线上期刊服务咨询,期刊咨询:400-808-1701 订阅咨询:400-808-1721

生产工艺论文8篇

时间:2023-03-24 15:11:19

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇生产工艺论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

生产工艺论文

篇1

对于一个国家的工业来说,化学工业所占的比重并不在少数,究其原因,可以说化学工业的发展极大的体现了一个国家的经济发展水平和科学技术的发展水平化学工业的不断发展,可以在一定程度上满足人们高层次的科技生活的需要,也能够鼓舞国家的各项产业的发展,促进包括工业、农业在内的各项国家基础产业的进步。近些年来,化学肥料开始逐步的替代了旧的农业肥料,提高了农业的产值产量,带动了农村相关产业的发展,在一定程度上推动了农村经济、农业产值的高速迈进。但是与旧的农业肥料相比的不足之处就在于,化学肥料使用后所产生的化学废弃物在很大程度上又造成了环境的污染,资源的浪费。化学肥料的残留物成为了大自然的污染源头。因此,化学工程有待提高,保护环境的宗旨是重中之重,资源的节约同样是不能忽视的问题。但是,就目前我国的化学工程的污染、浪费现象仍是十分的严重,发展决不能以污染和浪费为前提,这是大错特错的。

下面我们来具体的分析一下:第一,生产的效率低下。就我国来看,我国的工业生产存在一个盲区,重点就在于生产的效率较低。在化学工程的研究的过程中,生产技术首先没有达到预期的效果,环境污染的现象依旧没有被制止。举个例子来说,在进行的化学生产的实验的过程中,材料的运用做不到理想的反应,反应现象达不到预计的效果。在这一系列的生产实验的过程中,事实上,环境污染的现象已经在悄然的发生了,化学实验所产生的残留物、化学实验败北过程中所造成的化学污染。实验过程造成了资源浪费的现象十分的严重,经济浪费更是不在话下,极大的降低了生产的效率水平。另一方面,实验没有达到预期的效果,化学产品的使用效率低下,根本不能够满足人们的生活所需。第二,化学工程的生产过程,给环境造成了较大程度的影响。化学污染在当下我国的环境污染的比重中占了较大成分。重工业,尤其是金属工业所产生的污染现象尤为严重。在对水资源的检测的过程中发现,废弃水中的金属含量严格的超过了安全性能的指标。水资源的污染,也会对地下的土质产生影响,而土质又会影响农业的产值,这样看来,化学生产所造成的污染现象是严重的。另外,在工业生产的过程中,废弃水的直接排放,给自然环境同样造成了污染。第三,化学工程的不连贯性,很容易生产的间断性,从而影响生产的进度,尤其是当它发生了不合理的间断的时候,很快就会对整个生产的过程产生影响。由此看来,生产效率的低下、生产过程中产生的污染以及生产的不合理的间断等等这一系列的问题,都在阻碍着化学工程的发展和进步。

2我国化工生产工艺解析

从上文中,对于我国目前的化工生产过程中,存在着主要的问题就在于我国的化工生产工艺还不是非常完善。针对这些存在的问题,化学的生产工艺需要有哪些改进呢?在化工生产过程中,采取哪些最新的化学生产工艺能够降低化学生产所产生的污染呢?第一,化学生产过程中,提高反应条件以及反应环境。反应条件是化工生产中最为重要的环节,为了达到高效生产,提高生产效率,减少废料的产生,反应条件是最为关键的因素。因此,提高化工生产效率的最为关键的因素就在于加强化学生产过程中的反应条件。催化剂以及反应所需条件一定要达到所需标准,才能保证在化工生产过程中,高效生产,并减少废物的产生。保证废物不直接排放到自然环境中,就能保证化工生产的相对环保。第二,化工生产过程中,并非只是提高产品生产的环境,更应该能够提供废物处理的程序以及治理系统。包括我们经常看到的废气,都应该经过适当处理后才能进行排放。废水的排放要采用化学综合的化工工艺。其原理很简单,主要是化学反应中最基本的原理,将废水中的重金属通过沉淀,从而减轻其危害性。此外,废气的处理应该在排气的中部以及顶部,都设置一出废气处理系统,这些装置可以将废气中的有毒气体以及废气中的粉尘过滤,从而保证排放到空气中的气体符合国家要求的标准。第三,真正从化学工程中的化工生产工艺技术入手,工艺技术是指从不同的反应原理以及反应条件进行分析与探讨。制造氧气的方式有很多种,那么哪种方式才是最效率高并且更适合化工生产呢?在不同的环境下,对于生产的原料以及方式都是可以随机改变的,并能通过改变来进行适应性生产,从而提高化学生产的效率,并实现高效以及绿色生产。

3结语

篇2

1.1填装生产工艺现状

许多工业雷管生产厂家依然沿用较为落后的装填药技术,包括人工加药、人工操作、各个环节之间人工传送等。在该类生产工艺中,主要是以由人员手动完成,个人素质对于操作的规范性有着直接的影响,包括安全意识薄弱、存在侥幸心理、操作技术不过硬、注意力不集中等,留下了较多的安全隐患,安全性得不到保障等。

