CPU是核心控制部分,主要工作均由其完成。其能耗也是整个系统中最大的一部分。目前51系列单片机[4]技术成熟,且其功能强大,性价比高。但相对MSP430单片机来说51系列的接口功能有限,外设电路较复杂,尤其是其功耗较大(功耗是MSP430系列的3倍左右),所以51系列不适合用在低功耗系统中。因此,本系统选用TI公司的MSP430F149型16位单片机[5],该单片机的功能十分强大、开发方便而且其功耗极低是市场上倍受好评、应用最多的一类低功耗单片机。
(2)选择低的供电电压[6]
在单片机控制系统中,系统的功耗往往和电源电压的大小成一定比例关系,电源电压高,系统的功耗相应的也会增大,因此在功耗要求比较严格的低功耗温度采集报警系统中,在保证功能的前提下,尽量选择低的电源电压。本系统中选用三节干电池4.5V供电。
(3)选择低功耗器件
除选用低功耗的CPU外,其余器件也应为低功耗型,如选用 COMS器件,它最大的优点是微功耗(静态功耗几乎为零),其次是输出逻辑电平范围大,因而抗干扰能力强,所以 COMS 器件是低功耗电路和便携式仪器的最佳搭档。同时器件参数也应低功耗。本系统中用的元器件都具有低压供电、低功耗的性能。如MAX6613型温度传感器[7] [8]。
(4)系统低功耗的运行管理
在软件编程时选用合适的工作模式,合理利用单片机提供的闲置、掉电工作方式,尽量避免循环、查询、动态扫描等工作方式;对电路中的其它用电模块进行电源管理,即根据工作需要才接通相应模块的电源。
2.2.2 系统的抗干扰设计
目前, 许多智能仪表均使用微机(包括单片机)作为控制系统。在使用时,不可避免地会受到电磁干扰。电磁干扰不但会降低仪表的使用精度, 而且常常使系统失灵或死机。因此, 抗干扰设计[7]是智能仪表设计的重要部分。本系统中抗干扰设计从两方面来考虑,一是在硬件设计上采取适当的措施来抑制和消除干扰, 例如合理的屏蔽、隔离、滤波、接地、布线等。另一方面是从系统软件设计上采取一定措施来提高系统的抗干扰能力, 即使系统受到干扰, 也能自动地快速恢复正常工作。
3.总结及展望
温度的测量控制广泛应用于人们的生产和生活中,特别是在冶金、化工、建材、食品、机械、石油等工业中具有举足重轻的作用。结合超低功耗技术,本文运用多种技术手段,包括电子电路技术,温度传感器技术,数据采集技术,单片机控制技术及数据传输等,综合采用电子、控制等多方面的知识设计了低功耗温度采集报警系统。该系统以MAX6613温度传感器为温度采集器,MSP430F149单片机为主控芯片,实现温度的自动采集报警。本设计仅是对低功耗温度采集报警系统的一个探索性方案,经开发还可以在本系统的基础上发展通过互联网络来实现远程操控的温度采集报警系统或其他系统等,具有很大的开发潜力。
参考文献:
[1]秦龙.MSP430单片机应用系统开发典型实例[M].北京:中国电力出版社,2005:119~141.
[2]王巍,蒋大明.基于MSP430F449单片机的超温报警系统[J].中国科技信息,2006(3):10、12.
[3]杨凌志,张爱玲.单片机的键盘显示系统[J].电脑开发与应用,2004,17(7):14~15.
[4]毛谦敏.单片机原理及应用系统设计[M].国防工业出版社,2005,
125~149.
[5]秦建民,曾小平.MSP430F149单片机在便携式智能仪器中的应用[J].微计算机信息,2002,18(12):43~44.
[6]胡大可.MSP430系列FLASH型超低功耗16位单片机[M].北京航空航天大学出社,2001.
