时间:2023-03-23 15:13:36
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇监测技术论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
防雷接地地网的作法多种多样,有利用建筑物基础建设而构成的地网,也有增加人工地极做成的环型或直线型的人工地网[2]。防雷接地地网中有时由于土壤的原因也会加入了如降阻剂、离子地极等,从而使地网电阻值符合要求,总的概括防雷地网就是由接地地极(或建筑物基础)、水平地极及引线组成,并对土壤高的地区进行土壤改造或加入高性能地极。对于地网的构成与做法就不再一一探讨,以下就防雷地网建造好后的后期检测与维护进行进一步的探讨。
2防雷接地地网的检测方法
防雷接地地网的接地电阻的测量有多种方法,一般有电压、电流法、比率计法、电桥法等检测方法[3]。如图1所示,无论采用哪种检测方法,均需要采用二到三根辅助地极放至于合适的位置上,并采用相应算法的仪表—接地地阻测试仪进行测试。以接地电阻检测最常用的一种方法-电压、电流检测法为例进行探讨,在实际检测中,防雷接地电阻检测中要增加辅助地极及地极引线,每次的检测均需要花费大量的时间进行辅助地极的选点(辅助地极插入点)并安插到地面泥土层及引线接线,比较麻烦。当选点处后期被占用,如加上了水泥、沥青地面、其他装饰构件或建构物等,这样就对检测造成困难或无法检测。
3防雷接地地网的周期检测的实用性方案探讨
针对于检测的特性及每次检测时所花费的时间与精力,及由于加上了水泥、沥青地面、其他装饰构件或建构物等影响后期的检测问题,均有理由对检测方式方案进行进一步的改进。为解决以上所提出的问题,第一步可以在从开始地网建设时就设立好检测点,并在检测点上安装上检测辅助地极,并从辅助地极处敷设好导线,导线一端连接辅助地极,一端在接地电阻检测仪检测点处引出,每次检测时,只要将接地电阻测试仪和引出导线连接上即可检测。辅助地极导线的敷设可按现场情况敷设,建议采用管道保护,从而增加其耐用性。当辅助导线敷设好后,复检时就不再受检测点处的再建物的影响(当再建物在建设时,应当对所敷设的导线进行保护),且每次检测时花费时间更小,又因辅助地极选点无变化,得到的数据对比性更强。
4实现接地地网的实时监测方案探讨
如上述,接地地网解决了选点问题和再建物的影响问题,但仍然要操作人员选择时间并到现场进行检测,对地网的监测仍然达不到实时监测的要求。要做到接地地网接地电阻值的实时监测,则应进行进一步的改造。可以在辅助地极引出导线处加入智能检测仪表,或增加控制线路,控制线路可使仪表周期性动作,时间可内定,并可读取接地地阻测试仪所检测的数据。读取数据后再由一个如DTU(无线数据发送模块)的设备通过GPRS网络进行无线发送至服务器或其他方式的数据发送到服务器,通过服务器的数据处理后,再由服务器通过Inter⁃net网络传送到监测端如用户电脑,用户电脑并安装相应的软件平台,用户电脑接收数据后并分析,对防雷接地地网电阻值进行统计出表,对不合格的地网进行报警或告知管理人员,从而实现接地地网接地电阻的实时监测。
5结语
电力通信因其检测特性分为中心和两个部分,中心站是通信监控的核心,是对通信硬件的有效管理。这其中包括数据收集站、监控设备、数据存储设备。设备是于中心站相互连接的多个独立存在的设备。在电力通信检测过程中有一定统一的平台,这是基于网络管理系统发展的前提,通过网络实现的电力通信监控软件系统。一旦电力通信网络出现严重的问题,就会对电力通信网络产生严重的影响,监控网络会在第一时间进行追踪和预警反馈,防止因为电力通信暂时中断造成更大的通信故障问题。
二、通信检测的硬件系统结构