1.2自动填装生产工艺

现在的工艺中,雷管制造的填装工艺基本上可以实现自动化,严格遵循着三少三隔开的基本原则,采用自动填装工艺。自动装填的生产工艺包含的环节较为丰富,包括装填药环节实现人机隔离、自动装药、自动动态监测、自动排除废弃物、自动安全报警、自动化安全联锁等。该技术以其良好的安全性及稳定性,在许多工业雷管生产企业中得到了广泛的应用。

1.3生产工艺优势及不足之处

在进行工业雷管的生产过程中,引用自动装填制造工艺,其优势十分明显。其在填装的各个环节均运用到了不同的自动化技术,不仅能够最大幅度地减少人员操作环节,降低了人员的工作量,避免人员接触到危险品,排除人为的安全隐患因素,还能够自动检测填装过程中的异常情况,及时报警,安全性良好。自动装量时,其计量较为准确,且自动将其中的废品排除掉,提高了工业雷管产品的质量,减少了成本投入。其生产效率也较高,可以达到12000发/h,另外设备不易出现故障情况。但是其也存在一定的缺陷,即需要对设备进行专业的保养,对于该项保养技术有较高的要求,才能保障生产活动的顺利进行。

2延期药的制作生产工艺

2.1延期药制作环节的危险性分析

延期药的主要构成成分包括氧化剂、燃速调节剂、可燃剂、黏合剂等化学品,将其全部粉碎达到一定的粒径后,充分混合制作成延期药,具有易燃、易爆的特点。在制作的过程中很难保障其能够充分均匀地混合,且极易出现火灾。如果采用干混的生产方式,在进行干混的过程中,需要严格控制设备的运行,强化生产现场的各项管理工作,严禁出现明火,因此需要投入大量的资金,且管理上也存在较多的困难。如果是利用酒精作为溶剂,采用的湿混生产方式,而酒精具有可燃性、挥发性,也容易发生火灾,情况严重的甚至引发爆炸事故。

2.2水混生产工艺

基于上述危险因素,可以采用现代较为先进的水混生产工艺,即利用水作为溶剂,在其中加入制作延期药的原料,再通过一系列的工序,制作出各种粒径的延期药,包括材料混合、预干燥、制作成颗粒、最终干燥、筛分分级等。各类材料在水中的分散性良好,能够充分融合,混合的均匀性较高,使得延期药的质量有保障。水具有不可燃性、无毒性、环保性等特点,在其中进行化学材料的混合,各个材料的可燃性也被有效的抑制,因此不会出现火灾或者爆炸的情况,生产过程更加安全、稳定。

2.3运用先进的设备

在进行水混生产工艺的过程中,需要使用专用的机械设备,包括混药机、造粒机、筛分机等,其机械性能良好,混合的均匀性高,且能够实现自动化操作,人机隔离,十分安全。在造粒方面,传统的生产工艺中是利用手工造粒,不仅效率不理想,也容易出现危险情况,而造粒机则能够实现人机隔离,机器可以放置于防爆间,进行淋水处理,不仅能够避免操作时形成大量的粉尘,也能够排除人为的因素,减少安全隐患,提高了安全性。

3刚性引火材料制作生产工艺

3.1工艺现状

传统的工业雷管生产的过程中,刚性引火材料的制作,一般是运用人工裸眼焊桥丝、手工抹药头等人员操作,其中产生的挥发性气体会使得操作人员的身体受到较大的损伤,不仅工作效率不佳,所生产的产品质量也得不到保障,属于风险较大的工作。

3.2刚性引火材料制作工艺

传统刚性引火材料的制作工艺中存在的问题,可以利用新型的工艺予以解决。可以使用钢带冲梳齿,梳齿钢带上塑除油,桥丝焊接,蘸引火药头,并利用远红外技术对药头进行干燥,将药球头干燥完毕后,再在焊机上将其与脚线焊连在一起。其主要的制作流程为:

(1)先做好各项准备工作,包括钢带冲梳齿,梳齿钢带上塑除油,桥丝焊接,并进行运输材料,混合引火药、配置胶液等工作,才能进行蘸引火药头及药头红外烘干的工作;

(2)上述工作做好后,需要进行、分线、配线并拧紧、注塑并把、装夹子剪线等工作,再将引火药头的脚线焊接在一起;

(3)焊接完毕后还需要将废弃的线进行返修,如果合格后,可以继续使用;

(4)制作防潮漆,将焊接后的脚线喷涂防潮漆并烘干。

3.3设备要求

刚性引火元件生产工艺所需要的机械设备较多,如梳齿冲床、整形冲床、桥丝焊接机、刚性药头塑料上梳机、自动蘸药头机、分线机、月牙板式回转烘干机、注塑机、台式电焊机等,其自动化程度高,焊接质量能够达到国家及行业的标准,产品的质量较为可靠,各个环节都有安全防护措施,避免了操作人员与有毒有害物质的接触,药剂的隔离操作,混药头药、沾药等操作有可靠的安全防护装置,避免了人体与有害气体的接触,提高了生产的安全性,并优化了运作效率。