关键词:化无线温度传感器,电子闹钟
1 引言
集成化智能传感器概念的提出仅仅十余年,但近年发展很快,国外刊物上关于新型集成化智能传感器研制的报道很多,国内一些著名高校和研究所也在开展此类工作。和经典的传感器相比,集成化智能传感器具有体积小、成本低、功耗小、速度快、可靠性高、精度高以及功能强大等优点。集成化智能传感器的优点使它成为目前传感器研究的热点和传感器发展的主要方向,必将主宰下个世纪的传感器市场。
本文的数字化无线温度传感器具有集成化、智能化的特点,它由温度测量(发射部分)、温度处理(接收部分)和温度值显示(上位机)三部分构成。温度测量采用一线制数字温度传感器DS18B20,其体积小,集成度高,自带A/D,功耗低。。处理器选用低功耗单片机PIC16F74。温度传输采用超低功耗发射接收模块PTR4000,以方式与处理器通讯。PTR4000在测量点接收传感器的数据并把数据以无线方式传输出去,接收部分通过接受模块(PTR4000)接收数据,并进行数字滤波,同时将接收到的数据以异步串行通信方式传给上位机。
2 系统硬件设计
2.1 PIC16F74单片机
带8位A/D转换输入
高驱动电流,I/O脚可直接驱动数码管(LED)显示
双向可独立编程设置I/O引脚
8位定时器/计数器TMR0,带8位预分频
有1~2路捕抓输入/比较输出/PWM输出(CCP)
16位定时器/计数器TMR1,睡眠中仍可计数
8位定时器/计数器TMR2,带有8位的周期寄存器及预分频和后分频
并行口操作
同步串行口I2C/SPI总线操作
同步通讯接口SCI/USART操作
2.2 温度传感器DS18B20
DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。以上特点使DS18B20非常适用于远距离多点温度检测系统。
2.3无线模块PTR4000
PTR4000具有全球开放的2.4GHz频段,125个频道,能满足多频及跳频需要,其最高速率为1Mbps,,具有高数据吞吐量,内置硬件CRC纠检错,发射功率、工作频率等所有工作参数全部通过软件设置完成,其供电压为1.9~3.6V,能满足低功耗的设计要求。
2.4串行接口
为实现系统与上位机之间的串行通信,在硬件结构上采用了单电源转换芯片ICL232,ICL232是一个双组驱动/接收器,它内含一个电容性电压发生器,可在单5V电源供电时提供EIA/TIA-232-E电平。。
3.系统实现
3.1低功耗技术
本设计的低功耗设计贯穿整个设计的方方面面。首先是CPU的选择上,PIC系列的CPU具有较宽的操作电压(2.0~5.5V),四种可选振荡方式:低成本阻容(RC),标准晶体/陶瓷(XT),高速晶体/陶瓷(HS),低频晶体(LP)。,在选择合适的电压和晶振的情况下,其功耗可以降到微安级(如SLEEP模式下,功耗只为 1μA,工作电压为3.0V,工作频率为32kHz时,功耗为15μA[1]);其外围器件减少,功耗自然可以降低;即使使用了较高的晶振频率,由于CPU内部有一个特殊功能寄存器DIVM可以对时钟分频,从而达到节电目的。PIC系列单片机有睡眠方式,在空闲时可以设置为低功耗工作方式,非空闲时,用看门狗、中断等方式唤醒。
在其他元器件的选用上,尽量采用低功耗器件,如无线收发模块选用超低功耗无线收发模块PTR4000,其最大工作电流仅为18mA,在掉电模式下仅为1uA.
总之,在以PIC单片机为核心的控制硬件电路设计上,采用及筛选低功耗的电子元件与集成电路,进行低功耗线路设计和线路板优化;在软件控制上采用降低功耗的休眠技术及采样周期优化,以期达到最大限度地降低计量仪表功耗,延长电池寿命。
3.2无线温度采集流程
系统实现无线温度采集步骤:发射模块的单片机上电复位后,配置其端口的输入输出状态,此时应是PTR处于非掉电状态,然后开始组织配置数据,设置CE=0,CS=1,将120位的配置数据传入PTR4000,传送完毕后设置CS=0,完成配置,再设置PWR=1,CE=1,调用测温子程序,测量5个温度值,温度值经组织后传入PTR4000,置CE=0,发射数据,延时100us,等待发射完毕,置PWR=0,将PTR设置为掉电模式,然后将PIC的所有I/O口设置为输入状态,最后进入SLEEP模式,等待WDT唤醒,然后重复次发射过程。。接收模块的单片机上电复位后,也是配置其端口的输入输出状态,此时应是PTR处于非掉电状态,然后开始组织配置数据,设置CE=0,CS=1,将120位的配置数据传入PTR4000,传送完毕后设置CS=0,完成PTR的配置,然后配置串口,使能串行中断和全局中断,再设置CE=1,PTR4000处于接受状态,等待DR1的电平发生变化后,接受数据及完成数据处理、数字滤波,并把采集来的温度值转换为ASCⅡ码传送给上位机。