电力通信系统采用网络计算机应用模式,采用拓扑结构分布,实现检测系统的硬件结构传输,其有效的传输速率达到千兆。其主要的设备有数据存储器、数据服务分析其、设局检测通信展等等。电力通信管理机房通过对相关数据的有效采集和分析,对采集的数据进行处理,确定数据类型,分类,对数据结构进行响应,对复合预警的信号返回警告信号信息。中心站设备负责处理数据信息内容,通过数据网路将检测数据上传至监控设备中。监控器需要安装在中心设备的机房内部,用于存储基础数据信息。电力通信检测系统通过模拟客户服务管理环节,采用网络交换TCP/IP协议,对数据库中的内容进行传递,实现有效存储、处理和服务应用的效果。监控设备采用特殊图形报警,报警设置放置于值班室内,从而方便患者的操作和处理。将访问数据接口进行连接,建立良好的局域网互联效果,实现网络数据信息的实时。及时对数据信息进行有效的采集和传输,实现对通信检测技术设备的有效采集。通过一台主要设备控制多台分质设备,从而有效的提高设备的综合集中化配置过程,对设备的信息终端进行设置,实现远端设备的连接管理,确保不同协议监控管理下,对不同设备之间数据的有效监测管理。另外,加强信息内容的有效反馈,实现工作站的对应显示传递效果。针对不同的协议,需要采用不同的主站转换过程。通过信息反馈确定网元数据,从而实现对不用电平信号的有效测定。
三、测定软件的应用
1.数据库的管理。系统测定软件主要应用数据库、应用平台和相关的应用程序软件进行组织简称管理。通过对实际管理数据的相关数据库管理水平,建立良好地数据库设备实用性管理,确保设备的有效离线数据统计应用,完善通信网络系统的有效数据同步管理。
2.软件应用。根据实际数据和通信实时系统进行管理,及时处理数据库中的相关梳理问题,调整数据平台的测试运行标准,对设备运行数据进行查询记录,采用逐层分析的方法,自动推送语音、文字信息。在短时间内确定计算机网络可能产生的问题。在短时间内追捕数据信息,确定计算机网络时间的逐步降低,从而有效的提升软件应用效率,确保网络正常管理,及时对网络故障问题进行处理,保证网络畅通合理。
四、通信电力检测技术的优势
电力通信检测网络因为是通过传输介质进行传播的,因此每一个都是具有独立的传播通道。通过软件技术,改善服务器上的服务变化类型,通过信息交换对信息媒体进行处理,从而方便通信设备的传输和维护监控,实现网络数据的有效安全信息互换。电力通信技术在电力系统中具有较为独立的配套设备。每一个服务器在管理上都有较为方便的后续维护内容。通过扩网络交换控制通信检测技术分析,提升电力网络通信系统的快速发展,在综合通信技术发展过程中完善信息数据的监控管理。
1.通信图像的检测。检测通信中心的相关调度人员,通过对通信网络电站中的每一个传输设备进行操控,确定固定的摄像图像和摄像时间。给定一定特定的摄像周期,逐步收录设定周期范围内的相关查询过程,确定实际的通信图像测定效果。
2.控制远程遥控控制功能。在变电站内,对需要采取监控测试的工作人员进行远程遥控控制。例如,对没有电站值班的地域进行监控,一到发现有不法分子进入,需要通过自动报警测试系统快速的通知工作管理人员。接到通知的工作管理人员会迅速开启照明设备,记录犯罪分子的犯罪行为。
3.报警功能。报警包括运动和视频两种重要功能。因为变电站的摄像设备常常会被遭受盗窃的问题,造成珍贵视频信号丢失。采用通信检测技术及时报警的方法,确定视频报警的基础报警范围。如果有物体进入报警区域需要快速反应,报警同时响铃。远程变电所在主机响应后的1s后,检测系统主机会在5秒内自动报警提示,确定报警的具置,根据报警类型完善自动报警过程,从而提高现场有效录像效果,从而方便后期的变电保护处理和分析。
现代生物技术作为环境监测的主要技术,其监测水平的高低将直接影响到环境监测的精确度。现代生物技术也叫做生物工程。在分子生物学基础上建立的创建新的生物类型或新生物机能的实用技术,是现代生物科学和工程技术相结合的产物。其特点主要包括以下几点:
(1)可以将物种之间的界限打破。在传统观念中,遗传育种过程中如物种亲缘关系较远,进行杂交成功的可能很小。更无法做到动物与植物之间的结合、细菌与动物之间的结合。但基因工程可以将这些都变为现实,可以打破的障碍;