4结语

篇3

1.1齿轮箱的功能

常规的普通发电机组都需要达到一定的转速才能试运转发电,但是风力发电机的转速由于风力原因显然不高,所以风力发电机的风轮轴需要经过增速箱增速才能达到发电机的转速要求,而齿轮箱就是传递风轮动力并且使转速明显提升的关键设备。风轮的转速越低,齿轮箱的增速比要求也就越高,相应的复杂性、造价都会有很大的提升。所以齿轮箱是希望风轮的转速越高越好的。但是现在国际上风力发电的基本趋势是风轮为三叶片,而且叶越来越长,风轮的半径越来越大,这就要求了齿轮箱的技术越来越复杂与精密。

1.2齿轮箱技术现状

我国的风力发电机组的相关技术是从国外引进并发展的,但是从国外引进的相关技术中并没有风力发电齿轮箱的相关制造技术,所以我国的风力发电齿轮箱制造技术没有实际的技术借鉴,全靠研究人员按照电机组的技术规范自行研究和制造,所以齿轮箱制造技术不算很高。另一个尴尬的现实是,我国对风力发电的技术研究起步很晚,国内缺少对于风力发电技术特别精通的相关专业人才,相关的教育基础也比较低,种种原因都限制了我国的风力发电齿轮箱制造技术的快速发展。现在的齿轮箱产品离满足市场需求还有很长的路要走。

2、齿轮箱生产工艺

2.1齿轮箱生产的常见困难

目前我国生产的齿轮箱大多数都会遇到相同的困难,这些常见的困难有:

(1)轴承的使用寿命问题。齿轮箱的轴承属于高损耗的部件,国内生产的轴承大多数使用寿命低于平均水平,容易过早的疲损。

(2)齿轮箱的设计计算方法拙计。国内的齿轮箱因为成本的考虑大多数使用直齿,而国外先进的生产厂家大多数使用斜齿,而且精度也足够。

(3)齿轮的原材料问题。国内的材料质量稍逊于国外,而且仿制的齿轮箱在加王锐张旭沈阳鼓风机集团风电有限公司辽宁沈阳110869工水平上也明显不如原厂。国内的实际情况也决定了从国外引进的技术并不是全部适合,因此齿轮箱的制造必须自主设计研发,包括材料、工艺等。

2.2齿轮箱的生产工艺

2.2.1部件。齿轮箱由多个部件构成,其中的一些关键部件严重影响齿轮箱的寿命和质量问题,在制造是应该给与一些部件重点关注。首先是齿轮。涉及齿轮的过程中要尤其注意减速传动和增速传动的差异,变位系数的选定必须考虑到降低滑差,然后参考实际需要设计齿向和齿廓。内齿圈轮缘厚度要3倍于模数,外齿轮以渗碳淬火配合磨齿,齿轮精度要求不低于6级。另外齿轮的计算问题要尤其重视,齿轮的疲劳强度要参考实际使用时候的载荷谱在经过详细的计算才能获得,齿轮的工作载荷很难确定,而且工作中的变化很多,致使计算工作很复杂。然后是轴承。和齿轮类似,因为风力工作环境的不确定性和载荷难以控制的问题,风力发电机轴承非常脆弱。这就要求了齿轮箱在设计的时候要注重轴承的类型选择以及措施的制定,重点研究提升轴承的使用寿命。

2.2.2工艺改进。传统的齿轮箱的制造工艺流程分为锻造、正火、高温回火、粗加工、去毛刺清洗、渗碳淬火、清理抛丸、磨齿、检验等步骤。这种传统的齿轮箱适合船舶等高安全系数的制造中,但是近些年在一些从国外引进的某些产品或者某些科技前沿的产品中使用时发现了容易失效的问题。而近些年出现了一些改进之后的工艺流程,改进后的工艺流程分为锻造、正火、高温回火、较高精度粗加工、去毛刺清洗、预热、重行奥氏体化渗碳淬火、清理抛丸、少余量缓进给磨齿、检验等步。这一工艺流程比较符合国产化的齿轮箱的制造现状,该工艺过程提高了粗加工精度,增加了渗碳前的预先热处理工艺,这是为了减少渗碳淬火过程的变形并减少磨削余量。磨削过程中了采用少余量缓进给磨削,使齿面保留较大的压应力状态并提高精度与粗糙度。采用重行奥氏体化渗碳淬火工艺能够提高齿轮的耐磨性和承载能力。

2.2.3工艺参数设计。齿轮的承载能力非常重要,所以工艺参数要仔细选定。渗碳层的含碳量除只有存在严重的冲击载荷时才需要考虑低周疲劳问题。在渗碳工艺中经过对工厂成本和渗层内氧化现象的综合考虑之后,含碳量应该在0.77到1个百分点之间。表面碳浓度过高可能会导致表面出现大量碳化物和残余奥氏体的情况,但是低的含碳量却有可能造成贫碳的非马氏体组织,这两种情况都会降低齿轮的接触疲劳性能。接着,渗碳温度提高会使齿轮的加工时间变短,既提高生产的效率,也能有效降低成本,但是同时这也可能导致变形加大、渗层不均的问题;但是温度过低、保温时间长则会导致成本的提升。淬火温度的提高则会很明显的影响表面组织和芯部硬度。淬火温度和渗碳温度需要考虑具体的原材料性能来决定才能使效果达到最佳。