4.结论
本设计中的数字化无线温度传感器具有性能可靠、功耗极低、构造简洁、使用安全等一系列优点。其测温范围在0℃~100℃之间,传感器采用具有12位转换精度的单线温度传感器DS18B20,测温精度可达±0.0625℃,射频模块选用PTR4000,无线传输距离大于50米,静态功耗电流小于3,这些指标大大高于设计指标的要求。
参考文献
[1].张宝.基于nRF905和DS18B20的无线温度采集系统设计[J].中国新技术新产品,2010,(02)
[2].王振,胡清,黄杰.基于nRF24L01的无线温度采集系统设计[J].电子设计工程,200,(12)
[3].李余庆,张华,刘继忠.基于DS1820的无线温度采集系统的设计[J].微计算机信息,2009,(09)
>> 低功耗10位100 MHz流水线A/D转换器设计 8bit超级马里奥方块吊灯 4?bit FLASH ADC行为级建模与仿真 超低功耗8位Mcu等 一种用于14 bit SAR ADC的DAC设计 一种12bit CMOS全差分SAR ADC A BIT TOO DARK BIT of Legal Bother 中美BIT来了 I Bit My Tongue 中美共图BIT 采用LMS数字校准的13位200MSPS ADC设计 高性能低功耗 ADI新推26款高速ADC产品扩充其低功耗数据转换器产品组合 a bit与a little THE BOY’A BIT SPECIAL BIT谈判:欧洲的筹码 飞思卡尔SO8QE系列低功耗微控制器分析 浅析低功耗仪表设计 异或门的低功耗设计 常见问题解答 当前所在位置:
关键词:低功耗;流水线;时间交织;逐级递减。
DOI: 10.3969/j.issn.1005-5517.2013.12.020
移动无线通信系统是模拟数字转换器的主要应用。高性能的交流特性,主要包括信噪比(SNR)和无杂散动态范围(SFDR),能够提供更好的无线通信覆盖率,更多的载波,更好的质量和可靠性。功耗和面积对于移动无线通信系统也非常重要。
在多种ADC中,流水线ADC是最适合做高速高精度的。目前的设计趋势是在低功耗下实现高性能。运放共享及开关运放技术被广泛地应用于降低功耗上[1-3]。但是此技术只适合低速ADC。本文中采取的一些技术可以在不牺牲性能的情况下来节省功耗。该ADC在200MSPS,输入信号频率为41MHz时达到47.7dB的信噪比,电流仅为40mA。
论文的组织如下:第二章介绍流水线ADC的结构。第三章介绍了流水级、放大器和基准产生电路等的具体结构。第四章给出最终的测试结果。
流水线ADC有两个通道,每个通道都工作在100MHz下,包括5个1.5 bit流水级和一个3bit flash ADC。传统的转换器。第一级流水级一般为多位数,例如3.5bit或4.5bit。但在文中采用的是1.5bit的。其中有两个原因:第一,文中ADC是时间交织的。它有两个通道,任何不匹配都会降低性能。第一级的多位数会引起比1.5bit更多的失配,因为多位数相对于1.5位会有更多的电容和开关。第二,在8位100MHz ADC中放大器功耗不大,所以第一级选取多位数并不比采用1.5bit和逐级递减技术的更省功耗。系统结构如图1所示。
流水线ADC中还有基准源和时钟等。基准源必须满足PVT变化,所以要仔细设计符合要求;时钟发生器为所有流水级提供时钟,时钟偏移会严重影响性能。时钟的驱动必须设计适当,如果驱动太大会消耗过多的功耗,而版图中会有很多寄生电容,所以为保证性能要留一些裕度。
如图2所示,对于电荷转移结构来说,第一个和最后一个交叉点总是位于-1/2 和 1/2处,但输出幅度会被?影响。对于电容翻转式结构,第一个和最后一个交叉点会被 影响,但是输出幅度不会被?影响。在电荷转移结构的-1/4 和1/4处的跳变高度相对电容翻转式结构来说更接近Vref,分别为0.95Vref和0.9Vref。流水线ADC一般采用冗余位用来校正。如果失调只发生在第一级(假设其他级都是理想的且都是2bit),那么校正过程如图3所示。
因为交叉点总是都在-1/2 和1/2处,且1/4 或-1/4处的跳变高度比电容翻转式的大,电荷转移结构能更好的实现校正。
当?是正数时,电荷转移结构会造成失码,但是对比于电容翻转结构在交叉点和跳变电的偏差,失码引起的误差对性能造成的影响较小。图4给出不同电容失配情况下两种结构SNDR的变化。