(2)可以遵循人的意志、目的对生物遗传特性进行定向改造,甚至进行新物种的创造,改变整个生态环境,影响到人类的进化过程;
(3)这种技术可以在遗传物质核酸上直接进行操作,进而新生物类型创造的速度也越来越快。因为现代生物技术的特点,已经成为世界各国专家研究的焦点问题。近年来,这项技术在环境监测中已经取得了不错的成绩。本文主要对环境监测中现代生物技术的生物芯片、生物传感两种技术进行了分析与探究。
2 环境监测中生物芯片技术的应用
目前生物芯片已经可以对公共饮用水内的微生物改变进行实时监测,RhodeIsland大学研发出可以对水中的沙门氏菌与大肠杆菌进行瞬时监测的一种生物芯片技术。细菌检测与鉴定系统的建立可以通过DNA芯片进行,这种方式可以对细菌的种类、浓度进行及时监测,并通过将大量的寡核苷酸探针增添到芯片上可以增强本系统的精准度、扩展其检测范围及提高其鉴定能力。
3 环境监测中生物传感技术的应用
在环境监测中生物传感技术也要进行大气内二氧化碳、二氧化硫等含量与浓度进行分析。点位传感器的制作可通过自养微生物与氧电极进行有效制作,起到多种离子、与挥发性酸的抗干扰作用,并对大气环境内二氧化碳含量进行不间断自动在线分析,这种技术具有较高的灵敏度。安培型生物传感器的制作主要硫杆菌属与氧电极进行有效制作,这种设备可以进行酸雨酸雾样品内二氧化硫含量的检测,微生物传感器主要通过多孔气体渗透膜、固定化硝化细菌及氧电极合成,可以对样品内亚硝酸钠含量进行测定。
4 结束语
北京首都国际机场在T2与规划中的T3航站楼之间拟建两条隧道,两条隧道主体部分相互平行并穿越使用中的机场跑道。两条隧道施工时要求不能停航,为此,在两条隧道基坑开挖施工时,在两条隧道的工作坑外设立2个观测基站。以观测隧道基坑开挖施工时机场跑道及地面各建筑物和设施的变形情况,以指导隧道基坑开挖施工,确保施工和飞行安全。
2工程难点及解决方案
2.1跑道监测难点
要确保跑道正常使用不停航,对监测有以下要求:①监测人员不能进入跑道;②跑道上不能做明显的标志,确保飞行员视线安全;③根据机场安排时间进行监测,听从机场塔台安排;④确保监测精度。
2.2解决监测难点的方案
①监测人员除布点的几个小时外(安排在停航后的夜间,4h内完成)不进入跑道,采用徕卡TCRP1201+系统,对跑道进行不间断的扫描,数据通过监测基站发回办公室,进行实时处理,实时反馈;②跑道上不做明显的标志,在跑道上间隔贴上反射片,反射片数量要少,贴在隧道中间、两边等关键位置的跑道上;③采用徕卡TCRP1201+仪器进行数据采集,莱卡具有激光系统,可保证夜间正常监测;④距离观测站越远的测点误差越大,反之则越小。全站仪的误差为1s,经过计算,采用反射片的关键部位最大误差可控制在0.7mm以内(距离150m),最小误差0.3mm。通过以上措施,数据实时采集、实时监测、实时反馈,同时与其他监测数据进行分析比对,确保监测数据的真实有效性。
3监测技术要点
3.1测点布置
在跑道设31条测线,共设置测点402个。根据专家意见,为尽量减小影响,将贴反射片测点位置定为10m。平面布置见图1。为确保反射片与跑道粘结紧密且不受飞机发动机气流影响,用打磨机在跑道上打磨,测点比跑道低3mm,清理干净,用环氧树脂胶打底,将10cm×10cm反射片贴在跑道上。
3.2监测基站设计
监测基站(见图2)设置在工作坑与隧道开挖影响范围外,基站位置距离跑道150m,视野通透,可以观测到每个监测点。根据方案比选,为满足机场安全要求,基站材料采用易碎的PVC材料,确保即使飞机冲出跑道与基站相撞基站首先碎裂。基站做成一个高6m、边长3m的等边锥形网架结构,全站仪在结构顶部,并设置防护。在基站顶部设置太阳能警示灯,夜间警示灯自动工作。基站结构底部采用1 000mm×1 000mm×500mm素混凝土底座,底座内埋设锚杆螺栓,螺栓与钢板连接,钢板上焊接钢管,钢管与PVC塑料管热熔连接。基站结构表面刷红白相间的警示图案。每次运送仪器及测量人员通行采用升降梯,测完升降梯收回。在网架结构顶部设操作平台,平台上设全站仪保护装置。