3、结语

篇4

1.1爆炸分析

聚丙烯生产工艺中的爆炸危险是由多项原因引起的,而且爆炸危险表现在多个方面,如:闪爆、聚爆等,严重影响了聚丙烯生产工艺的安全控制。分析聚丙烯生产爆炸危险的原因,如:

(1)聚丙烯生产原料引起的爆炸,丙烯是生产中的主要原料,一旦工艺中发生丙烯泄露,即会在设备生产底部聚集,导致设备膨胀爆炸;

(2)温度失控,聚丙烯生产过程中的聚合反应,需要严谨控制温度,如果温度与生产工艺矛盾,就会引起爆炸;

(3)粉尘聚集,粉尘占据了聚丙烯反应的空间,受到膨胀影响而发生爆炸。

1.2静电火灾

静电是聚丙烯生产中比较常见的一类危险源,虽然聚丙烯是非导体,但是表面很容易聚集静电电荷,特别是在聚丙烯流动的状态下,静电电荷与周围的设备、管道发生摩擦,长期摩擦的过程中发生静电感应,如果聚丙烯生产的环境较为干扰,也能发生静电火灾,引发严重的危险事故。

1.3堵塞危险

因为聚丙烯生产的产物,具有粘合、依附的特性,容易粘结在聚丙烯生产的设备表面,长期以来形成了固结体,所以引起了堵塞的危险。例如:聚丙烯生产中采用管式聚合器,在反应后期产生大量的粘合物,集中粘结在管道内壁上,导致管式聚合器内形成了堵塞的问题,如果管式聚合器内聚集物较多,即会影响管道的输送水平,管内的压强、温度等都会偏离正常的数值,也能引起爆炸或火灾风险。

2聚丙烯生产工艺的安全措施

综合评价聚丙烯的生产工艺,针对工艺的危险性提出安全控制的措施,确保聚丙烯生产的安全性。聚丙烯生产工艺中,可以采用蒙德法分析危险源,落实相关措施的安全控制。

2.1爆炸控制的措施

聚丙烯生产工艺危险性中的爆炸控制,需要根据爆炸危险的原因规划措施应用。首先是防止丙烯过度聚合,聚丙烯生产时严格按照原料的投放顺序和比例执行,消除潜在的聚合危险,监督聚丙烯生产的过程,防止原料聚合;然后控制聚丙烯生产的温度,可以在聚丙烯生产中安排冷却工艺,重点控制工艺生产过程中的放热;最后是预防粉尘爆炸,规范处理聚丙烯生产工艺中的堵塞问题,遵循聚丙烯生产的要求,防止粉尘堵塞聚丙烯生产的设备和管道。全面控制聚丙烯生产工艺中的爆炸危险,保障聚丙烯生产的经济效益。

2.2静电火灾控制的措施

为了防止静电火灾,聚丙烯生产的过程中需要采取静电接地的方式,还要注重聚丙烯生产环境的控制,防止生产环境过于干燥。聚丙烯生产时,应该定期检查静电接地的可靠性,也可利用加湿的方法,消除聚丙烯表面的静电电荷,降低静电火灾的危害。除此以外,聚丙烯的输送工艺中,增加氮气物质,防止聚丙烯表面的静电与设备或管道结合,保障聚丙烯在管道运输中的安全性,充氮控制的方法是目前防静电火灾中最简单的一类,解决了精丙烯生产中的静电问题。

2.3堵塞危险的控制措施

聚丙烯生产工艺中安装自动控制系统,监控聚丙烯生产的堵塞危险。自动控制系统检测到堵塞危险时,会自动发出警报,促使生产工艺进入紧急处理的状态,提高聚丙烯生产系统的输送能力,以免聚丙烯的产物过度聚集在生产管道内。部分情况下,自动控制系统具有报警的功能,提供紧急处理的手段,有利于控制聚丙烯的堵塞问题。自动化控制系统非常注重堵塞风险的控制,通过实践性的操作方式,杜绝堵塞的风险,防止聚丙烯生产中发生危险事故,提高聚丙烯生产的效率。综上所述,聚丙烯生产工艺的危险性,需积极采取相关的安全措施,利用可靠的安全控制措施,规避聚丙烯生产中潜在的危险隐患,加强聚丙烯生产安全控制的水平,消除聚丙烯的危险源,促进生产工艺的安全进行。所以,在聚丙烯生产工艺中实行安全控制,保障聚丙烯生产的安全水平。