放大器
本电路采用的不是传统的两级放大器。第一级是共源放大器,第二级是共源共栅放大器,如图5所示。
跟跟传统二级放大器比有两个优点。第一,其增益要比传统结构的高。因为第二级放大器是共源共栅放大器,所以输出阻抗大,进而增益也大。第二,因为第二级是输出级,所以输出级的极点是主极点。通过仔细的设计,可以使主极点远离第一级的非主极点。这就意味着不需补偿,减小了负载电容,所以与传统放大器比,更小的电流可以获得更高的带宽。这对低功耗设计非常重要[6]。
这里选用了开关电容共模负反馈,因为它相对连续时间共模负反馈更稳定。这里有一个改动,即增加了SD1和SD2两个开关。此设计减小了电荷注入和时钟馈通的影响,所以电容C1和C2被的取值可以C3和C4一样而不是远大于C3和C4。这种结构可以实现更高的速度。
根据计算,增益和带宽的要求可以通过公式计算得到,因为电路中一个通道是8位100MSPS的,所以其增益要求为61dB,带宽要求为794MHz。仿真结果如图7所示。
其他电路
关键词:触发器;电路设计;低功耗;性能优化
中图分类号:TN783文献标识码:B
文章编号:1004373X(2008)2001005
Analysis and Comparison of Performance and Energy of Flip-flop
ZHANG Xuan,ZHANG Minxuan,LI Shaoqing
(School of Computer Science,National University of Defense Technology,Changsha,410073,China)
Abstract:The development of flip-flop′s performance and energy plays animportant part in the design of total circuit,In order to design the circuit of high performance and low energy,it seems very important to make an optimization of flip-flop's performance and energy.This paper describes all kinds of parameters of flip-flop,analyses and compares some typical flip-flops,makes a comparison of several low-energy flip-flops referred in correlative paper and makes a prospect for flip-flops.It makes a matting for reasonable utilizing flip-flop existed in the standard cell and developing flip-flop of higher performance.
Keywords:flip-flop;circuit design;low energy;performance optimization
1 引 言
时序逻辑电路由存储电路和组合逻辑电路构成,存储部件保持系统的状态,组合逻辑电路负责计算时序逻辑电路的下一状态及电路输出。触发器作为一种存储电路,在数字电路系统中起着重要作用。
依据不同的标准,触发器可以划分为多种不同类型。从采样的频率进行划分,触发器可分为主从触发器和脉冲触发器;从时钟控制位置的角度进行划分触发器可分为动态触发器和静态触发器;从时钟信号的多少角度进行划分触发器可分为单时钟电平和多时钟电平触发器;从时钟的采样边沿的多少的角度进行划分触发器可分为单边沿触发器和双边沿触发器。
随着VLSI技术的不断进步,数字系统的运行速度和功耗要求不断提高,对触发器性能参数的要求也更为苛刻,要求触发器应该具有低功耗、短延时、较少的晶体管数目,较大的噪声容限和比较强的抗干扰性等特征,这些要求中,对延时和功耗的要求尤为重要。
本文从主从触发器和脉冲触发器的角度,阐述各种触发器的性能,并对一些典型的触发器进行分析和比较,对有关论文中提出的几种低功耗的触发器进行介绍。为以后选择使用寄存器和寄存器的优化工作做一定的理论铺垫。
2 触发器性能参数及几种典型触发器的介绍
2.1 时间参数
