时间:2023-03-23 15:12:48
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇分离技术论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
(1)技术优势。旋流分离技术作为一种高效节能的分离技术,在油水分离中可用于油污水去油和含水油脱水。旋流器是旋流分离中的重要设备,旋流器分离效率与普通的分离技术相比,停留时间短、体积小、效率高,它能够将水中的浮油、分散油有效地处理掉,减轻对环境产生的污染。在我国的过滤与分离技术应用中,已有9%的油田采出水用水力旋流器进行处理。旋流器拥有以下几个优势:
①设备构造简单、所需购置成本不高、能耗相对较低,而且在进行分离时不需要任何帮助分离的介质;
②由于旋流器的体积较小,所以设备在安装方面难度系数小,一旦调试好,就能持续、稳定地工作;
③分离效率高、适应力强,受外界影响较小,工作的温度及压力只受旋流器结构材料的影响。尽管如此,旋流分离技术也存在一定的缺陷:首先,在液体流动时,会产生剪切作用,如果设计的参数有误,容易导致含油污水中的油滴被打碎乳化的情况出现,进而使分离达不到预期的效果;其次,由于物料的性质存在差异,所以在旋流器的结构大小和操作条件等方面,不同的油田需求也不相同,这就造成了旋流器大多不能通用;最后,在乳化油的处理上,旋流分离技术仍有待提高。
(2)国内应用研究现状。经国内外专家多年的努力,在旋流分离数值模拟分析、旋流管外特性研究等方面,旋流分离技术取得了重大进展,对这项技术的研究也正趋于规范和完善,目前正准备将初步的研究成果转向产品化。从总体上来说,我国在含油污水的处理问题上,其技术相对较为落后、发展条件不足、人员管理较为松散、组织管理水平低。基于上述情况,对静态液—液旋流分离技术的研究还需要深入探讨。
(3)未来研究发展趋势。要想使液—液旋流分离技术得到更好的应用,不仅需要改进它的一些特性,如设备特性、介质特性及操作特性,而且需要对系统进行全盘设计,以提高系统的工作效率。其中,液—液旋流技术研究的主要方向是开发新设备,以低阻高效为设备的开发标准。此外,新型旋流管的研发也十分重要。经过多年的研究与创新,旋流管在结构上有较大改进,其参数也得到优化。除了了解该项技术的基本特性外,未来研究的一个重要领域是动态液—液旋流分离技术。根据国外研究的相关数据表明,动态水力旋流器的除油效果相比静态水力旋流器除油效果更佳,尤其是对于那些细微的油滴。此外,应用这项分离技术耗能相对较小。
2膜分离技术处理采油污水
膜分离技术是超精细过滤器技术中常见的一种采油污水处理技术。膜分离技术能够有效地处理采油污水,它主要是利用膜的选择透过性来开展工作的。如果油粒子的粒径为微米量级,用机械方法进行前处理。现阶段,膜分离技术的产生使得传统的分离技术被淘汰。根据ACHEMA展览会的记录可以发现,目前发展速度最快的过滤与分离技术即为膜分离。膜分离技术的发展主要表现在以下两个方面:首先,国外利用自身先进的科技条件,开发出多种膜制造技术,金属材倒膜、空心纤维膜和液膜等结构都是其重要的研究成果。其次,在膜分离技术的发展方面,已对有机聚合材料进行了开发,像聚乙烯、聚丙烯、聚矾等。膜分离技术的发展除了表现在以上两个方面,还有一种复合膜。这种复合膜是将有机聚合材料与膜制造技术相结合的。
2.1超滤膜的应用现状
根据相关文献记载,超滤膜法处理乳化油废水在国外已有几十年的历史。在20世纪80年代,西德已有超过250个超滤膜设备投入使用。相关资料显示,每套设备处理含油乳状液的能力为l~20m3/d。这个时期,膜组件分为卷式、板框式和管式三种。到80年代末90年代初,膜生产单位的分离技术取得了进步,能提供系列膜设备。现今,上海宝钢通过使用AbCor公司的管状膜大型超滤设备,将乳化油废水进行处理,效果明显。张玉忠等人曾经做了一个实验,这个实验的主要内容为:把自行研制的MTB—I型耐温中空纤维膜与MTB—V型加拿大的中空纤维膜的处理效果进行对比。根据实验的结果,可直接得出一个结论:对于未经处理的含油率高的污水,效果欠佳,与国外差距较大;对经过预处理的含油量低的污水进行处理,效果明显。
2.2膜器的研究进展
由于依靠改变流动状态或设置流道障碍的传统静态十字流膜滤技术已经不适应时代的发展,目前,技术人员已经转移了工作重点,重点开展新型膜器的研究,主要是对其进行利用膜运动施加离心力和外加场力两种方式的研究。膜生物反应器污水处理技术就是新型膜器研究下的产物,它使得污水生物处理工程中的生物反应器与膜分离技术中的超滤组件结合在一起,这不仅提高了工作效率,还能降低能耗。由此可见,它的发展前景还是相对较好的。在油田污水中,受技术条件的限制,一些问题的处理不够彻底,所以研制一种多强化方式的膜滤设备是十分有必要的;同时,需要建立对应的过滤理论模型,并研究其分离机理。随着科技的进步,膜分离技术在油田采出水处理中的应用力度不断增加。其特点主要体现为精度高、易自控化。受我国过滤技术水平的影响,以及经济条件的限制,其在大型工业化规模中投入使用的条件不够成熟。笔者认为,膜分离法的核心技术问题体现在高效高渗透性膜和提高处理量两方面,但实践起来相对困难。综上所述,对膜器的研究提出了更高的要求。