3结语

篇5

本钢浦项连续镀锌机组采用的是辊涂式钝化处理方式。钝化涂机主体结构包括:轧制线辊、料盘、提料辊和涂辊。使用的钝化液为三价铬产品,其主要由以下成分组成:三价铬Cr(Ⅲ)、氧化剂、络合剂、其他金属、成膜促进剂、封孔剂及润湿剂。混合后的钝化液由工作罐打入料盘中,通过一个提料辊将钝化液送到涂辊,涂辊再以一定的压力和速度将钝化液涂在带钢表面。各辊均可调速,辊隙及涂辊和带钢压力可自动调整,以保证镀膜均匀和各种厚度涂层。当焊缝通过时辊涂机涂辊可快速打开。三价铬膜层是通过锌的溶解形成锌离子,同时锌离子的溶解造成锌表面溶液的pH值上升,三价铬直接与锌离子、氢氧根等反应,形成不溶性化合物沉淀在锌表面上,从而形成钝化膜。

二、钝化能力过剩

在钝化涂机实际生产中,钝化盐雾时间是评价钝化产品防锈能力的主要指标。不同的客户对钝化产品的盐雾时间要求不同,目前绝大部分客户要求钝化产品的盐雾时间保证值为72h,极少部分客户要求盐雾时间为48h和96h。目前主要的问题是产量占绝大部分的盐雾要求72h的钝化产品在生产过程中出现了钝化能力过剩的问题(图2),也导致了钝化液吨耗过高,因此需要系统优化钝化涂机工艺参数。

三、原因分析

1.提料辊与涂辊之间缝隙压力

提料辊在钝化液中旋转,把钝化液带到提料辊与涂辊之间的缝隙中。因此提料辊与涂辊之间压力的大小直接决定了涂辊表面附着的钝化药液量。提料辊与涂辊之间压力越大,相应涂辊上附着的钝化药液量越小。机组目前使用的提料辊压力为2.0kN。

2.涂辊与钢板表面的压力

涂辊与带钢表面接触,给涂辊施加一定的压力,使涂辊上的钝化液印附在带钢表面形成钝化膜。由于提料辊与涂辊之间的压力已决定涂辊上钝化液的药剂量,因此涂辊与带钢表面的压力主要起到改善钝化效果的作用。涂辊与带钢之间的压力越大,带钢表面涂敷的钝化液越均匀。涂辊压力过高会导致涂辊表面与带钢边缘接触的边缘胶层磨损。机组目前使用的涂辊压力为2.5kN。

3.辊速比

辊速比包括提料辊与涂辊之间的辊速比率,涂辊与带钢之间的辊速比率,以机组运行线速度的百分比进行控制。提料辊速比越高在提料辊与涂辊之间盛装的药液量越大。提料辊速比过高易造成钝化液溢出;提料辊速比过低,易造成药液量不足导致涂敷不良甚至损伤涂辊。根据机组现场提料辊运行状态观察得出,在机组速度的35%进行提料辊转速,即可满足提料要求。涂辊与带钢之间的辊速比率,同样以机组运行线速度的百分比进行控制。涂辊与带钢之间以相同的线速度运转,避免涂辊与带钢表面发生相对运动,从而避免了使涂辊过早磨损。

4.药剂浓度

钝化产品单位面积内铬离子含量越高对应的盐雾时间越长,相应的钝化药剂中铬离子含量越高,涂敷在带钢表面的钝化液体越少。本钢浦项连续镀锌机组使用的钝化液药剂已进行混合配比,因此药剂中铬离子含量为定值。

四、涂机生产工艺

参数优化为了保证客户要求的盐雾时间,减少钝化能力过剩的问题,需要找到合理的控制方法,使用不同提料辊压力对典型产品进行涂敷,并将对应的膜重与盐雾时间进行关联,优化涂机工艺参数。对样板进行膜重测试和盐雾测试,实验结果如图4和图5所示。结果表明:增加现有提料辊压力使用2.5kN及3.0kN提料辊压力涂布带钢时,产品表面膜重明显降低。目前已知使用2.0kN提料辊压力涂布产品时出现72h盐雾能力过剩的问题,因此需结合盐雾时间重新制定提料辊压力参数。在原有钝化参数不变的情况下,将提料辊压力由2.0kN升至2.5kN时,膜重控制在铬离子含量50mg/m2以上时,钝化盐雾时间可满足72h盐雾要求。将提料辊压力升至3.0kN时,膜重控制在铬离子含量40~50mg/m2之间,可满足48h盐雾要求。

五、结束语

篇6

1.1混合颗粒机机型选择创新。混合颗粒机一般分成单螺杆混合颗粒机和双螺杆混合颗粒机2种机型。单螺杆混合颗粒机,对物料变化、产品要求变化等的适应能力较差。威可达公司维生素B12添加剂需要根据客户需要,生产维生素B12为0.1%-1%不同含量,不同粒度的产品,所以单螺杆混合颗粒机不太适用。威可达公司根据需要,创新地使用双螺杆混合颗粒机,这样混合颗粒机使用范围更宽。由于混合颗粒机两个螺杆的协助作用,所以在混合颗粒机挤压过程中物料的走向得到较理想的控制,避免了单螺杆混合颗粒机中出现的逆向隙流,使物料受力均衡,维生素B12添加剂产品颗粒大小均一。而且双螺杆混合颗粒机两个螺杆工作时相互清理粘附于螺杆的物料,所以双螺杆混合颗粒机生产时物料残留很少,节约了原料的使用。