描述触发器的主要时间参数有建立时间,保持时间以及时钟到输出的延迟。时钟到输出的延时是指时钟跳变沿到输入数据传输到输出的延时;建立时间是指时钟跳变之前数据必须有效的时间;保持时间是在时钟跳变之后数据必须仍然有效的时间。如果数据建立时间太接近时间有效边沿,触发器将会失真,T为时钟周期,必须大于等于最差的时钟到输出的延时的总和。
T>=TCLK-Q+TSETUP+TLOGIC+TSKEW(1)
其中,TCLK-Q为触发器的传播延时;TSETUP为触发器的建立时间;TLOGIC为最大的组合CLK逻辑的延时;TSKEW为时钟的相对的时间偏移,如图1所示。
2.2 功耗参数
触发器的功耗由4部分组成:短路电流功耗,亚域漏流功耗,开关过程功耗,静态功耗。电压越低时,短路功耗的消耗就越少;电压越高,亚域漏流功耗越少。但是随着电压的增高,短路功耗的增加的程度比亚域漏流功耗减少的程度要大;对于开关功耗,当转换频率一定时,电压越高,消耗的功耗越高;在触发器中静态功耗相对比较小,可以忽略。所以,总的来说降低电压能减少功耗。
上面的描述可以用下式表示:把energy-per-transition定义为单个时钟周期触发器的能量消耗。ai-j是从状态转换概率;ei-j是状态转换消耗的能量;功耗可以通过公式表示为:
E=a0-0*e0-0+a0-1*e0-1+
a1-0*e1-0+a1-1*e1-1(2)
从上式分析可以看出,可以分别通过改变a和e来降低功耗。改变a的措施有减少触发器的节点的冗余跳变,改变e的措施有降低电压、减少电路节点电容以及缩减晶体管的大小。
2.3 主从触发器
主从触发器由2个锁存器组成,前一级锁存器在低(高)电平时将输入传至输出,后一级锁存器在高(低)电平时将输入传至输出。典型的主从触发器有传输门触发器(TGFF),带门控的传输门触发器(GTGFF),真单向触发器(TSPC)和对时钟偏差不敏感的触发器(C2mos,MC2mos)等。TGFF的输入信号通过反向器隔离加强,它是功耗、噪声容限、速度的最好折衷,用传输门实现主从触发器是很好的选择。GTGFF是在TGFF的基础上在主站加1个内部时钟控制门得来的,因为有了时钟控制门,GTGFF的功耗相对于TGFF要小些。内部时钟控制门减少功耗的关键在于内部时钟门逻辑和时钟功耗开销的折衷与平衡。TSPC避免了因时钟偏差引起的各种问题,只用单相位时钟来实现主从拓扑结构,使电路不产生竞争,单相位时钟触发器对局部时钟偏差不敏感,其动态实现导致高开关频率和低时钟负载, TSPC边沿触发器依赖于足够陡直的时钟斜率以限制触发器的透明时间(例如保持时间,在透明时间输入可以直接传到输出),其上升时间必须仔细优化。两相设计会引起竞争问题,但也可以采用C2MOS这样的电路技术来消除,C2MOS触发器是把传输门锁存器中连接到顶端PMOS和底端NMOS晶体管的连线去掉而得到的;伪静态C2MOS 触发器是在动态C2MOS 触发器中主从锁存器的输出端分别添加一个弱C2MOS 反馈而得到的;MC2MOS是通过C2MOS改进而来,它的低功耗的反馈保证了它的全静态操作。 PowerPC603触发器,如图2所示,使用传输门结构,有比较快的上拉能力,反馈传输门用一个钟控反相器替换,powerpc603电路结构,是传输门触发器(TGMS flip-flop)和MC2mos的组合。
2.4 脉冲触发器
脉冲触发器也是双站的触发器,第一站是脉冲产生器,第2站是一个锁存器。
图3所示是半动态触发器SDFF的原理图,前端是动态的,产生一个时钟脉冲,触发后端一个静态的锁存器,当CP为0时,X为1,脉冲触发器需要在电平无效的时候,把X点预充为高电平。当CP为1,CP的信号还没有传到与非门时,S点还是打开的,如果此时D为1,X的值就可传出去。当3个反向器的时间过去后,CP的新值传到与非门上,S关断,D的值就传不出去,这就是一个取值脉冲。混合锁存的触发器(HLFF),在结构上与SDFF相似,有一个静态的脉冲产生器,此电路的建立时间可以为负,所以寄存器本身的延时很短,但是其在上升沿附近输出可以有多次翻转,因此不应使用这一寄存器的输出来驱动动态逻辑或作为其他寄存器的时钟。灵敏放大器(MSAFF)是一个完全不同的脉冲触发器,它在需要高性能或者传送低摆幅的时候使用,它可能成为未来发展的方向之一。
主从触发器相对脉冲触发器来说有较好的内部抗竞争能力,消耗较低的功耗,但是其他参数都高于脉冲触发器。
3 比 较
