欢迎访问爱发表,线上期刊服务咨询

生产工艺论文8篇

时间:2023-03-24 15:11:19

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇生产工艺论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

生产工艺论文

篇1

对于一个国家的工业来说,化学工业所占的比重并不在少数,究其原因,可以说化学工业的发展极大的体现了一个国家的经济发展水平和科学技术的发展水平化学工业的不断发展,可以在一定程度上满足人们高层次的科技生活的需要,也能够鼓舞国家的各项产业的发展,促进包括工业、农业在内的各项国家基础产业的进步。近些年来,化学肥料开始逐步的替代了旧的农业肥料,提高了农业的产值产量,带动了农村相关产业的发展,在一定程度上推动了农村经济、农业产值的高速迈进。但是与旧的农业肥料相比的不足之处就在于,化学肥料使用后所产生的化学废弃物在很大程度上又造成了环境的污染,资源的浪费。化学肥料的残留物成为了大自然的污染源头。因此,化学工程有待提高,保护环境的宗旨是重中之重,资源的节约同样是不能忽视的问题。但是,就目前我国的化学工程的污染、浪费现象仍是十分的严重,发展决不能以污染和浪费为前提,这是大错特错的。

下面我们来具体的分析一下:第一,生产的效率低下。就我国来看,我国的工业生产存在一个盲区,重点就在于生产的效率较低。在化学工程的研究的过程中,生产技术首先没有达到预期的效果,环境污染的现象依旧没有被制止。举个例子来说,在进行的化学生产的实验的过程中,材料的运用做不到理想的反应,反应现象达不到预计的效果。在这一系列的生产实验的过程中,事实上,环境污染的现象已经在悄然的发生了,化学实验所产生的残留物、化学实验败北过程中所造成的化学污染。实验过程造成了资源浪费的现象十分的严重,经济浪费更是不在话下,极大的降低了生产的效率水平。另一方面,实验没有达到预期的效果,化学产品的使用效率低下,根本不能够满足人们的生活所需。第二,化学工程的生产过程,给环境造成了较大程度的影响。化学污染在当下我国的环境污染的比重中占了较大成分。重工业,尤其是金属工业所产生的污染现象尤为严重。在对水资源的检测的过程中发现,废弃水中的金属含量严格的超过了安全性能的指标。水资源的污染,也会对地下的土质产生影响,而土质又会影响农业的产值,这样看来,化学生产所造成的污染现象是严重的。另外,在工业生产的过程中,废弃水的直接排放,给自然环境同样造成了污染。第三,化学工程的不连贯性,很容易生产的间断性,从而影响生产的进度,尤其是当它发生了不合理的间断的时候,很快就会对整个生产的过程产生影响。由此看来,生产效率的低下、生产过程中产生的污染以及生产的不合理的间断等等这一系列的问题,都在阻碍着化学工程的发展和进步。

2我国化工生产工艺解析

从上文中,对于我国目前的化工生产过程中,存在着主要的问题就在于我国的化工生产工艺还不是非常完善。针对这些存在的问题,化学的生产工艺需要有哪些改进呢?在化工生产过程中,采取哪些最新的化学生产工艺能够降低化学生产所产生的污染呢?第一,化学生产过程中,提高反应条件以及反应环境。反应条件是化工生产中最为重要的环节,为了达到高效生产,提高生产效率,减少废料的产生,反应条件是最为关键的因素。因此,提高化工生产效率的最为关键的因素就在于加强化学生产过程中的反应条件。催化剂以及反应所需条件一定要达到所需标准,才能保证在化工生产过程中,高效生产,并减少废物的产生。保证废物不直接排放到自然环境中,就能保证化工生产的相对环保。第二,化工生产过程中,并非只是提高产品生产的环境,更应该能够提供废物处理的程序以及治理系统。包括我们经常看到的废气,都应该经过适当处理后才能进行排放。废水的排放要采用化学综合的化工工艺。其原理很简单,主要是化学反应中最基本的原理,将废水中的重金属通过沉淀,从而减轻其危害性。此外,废气的处理应该在排气的中部以及顶部,都设置一出废气处理系统,这些装置可以将废气中的有毒气体以及废气中的粉尘过滤,从而保证排放到空气中的气体符合国家要求的标准。第三,真正从化学工程中的化工生产工艺技术入手,工艺技术是指从不同的反应原理以及反应条件进行分析与探讨。制造氧气的方式有很多种,那么哪种方式才是最效率高并且更适合化工生产呢?在不同的环境下,对于生产的原料以及方式都是可以随机改变的,并能通过改变来进行适应性生产,从而提高化学生产的效率,并实现高效以及绿色生产。