3.3数据采集
3.3.1监测点坐标的测量
如图3所示,A、B、C三点坐标分别为(XA、YA、ZA)、(XB、YB、ZB)和(XC、YC、ZC),假设全站仪位置为A点,B点为后视点,D点为瞄准点,则由A点的三维坐标(XA、YA、ZA)和B点的三维坐标测量出D点的三维坐标(XD1、YD1、ZD1);同样,后视点为C时,也可测出D点的三维坐标(XD2、YD2、ZD2)。直接按三维坐标精度分配,两次得到的坐标取平均值,即为最后得到的布置点D的坐标(XD,YD,ZD):XD=(XD1+XD2)/2,YD=(YD1+YD2)/2,ZD=(ZD1+ZD2)/2。
3.3.2地表位移
先测得监测点D的初始坐标为(Z0D),随着施工的继续推进,根据监测频率的要求跟踪监测坐标的变化,当监测点的坐标基本稳定时可停止监测。第k次测量后,计算得D点的坐标为(ZkD),则有在k周期的垂直位移为:ΔZkD=ZkD-Z0D。
4实施效果
为比对监测基站测量的数据是否满足监测要求,在机场停航期间,采用人工测量的方法对数据进行比对,发现人工测量误差与基站测量误差在0.5mm以内,监测基站数据采集真实有效,方案取得成功。
5结束语
利用套管气作为发声声源,有效降低了测试成本。采用精密的声纳传感器、数字滤波技术自动辨识动液面深度,处理后的波形、液面清晰可辨,大大提高了测试液面的准确性。液面自动监测装置预留了标准的ModbusRTU协议的485及232接口,可方便快捷的实现与现有数字化平台的数据传输,并设置了“即时测试”和“定时测试”两种工作模式,可通过控制中心的PC机进行远程设置、修改监测灵敏度、自动检测时间间隔等工作参数。
2现场应用情况
2012年在华庆油田G123-164等4口井完成了现场安装,实现了动液面在线连续监测,采集回放的液面波清晰可辨、计算液面较为准确、可靠。对于低产井,由于地层压力低,地层能量不足,供液能力较差,而抽油泵排量大于地层供给量,造成深井泵出现“空抽”现象,原油中分离出的气体增加了机械无功功率和管杆磨损。因此,如何确定低产井合理生产时间,对提高抽汲效率和节能降耗具有重要的指导意义。
2.1测试结果准确性分析
为验证在线连续监测测试资料的准确性,用常规综合测井仪进行同步测试,与在线连续监测系统测试资料进行了对比分析。测试对比数据(见表1),从表1可以看出两种测试方式测试的液面差值≤38m,最大误差率为2.8%,因此所测资料比较可靠、准确。
2.2低产油井合理生产时间探索
利用动液面在线连续监测技术可实时监测液面恢复及变化情况来摸索油井间抽工作制度。通过对G13井进行停抽液面恢复及开井生产液面连续监测,该井日产液1.07m3,泵深1335m。液面连续监测曲线(见图1),从图1可看出停抽后液面上升速度缓慢,95h上升387m,平均4.07m/h,开抽后液面快速下降,生产19h后液面降至1312m,开抽后9h内液面下降速度快,平均下降30m/h,9h后液面下降逐步变缓,平均下降13m。开抽后从功图看出,刚开始功图充满度较好,9h后(液面1199m)开始出现轻微供液不足,后逐步变差。通过对该井进行液面监测后,确定该井沉没度应在120m以上,此时油井功图饱满,供液充足,油井合理间抽时间确定为5h~6h,试验效果(见表2),实施后与全开时日产液量相差不大,泵效明显提高,日耗电量减少50kW•h。
3结论及认识
数字化监测技术的应用需要依靠检测系统的支持,该技术的基础部分可以分为四个方面:数据信息的获取、数据的储存和分类,数据传输和数据运算分析,只有对这四部分进行仔细的研究,最后才能完成对大气环境信息的数字化处理。在数字化测量技术的结构上而言,它运用双主系统模式,主系统下共有三个子系统,主要的功能分别为:数据采取功能、客户服务功能与服务器功能,其中大气环境数据的数字化采集环节是另外两个子系统的关键和基础,客户服务功能的主要作用是根据客户的要求,将监测到的大气环境数据进行处理,随后将处理结果传输到指定的控制中心,经过运算分析和处理,所得的数据会更加的直观,还可以向客户提供处理之前的数据,以便客户根据不同研究方面对数据进行自行处理。服务器功能的主要作用是响应客户的搜索及查询要求,建成完善的服务网络,进而满足客户的各类要求。客户服务功能和服务器功能在运行时可以实现相互独立,这样不仅可以避免相互干扰,还能在出现问题时进行及时的针对性维修养护,进一步地提高了大气环境监测工作的效率。