在电路和系统级对触发器的延时和功耗进行优化,对触发器性能的提高有极其重要的作用。本文研究了几种典型触发器的性能,图4[1]是对各种典型触发器功耗的比较,该图显示了主从触发器比脉冲触发器消耗更少的能量,TGFF是消耗功耗最少的触发器,在低能量的设计中,它是最好的选择,它的功耗延时积比较小,TGFF是和带内部时钟门触发器比较的标准。图5[2]是对各种触发器毛刺功耗的比较,由于采样时间短,脉冲触发器消耗的毛刺功耗最小;而当主站是透明时,主从触发器对毛刺非常敏感;时钟门电路要消耗很大的毛刺功耗,这是因为时钟门逻辑不断地比较输入与输出,它忽略了时钟沿的跳变,传播毛刺(时钟的毛刺不影响触发器的时序竞争的抗干扰性,时钟的滞后问题是产生竞争的原因,解决时序竞争的办法就是采用比较高的电压)。图6[3]是对几种典型触发器跳变概率的功耗延时积的比较,它显示了在高跳变概率的电路中,SDFF和MSAFF拥有最好的功耗延时积,虽然它们的功耗延时积很好,但是在设计中更倾向于使用TGFF,因为TGFF的内部竞争力很好,很适合在有时钟滞后的大规模的电路设计中使用。(在很多的低功耗设计中,触发器很少处在关键路径上,当建立时间没有包含在触发器的延时中时,触发器的EDP的排序就会改变)。相对于主从触发器,脉冲触发器有更小的延时,这是因为它的建立时间很小,有的甚至为负,这使得脉冲触发器的竞争力比较好。带有内部时钟控制门的脉冲触发器和没有内部时钟控制门的脉冲触发器相比,竞争能力(race immunity)不太好。带有内部时钟门的主从触发器和没有内部时钟门的主从触发器相比,竞争能力比较好。例如:GTGFF和TGFF相比有更好的竞争能力,而这是以增加延时为代价的。
通过对各种触发器进行比较,考虑到结构、可靠性、管子数目,以功耗延时积作为重要指标,可以知道传输门触发器(TGMS)和PowerPC603触发器是功耗延时性能最好的全静态触发器,并且它们在功耗延时空间覆盖了相对较宽的范围,PowerPC603和传输门触发器具有最优的功耗延时积;在追求高速时可考虑脉冲触发器,例如HLFF和SDFF,SDFF因为建立时间短而成为最快的触发器,但是它们消耗了可观的功耗,约为传输门触发器(TGMS)的2倍。而真单向TSPC和动态传输门触发器在性能上和SDFF差不多,在功耗上与传输门触发器差不多,但是它们的内部结点X对于漏电流和其他噪声来源很敏感,可靠性不高,在调试模式下容易出错。
同时也有研究表明PowerPC603和HLFF的PDP值差不多,但是HLFF比PowerPC603更快。此电路的建立时间可以为负,所以寄存器本身的延时很短,但是其在上升沿附近输出可以有多次翻转,因此不应使用这一寄存器的输出来驱动动态逻辑或作为其他寄存器的时钟。
PowerPC603和C2MOS具有最好的低功耗设计的风格,SAFF可能是未来设计的主流,虽然SAFF在输出端速度有瓶颈,但是它是功耗速度的好的折衷。
4 几种改进的触发器的介绍
针对传统的寄存器的缺陷,通过对传统寄存器进行功耗和性能上的优化,提出了如下一些解决方案:通过避免不必要的结点的传递减小功耗、优化性能。避免不必要的结点的传递方法主要有数据前瞻、条件预冲、条件放电、条件占有、自适应方法等;另一种方案就是采用双边沿的技术,通过减少时钟系统的功耗减少触发器的功耗,双边沿触发器的性能是单边沿触发器性能的2倍,而功耗和单边沿触发器的功耗一样,采用双边沿技术对功耗和性能的提高具有深远的影响。
欢迎来到论文参考中心,在您阅读前,与您分享:路是脚踏出来的,历史是人写出来的。人的每一步行动都在书写自己的历史。 —— 吉鸿昌
低功耗模拟前端电路设计
超低功耗、高集成的模拟前端芯片MAX5865是针对便携式通信设备例如手机、PDA、WLAN以及3G无线终端 而设计的,芯片内部集成了双路8位接收ADC和双路10位发送DAC,可在40Msps转换速率下提供超低功耗与更高的动态性能。芯片中的ADC模拟输入放大器为全差分结构,可以接受1VP-P满量程信号;而DAC模拟输出则是全差分信号,在1.4V共模电压下的满量程输出范围为400mV。利用兼容于SPITM和MICROWIRETM的3线串行接口可对工作模式进行控制,并可进行电源管理,同时可以选择关断、空闲、待机、发送、接收及收发模式。通过3线串口将器件配置为发送、接收或收发模式,可使MAX5865工作在FDD或TDD系统。在TDD模式下,接收与发送DAC可以共用数字总线,并可将数字I/O的数目减少到一组10位并行多路复用总线;而在FDD模式下,MAX5865的数字I/O可以被配置为18位并行多路复用总线,以满足双8位ADC与双10位DAC的需要。
1 MAX5865的工作原理