3结语

篇2

1.1填装生产工艺现状

许多工业雷管生产厂家依然沿用较为落后的装填药技术,包括人工加药、人工操作、各个环节之间人工传送等。在该类生产工艺中,主要是以由人员手动完成,个人素质对于操作的规范性有着直接的影响,包括安全意识薄弱、存在侥幸心理、操作技术不过硬、注意力不集中等,留下了较多的安全隐患,安全性得不到保障等。

1.2自动填装生产工艺

现在的工艺中,雷管制造的填装工艺基本上可以实现自动化,严格遵循着三少三隔开的基本原则,采用自动填装工艺。自动装填的生产工艺包含的环节较为丰富,包括装填药环节实现人机隔离、自动装药、自动动态监测、自动排除废弃物、自动安全报警、自动化安全联锁等。该技术以其良好的安全性及稳定性,在许多工业雷管生产企业中得到了广泛的应用。

1.3生产工艺优势及不足之处

在进行工业雷管的生产过程中,引用自动装填制造工艺,其优势十分明显。其在填装的各个环节均运用到了不同的自动化技术,不仅能够最大幅度地减少人员操作环节,降低了人员的工作量,避免人员接触到危险品,排除人为的安全隐患因素,还能够自动检测填装过程中的异常情况,及时报警,安全性良好。自动装量时,其计量较为准确,且自动将其中的废品排除掉,提高了工业雷管产品的质量,减少了成本投入。其生产效率也较高,可以达到12000发/h,另外设备不易出现故障情况。但是其也存在一定的缺陷,即需要对设备进行专业的保养,对于该项保养技术有较高的要求,才能保障生产活动的顺利进行。

2延期药的制作生产工艺

2.1延期药制作环节的危险性分析

延期药的主要构成成分包括氧化剂、燃速调节剂、可燃剂、黏合剂等化学品,将其全部粉碎达到一定的粒径后,充分混合制作成延期药,具有易燃、易爆的特点。在制作的过程中很难保障其能够充分均匀地混合,且极易出现火灾。如果采用干混的生产方式,在进行干混的过程中,需要严格控制设备的运行,强化生产现场的各项管理工作,严禁出现明火,因此需要投入大量的资金,且管理上也存在较多的困难。如果是利用酒精作为溶剂,采用的湿混生产方式,而酒精具有可燃性、挥发性,也容易发生火灾,情况严重的甚至引发爆炸事故。

2.2水混生产工艺

基于上述危险因素,可以采用现代较为先进的水混生产工艺,即利用水作为溶剂,在其中加入制作延期药的原料,再通过一系列的工序,制作出各种粒径的延期药,包括材料混合、预干燥、制作成颗粒、最终干燥、筛分分级等。各类材料在水中的分散性良好,能够充分融合,混合的均匀性较高,使得延期药的质量有保障。水具有不可燃性、无毒性、环保性等特点,在其中进行化学材料的混合,各个材料的可燃性也被有效的抑制,因此不会出现火灾或者爆炸的情况,生产过程更加安全、稳定。

2.3运用先进的设备

在进行水混生产工艺的过程中,需要使用专用的机械设备,包括混药机、造粒机、筛分机等,其机械性能良好,混合的均匀性高,且能够实现自动化操作,人机隔离,十分安全。在造粒方面,传统的生产工艺中是利用手工造粒,不仅效率不理想,也容易出现危险情况,而造粒机则能够实现人机隔离,机器可以放置于防爆间,进行淋水处理,不仅能够避免操作时形成大量的粉尘,也能够排除人为的因素,减少安全隐患,提高了安全性。

3刚性引火材料制作生产工艺

3.1工艺现状

传统的工业雷管生产的过程中,刚性引火材料的制作,一般是运用人工裸眼焊桥丝、手工抹药头等人员操作,其中产生的挥发性气体会使得操作人员的身体受到较大的损伤,不仅工作效率不佳,所生产的产品质量也得不到保障,属于风险较大的工作。

3.2刚性引火材料制作工艺

传统刚性引火材料的制作工艺中存在的问题,可以利用新型的工艺予以解决。可以使用钢带冲梳齿,梳齿钢带上塑除油,桥丝焊接,蘸引火药头,并利用远红外技术对药头进行干燥,将药球头干燥完毕后,再在焊机上将其与脚线焊连在一起。其主要的制作流程为:

(1)先做好各项准备工作,包括钢带冲梳齿,梳齿钢带上塑除油,桥丝焊接,并进行运输材料,混合引火药、配置胶液等工作,才能进行蘸引火药头及药头红外烘干的工作;

(2)上述工作做好后,需要进行、分线、配线并拧紧、注塑并把、装夹子剪线等工作,再将引火药头的脚线焊接在一起;

(3)焊接完毕后还需要将废弃的线进行返修,如果合格后,可以继续使用;