3过滤分离技术的展望
纵观我国过滤分离技术研究的成果,主要集中在过滤器和过滤装置方面,其最终目的都是为了使流体系统得到净化。在一些发达国家,已经深入对这种技术进行了探讨,并且耗费了许多时间及精力。在过滤分离技术领域,我国没有取得突破性成就,甚至没有一套完整的过滤分离技术的科研生产体系。值得提出的是,我国的过滤材料没有在研制计划内。另外,在过滤分离技术方面,还存在一些技术标准、测试设备和质量控制等不完善的情况。在未来对过滤分离技术进行研究时,应重点放在过滤材料及过滤器方面。
(1)过滤材料。过滤是处理含油污水的最后一个环节,也是最为关键的一个环节,它决定着水质能否达标。过滤能否发挥应有的作用,主要由过滤材料的性能决定。所以,在过滤分离技术发展应用中,要把滤材研究作为一项重大任务进行。在发达的工业国家,十分重视过滤材料的供应,鼓励建设更多的滤材生产厂家,用来生产各种滤材。
关键词:饮用水水处理纳滤膜分离技术
前言
膜分离技术是物质分离技术中的一个单元操作。膜法分离的最大特点是驱动力主要为压力,不伴随需要大量热能的变化。因而有节能、可连续操作、便于自动化等优点。膜分离中的微滤(MF)、超滤(UF)不能脱除各种低分子物质,故单独使用时,出水质量仍较差。反渗透膜(RO)有较强的去除率,但在去除有害物质的同时也去除了水中大量有益的无机离子,出水呈酸性,不符合人体需要。而纳滤膜(NF)分离技术在有效去除水中有害物质的同时,还能保留大多数人体必须的无机离子,且出水pH值变化不大。这种水处理对于我国的饮食结构而言,尤其是营养结构单一的人员来说,更易被接受,也更加合理。
为进一步开发和纳滤膜,以便其更有效地于水处理,我们安装了两种型号的纳滤膜设备并进行了比较研究,这两种型号的纳滤膜均由美国Trisep公司生产,材质为PA,型号分别为NF1(NFTS40)和NF7(NFTS80)。
1、纳滤膜的定义及分离原理
1.1纳滤膜的定义、特点
NF膜早期被称为松散反渗透(LooseRO)膜,是80年代初继典型的RO复合膜之后开发出来的。可这样来论述“纳滤”的概念:适宜于分离分子量在200g/mol以上,分子大小约为1nm的溶解组分的膜工艺。
纳滤膜的一个特点是具有离子选择性:具有一价阴离子的盐可以大量渗过膜(但并不是无阻挡的),然而膜对具有多价阴离子的盐(例如硫酸盐和碳酸盐)的截留率则高得多。因此,盐的渗透性主要由阴离子的价态决定。
1.2纳滤膜的分离原理
纳滤过程之所以具有离子选择性,是由于在膜上或者膜中有负的带电基团,它们通过静电互相作用,阻碍多价离子的渗透。根据[1]说明,可能的荷电密度为0.5~2meq/g.
为此,我们可用道南效应加以解释:
ηj=μj+zj.F.φ
式中ηj——电化学势;
μj——化学势;
zj——被考查组分的电荷数;
F——每摩尔简单荷电组分的电荷量(称为法拉第常数);
φ——相的内电位,并且具有电压的量纲。
式中的电化学势不同于熟知的化学势,是由于附加了zj.F.φ项,该项包括了电场对渗透离子的。利用此式,可以推导出体系中的离子分布,以出纳滤膜的分离性能。
2、纳滤膜处理饮用水的应用研究
2.1纳滤膜处理饮用水的流程
为增强两种型号膜组件的可比性,我们采用同一流程,即:
原水10μm保安过滤器活性炭过滤5μm保安过滤器NF7出水。
原水10μm保安过滤器活性炭过滤5μm保安过滤器NF1出水。
其中,10μm保安过滤器用来除去原水中的悬浮物;活性炭吸附可去除水中的部分有机物;5μm保安过滤器用以保证膜组件的安全正常使用。
2.2试验结果的讨论
2.2.1TOC结果比较
为了NF1、NF7两种膜对有机物的去除情况,在相同条件下取原水、活性炭出水及产水率为15%时的NF1、NF7出水水样测定TOC,结果见图1.
图1TOC去除率比较
由图1可知,在TOC的去除效果上,活性炭对TOC有一定的去除效果,但仍有一部分未能去除;纳滤NF1对TOC的处理效果较好达到93.9%;而纳滤NF7对TOC的处理效果不够理想。
2.2.2色谱-质谱联机分析结果和讨论
取原水,活性炭出水,NF1,NF7出水水样各20L,经吸附、洗脱、浓缩,用色谱-质谱联机分析。GC/MS结果见表1.
原水中检出有机物26种,这些物质中有毒有害物质11种,占水中有机物总数量的42.3%,其中优先控制污染物2种。原水经过活性炭吸附后,有机物去除了17种,新增11种,对其中的9种无去除能力,说明活性炭对有机物的去除效果不够理想;经过膜处理后,NF7出水检出有机物11种,对致突变物的去除率为75%;NF1出水检出3种有机物,致突变物的去除率为87.5%.说明在三致物质的去除效果上NF1优于NF7.
造成以上结果的原因大体可这样描述:在处理有机物中性组分时,电的相互消失了。对于这样的物料,将根据其分子的大小进行分离,分子量超过200g/mol的组分被完全截留,而摩尔质量较低的小分子则可以渗透。对于有机物料体系来说,以少量测量数据为基础的扩散-溶解模型可以很好地描述纳滤膜对有机物的分离特性。
2.2.3Ames试验结果讨论
取原水、活性炭出水、NF7、NF1出水各100L进行吸附、洗脱、浓缩后进行Ames试验.
2.2.4脱盐率比较
取NF1、NF7进出水水样对其电导率进行测定.