1.2原料入机水分调节的工艺创新。原料进入混合颗粒机时,为了使得维生素B12添加剂易于成型,需要控制进料时的物料水分。物料水分对维生素B12添加剂产量、生产时的耗能、维生素B12添加剂产品质量、混合颗粒机使用寿命及混合颗粒机的工作平稳性等都有影响。维生素B12添加剂原料的水分提高,那么此后的蒸汽成本和干燥成本相应增加。维生素B12添加剂生产原料需要有一定的水分含量,这样可促使维生素B12添加剂生产原料软化,降低维生素B12添加剂物料对设备的摩擦阻力,降低对混合颗粒机螺杆的驱动力要求,并减小混合颗粒机易损件的磨损。通过威可达公司技术人员的深入研究,认为维生素B12添加剂物料水分22%-31%,是混合颗粒机的适宜操作参数。

1.3湿法混合工序。维生素B12添加剂的载体一般是玉米淀粉,或者根据客户要求使用碳酸钙、磷酸氢钙、甘露醇作为载体。将玉米淀粉置于混合颗粒机中,然后根据客户要求的维生素B12含量,加入订单含量的维生素B12液体,搅拌10分钟出料,得维生素B12添加剂湿物料后卸出。

1.4干燥工序及工艺创新。维生素B12添加剂从混合颗粒机出来后,一般水分在25%以上。所以离开混合颗粒机后的维生素B12添加剂颗粒必须干燥,去除维生素B12添加剂部分水分。维生素B12添加剂的干燥通常分为两步进行:热风干燥,冷风干燥。通过沸腾干燥机进行干燥,以进风口温度120℃~130℃的热空气干燥物料。120℃~130℃范围内沸腾干燥机干燥效率高,且维生素B12添加剂物料不易焦化。热风干燥使维生素B12添加剂物料水分降至14%~18%。待出风口温度到从60℃上升到80℃时,将进风口温度设定为40℃,继续引风40分钟后停引风机,卸出干燥维生素B12添加剂物料。调节原料水分,也是调节维生素B12添加剂产品密度的重要措施之一。威可达公司科研人员认为,减少维生素B12添加剂水分的汽化程度,可以使维生素B12添加剂产品密度增高。在螺膛处调节温度,加温促使水分汽化,维生素B12添加剂产品密度下降;在螺膛处用冷却水降温,减少汽化强度,可以使维生素B12添加剂产品密度增加。所以可以根据客户的需求,进行维生素B12添加剂干燥程度的控制。

1.5后处理工序、干混合工序及终筛分。检查振动筛状态和筛网情况,根据客户需要选择相应目数的筛网,将维生素B12添加剂干物料加入到振动筛内,干物料经粉碎后同筛下的粉末一同混合,混合得维生素B12添加剂中间体。将维生素B12添加剂中间体置于锥形混合机中,根据客户订单的要求,加入固体维生素B12配方,搅拌30分钟后,从混合机底部接出维生素B12添加剂混合后物料。将混合好的成品粉剂,根据客户需求,使用相应筛网目数的振动筛进行筛分,去除杂物。

1.6包装及包装前后的质量控制创新。根据包装规格,准确称量维生素B12添加剂并复核,无误后按包装要求进行包装,即双层聚乙烯袋扎口及铝箔袋热封。打包工序对于维生素B12添加剂质量的控制,是至关重要的。无论维生素B12添加剂前序的所有生产工序是否符合维生素B12添加剂加工要求,对维生素B12添加剂打包环节都应该加大力度进行监控。质检员要对维生素B12添加剂产品进行仔细的检查,如果发现维生素B12添加剂质量问题,需要及时反馈给维生素B12添加剂生产线上的生产者或控制者,以便对维生素B12添加剂生产工艺进行改进,以保证维生素B12添加剂产品质量。在维生素B12添加剂打包时,当标签被加入并封口后,必须保证维生素B12添加剂没有生产失误问题,维生素B12添加剂粒度符合要求,B12有效含量指标检测合格,维生素B12添加剂包装重量在误差规定范围之内。

2维生素B12添加剂生产工艺中的质量控制创新

2.1提高与完善维生素B12添加剂设备的性能。机电设备对维生素B12添加剂产品质量有着直接影响。所以混合颗粒机、沸腾干燥机、封口机等设备,决定了维生素B12添加剂产品外观、均匀度以及封口的好坏。所以在维生素B12添加剂生产设备的管理上,必须责任到人,加强维生素B12添加剂生产设备的维修与维护,提高与完善维生素B12添加剂生产设备的性能,使维生素B12添加剂生产设备能够有效的投入高质量的维生素B12添加剂生产中。在维生素B12添加剂生产中,要严格按照维生素B12添加剂生产工艺要求进行生产。在维生素B12添加剂生产中,要进行合理工艺设计和工艺参数的选择避免在维生素B12添加剂生产中发生设备故障,减少加工过程物料残留,更好地生产出合格维生素B12添加剂产品。