(4)制作防潮漆,将焊接后的脚线喷涂防潮漆并烘干。

3.3设备要求

刚性引火元件生产工艺所需要的机械设备较多,如梳齿冲床、整形冲床、桥丝焊接机、刚性药头塑料上梳机、自动蘸药头机、分线机、月牙板式回转烘干机、注塑机、台式电焊机等,其自动化程度高,焊接质量能够达到国家及行业的标准,产品的质量较为可靠,各个环节都有安全防护措施,避免了操作人员与有毒有害物质的接触,药剂的隔离操作,混药头药、沾药等操作有可靠的安全防护装置,避免了人体与有害气体的接触,提高了生产的安全性,并优化了运作效率。

4结语

篇3

1.1齿轮箱的功能

常规的普通发电机组都需要达到一定的转速才能试运转发电,但是风力发电机的转速由于风力原因显然不高,所以风力发电机的风轮轴需要经过增速箱增速才能达到发电机的转速要求,而齿轮箱就是传递风轮动力并且使转速明显提升的关键设备。风轮的转速越低,齿轮箱的增速比要求也就越高,相应的复杂性、造价都会有很大的提升。所以齿轮箱是希望风轮的转速越高越好的。但是现在国际上风力发电的基本趋势是风轮为三叶片,而且叶越来越长,风轮的半径越来越大,这就要求了齿轮箱的技术越来越复杂与精密。

1.2齿轮箱技术现状

我国的风力发电机组的相关技术是从国外引进并发展的,但是从国外引进的相关技术中并没有风力发电齿轮箱的相关制造技术,所以我国的风力发电齿轮箱制造技术没有实际的技术借鉴,全靠研究人员按照电机组的技术规范自行研究和制造,所以齿轮箱制造技术不算很高。另一个尴尬的现实是,我国对风力发电的技术研究起步很晚,国内缺少对于风力发电技术特别精通的相关专业人才,相关的教育基础也比较低,种种原因都限制了我国的风力发电齿轮箱制造技术的快速发展。现在的齿轮箱产品离满足市场需求还有很长的路要走。

2、齿轮箱生产工艺

2.1齿轮箱生产的常见困难

目前我国生产的齿轮箱大多数都会遇到相同的困难,这些常见的困难有:

(1)轴承的使用寿命问题。齿轮箱的轴承属于高损耗的部件,国内生产的轴承大多数使用寿命低于平均水平,容易过早的疲损。

(2)齿轮箱的设计计算方法拙计。国内的齿轮箱因为成本的考虑大多数使用直齿,而国外先进的生产厂家大多数使用斜齿,而且精度也足够。

(3)齿轮的原材料问题。国内的材料质量稍逊于国外,而且仿制的齿轮箱在加王锐张旭沈阳鼓风机集团风电有限公司辽宁沈阳110869工水平上也明显不如原厂。国内的实际情况也决定了从国外引进的技术并不是全部适合,因此齿轮箱的制造必须自主设计研发,包括材料、工艺等。

2.2齿轮箱的生产工艺

2.2.1部件。齿轮箱由多个部件构成,其中的一些关键部件严重影响齿轮箱的寿命和质量问题,在制造是应该给与一些部件重点关注。首先是齿轮。涉及齿轮的过程中要尤其注意减速传动和增速传动的差异,变位系数的选定必须考虑到降低滑差,然后参考实际需要设计齿向和齿廓。内齿圈轮缘厚度要3倍于模数,外齿轮以渗碳淬火配合磨齿,齿轮精度要求不低于6级。另外齿轮的计算问题要尤其重视,齿轮的疲劳强度要参考实际使用时候的载荷谱在经过详细的计算才能获得,齿轮的工作载荷很难确定,而且工作中的变化很多,致使计算工作很复杂。然后是轴承。和齿轮类似,因为风力工作环境的不确定性和载荷难以控制的问题,风力发电机轴承非常脆弱。这就要求了齿轮箱在设计的时候要注重轴承的类型选择以及措施的制定,重点研究提升轴承的使用寿命。

2.2.2工艺改进。传统的齿轮箱的制造工艺流程分为锻造、正火、高温回火、粗加工、去毛刺清洗、渗碳淬火、清理抛丸、磨齿、检验等步骤。这种传统的齿轮箱适合船舶等高安全系数的制造中,但是近些年在一些从国外引进的某些产品或者某些科技前沿的产品中使用时发现了容易失效的问题。而近些年出现了一些改进之后的工艺流程,改进后的工艺流程分为锻造、正火、高温回火、较高精度粗加工、去毛刺清洗、预热、重行奥氏体化渗碳淬火、清理抛丸、少余量缓进给磨齿、检验等步。这一工艺流程比较符合国产化的齿轮箱的制造现状,该工艺过程提高了粗加工精度,增加了渗碳前的预先热处理工艺,这是为了减少渗碳淬火过程的变形并减少磨削余量。磨削过程中了采用少余量缓进给磨削,使齿面保留较大的压应力状态并提高精度与粗糙度。采用重行奥氏体化渗碳淬火工艺能够提高齿轮的耐磨性和承载能力。