3、结论及建议
(1)NF1对TOC的处理效果较NF7及活性炭吸附的效果更为理想,达到93.9%.NF1对水中有机物及三致性的去除效率高,出水Ames试验结果为阴性。(2)NF1在去除水中有害物质的同时,能够保留较多的无机离子,更加符合我国的饮食结构,满足现有条件下人员的健康需要。(3)在纳滤膜分离技术处理饮用水时,建议使用NF1膜组件。(4)纳滤膜的分离机理及相应的数学模型需进一步探讨。
:
[1]JjitsuharaI,KimuraS.StructureandPropertiesofChargedUltrafiltrationMembranesofSulfonatedPolysulfone.JChemEng.Japan,1983,16(5)
[2]IkedaK,etal.NewCompositechargedReverseOsmosisMembrane.Desalination,1988,68:109~119
分离式基座检查井原理为将以往的一块预制基座钢筋砼板坐落在井筒上,井圈井座坐落在预制盖板上的传统设计方式调整为现浇钢筋砼基座及基础,井筒较以往完成面高程降低。基座采用现场浇筑,能与井周回填料紧密结合,且便于调整基座标高。钢筋砼基座与井筒之间预留100~150mm的间隙,使井基座与井筒分离,井基座承受荷载通过基座基础、砼垫层传递到土路床,使检查井井筒不受路面荷载影响,井基座与道路设置胀缝,井筒与井基座基础之间用低发泡填缝板隔开,如图1所示。
1.1操作工艺流程施工准备清除素砼垫层区域杂物C15素砼垫层浇筑第一层水稳施工清除基座基础范围内的水稳料第二层水稳施工清除基座范围内的水稳料钢筋网片制作安装基座砼浇筑第一(二)层沥青摊铺井盖及支座加固安装面层沥青摊铺。
1.2施工方法
1.2.1水稳料摊铺水稳料摊铺过程应充分考虑检查井基座垫层、基础及基座尺寸范围,根据分离式基座井剖面图尺寸四周多摊铺20~30cm,摊铺时注意压实机械设备的功率及碾压遍数、速度应满足压实度要求,同时加盖钢板注意对井口的保护及遮盖,避免摊铺料掉入井内。
1.2.2井周基层开挖在素砼垫层及基座基础位置的碎石、水稳料清除时采用风镐破除反开挖施工,基座范围采用切割机切割沥青砼清理;所施工范围内需清理干净并保证槽壁直顺,严禁采用机械开挖。
1.2.3素砼浇筑砼浇筑前应用高压空气吹出底层四周浮渣后用水冲洗、湿润,不能积水,砼应振捣密实。
1.2.4钢筋制作安装基座基础及基础均设置钢筋网,钢筋加工及骨架尺寸应符合设计及规范要求。基座基础钢筋骨架应采用φ12@150双向双层布置,井口位置采用16根φ14钢筋上下两层斜向布置;基座钢筋采用φ16@150单层布置,井口位置采用4根φ18沿井口环向布置,上下骨架安装应与井口位置吻合,保证保护层厚度;骨架应牢固,砼浇筑时避免踩踏。
1.2.5检查井基座及基础砼浇筑基座基础砼浇筑时先将水稳料清理干净,并湿润砼基础面,于井筒位置放低发泡填缝板隔断,避免瞬间冲击荷载对井筒的影响;基座砼浇筑前安装好基座模板框,在基座与井筒间预留间隙确保形成分离式结构;砼完成面应考虑路面的高程、纵横坡,可在砼浇筑前在井框上做好标识。砼终凝前进行人工拉毛,以便砼与沥青结合良好。砼应养护7d以上,养护期间严禁碾压破坏。
1.2.6井盖及支座加固安装井盖及支座安装前必须确保砼已养护7d以上,沥青摊铺面层时将铸铁井盖安装上去,用螺栓固定在基座上,高度调节通过橡胶垫块来完成,橡胶垫块也可增强支座的稳定性。
1.2.7沥青摊铺井盖及支座安装后即进行沥青面层摊铺,在井孔位作出标志,井筒上覆盖钢板,避免摊铺机摊铺时料渣掉入井内。
1.3其他建议(1)检查井砼垫层标号可以适当提高,把目前普遍的C15标号提高到C25或者C30钢筋砼底板基础,不落底的检查井基础与管道基础同时浇筑确保一次成形。有落底的检查井先浇筑检查井基础,然后砌筑井筒到管道基础底标高再浇筑管道基础。砼浇筑完后要有一定的养护期,使砼基础强度达1.2MPa以上;(2)提高管理及施工人员的质量意识和责任心,要从思想上充分认识到检查井周边下沉给整体工程质量带来的不良影响,完善过程考核奖罚措施,加强对作业工人的技术交底和过程监控,作业工人必须考核合格后再上岗;(3)检查井周边回填料首选碎石土、砂类土、石灰土、水稳料或C15素砼,要杜绝回填垃圾、树枝及淤泥质土等不合格填料;(4)受压实机械设备作业范围影响,检查井砌筑时井筒周边50cm范围内应配以小型机具,如蛙式打夯机、小型振动碾等保证死角及薄弱区域的压实,碾压厚度控制在15cm左右一道。虽采用分离式基座井已能大幅度地避免因井筒周边回填压实不达标而下沉的影响因素,但井筒周边必须按规范要求分层碾压;(5)井盖标高的调整在粗粒式沥青摊铺后进行,检查井井盖标高调整时应顺道路纵横向四个方向测定,以免形成单侧高出路面;(6)支座安装时,将检查井盖的铰接端平行安装在与车辆前进相反的方向,使车轮碾过铰接端到达开启端时不因铰接端翘起引起震动响声;(7)沥青面层摊铺时应设专人进行指挥以免机械设备损坏检查井座及井盖,基座砼必须养生达到设计强度后才能上机械进行碾压,对压路机碾压不到的地方采用人工打夯机夯实。
2结束语
关键词:证券投资技术分析理论前提思考
证券投资技术分析通过分析证券市场过去和现在的市场行为(成交量、成交价、价格变化的时间和空间),来预测证券价格未来的变化趋势。在现实的证券投资活动中,技术分析占有非常重要的地位,在证券投资的理论体系中,技术分析与证券投资基本分析,证券投资组合理论具有同等重要的地位。
技术分析理论是建立在三大假设基础之上的,技术分析的第一假设认为市场行为会涵盖一切信息,影响股票价格变化的所有因素,都会反映在市场行为之中。故此,我们在预测股票价格的未来变化趋势时,没有必要对影响股票价格的因素具体是什么作过多的关心,我们的注意力应该放在对市场行为的研究上,只要我们弄清了股票价格涨跌、成交量增减、价格变化的时间空间等市场行为结果的含义,我们就可以预测股票价格的未来变化趋势。这一假设对技术分析具有非常重要的意义,是技术分析的理论前提。如果不承认这一假设,或者说这一假设并不存在,技术分析将会失去其存在的价值。如果市场行为并没有包括全部的、所有的影响股票价格的因素,那么我们仅仅使用研究市场的成交价、成交量和价格变化的时间和空间这些市场行为的最终结果的方法,就想达到预测和把握市场价格的未来变化趋势的目的,就只能是以偏概全、一厢情愿了。