2数据的采集
计算机设备和I/O接口是数字化测量技术的重要组成部分,也是大气环境检测数据采集工作的重点。通过计算机数字化技术满足获取、放大和转换大气环境数据的功能,其中多台组合虚拟仪器的监测系统使用的I/O接口设备属于总线,而单独的虚拟仪器监测系统使用的I/O接口设备属于数据采集卡,其中使用较为广泛的有VISA总线和RS232,可以结合相关部门计算机设备的具体情况进行选择。数字化客户服务功能在大气环境数据的数字化采集过程完成后,通常需要将数据进行加工和处理,处理之后的数据才可以储存到系统当中,通过人机交互的方式提取相关信息为客户呈现数据结果,因此作为大气环境数据信息终端的数字化客户服务功能,可以为客户提供各种数据信息的搜索功能。另外,不同等级的客户对处理后数据的精度要求也存在一定的区别,数字化客户服务功能可以从客户的实际以及基本要求出发,为客户提供具有针对性的数据,使得大气环境检测结果更加直观、全面,从而为不同客户的不同研究方向提供便利。服务器功能数字化服务器功能是数字化测量技术顺利应用的重要基础,也是实现客户功能的重要保障环节。它在大气环境检测中的作用在于为数字化测量的结果提供储存的空间、运算分析等关键功能,另外为了确保服务器功能具有更高的灵活性,可以对服务器的系统进行人工录入和参数修改,使其适应实际测量过程中的不同要求。
3结语
随着工业的发展,水环境中有机污染日益严重,因此有机污染物监测已成为当今世界的研究热点。斯德哥尔摩会议规定禁止或限制使用12种有机物,“加强环境调查,尤其是在发展中国家”是该次会议的重要基本原则之一。受到农药和有毒物质污染的食品,禁止出口,许多国家提出了更高的卫生要求,出口食品农药残留量和有毒物质含量标准规定到了近乎苛求的地步,我国作为WTO的成员国,高效、快速地监测有机污染物已成为刻不容缓的艰巨任务。
有机污染物具有一定的生物积累性和“三致”作用,甚至有些痕量有机物的危害也是很大的,因此不断寻求痕量、超痕量污染物的监测方法是当今有机污染物监测的重要任务。随着经济社会的快速发展以及对环境监测工作高效率的迫切需要,研究高效、快速的有机污染物监测技术已成为国际环境问题的研究热点之一。
沉积物是水体污染物沉积的归属地,污染物在水和底泥的两相间存在着迁移转化行为,在一定条件下(如洪水爆发、河道清淤)又会污染水体。因此有效地分析监测河流和水库沉积物中的污染物,对于治理水体污染有重要意义。此外,沉积物中的有机污染物和水体中的生物间还存在着二次污染问题,因而世界各地开展了一系列研究课题。我国地表水环境质量标准(GB3838-2002)水源地特定监测项目中规定了68种有机污染物的标准限值,因此,迫切需要有机污染物监测的先进技术普及与推广,特别是在水利系统,对有机污染物的监测工作研究不够,急需先进的监测技术支持并指导水质监督工作的发展。
有机污染物监测主要包括样品前处理和仪器检测两部分。而样品前处理技术在有机污染物监测中起着重要的作用,快速溶剂萃取技术就是一项先进的用于固相、半固相物质中痕量有机物前处理的方法。
二、有机污染物前处理现状
固体样品有机物的前处理主要是采用液固萃取方法,即利用有机物在不同溶剂中溶解度不同,将待测有机物提取出来,传统的方法主要有索氏提取,以及后来进一步发展起来的自动索氏提取、超声萃取、微波萃取、超临界萃取等,但有机溶剂的用量仍然偏多,萃取时间较长,萃取效率不够高。