2.2.3工艺参数设计。齿轮的承载能力非常重要,所以工艺参数要仔细选定。渗碳层的含碳量除只有存在严重的冲击载荷时才需要考虑低周疲劳问题。在渗碳工艺中经过对工厂成本和渗层内氧化现象的综合考虑之后,含碳量应该在0.77到1个百分点之间。表面碳浓度过高可能会导致表面出现大量碳化物和残余奥氏体的情况,但是低的含碳量却有可能造成贫碳的非马氏体组织,这两种情况都会降低齿轮的接触疲劳性能。接着,渗碳温度提高会使齿轮的加工时间变短,既提高生产的效率,也能有效降低成本,但是同时这也可能导致变形加大、渗层不均的问题;但是温度过低、保温时间长则会导致成本的提升。淬火温度的提高则会很明显的影响表面组织和芯部硬度。淬火温度和渗碳温度需要考虑具体的原材料性能来决定才能使效果达到最佳。

3、结语

篇4

经过观察和分析发现,压延机在中胶片生产过程中的作用可以通过对压延机的改造来解决中胶片粘合性的问题,改造的思路是如何将过多的硬脂酸锌清除,恢复中胶片的粘合性。简单来说,就是让硬脂酸锌在中胶片上的黏附度既能保证中胶片能打卷成型,又能保证它有良好的粘合性。根据上述设计思路,在添加硬脂酸锌之后、打卷成型之前的生产工艺上做小的改进,即多增加一除尘装置,以清除多余的硬脂酸锌。设计方案:在原来清除硬脂酸锌的的装置后面多加一根空心棒,空心棒压在中胶片之上,并且空心棒和中胶片接触的部分铣一条细缝(图2),空心棒的一端密封,另外一端连接大功率除尘装置。

2生产实践验证效果

设备经过成功改造后,因为加上这一额外的除尘装置,不但使原来悬浮在中胶片上的硬脂酸锌可以轻易地被吸附掉,而且因为空心棒与中胶片的接触摩擦,那些多余却不容易吸附的硬脂酸锌也可以清除。效果如图3。可以十分清楚地看到硬脂酸锌在中胶片上的分布效果,均匀而且干净。

3设备改造后存在的问题与解决办法

设备改造后,使得中胶片可以打卷的长度增加了,随之每卷的重量也增加了。因此,原来相互堆积的存放方式就有问题了,因为每卷重量的增加,使得堆积后受重力的影响就更加明显了,相互挤压之后,一是容易引起中胶片卷变形,二是容易引起中胶片的相互粘合。因此,需要把每卷中胶片单独存放。决解办法就是制作一简单的架子,用稍长与纸芯的钢管穿过纸芯,然后存放在架子上。存放情况如图4。

4结论

篇5

本钢浦项连续镀锌机组采用的是辊涂式钝化处理方式。钝化涂机主体结构包括:轧制线辊、料盘、提料辊和涂辊。使用的钝化液为三价铬产品,其主要由以下成分组成:三价铬Cr(Ⅲ)、氧化剂、络合剂、其他金属、成膜促进剂、封孔剂及润湿剂。混合后的钝化液由工作罐打入料盘中,通过一个提料辊将钝化液送到涂辊,涂辊再以一定的压力和速度将钝化液涂在带钢表面。各辊均可调速,辊隙及涂辊和带钢压力可自动调整,以保证镀膜均匀和各种厚度涂层。当焊缝通过时辊涂机涂辊可快速打开。三价铬膜层是通过锌的溶解形成锌离子,同时锌离子的溶解造成锌表面溶液的pH值上升,三价铬直接与锌离子、氢氧根等反应,形成不溶性化合物沉淀在锌表面上,从而形成钝化膜。

二、钝化能力过剩

在钝化涂机实际生产中,钝化盐雾时间是评价钝化产品防锈能力的主要指标。不同的客户对钝化产品的盐雾时间要求不同,目前绝大部分客户要求钝化产品的盐雾时间保证值为72h,极少部分客户要求盐雾时间为48h和96h。目前主要的问题是产量占绝大部分的盐雾要求72h的钝化产品在生产过程中出现了钝化能力过剩的问题(图2),也导致了钝化液吨耗过高,因此需要系统优化钝化涂机工艺参数。

三、原因分析

1.提料辊与涂辊之间缝隙压力

提料辊在钝化液中旋转,把钝化液带到提料辊与涂辊之间的缝隙中。因此提料辊与涂辊之间压力的大小直接决定了涂辊表面附着的钝化药液量。提料辊与涂辊之间压力越大,相应涂辊上附着的钝化药液量越小。机组目前使用的提料辊压力为2.0kN。