对于技术分析的这一重要假设和理论前提,我国理论界占主流地位的观点认为,是具有一定合理性的。笔者认为,这一看法是值得商榷的,无论从理论上还是从投资实践上来看,都不能够证明市场行为可以涵盖一切信息的结论是正确的,这一假设究竟具有多少合理的成分,值得我们深入地进行研究。
市场行为涵盖一切信息并无可靠性
任何一个假设的成立都必须经过理论和实践的检验,只有在理论上具有可靠性,在实践中具有可操作性,我们才能够得出结论说这一假设是正确的。市场行为涵盖一切信息在理论上具有可靠性吗?我们认为,回答应该是否定的。
首先,技术分析所说的市场行为,实质上是指市场参与者即投资者的行为。正是投资者看涨或看跌的预期、买入或卖出的决策导致了股票价格的波动和成交量的变化,而投资者预期的形成是对影响股票价格的多种因素进行理性分析的结果。这里似乎可以可推出一个顺理成章的结论,这就是影响股票价格波动的因素决定了投资者的预期,而投资者的预期又决定了投资者的行为,我们分析市场上投资者的行为结果(成交量、成交价),实际上就是分析投资者的预期,就是分析影响股票价格的所有因素。认真分析我们就不难发现,这一系列推理在逻辑上并不具有必然的联系,其可靠性值得怀疑。不错,投资者在投资决策过程中,首先要对影响股票价格未来变化的因素进行研究,而后形成对股票价格未来走势的判断,最后作出或买或卖的决定。但是,问题的关键在于,投资者在对影响股票价格变化的因素进行分析时,必然会带有不同的主观个性特征。投资者对影响股票价格变化因素的分析过程实质上是一个认识过程,一个能动的反应过程,这一过程不能不受到投资者理论素养、价值标准、思维方式、个性特征和心理状态的影响。面对同样的客观条件,不同的投资者完全可以作出不同的结论,采取不同的投资决策,从而表现出不同的甚至相互矛盾的市场行为。这样的市场行为究竟具有多少客观成分,究竟在多大程度上客观地反映了现实情况,值得研究。显然,我们不能祈求仅仅用这些行为的客观表现(成交价格和成交量的变化情况)就可以把握所有的信息、就可以把握所有的影响股票价格变化的因素。
其次,如果说市场行为可以涵盖所有信息的结论成立,它需要的一个基本条件是,这里所说的市场行为必须是理性的行为,而不是非理性的行为。那么,投资者在投资过程中所表现的行为是理性的吗?按照经济学的一般假定,从个体的角度来看,作为经济活动参预者的投资者同任何其他经济主体一样必然具有追求收益(利润、效用)最大化的理。但是,这种个体的理并不能够保证集体行为也是理性的,在很多情况下,正是个体的理性导致了集体的非理性。技术分析所说的市场行为,显然指的是投资者的集体行为,而并非投资者的个体行为,这种投资者的集体行为,我们不能够从理论上证明它必然是理性的行为。现实生活告诉我们,证券投资者集体行为往往表现出很强的非理性成分,股票价格的暴涨暴跌、大起大落、股市泡沫的快速形成和迅速破灭,己经充分说明了这一点。
再次,证券的虚拟经济性质,已经证明证券市场的交易行为(成交价格、成交量)并不能够充分的、客观的反映影响证券价格变化的所有因素。股票、债券和证券衍生品代表的是金融权益资产,属于虚拟经济的范畴。证券的运动不仅与生产资本的运动相脱离,而且还与其所代表的资金的运动相脱离。在实体经济中,供求规律决定着交易价格的波动,价格会自动回归到市场供求的均衡点。虚拟经济的交易价格则取决于人们对未来的预期,价格上升会刺激人们的获利欲望,购买需求扩张,从而推动价格的进一步上升;价格下跌,又将刺激人们的止损欲望,供给急剧增加,需求急剧萎缩,从而导致价格的进一步下跌。当交易进入某种难以为继的状态时,就会出现价格的急剧变化,市场价格很难回到真正的市场供求平衡点。由此可见,虚拟经济具有天然的制造经济泡沫和投机的成份,其价格具有极大的误导作用。
最后,从有效市场理论的角度来看,市场行为涵盖一切信息的结论对证券的投资决策并不具有任何的指导意义。有效市场理论,是1965年美国经济学家法码(EugeneFama)最先提出来的。在这一理论中,法码将证券市场分为弱有效型、半强有效型、强有效型三种形式。这三种不同的市场形式的区别,主要表现为证券价格对市场信息的反应程度不同。在强有效型市场中,证券价格能够充分和快速地反映所有的相关信息,任何人都不能够通过对信息的私人占有而获得超额利润。通俗地说,在一个强有效型的市场中,证券价格的变化是随机的和不可预测的。显然,如果我们认为证券价格的变化这一市场行为的最重要的表现已经反映了市场的所有信息,证券市场是强有效型的,技术分析的理论前提是正确的,我们就会得出证券价格的变化是随机的和不可预测的结论,从而也就否认了技术分析存在的价值。反之,如果我们肯定运用技术分析可以预测证券价格的未来变化趋势,就必然要否认证券价格的变化能够反映市场所有信息的结论,从而也就否认了技术分析所赖以存在的理论前提。
评价技术分析须实事求是
从以上的分析中可以看出,市场行为涵盖一切信息这一技术分析的重要理论前提实际上是并不成立的。虽然技术分析是千百万投资者上百年投资实践的经验总结,这种经验总结对现实投资活动肯定具有一定的借鉴意义,但是它毕竟属于经验性质的范畴,并没有形成一个完整的、具有逻辑联系的理论体系。因此,我们在任何时候都不应该夸大技术分析对投资实践的指导作用。
关键词:区域经济差异理论研究
一、主要的区域均衡发展理论简介与评述
1.赖宾斯坦的临界最小努力命题论。主张发展中国家应努力使经济达到一定水平,冲破低水平均衡状态,以取得长期的持续增长。不发达经济中,人均收入提高或下降的刺激力量并存,如果经济发展的努力达不到一定水平,提高人均收入的刺激小于临界规模,那就不能克服发展障碍,冲破低水平均衡状态。为使一国经济取得长期持续增长,就必须在一定时期受到大于临界最小规模的增长刺激。