篇7

1.1成分控制

6082铝合金型材的力学性能要求很高,其抗拉强度σb≥320MPa。Mg2Si含量从0.5%增加至1.0%时,合金的抗拉强度可提高一倍,继续提高Mg2Si含量可使抗拉强度进一步提高,但是合金的淬火敏感性和挤压变形抗力也随之增加,故Mg2Si含量宜控制在1.3%~1.5%。另过剩Si对合金的强度提高有很大帮助,但同时也会增加脆性,降低合金的挤压塑性,一般过剩Si含量控制在0.2%~0.4%为宜。6082合金还需添加一定量的Mn元素,以提高合金的再结晶温度,阻碍挤压时发生再结晶或再结晶晶粒长大,细化晶粒。但Mn含量过高会增加合金的淬火敏感性,同时会形成粗大的含Mn第二相,降低其对再结晶过程的抑制作用,还会影响到合金铸造性能,随着Mn含量增加其粘度增大,流动性下降,因此Mn含量应控制在0.4%~0.6%的范围内。

1.2铸造生产工艺

由于6082合金的特点是含难熔金属Mn,Mn的存在易引起晶内偏析及固液区塑性降低,导致抗裂能力不足,故熔铸工艺主要注意两点:第一,选择合适铸造温度,温度过高会使液穴加深,温度梯度加大,导致铸造应力增加,产生铸造裂纹;温度过低将降低金属流动性,易产生冷隔、夹渣、不易于气体逸出,因此熔炼温度应控制在730~750℃内,且搅拌均匀保证金属完全熔化、成分均匀;第二,控制铸造速度,铸造速度较高,会使液穴加深,延伸到结晶槽之外,易形成中心裂纹,同时铸造凝壳层变薄,偏析瘤加大;铸造速度较低,同液穴在结晶槽之内,易产生表面裂纹及冷隔等缺陷;铸造速度也要适当降低,控制在80~100mm/min内。

2均匀化生产工艺

2.1铸态组织

合金铸态金相显微组织可知合金的铸态组织主要由树枝状α(Al)固溶体、骨骼状非平衡共晶相β(AlMnFeSi)和晶界组成。树枝状晶晶内偏析严重,成分不均匀,晶界处的骨骼状非平衡共晶对合金的塑性有不利影响,铸态合金必须进行均匀化处理才有良好的挤压性能。

2.2均匀化

均匀化保温后的冷却速度对型材的最终力学性能有重要影响,随着冷却速度提高,型材力学性能逐渐升高。当冷却速度低于100℃/h时,抗拉强度只有180MPa,远低于工业型材的要求;当冷却速度为200℃/h时,抗拉强度可达到300MPa,基本满足工业型材的要求,冷却速度继续提高,抗拉强度还有一定幅度的提高。均匀化后,冷却速度不仅对铸锭的组织产生影响,也对挤压在线热处理后型材的组织产生重要影响。铸棒经过挤压在线热处理时,由于挤压变形热的作用,合金温度可以上升至强化相的固溶温度,但由于持续时间很短(一般只有几十秒),铸棒缓慢冷却产生的粗大析出相来不及充分固溶,型材冷却后固溶体的过饱和度不足,甚至还有粗大析出相在基体中分布严重消弱了时效处理后型材的力学性能;而铸棒快速冷却产生的细小颗粒状弥散分布则可以快速充分固溶,型材冷却后得到过饱和固溶体,对强化合金起到主要作用。经过这些变化,6082合金挤压性能得到很大改善,晶内偏析消失降低了挤压时金属流动的不均匀性,提高了挤压型材的表面光洁度;组织中片状粗大Al-Fe-Si相的转变和细化减轻了型材表面裂纹倾向,改善了合金的可挤压性,提高了挤压速度。为保证挤压型材有足够高的力学性能,合理的均匀化工艺为:2.5h升温至580℃,保温1h,然后降温至570℃,保温8h,均匀化后冷却速度≥200℃/h。

3挤压生产工艺

3.1铝棒温度

6082合金变形抗力大,强化相Mg2Si的含量较高,铝棒温度要求尽量高一些,但是温度过高则型材侧边出现裂纹的倾向增加,不利于提高挤压速度,生产效率较低。所以铝棒温度一般控制在470~500℃为宜。

3.2挤压速度

6082合金中Si含量较高,除与Mg元素以1∶1.73的比例形成强化相Mg2Si以外,还含有大概0.3%的过剩Si,导致合金的脆性明显增加。挤压速度提高以后,很容易在型材的侧边出现裂纹现象,所以挤压速度一般选择在10~15m/min,宽展挤压取下限。