2.涂辊与钢板表面的压力

涂辊与带钢表面接触,给涂辊施加一定的压力,使涂辊上的钝化液印附在带钢表面形成钝化膜。由于提料辊与涂辊之间的压力已决定涂辊上钝化液的药剂量,因此涂辊与带钢表面的压力主要起到改善钝化效果的作用。涂辊与带钢之间的压力越大,带钢表面涂敷的钝化液越均匀。涂辊压力过高会导致涂辊表面与带钢边缘接触的边缘胶层磨损。机组目前使用的涂辊压力为2.5kN。

3.辊速比

辊速比包括提料辊与涂辊之间的辊速比率,涂辊与带钢之间的辊速比率,以机组运行线速度的百分比进行控制。提料辊速比越高在提料辊与涂辊之间盛装的药液量越大。提料辊速比过高易造成钝化液溢出;提料辊速比过低,易造成药液量不足导致涂敷不良甚至损伤涂辊。根据机组现场提料辊运行状态观察得出,在机组速度的35%进行提料辊转速,即可满足提料要求。涂辊与带钢之间的辊速比率,同样以机组运行线速度的百分比进行控制。涂辊与带钢之间以相同的线速度运转,避免涂辊与带钢表面发生相对运动,从而避免了使涂辊过早磨损。

4.药剂浓度

钝化产品单位面积内铬离子含量越高对应的盐雾时间越长,相应的钝化药剂中铬离子含量越高,涂敷在带钢表面的钝化液体越少。本钢浦项连续镀锌机组使用的钝化液药剂已进行混合配比,因此药剂中铬离子含量为定值。

四、涂机生产工艺

参数优化为了保证客户要求的盐雾时间,减少钝化能力过剩的问题,需要找到合理的控制方法,使用不同提料辊压力对典型产品进行涂敷,并将对应的膜重与盐雾时间进行关联,优化涂机工艺参数。对样板进行膜重测试和盐雾测试,实验结果如图4和图5所示。结果表明:增加现有提料辊压力使用2.5kN及3.0kN提料辊压力涂布带钢时,产品表面膜重明显降低。目前已知使用2.0kN提料辊压力涂布产品时出现72h盐雾能力过剩的问题,因此需结合盐雾时间重新制定提料辊压力参数。在原有钝化参数不变的情况下,将提料辊压力由2.0kN升至2.5kN时,膜重控制在铬离子含量50mg/m2以上时,钝化盐雾时间可满足72h盐雾要求。将提料辊压力升至3.0kN时,膜重控制在铬离子含量40~50mg/m2之间,可满足48h盐雾要求。

五、结束语

篇6

1.1混合颗粒机机型选择创新。混合颗粒机一般分成单螺杆混合颗粒机和双螺杆混合颗粒机2种机型。单螺杆混合颗粒机,对物料变化、产品要求变化等的适应能力较差。威可达公司维生素B12添加剂需要根据客户需要,生产维生素B12为0.1%-1%不同含量,不同粒度的产品,所以单螺杆混合颗粒机不太适用。威可达公司根据需要,创新地使用双螺杆混合颗粒机,这样混合颗粒机使用范围更宽。由于混合颗粒机两个螺杆的协助作用,所以在混合颗粒机挤压过程中物料的走向得到较理想的控制,避免了单螺杆混合颗粒机中出现的逆向隙流,使物料受力均衡,维生素B12添加剂产品颗粒大小均一。而且双螺杆混合颗粒机两个螺杆工作时相互清理粘附于螺杆的物料,所以双螺杆混合颗粒机生产时物料残留很少,节约了原料的使用。

1.2原料入机水分调节的工艺创新。原料进入混合颗粒机时,为了使得维生素B12添加剂易于成型,需要控制进料时的物料水分。物料水分对维生素B12添加剂产量、生产时的耗能、维生素B12添加剂产品质量、混合颗粒机使用寿命及混合颗粒机的工作平稳性等都有影响。维生素B12添加剂原料的水分提高,那么此后的蒸汽成本和干燥成本相应增加。维生素B12添加剂生产原料需要有一定的水分含量,这样可促使维生素B12添加剂生产原料软化,降低维生素B12添加剂物料对设备的摩擦阻力,降低对混合颗粒机螺杆的驱动力要求,并减小混合颗粒机易损件的磨损。通过威可达公司技术人员的深入研究,认为维生素B12添加剂物料水分22%-31%,是混合颗粒机的适宜操作参数。

1.3湿法混合工序。维生素B12添加剂的载体一般是玉米淀粉,或者根据客户要求使用碳酸钙、磷酸氢钙、甘露醇作为载体。将玉米淀粉置于混合颗粒机中,然后根据客户要求的维生素B12含量,加入订单含量的维生素B12液体,搅拌10分钟出料,得维生素B12添加剂湿物料后卸出。