2.纳尔森的低水平陷阱论:以马尔萨斯理论为基础,说明发展中国家存在低水平人均收入反复轮回的现象。不发达经济的痼疾表现为人均实际收入处于仅够糊口或接近于维持生命的低水平均衡状态;很低的居民收入使储蓄和投资受到极大局限;如果以增大国民收入来提高储蓄和投资,又通常导致人口增长,从而又将人均收入推回到低水平均衡状态中,这是不发达经济难以逾越的一个陷阱。在外界条件不变的情况下,要走出陷阱,就必须使人均收入增长率超过人口增长率。
3.罗森斯坦—罗丹的大推进论。主张发展中国家在投资上以一定的速度和规模持续作用于各产业,从而冲破其发展的瓶颈。此论在发展中国家较有市场,原因在于它的三个“不可分性”的理论基础即社会分摊资本的不可分性、需求的不可分性、储蓄供给的不可分性以及外部经济效果具有更能说服人的证据。
4.纳克斯的贫困恶性循环论和平衡增长理论。资本缺乏是阻碍不发达国家经济增长和发展的关键因素,是由投资诱力不足和储蓄能力太弱造成的,而这两个问题的产生又是由于资本供给和需求两方面都存在恶性循环:但贫困恶性循环并非一成不变,平衡增长可以摆脱恶性循环,是扩大市场容量和造成投资诱力的一种必须的方法。
上述理论应用在区域经济中就形成了区域均衡发展理论,它不仅强调部门或产业间的平衡发展、同步发展,而且强调区域间或区域内部的平衡(同步)发展,即空间的均衡化。认为随着生产要素的区际流动,各区域的经济发展水平将趋于收敛(平衡),因此主张在区域内均衡布局生产力,空间上均衡投资,各产业均衡发展,齐头并进,最终实现区域经济的均衡发展。
均衡发展理论的缺陷之一在于忽略了一个基本的事实,即对于一般区域特别是不发达区域来说,不可能具备推动所有产业和区域均衡发展的资本和其他资源,在经济发展初期很难做到均衡发展。缺陷之二,忽略了规模效应和技术进步因素,似乎完全竞争市场中的供求关系就能决定劳动和资本的流动,就能决定工资报酬率和资本收益率的高低。但事实上,市场力量的作用通常趋向增加而不是减少区域差异。发达区域由于具有更好的基础设施、服务和更大的市场,必然对资本和劳动具有更强的吸引力,从而产生极化效应,形成规模经济,虽然也有发达区域向周围区域的扩展效应,但在完全市场中,极化效应往往超过扩展效应,使区际差异加大。另外,技术条件不同也会使资本收益率大不相同,此时的资本要素流动会造成不发达区域资本要素更加稀缺,经济发展更加困难。
区域均衡发展理论显然是从理性观念出发,采用静态分析方法,把问题过分简单化了,与发展中国家的客观现实距离太大,无法解释现实的经济增长过程,无法为区域发展问题找到出路。在经济发展的初级阶段,非均衡发展理论对发展中国家更有合理性和现实指导意义。
二、主要的区域非均衡发展理论简介与评述
按发展阶段的适用性,非均衡发展理论大体可分为两类:一类是无时间变量的,主要包括循环累积因果论、不平衡增长论与产业关联论、增长极理论,中心—论、梯度推移理论等;另一类是有时间变量的,主要以倒“U”型理论为代表。
1.冈纳·缨尔达尔的循环累积因果论。该理论认为,经济发展过程在空间上并不是同时产生和均匀扩散的,而是从一些条件较好的地区开始,一旦这些区域由于初始优势而比其他区域超前发展,则由于既得优势,这些区域就通过累积因果过程,不断积累有利因素继续超前发展,从而进一步强化和加剧区域间的不平衡,导致增长区域和滞后区域之间发生空间相互作用,由此产生两种相反的效应:一是回流效应,表现为各生产要素从不发达区域向发达区域流动,使区域经济差异不断扩大;二是扩散效应,表现为各生产要素从发达区域向不发达区域流动,使区域发展差异得到缩小。在市场机制的作用下,回流效应远大于扩散效应,即发达区域更发达,落后区域更落后。基于此,缪尔达尔提出了区域经济发展的政策主张。在经济发展初期,政府应当优先发展条件较好的地区,以寻求较好的投资效率和较快的经济增长速度,通过扩散效应带动其他地区的发展,但当经济发展到一定水平时,也要防止累积循环因果造成贫富差距的无限扩大,政府必须制定一系列特殊政策来刺激落后地区的发展,以缩小经济差异。
2.艾尔伯特·赫希曼的不平衡增长论。该理论认为经济进步并不同时出现在每一处,经济进步的巨大推动力将使经济增长围绕最初的出发点集中,增长极的出现必然意味着增长在区域间的不平等是经济增长不可避免的伴生物,是经济发展的前提条件。他提出了与回流效应和扩散效应相对应的“极化效应”和“涓滴效应”。在经济发展的初期阶段,极化效应占主导地位,因此区域差异会逐渐扩大;但从长期看,涓滴效应将缩小区域差异。3.佩鲁的增长极理论。法国经济学家佩鲁首次提出的增长极概念的出发点是抽象的经济空间,是以部门分工所决定的产业联系为主要
内容,所关心的是各种经济单元之间的联系。他认为增长并非同时出现在各部门,而是以不同的强度首先出现在一些增长部门,然后通过不同渠道向外扩散,并对整个经济产生不同的终极影响。显然,他主要强调规模大、创新能力高、增长快速、居支配地位的且能促进其他部门发展的推进型单元即主导产业部门,着重强调产业间的关联推动效应。布代维尔从理论上将增长极概念的经济空间推广到地理空间,认为经济空间不仅包含了经济变量之间的结构关系,也包括了经济现象的区位关系或地域结构关系。因此,增长极概念有两种含义:一是在经济意义上特指推进型主导产业部门;二是地理意义上特指区位条件优越的地区。应指出的是,点—轴开发理论可看作是增长极和生长轴理论的延伸,它不仅强调“点”(城市或优区位地区)的开发,而且强调“轴”(点与点之间的交通干线)的开发,以点带轴,点轴贯通,形成点轴系统。
4.弗里德曼的中心—论。在考虑区际不平衡较长期的演变趋势基础上,将经济系统空间结构划分为中心和两部分,二者共同构成一个完整的二元空间结构。中心区发展条件较优越,经济效益较高,处于支配地位,而区发展条件较差,经济效益较低,处于被支配地位。因此,经济发展必然伴随着各生产要素从区向中心区的净转移。在经济发展初始阶段,二元结构十分明显,最初表现为一种单核结构,随着经济进入起飞阶段,单核结构逐渐为多核结构替代,当经济进入持续增长阶段,随着政府政策干预,中心和界限会逐渐消失,经济在全国范围内实现一体化,各区域优势充分发挥,经济获得全面发展。该理论对制定区域发展政策具有指导意义,但其关于二元区域结构随经济进入持续增长阶段而消失的观点是值得商榷的。