图1所示为MAX5865内部结构原理框图,其中,ADC采用七级、全差分、流水线结构,可以在低功耗下进行高速转换。每半个时钟周期对输入信号进行一次采样。包括输出锁存延时在内,通道I的总延迟时间为5个时钟周期,而通道Q则为5.5个时钟周期,图2给出了ADC时钟、模拟输入以及相应输出数据之间的时序关系。ADC的满量程模拟输入范围为VREF,共模输入范围为VDD/2±0.2V。VREF为VREFP与VREFN之差。由于MAX5865中的ADC前端带有宽带T/H放大器,因此,ADC能够跟踪并采样/保持高频模拟输入>奈魁斯特频率 。使用时可以通过差分方式或单端方式驱动两路ADC输入IA+ QA+ IA-与QA- 。为了获得最佳性能,应该使IA+与IA-以及QA+与QA-间的阻抗相匹配,并将共模电压设定为电源电压的一半VDD/2 。ADC数字逻辑输出DA0~DA7的逻辑电平由OVDD决定,OVDD的取值范围为1.8V至VDD,输出编码为偏移二进制码。数字输出DA0~DA7的容性负载必须尽可能低<15pF ,以避免大的数字电流反馈到MAX5865的模拟部分而降低系统的动态性能。通过数字输出端的缓冲器可将其与大的容性负载相隔离。而在数字输出端靠近MAX5865的地方串联一个100Ω电阻,则有助于改善ADC性能。
MAX5865的10位DAC可以工作在高达40MHz的时钟速率下,两路DAC的数字输入DD0~DD9将复用10位总线。电压基准决定了数据转换器的满量程输出。DAC采用电流阵列技术,用1mA1.024V基准下 满量程输出电流驱动400Ω内部电阻可得到±400mV的满量程差分输出电压。而采用差分输出设计时,将模拟输出偏置在1.4V共模电压,则可驱动输入阻抗大于70kΩ的差分输入级,从而简化RF正交上变频器与模拟前端电路的接口。RF上变频器需要1.3V至1.5V的共模偏压,内部直流共模偏压在保持每个发送DAC整个动态范围的同时可以省去分立的电平偏移设置电阻,而且不需要编码发生器产生电平偏移。图2(b)给出了时钟、输入数据与模拟输出之间的时序关系。一般情况下,I通道数据ID 在时钟信号的下降沿锁存,Q通道数据QD 则在时钟信号的上升沿锁存。I与Q通道的输出同时在时钟信号的下一个上升沿被刷新。
3线串口可用来控制MAX5865的工作模式。上电时,首先必须通过编程使MAX5865工作在所希望的模式下。利用3线串口对器件编程可以使器件工作在关断、空闲、待机、Rx、Tx或Xcvr模式下,同时可由一个8位数据寄存器来设置工作模式,并可在所有六种模式下使串口均保持有效。在关断模式下,MAX5865的模拟电路均被关断,ADC的数字输出被置为三态模式,从而最大限度地降低了功耗;而空闲模式时,只有基准与时钟分配电路上电,所有其它功能电路均被关断,ADC输出被强制为高阻态。而在待机状态下,只有ADC基准上电,器件的其它功能电路均关断,流水线ADC亦被关断,DA0~DA7为高阻态。
图2
2 MAX5865的典型应用
【关键词】WiFi;无线传感器网络;低功耗;流量热量测量
【中图分类号】TP216+.1 【文献标识码】A 【文章编号】1672-5158(2013)01―0158―01
0 引言
目前国内工业监测趋向于支持无线和实时监控,基于传统电气连接方式需要在场地内进行布线,短距离可以,长距离传输质量会受到影响,检查线缆又受到穿墙入地等条件的限制十分不便。
涡街流量计因其介质适应性强、可靠性高、压力损失小、量程比宽等优点,在许多行业中得到了广泛应用。为了满足用户方将工业测量数据传输至能源管理系统的需求,设计把WiFi这种短距离无线技术,应用在工业测量以及无人值守站基础通讯模组上,使其完成流量热量监测的任务。利用WiFi的突出优势在于:一使用开放的2.4GHz直接序列扩频无线技术;二是WiFi的传输速度非常快,最大传输速率为11Mbit/s,在信号较弱或有干扰时,带宽可调整为5.5Mbit/S、2Mbit/S和1Mbit/S;三是进入门槛低,只要支持WiFi的终端设备都可以按照一定的权限加入到WiFi网络中即可。在流量检测系统中,使用其进行节点参数的采集与传送、控制信号的传输与控制,避免在现场布设繁琐的数据线,对降低成本和能耗都有一定的意义,使监测系统的扩展性更灵活。
工作站通过相应集成系统自动采集各监测终端采集的数据并存储汇总,将信息输入服务器,服务器负责提供相应的集团数据指标进行控制,同时提交给数据服务中心相应的数据,而便携终端(如PDA终端)或者其他带有无线WiFi功能终端(如手操器,或者笔记本电脑等)则可以设定参数,并提交服务器或者直接发送相应指令给传感器或者执行机构。