1.4干燥工序及工艺创新。维生素B12添加剂从混合颗粒机出来后,一般水分在25%以上。所以离开混合颗粒机后的维生素B12添加剂颗粒必须干燥,去除维生素B12添加剂部分水分。维生素B12添加剂的干燥通常分为两步进行:热风干燥,冷风干燥。通过沸腾干燥机进行干燥,以进风口温度120℃~130℃的热空气干燥物料。120℃~130℃范围内沸腾干燥机干燥效率高,且维生素B12添加剂物料不易焦化。热风干燥使维生素B12添加剂物料水分降至14%~18%。待出风口温度到从60℃上升到80℃时,将进风口温度设定为40℃,继续引风40分钟后停引风机,卸出干燥维生素B12添加剂物料。调节原料水分,也是调节维生素B12添加剂产品密度的重要措施之一。威可达公司科研人员认为,减少维生素B12添加剂水分的汽化程度,可以使维生素B12添加剂产品密度增高。在螺膛处调节温度,加温促使水分汽化,维生素B12添加剂产品密度下降;在螺膛处用冷却水降温,减少汽化强度,可以使维生素B12添加剂产品密度增加。所以可以根据客户的需求,进行维生素B12添加剂干燥程度的控制。

1.5后处理工序、干混合工序及终筛分。检查振动筛状态和筛网情况,根据客户需要选择相应目数的筛网,将维生素B12添加剂干物料加入到振动筛内,干物料经粉碎后同筛下的粉末一同混合,混合得维生素B12添加剂中间体。将维生素B12添加剂中间体置于锥形混合机中,根据客户订单的要求,加入固体维生素B12配方,搅拌30分钟后,从混合机底部接出维生素B12添加剂混合后物料。将混合好的成品粉剂,根据客户需求,使用相应筛网目数的振动筛进行筛分,去除杂物。

1.6包装及包装前后的质量控制创新。根据包装规格,准确称量维生素B12添加剂并复核,无误后按包装要求进行包装,即双层聚乙烯袋扎口及铝箔袋热封。打包工序对于维生素B12添加剂质量的控制,是至关重要的。无论维生素B12添加剂前序的所有生产工序是否符合维生素B12添加剂加工要求,对维生素B12添加剂打包环节都应该加大力度进行监控。质检员要对维生素B12添加剂产品进行仔细的检查,如果发现维生素B12添加剂质量问题,需要及时反馈给维生素B12添加剂生产线上的生产者或控制者,以便对维生素B12添加剂生产工艺进行改进,以保证维生素B12添加剂产品质量。在维生素B12添加剂打包时,当标签被加入并封口后,必须保证维生素B12添加剂没有生产失误问题,维生素B12添加剂粒度符合要求,B12有效含量指标检测合格,维生素B12添加剂包装重量在误差规定范围之内。

2维生素B12添加剂生产工艺中的质量控制创新

2.1提高与完善维生素B12添加剂设备的性能。机电设备对维生素B12添加剂产品质量有着直接影响。所以混合颗粒机、沸腾干燥机、封口机等设备,决定了维生素B12添加剂产品外观、均匀度以及封口的好坏。所以在维生素B12添加剂生产设备的管理上,必须责任到人,加强维生素B12添加剂生产设备的维修与维护,提高与完善维生素B12添加剂生产设备的性能,使维生素B12添加剂生产设备能够有效的投入高质量的维生素B12添加剂生产中。在维生素B12添加剂生产中,要严格按照维生素B12添加剂生产工艺要求进行生产。在维生素B12添加剂生产中,要进行合理工艺设计和工艺参数的选择避免在维生素B12添加剂生产中发生设备故障,减少加工过程物料残留,更好地生产出合格维生素B12添加剂产品。

篇7

高速制罐线是包装行业发展趋势,对镀锡原料长度方向的硬度稳定性要求很高,且食品饮料罐身往往包括缩颈、翻边工艺,对原料的成形性也有一定的要求。因此镀锡板T4产品的工艺调整需在改善性能稳定性的同时,还要确保热轧温度易于控制且氧化铁皮压入缺陷发生量可控,冷轧后批量边浪缺陷得以消除。