5.区域经济梯度推移理论。基础是美国的跨国企业问题专家弗农等的工业生产生命循环阶段论。认为工业各部门甚至各种工业产品都处在不同的生命循环阶段上,在发展中必须经历创新、发展、成熟、衰老四个阶段,并且在不同阶段,将由兴旺部门转为停滞部门,最后成为衰退部门。区域经济学者把生命循环论引用到区域经济学中,创造了区域经济梯度转移理论。根据该理论,每个国家或地区都处在一定的经济发展梯度上,世界上每出现一种新行业、新产品、新技术都会随时间推税由高梯度区向低梯度区传递,威尔伯等人形象地称之为“工业区位向下渗透”现象。
无时间变量的区域非均衡学派虽然正确指出了不同区域间经济增长率的差异,但不能因此而断定区际差异必然会不可逆转地不断扩大。因为各种非均衡增长模型片面地强调了累积性优势的作用,忽视了空间距离、社会行为和社会经济结构的意义。缪尔达尔和赫希曼的理论动摇了市场机制能自动缩小区域经济差异的传统观念,并引起一场关于经济发展趋同或趋异的大论战。但是在美国经济学家威廉姆逊的倒“U”型理论提出之前,论战缺乏实证基础。他的研究使讨论向实证化方向迈出了有力的一步,倒“U”型理论也成为有时间变量的非均衡发展理论的代表。
6.威廉姆逊的倒“U”型理论。威廉姆逊把库兹涅茨的收入分配倒“U”型假说应用到分析区域经济发展方面,提出了区域经济差异的倒“U”型理论。他通过实证分析指出,无论是截面分析还是时间序列分析,结果都表明,发展阶段与区域差异之间存在着倒“U”型关系(如图1所示)。这一理论将时序问题引入了区域空间结构变动分析。由此可见,倒“U”型理论的特征在于均衡与增长之间的替代关系依时间的推移而呈非线性变化。
纵观上述两类非均衡发展理论,其共同的特点是,二元经济条件下的区域经济发展轨迹必然是非均衡的,但随着发展水平的提高,二元经济必然会向更高层次的一元经济即区域经济一体化过渡。其区别主要在于,它们分别从不同的角度来论述均衡与增长的替代关系,因而各有适用范围。在关于增长是否不论所处发展阶段如何都存在对非均衡的依赖性问题上,这两类理论之间是相互冲突的。增长极理论、不平衡增长论和梯度转移理论倾向于认为无论处在经济发展的哪个阶段,进一步的增长总要求打破原有的均衡。而倒“U”型理论则强调经济发展程度较高时期增长对均衡的依赖。
网络管理已经成为计算机网络和电信网研究中最重要的内容之一。网络中采用的先进技术越多,规模越大,网络的维护和管理工作也就越复杂。计算机网络和电信网的管理技术是分别形成的,但到后来渐趋同化,差不多具有相同的管理功能和管理原理,只是在网络管理上的具体对象上有些差异。
通常,一个网络由许多不同厂家的产品构成,要有效地管理这样一个网络系统,就要求各个网络产品提供统一的管理接口,即遵循标准的网络管理协议。这样,一个厂家的网络管理产品就能方便地管理其他厂家的产品,不同厂家的网络管理产品之间还能交换管理信息。
在简单网络管理协议SNMP(SimpleNetworkManagementProtocol)设计时,就定位在是一种易于实施的基本网络管理工具。在网管领域中,它扮演了先锋的角色,因OSI的CMIP发展缓慢同时在Internet的迅猛发展和多厂商环境下的网络管理解决方案的驱动下,而很快成为了事实上的标准。
SNMP的管理结构如图1所示。它的核心思想是在每个网络节点上存放一个管理信息库MIB(ManagementInformationBase),由节点上60(agent)负责维护,管理者通过应用层协议对这些进行轮询进而对管理信息库进行管理。SNMP最大的特点就是其简单性。它的设计原则是尽量减少网络管理所带来的对系统资源的需求,尽量减少agent的复杂性。它的整个管理策略和体系结构的设计都体现了这一原则。
SNMP的主要优点是:
·易于实施;
·成熟的标准;
·C/S模式对资源要求较低;
·广泛适用,代价低廉。
简单性是SNMP标准取得成功的主要原因。因为在大型的、多厂商产品构成的复杂网络中,管理协议的明晰是至关重要的;但同时这又是SNMP的缺陷所在——为了使协议简单易行,SNMP简化了不少功能,如:
·没有提供成批存取机制,对大块数据进行存取效率很低;
·没有提供足够的安全机制,安全性很差;
·只在TCP/IP协议上运行,不支持别的网络协议;
·没有提供管理者与管理者之间通信的机制,只适合集中式管理,而不利于进行分布式管理;
·只适于监测网络设备,不适于监测网络本身。
针对这些问题,对它的改进工作一直在进行。如1991年11月,推出了RMON(RernoteNetworkMonitor)MIB,加强SNMP对网络本身的管理能力。它使得SNMP不仅可管理网络设备,还能监测局域网和互联网上的数据流量等信息,1992年7月,针对SNMP缺乏安全性的弱点,又公布了S-SNMP(SecureSNMP)草案。到1993年初,又推出了SNMPVersion2即SNMPv2(推出了SNMPv2以后,SNMP就被称为SNMPv1)。SNM-Pv2包容了以前对SNMP的各项改进工作,并在保持了SNMP清晰性和易于实现的特点以外,吸取了CMIP的部分优点,功能更强,安全性更好,具体表现为:
·提供了验证机制,加密机制,时间同步机制等,安全性大大提高;
·提供了一次取回大量数据的能力,效率大大提高;
·增加了管理者和管理者之间的信息交换机制,从而支持分布式管理结构,由位于中间层次(intermediate)的管理者来分担主管理者的任务,增加了远地站点的局部自主性。
·可在多种网络协议上运行,如OSI、AppleTalk和IPX等,适用多协议网络环境(但它的缺省网络协议仍是UDP)。