根据以上功能需求设计基于WiFi的涡街流量计流量热量监测终端,其主要结构包括流量热量采集终端和无线抄表单元两部分,按照预设参数的要求存储传感器测量的流量、热量,经过模拟数字转换后传输到无线抄表单元中。无线抄表单元中带有WiFi传输发射装置,经由100米范围内的AP点通过TCP/IP协议连接至局域网内,使得网内其它连接在AP点上的设备相互通讯,也可以经过IP NetWork传输到上位机,上位机的接入也可采用多种方式,可通过有线、无线接入互联网,可根据需要以及实际情况灵活的选择上层方式。
1 硬件系统设计
1.1 监测终端结构
监测终端硬件部分主要是低功耗WiFi模组与流量热量测量部件的对接。其硬件结构主要包括:32位MCU、FLASH芯片、电源芯片、液晶屏、低功耗WiFi模组。其中主要模组由PIC32MX处理器和MRF24组成,负责管理整个系统的运行和数据运算与处理。
1.2 WiFi模块简介
Microchip公司的MRF24具有内置天线,兼容的表面安装的RF收发器模块,包括了所有的RF元件:晶振、旁路和偏压无源元件以KMAC,基带RF和功率放大器;内置的硬件支持AES和TKIP。
1.3 无线模块硬件接口
WiFi模块与现场仪表之间采用SPI接口进行通信,PIC32做为主设备,MRF24作为从设备。将主从设备中的SCK、SDO、SDI引脚互联,PIC32通过RB3控制MRF24的CS,实际功能相当于片选。另外,由于在WiFi通信的过程中需不断检测WiFi模块的状态信号,因此将MRF24的中断信号INT接到PIC32的INT4脚,当有WiFi通讯请求时通过此口向PIC32发送中断请求信号。PIC32的RB4口接至MRF24的RESET管脚端,用于软控制其复位,PIC32的RB5口接至MrF24的HIBERNATE管脚端,在无数据传输的时候控制其处于休眠状态,便于降低系统功耗,节省电池电力,在需要唤醒时再通过此管脚唤醒,以控制模块状态。
2 软件的设计
2.1 整体框架
仪表软件具有启动引导程序、仪表运行主程序、数据文件系统、驱动程序、通讯传输程序,各程序模块采用中断优先级管理和轮询运行相配合的方式运行。
仪表运行主程序包含人机界面,键盘操作、数据处理、数据传输、数据存储、状态检测。数据采集模块负责采集、发送数据,同时需要完成硬件检测、网络配置工作。通信模块构建通信链路,完成数据协议转换。监控模块主要负责数据处理以及设备调校等。状态部分主要用来检测传感器以及通讯部件的通讯连接状态,以及时钟授时部分。
2.2 程序设计
这部分包括通讯参数初始化,无线模块设置状态,等待召测命令,数据发送。运行流程如下:
先硬件初始化和操作系统初始化,检查系统内存映射,将内核映像,从Flash上读到SDRAM中,为内核设置启动参数,调用内核。当遇到中断请求时,总是先响应中断请求,执行完中断后,中央处理器执行为看门狗程序,然后执行仪表数据读取判断召测与否,如果需要召测数据,将存储单元内FLASH芯片中的流量值信鼠等通过WIFI无线通讯模块发送给上位机;首先经由远程主机定时发送要求信号,WIFI模块也定时处于唤醒状态,信号经WiFi模块转换传入单片机,单片机解析命令,命令中包含远程通讯协议封包数据,CPU将两部分数据进行解析,根据解析的内容,选择现场采集模块某一路进行工作,同时将标准协议数据信号部分通过CPU的SPI接口送入WIFI模块;WIFI模块对接收的数据进行封包处理转换,采集模块将数据发送到终端智能仪表设备;然后设备进入延时等待状态,当采集模块有新数据响应时,采样电路进行采集信号,再由处理单元将信号放大整形滤波,由CPU进行接收后,对数据进行处理,添加通讯设备信息,并将数据传入WIFI模块,由WiFi模块传送至远程终端。如果接收到上位机发送的实时参数调整指令则调用本地程序进行参数调整;之后返回主程序。
3 结束语
这一应用方案立足于工业无线抄表系统,节省前期布线以及后期有线维护成本,满足低功耗的要求,实现工业流量、热量测量数据的远传和实时管理,是一种较为经济有效的方式。采用WIFI架设无线网络,架设简单,其无线电波覆盖范围广,传输速度快,门槛较低,只需要在现场设置“热点”,工作人员只需要具有支持WLAN的设备进入热点的覆盖范围,即可高速接入局域网或者Internet定时或实时召测数据并上传,不用耗费大量人力物力来进行网络布线接入,节省大量成本。在工业现场具有一定的应用价值。
参考文献
[1]王斌.基于MSP430的低功耗数字涡街流量计研究硕士论文天津大学