水环境监测具有采样点多、样品数量大、时效性强等特点,特别是需要一些应急监测措施,上述前处理方法不能满足水环境监测高效、经济的现代化需要。近几年来发展的全新的前处理方法——快速溶剂萃取法,是一种在提高温度和压力的条件下,用于萃取固体物质中有机物的自动化方法,与前几种方法相比,其突出的优点是有机溶剂用量少、快速、回收率高,该法已被美国EPA选定为推荐的标准方法,具有世界领先水平,是解决水环境中底泥、土壤等固相物质中挥发性、半挥发性和持久性有机物(POPs)分析、监测的有效方法。
三、快速溶剂萃取技术
快速溶剂萃取(AcceleratedSolventExtraction,ASE)技术是根据溶质在不同溶剂中溶解度不同的原理,利用快速溶剂萃取仪,在较高的温度和压力条件下,选择合适的溶剂,实现高效、快速萃取固体或半固体样品中有机物的方法。在高温条件下,待测物从基体上的解吸和溶解动力学过程加快,可大大缩短提取时间;由于加热的溶剂具有较强的溶解能力,因此可减少溶剂的用量;在萃取的过程中保持一定的压力可提高溶剂的沸点,提高萃取效率,保证萃取过程的安全性。
3.1技术原理
(1)升高温度。温度的提高有利于克服基体效应,加快解析动力学,降低溶剂粘度,加速溶剂分子向基体中的扩散,提高萃取效率。该仪器的允许温度范围:50℃-200℃。常规使用的温度范围75℃~125℃,对于环境中一般污染物常用温度100℃。
在高压下加热,高温的时间一般少于10min,实验证明热降解不甚明显,可用于样品中易挥发组分的萃取。
(2)增加压力。液体的沸点一般随压力的升高而提高,增加压力使溶剂在高温下仍保持液态,并快速充满萃取池,液体对溶质的溶解能力远大于气体对溶质的溶解能力,提高了萃取效率,并保证易挥发性物质不挥发,增加了系统的安全性。该仪器的允许压力范围:(1000-3000psi),常规使用压力一般保持在1500psi(10MPa)。
(3)多次循环。根据分析化学中少量多次的萃取原则,在萃取过程中利用新鲜溶剂的多次静态循环,最大限度的接近动态循环,提高萃取效率。常规采用2~3个循环,即可达到良好的萃取效果。
3.2工作过程
(1)样品的准备。含水样品会降低萃取效率,萃取前需通过自然风干或加入干燥剂(例如硅藻土等)进行干燥,但不要使用硫酸钠,在高温下会凝结。样品颗粒的表面积越大,萃取的效率越高,萃取前需研磨颗粒粒径小于0.5mm,聚合体样品最好在低温,例如液态氮保持低温状态下,通过加入添加剂后进行研磨。在萃取时要加入分散剂,例如颗粒较细的海砂或硅藻土,提高萃取效率。
(2)萃取剂的选择。合理选择萃取剂对于有效地萃取目标化合物有着重要的作用。除强酸(盐酸、硫酸、硝酸)外,有机试剂、水和缓冲溶剂均可用于ASE,根据相似相溶原理,萃取剂的极性应接近目标化合物。不同极性溶剂的混合物可适用于多类型化合物的萃取。常规使用的溶剂有:二氯甲烷、三氯甲烷、石油醚、丙酮等。
(3)技术特点。溶剂被泵入填充有样品的萃取池,加温、加压,数分钟后,萃取物从加热的萃取池中输送到收集瓶中,经净化、脱水、浓缩处理,供色谱分析用。加速溶剂萃取仪的构成和工作程序如下图所示(如图1)。
ASE有机溶剂用量少,10g样品只需15mL溶剂;快速萃取,完成一次萃取全过程的时间一般需15min;基体影响小,对不同基体可用相同的萃取条件;萃取效率高,选择性好,已进入美国EPA标准方法,标准方法编号3545;便于方法的开发和发展,已成熟的溶剂萃取方法都可用于加速溶剂萃取法的开发利用;使用方便、安全性好,可达到12个样品连续自动萃取,全程自动化。
3.3适用范围
ASE可用于底泥等固体物质中酸性、碱性和中性物质的萃取,尤其对水环境中的有机氯和有机膦农药、氯代除草剂、多氯联苯类物质、二恶英、多氯二苯呋喃,总石油烃、柴油和废油等的萃取十分有效。
四、ASE与其它前处理技术比较
4.1与各种传统萃取技术比较
ASE方法可以完全取代人们所熟知的传统的液固萃取方法,如索氏提取、自动索氏提取、超声萃取等。表1是几种传统的萃取方法与ASE方法的对比情况。