1.1成分体系优化

1.1.1C元素碳作为钢基体中主要的强化元素,其含量直接影响产品的强度及冲压性能。随着C含量的增加,热轧材料奥氏体-铁素体相变点随之降低,有利于热轧在轧制薄规格产品时,以相对较低的终轧温度也能够保证钢材料在奥氏体区轧制;另一方面,C含量提高后,还可促使在相同的退火温度下,钢板的强度增加。梅钢1422产线轧制2.0mmT4材料时,在确保氧化铁皮可控的情况下,终轧温度均值最高能够控制在865℃。试验选用不同C含量板坯,经相同热轧工艺轧制后,观察带钢宽度方向,边部(距边部5mm)与中部的晶粒度情况。C含量越高,边部粗晶现象越少,到C含量达到0.06%以上时,边部混晶现象已经较少,板宽方向上组织均匀性更好,见表3。考虑到C含量达到0.08%~0.13%会进入包晶钢范围[2],包晶钢在连铸凝固过程中发生包晶反应,体积收缩造成裂纹敏感性大幅增加,不利于板坯质量的控制,因此C含量的调整应尽可能避开此区域,最终确定目标C含量为0.07%。

1.1.2Mn元素锰在冷轧用钢中的作用主要是强化和进一步消除S的不利影响。针对T4产品的工艺审视,Mn含量调整目的主要为:在C元素强化效果不足的情况下,增加Mn元素起到补充作用。梅钢铁水因含S量较高,必须采用LF炉深脱硫。受炉渣碱度、炉渣氧化性、渣量、吹氩搅拌时间、温度、炉内还原性气氛、精炼时间等多重因素的制约,深脱硫对炼钢成本有较大影响。对镀锡板来说,后续成型性要求不是特别高(对FeS的热脆作用不是特别敏感),选用常规工艺目标S含量即可。梅钢能够保证的S含量为0.016%以内,但钢中S的偏析倾向较大,不利于板坯裂纹控制,一般最低需保证Mn/S比大于10,因此保证Mn含量是很有必要的。本次成分优化,Mn含量的确定需平衡其强化以及固S作用,最终找到平衡点。

1.1.3Al元素Al是在炼钢过程中作为脱氧剂,同时Al在钢中还能够固定一部分的N原子对保证钢板的抗时效性有利。当钢中Al含量大于0.015%时才能保证脱氧的效果。但是当Al量过高时,会增加合金成本,另外也会形成过多的脱氧产物Al的氧化物Al2O3夹杂。硬质镀锡板的抗时效性不是最重要考虑点[3],具备在确保脱氧效果的基础上,适当降Al以降低成本的条件,最终确定成分优化方案见表4。

1.2炼钢工艺路径调整审视T4产品原炼钢工艺路径(脱硫—转炉—吹氩—LF炉—连铸),过LF炉吹氩,仅为了使钢水夹渣上浮更充分。考虑成本因素,试验采用炼钢吹氩直上工艺。相应对炼钢转炉、吹氩站工序的工艺要求进行规范管理,确保不出现因吹氩时间短造成板坯夹渣未有效上浮导致冷轧轧薄后缺陷暴露的质量问题。吹氩直上工艺规范后,主要要求为:转炉保证吹氩站处理温度;转炉出钢采用完全脱氧;吹氩站根据进站成分,在铝调整结束后根据需要补碳线;钢水出站前必须保证弱搅拌时间。采用夹杂物分析仪,对过LF炉及吹氩直上两种板坯进行夹杂物总量(全氧、氮、铝等)比较,确定夹杂物是否存在裂化趋势。通过分析,未见吹氩直上工艺对板坯夹杂物有明显劣化,板坯夹杂物含量未见增加,见表5。具备放量试验的条件。试验采用两种炼钢路径各生产3000t,比对产品全流程钢质类废次降的情况,同样也未发现钢质劣化倾向,见表6。基于实验室及规模生产试验,确定炼钢吹氩直上工艺路径的可行性。

1.3热轧轧制温度调整采用新成分体系,终轧温度目标值具备下调空间,结合表3的分析,确定终轧温度设定值为870℃。按此目标,试验将1422产线精轧入口温度设置为:1000~1040℃,并将中间坯厚度调整为40mm。结合轧制模型的优化(含加速率增益和最大轧制速度优化),观测终轧温度命中率情况。从试验情况看,以典型规格2.0mm镀锡原板为例,温度命中率达98%以上,并且带头局部温度低点问题也有较大改善,具备了量产能力。

1.4冷轧退火温度制定梅钢连退采用引进法国STEIN公司的立式连续退火炉,整个退火工艺可以分为加热和冷却两大过程,加热部分主要由预热段、加热段和均热段组成。而对镀锡板性能影响最大的为加热和均热两段,两段共包括38个道次,带长759m,均采用的是辐射管加热,煤气在辐射管内燃烧,通过辐射管传到带钢表面,此加热方式温度控制精度高,实际板温能够稳定控制在目标值±5℃范围内。加热及均热段目标温度的设定直接影响最终镀锡板的性能,基于改进后的成分及热轧温度制度(同一炉板坯、同一热轧轧制批次),在退火速度及在炉时间不变的情况下,试验采用不同退火温度,利用出口机旁硬度检测仪测量退火后产品表面硬度情况。在退火速度为630m/min情况时,加热、均热段温度设计为588℃较为适合,低于580℃时,硬度急剧上升,见表7。取样检测金相组织,存在明显的纤维状铁素体,见图4,表明退火不充分。按585℃的温度组织生产,镀锡前(连退后)硬度均在61HR30T左右,但镀锡后硬度均有明显提高,平均硬度提高量达2.5HR30T,最终产品硬度均值为63.5HR30T,已偏离目标硬度范围;采用同样的方法,观测595℃退火温度后,最终产品硬度为60.8HR30T。基于此,最优加热段、均热段温度为595℃。