3.3淬火生产工艺

6082合金强化相Mg2Si的含量较高(一般在1.3%~1.5%),要使其完全固溶,须保证型材出口温度(淬火温度)在固溶度曲线以上,否则由于固溶不充分,降低冷却后的过饱和度,进而影响时效后的力学性能。反应了出口温度对力学性能的影响,可以看出,随着出口温度的升高,合金的力学性能逐渐提高,当出口温度达到550℃时,抗拉强度达到峰值345MPa,而当出口温度低于500℃时,抗拉强度只有275MPa。为得到较高的力学性能,型材出口温度应大于530℃。由于合金中含有Mn元素,促进晶内金属间化合物形成,对淬火性能有不利影响,导致6082合金淬火敏感性增加,要求淬火冷却强度大且冷却速度快。本试验中所提到的6082铝合金工业型材,由于对表面质量有特殊的要求,不能使用水淬进行冷却,而是采用强风淬进行冷却,这就在一定程度上限制了冷却速度。淬火冷却速度越高,强化相Mg2Si越来不及析出,固溶体的过饱和度也就越高,对时效后型材的力学性能越有利。

4时效生产工艺

合金经过挤压在线热处理后,只是得到溶质为Mg2Si的过饱和固溶体,此时的力学性能远不达标,必须进行时效处理,使过饱和固溶体分解,在基体中沉淀析出细小弥散分布的强化相,以显著提高合金的力学性能。合理的时效工艺既要保证产品性能,又要考虑生产效率及生产成本,经过反复试验证明,时效温度175~185℃,保温时间6~7h,为6082型材最佳时效工艺,时效后抗拉强度σb≥320MPa,延伸率δ≥10%。

5结论

篇8

为了让纤维的牵伸度达到缩率的要求,牵引工作应当在超过纤维与玻璃临界温度的环境中进行,而且要保所有丝束要在同一温度下进行。(1)热板温度设定热板温度对毛条缩率有重要影响,在实验中如果热板温度不足,纤维在未达到实验要求的温度时而被拉伸,纤维中的大分子在未伸展开的情况下就被拉断了;如果热板温度过高,会使一些纤维的形变难以回复,增加了缩率损失。经过大量的实验,最终发现当热板的温度处于180摄氏度时最好。此外电热板的间隙也会影响纤维的加热效果。SEYDEL860型多区拉断机属于接触式电热板,其间隙的最佳距离在0.2毫米到0.5毫米之间。间隙过大会影响加热效果,而间隙太小则会出现夹丝、挤丝的现象。从热板中出来的纤维温度应该在100度以上,而且丝束上下两端、两侧的温度要一致。在把丝束送进热板部位时,要调整好集束架的张力,让所有丝束均匀分布[2]。(2)热牵伸倍数通常情况下,热牵伸倍数为总牵伸倍数的25%~28%比较合适。如果热牵引倍数太高,不但会使丝束提前断裂,对毛条率带来影响;而且有可能绕辊,影响生产效率。如果倍数小了,纤维中的大分子不能有效伸展,导致毛条的缩率难以达到相应的要求。而且在设置牵引值时应当把原料的质量考虑在内。(3)保证良好的冷却效果为了达到更好的拉断丝束效果,提高出条质量,丝束在进入再割区时要进行充分的冷却,保证冷却用水的出水温度不超过21度。条子在通过卷曲轮以后要在冷却输送带上多停留一会,对送进条筒的高缩条也要及时的进行冷却,筒中条子的温度不能超过60度。分别从筒中上、中、下三个部位取样,它们的缩率不能有偏差。为了达到更好的散热效果可以采用多种散热方法,比如让筒的周围充满小孔,先在空桶的中央放一根管子,等筒满了以后,再把管子抽出来,从而增加散热通道。

2.再割区隔距

出于对后纺加工的考虑,要将毛条的纤维长度控制在合理的范围之内。腈纶丝束经过预拉断区和主拉断区的拉断处理后,大多数的纤维已经被拉成了短纤维,但是还有一小部分长纤维存在,所以要通过再割区将这一小部分长纤维进一步拉断。通过对再割区隔距的调整,可以将毛条中最长纤维的长度控制在合理范围之内。需要指出的是对待不同的原丝,再割区的隔距也有所不同,比如用湿法制作的腈纶,其前后再割区的距离为110毫米或者120毫米,而本实验中的干法腈纶的再割区隔距应为115毫米或者125毫米。经过这种工艺调整后,取样分析纤维长度的均方差和离散系数等有关数据,发现两者都比较合理,而且主体长度和主体基数也在正常范围之内,尤其是长毛率、短毛率等指标均到达优质产品的标准[3]。

3.梳理制条工艺的选择

由于干法腈纶的截面是犬骨状的,所以它不像圆形截面的纤维那样,可以紧紧的“靠”在一块,它会显得更加蓬松。经过试验发现,如果采用腈纶湿法的梳理工艺来梳理干法腈纶,就比较容易出现绕梳箱、堵塞喇叭口的现象,同为2000米长的条子,干法腈纶在筒中的堆积高度要比湿法腈纶高出30厘米。所以我们对梳理工艺进行了调整,结果发现在两道针梳机喂入纤度和梳理区的拉伸倍数都小于湿法腈纶的时候,梳理效果会比较好。

4.结论

推荐期刊