从上表的对比数据可见,ASE萃取同样的样品量所用的溶剂最少,溶剂样品比仅为1.5∶1;其它方法的萃取时间用小时计算,ASE仅需12-20分钟。ASE是一个节省时间、节省溶剂、高效率的全自动萃取技术。
4.2与超临界萃取技术比较
ASE技术比超临界萃取技术具有更多的优势,二者比较情况见表2。
由上表可见,ASE技术操作更简便,适用范围更广泛。由于ASE萃取池最大为100mL,故一次可处理大量样品,更适合于痕量、超痕量污染物的萃取。ASE已列入美国EPA标准方法,符合标准化要求。
4.3与索氏提取技术比较
索氏提取是传统的萃取方法,也是目前大多数实验室普遍使用的方法。ASE可以完全取代索氏提取,并有非常明显的优势,二者比较见表3。
采用ASE技术可在较短的时间内获得更好的萃取效率;萃取溶剂的用量明显减少,从而使得单个样品的提取费用也显著降低;由于采用密闭系统,大大降低了有机组分的损失,提高了回收率。
五、问题与展望
ASE是近年来发展的现代化萃取技术,由于其突出的优点,已受到环境污染监测工作者的极大关注。ASE技术在处理底泥等固相物质中具有强大的优势,但仍具有其局限性,它不适于水中有机污染物的监测,因此在水环境监测中应进一步提高水中有机物监测技术水平。
水中挥发性有机污染物监测也应改变传统的顶空气相色谱法,发展吹扫捕集气相色谱法;对于水中半挥发和难挥发、难降解有机物的监测,应发展固相萃取技术,促进水中有机污染物监测现代化技术的发展。
ASE技术的高效萃取性能及其仪器高度自动化的完美结合大大改善了环境污染物监测工作质量和效率,对实现环境监测的现代化有重要的现实意义。在水环境监测中,应系统地发展吹扫捕集、固相萃取、快速溶剂萃取(ASE)技术,这三种前处理技术的结合可对水环境中有机污染物进行较完整的处理,再与色谱技术的联合使用,即可较全面地监测水环境有机污染状况,为进行污染趋势分析及研究控制对策提供可靠、全面的科学依据,从而促进水利现代化的可持续发展。
参考文献
[1]张景明.水样中痕量有机物分析的前处理方法.中国环境监测,2001,17(3):31~33
[2]牟世芬.加速溶剂萃取的原理及应用.环境化学,2001,20(3):299~300
[3]刘晓茹.我国水环境有机污染现状与控制对策.水利技术监督,2002,5:58~60
电力通信建材系统综合计算机网络科学技术,在结构上主要有两大部分组成:中心站和站。整个电力通信监测系统外表是用高速以太网,数据采集器,数据库服务器,监控工作站等部分组成。各个分站负责数据采集,将采集到的数据反馈到中心站,中心站通过科学数据手段对数据进行分析,并对各种通信设备做出判断。对出现故障的设备作出预警。中心站监控服务器对数据进行存储,在服务器上设立数据服务器、文件服务器,应用服务器三种作用的实时数据库,对分站传回的数据做出及时的处理和分析。为保障系统连续工作,服务器的工作方式为双机集群。通过双机集群方式,避免数据的丢失,提高数据的安全性。在主服务器出现故障时候,备用服务器要及时进入替代主服务器。电力通信监测系统一定要设置防火墙,防止外部侵入或者电脑中毒,给电力通信带来不必要的损失。
2电力通信监测系统的软件构成
(l)实时数据库和管理数据库:实时数据库负责实时的数据处理,体现了及时性。管理数据库负责对历史数据进行分析处理,不断总结,为科学监测提供详细的数据支持;(2)电力通信监测系统软件的应用平台:调度应用平台、图形数据处理平台、运行管理平台,通过这些平台实行对电力网作者简介:程岩(1980.1一),吉林四平人,职称:讲师,硕士研究生,检测技术与自动化装置专业,研究方向:职能测控技术。络的监控和管理。通过对终端数据的实时监测,数据分析,及时发现故障并解决问题,保障电力网络系统的安全运行;通过系统的升级,提高效率和电力网络的管理水平;根据终端传输回来的数据,软件可以进行数据分析,找到故障的原因和位子,及时通知电力网络的管理人员。在管理人员未采取措施之时,迅速作出反应,避免大的电力网络事故的发生,确保电力网络的安全。
3通信监测技术的应用