1.5批量验证按改进后工艺组织批量生产(1.6万t/月),统计连续两月性能及废次降实绩,硬度、屈强比稳定性更佳(见图5),在产品平均硬度略有提高的情况下,屈强比下降,有助于材料成型;废次降有明显改善,轧后批量边浪缺陷完全解决,长线状缺陷发生率也有显著下降(从最高的16%下降至1.0%左右);另外,制造成本也有40元/t的降幅。

2结语

篇8

水飞蓟素生产工艺流程包括提取、浓缩、脱脂、脱残、干燥、粉碎及包装入库等工序。该工段在提取车间进行,以丙酮及乙酸乙酯做为提取剂。

1.1提取种皮投入提取罐,提取溶剂丙酮(乙酸乙酯)自提取罐顶部注入,采用蒸气间接加热,按一定的流速通过料层,将水飞蓟种皮中的水飞蓟素溶解,提取液自提取罐底流至浓缩罐,提取罐中的残渣在提取结束后经蒸气吹扫后由提取罐底部排出。

1.2浓缩带有水飞蓟素的提取液在浓缩罐中加热,提取剂转化为蒸气,通过管路上升至顶部的冷却器中,冷凝成为新鲜溶剂,继续导入提取罐顶部,再在料层中流动,最终将料层中的水飞蓟素全部溶解带走,注入浓缩罐进行浓缩。

1.3脱脂、脱残由于在种皮中尚含有少量的种仁碎屑,浸膏中尚有少量的油脂夹杂其中,所以将提取得到的浸膏用正己烷进行脱脂处理,再用纯化水洗去残余溶剂,然后进入真空干燥箱。

1.4真空干燥、粉碎、包装水飞蓟宾提取浓缩罐中提取物及提取溶剂带来的水飞蓟素,为流浸膏夹带的少量水分等生成流浸膏状态,放入真空干燥箱中减压烘干、粉碎,按客户要求的粒级进行筛分,经检验合格后包装成为成品出售。

2水飞蓟素工艺产生的污染分析

2.1废气污染源分析水飞蓟素生产过程中的废气污染源分为有组织和无组织两种排放源。有组织废气源包括锅炉燃煤烟气、前处理车间排放的粉尘;无组织废气源包括水飞蓟种籽除杂排放粉尘及提取过程中各种溶剂的挥发,主要有丙酮、乙酸乙酯、正己烷。

2.1.1蒸气锅炉烟气生产供热锅炉燃煤过程中产生的烟气,其主要污染物为SO2、烟尘、NOx,需对锅炉烟气进行脱硝、除尘、脱硫处理,达到相应锅炉污染物排放标准后排入大气。

2.1.2扒皮机粉尘水飞蓟种籽扒皮过程中,含小颗粒种皮的气体进入袋式收料器,净化后的气体由排气口排放,气体中污染物为粉尘。

2.1.3提取车间溶剂挥发水飞蓟素的生产过程使用多种溶剂,包括丙酮、乙酸乙酯、正己烷,这些溶剂会无组织散发到空气中,通过车间通风系统排入大气环境。

2.2废水污染源分析水飞蓟素生产过程中的废水包括水飞蓟素提取后的饼粕吹扫废水及提取车间、精制油车间、前处理车间地面清洁废水,主要污染物为CODcr、BOD5、SS、动植物油,该项废水污染物浓度较高,且含量波动性较大,应处理达标后排放。另外,废水污染源还有锅炉排水及生产用纯化水制水设备排水。

2.3固废源分析水飞蓟素生产过程中的固废主要有水飞蓟种仁榨油及种皮提取后的饼粕、油脚、锅炉燃煤灰渣,均为一般废物。应分类收集,并根据固体废物的不同特性进行暂存和综合利用。如管理不善,随意堆放和处置,会对周围环境造成污染。

2.4噪声源分析水飞蓟素生产过程中的噪声源主要是去石机、锅炉风机等的运行噪声,噪声设备均设置在车间内。厂界噪声经厂房隔声、距离衰减等,应满足《工业企业厂界环境噪声排放标准》(GB12348—2008)的要求。

3结束语

推荐期刊