·扩展了管理信息结构的很多方面。特别是对象类型的定义引入了几种新的类型。另外还规范了一种新的约定用来创建和删除管理表(managementtables)中的“行”(rows)。
·定义了两种新的协议数据单元PDU(ProtocolDataUnit)。Get-Bulk-Request协议数据单元允许检索大数据块(largedatablocks),不必象SNMP那样逐项(itembyitem)检索;Inform-Request协议数据单元允许在管理者之间交换陷阱(tran)信息。
CMIP协议是在OSI制订的网络管理框架中提出的网络管理协议。CMIP与SNMP一样,也是由管理者、、管理协议与管理信息库组成。
CMIP是基于面向对象的管理模型的。这个管理模型表示了封装的资源并标准化了它们所提供的接口。如图2所示了四个主要的元素:
·系统管理应用进程是在担负管理功能的设备(服务器或路由器等〕中运行的软件:
·管理信息库MIB是一组从各个接点收集来的与网络管理有关的数据;
·系统管理应用实体(systemmanagementapplicationentities)负责网络管理工作站间的管理信息的交换,以及与网络中其它接点之间的信息交换;
·层管理实体(layermanagemententities)表示在OSI体系结构设计中必要的逻辑。
CMIP模型也是基于C/S结构的。客户端是管理系统,也称管理者,发起操作并接收通知;服务器是被管系统,也称,接收管理指令,执行命令并上报事件通知。一个CMIP操作台(console)可以和一个设备建立一个会话,并用一个命令就可以下载许多不同的信息。例如,可以得到一个设备在一段特定时间内所有差错统计信息。
CMIP采用基于事件而不是基于轮询的方法来获得网络组件的相关数据。
CMIP已经得到主要厂商,包括IBM、HP及AT&T的支持。用户和厂商已经认识到CMIP在企业级网络管理领域是一个比较好的选择。它能够满足企业级网管对横跨多个管理域的对等相互作用(peertopeerinteractions)的要求。CMIP特别适合对要求提供集中式管理的树状系统,尤其是对电信网(telecommunicationsnetwork)的管理。这就是下面提到的电信管理网。
二、电信管理网TMN
电信管理网TMN是国际电联ITU-T借鉴0SI中有关系统管理的思想及技术,为管理电信业务而定义的结构化网络体系结构,TMN基于OSI系统管理(ITU-UX.700/ISO7498-4)的概念,并在电信领域的应用中有所发展.它使得网络管理系统与电信网在标准的体系结构下,按照标准的接口和标准的信息格式交换管理信息,从而实现网络管理功能。TMN的基本原理之一就是使管理功能与电信功能分离。网络管理者可以从有限的几个管理节点管理电信网络中分布的电信设备。
国际电信联盟(ITU)在M.3010建议中指出,电信管理网的基本概念是提供一个有组织的网络结构,以取得各种类型的操作系统(OSs)之间、操作系统与电信设备之间的互连。它采用商定的具有标准协议和信息的接口进行管理信息交换的体系结构。提出TMN体系结构的目的是支撑电信网和电信业务的规划、配置、安装、操作及组织。
电信管理网TMN的目的是提供一组标准接口,使得对网络的操作、管理和维护及对网络单元的管理变得容易实现,所以,TMN的提出很大程度上是为了满足网管各部分之间的互连性的要求。集中式的管理和分布式的处理是TMN的突出特点。
ITU-T从三个方面定义了TMN的体系结构(Architecture),即功能体系结构(FunctionalArchitecture),信息体系结构(InformationArchitecture)和物理体系结构(PhysicalArchitecture)。它们分别体现在管理功能块的划分、信息交互的方式和网管的物理实现。我们按TMN的标准从这三个方面出发,对TMN系统的结构进行设计。
功能体系结构是从逻辑上描述TMN内部的功能分布。引入了一组标准的功能块(Functionalblock)和可能发生信息交换的参考点(referencepoints)。整个TMN系统即是各种功能块的组合。
信息体系结构包括两个方面:管理信息模型和管理信息交换。管理信息模型是对网络资源及其所支持的管理活动的抽象表示,网络管理功能即是在信息模型的基础上实现的。管理信息交换主要涉及到TMN的数据通信功能和消息传递功能,即各物理实体和功能实体之间的通信。
物理体系结构是为实现TMN的功能所需的各种物理实体的组织结构。TMN功能的实现依赖于具体的物理体系结构,从功能体系结构到物理体系结构存在着映射关系。物理体系结构随具体情况的不同而千差万别。在物理体系结构和功能体系结构之间有一定的映射关系。物理体系结构中的一个物理块实现了功能体系结构中的一个或多个功能块,一个接口实现了功能体系结构中的一组参考点。
仿照OSI网络分层模型,ITU-T进一步在TMN中引入了逻辑分层。如图3所示:
TMN的逻辑分层是将管理功能针对不同的管理对象映射到事务管理层BML(BusinessManagementLayer),业务管理层SML(ServiceManagementLayer),网络管理层NML(NetworkManagementLayer)和网元管理层EML(ElementManagementLayer)。再加上物理存在的网元层NEL(NetworkElementLayer),就构成了TMN的逻辑分层体系结构。从图2-6可以看到,TMN定义的五大管理功能在每一层上都存在,但各层的侧重点不同。这与各层定义的管理范围和对象有关。
三、TMN开发平台和开发工具
1.利用TMN的开发工具开发TMN的必要性
TMN的信息体系结构应用OSI系统管理的原则,引入了管理者和的概念,强调在面向事物处理的信息交换中采用面向对象的技术。如前所述,TMN是高度强调标准化的网络,故基于TMN标准的产品开发,其标准规范要求严格复杂,使得TMN的实施成为一项具有难度和挑战性的工作;再加上OSI系统管理专业人员的相对缺乏,因此,工具的引入有助于简化TMN的开发,提高开发效率。目前比较流行的基于TMN标准的开发平台有HPOVDM、SUNSEM、IBMTMN平台和DSET的DSG及其系列工具。这些平台可以用于开发全方位的TMN管理者和应用,大大降低TMN/Q3应用系统的编程复杂性,并且使之符合开放系统互连(OSI)网络管理标准,这些标准包括高级信息模型定义语言GDM0,OSI标准信息传输协议CMIP,以及抽象数据类型定义语言ASN.1。其中DSET的DSG及工具系列除了具备以上功能外,还具有独立于硬件平台的优点。下面将比较详细论述DSET的TMN开发工具及其在TMN开发中的作用。
2.DSET的TMN开发工具的基本组成
DSET的TMN开发工具从功能上来讲可以构成一个平台和两大工具箱。一个平台:分布式系统生成器DSG(DistributedSystemGenerator);两个工具箱:管理者工具箱和工具箱。
分布式系统生成器DSG
DSG是用于顶层TCP/IP、OSI和其它协议上构筑分布式并发系统的高级对象请求0RB。DSG将复杂的通信基础设施和面向对象技术相结合,提供构筑分布式计算的软件平台。通信基础设施支持分布式计算中通信域的通信要求。如图4所示,它提供了四种主要的服务:透明远程操作、远程过程调用和消息传递、抽象数据服务及命名服务。借助于并发的面向对象框架,一个复杂的应用可以分解成一组相互通信的并发对象worker,除了支持例如类和多重继承等重要的传统面向对象特征外,为了构筑新的worker类,DSG也支持分布式对象。在一个开放系统中,一个worker可以和其它worker进行通信,而不必去关心它们所处的物理位置。
DSG提供给用户用以开发应用的构造块(buildingblock)称为worker。一个worker可以有自己的控制线程,也可以和别的线程共享一个控制线程,每个Worker都有自己的服务访问点SAP(ServiceAccessPoint),通过SAP与其它worker通信。Worker是事件驱动的。在Worker内部,由有限状态机FSM(FiniteStateMachine〕定义各种动作及处理例程,DSG接受外部事件并分发到相应的动作处理例程进行处理。如图5所示,独占线程的此worker有三个状态,两个SAPs,并且每个SAP的消息队列中都有两个事件。DSG环境通过将这些事件送到相应的事件处理程序中来驱动worker的有限状态机。
Worker是分布式的并发对象,DSG用它来支持面向对象的特点,如:类,继承等等。Worker由workerclass定义。Worker可以根据需要由应用程序动态创建。在一个UNIX进程中可以创建的Worker个数仅受内存的限制。
管理者工具箱由ASN.C/C++编译器、CMIP/ROSE协议和管理者代码生成器MCG构成,如图6所示。
其中的CMIP/ROSE协议提供全套符合Q3接口选用的OSI七层协议栈实施。由于TMN在典型的电信环境中以面向对象的信息模型控制和管理物理资源,所有被管理的资源均被抽象为被管对象(M0),被管理系统中的帮助管理者通过MO访问被管理资源,又根据ITU-TM.3010建议:管理者与之间通过Q3接口通信。为此管理者必须产生与通信的CMIP请求。管理者代码生成器读取信息模型(GDMO文件和ASN.1文件),创立代码模板来为每个被定义的MO类产生CMIP请求和CMIP响应。由于所有CMIP数据均由ASN.1符号定义,而上层管理应用可能采用C/C++,故管理者应用需要包含ASN.1数据处理代码,管理者工具箱中的ASNC/C++编译器提供ASN.1数据到C/C++语言的映射,并采用“预处理技术“生成ASN.1数据的低级代码,可见利用DSET工具用户只需编写网管系统的信息模型和相关的抽象数据类型定义文件,然后利用DSET的ASNC/C++编译器,管理者代码生成器即可生成管理者部分代码框架。
工具箱包括可砚化生成器VAB、CMIP翻译器、ASN.C/C++Toolkit,其结构见图7。用来开发符合管理目标定义指南GDMO和通用管理信息协议CMIP规定的应用.使用DSET独具特色的工具箱的最大的好处就是更快、更容易地进行应用的开发。DSET在应用的开发上为用户做了大量的工作。
一个典型的GDMO/CM1P应用包括三个代码模块:
·、MIT、MIB的实施
·被管理资源的接口代码
·后端被管理资源代码
第一个模块用于处理与MO实施。工具箱通过对过滤、特性处理、MO实例的通用支持,自动构作这一个模块。DSET的这一部分做得相当完善,用户只需作少量工作即可完成本模块的创建。对于mcreate、m-delete、m-get、m-cancel-get、m-set、m-set-confirmed、m-action、m-action-confirmed这些CMIP请求,第一个模块中包含有缺省的处理代码框架。这些缺省代码都假定管理者的CMIP请求只与MO打交道。为了适应不同用户的需求,DSET工具箱又提供在缺省处理前后调用用户程序的接入点(称为Userhooks)。当某CMIP请求需与实际被管资源或数据库打交道时,用户可在相应的PRE-或POST-函数中加入自己的处理代码。例如,当你需要在二层管理应用中发CMIP请求,需望获取实际被管资源的某属性,而该属性又不在相应MO中时你只需在GDMO预定义模板中为此属性定义一PRE-GET函数,并在你自己的定制文件中为此函数编写从实际被管设备取到该属性值的代码即可。DSET的Agent代码在执行每个CMIP请求前都要先检查用户是否在GDMO预定义文件中为此清求定义了PRE-函数,若是,则光执行PRE-函数,并根据返回值决定是否执行缺省处理(PRE-函数返回D-OK则需执行缺省处理,否则Agent向管理者返回正确或错误响应)。同样当Agent执行完缺省处理函数时,也会检查用户是否为该请求定义了POST-函数,若是则继续执行POST-函数。至于Agent与MO之间具体是如何实现通信的,用户不必关心,因为DSET已为我们实现了。用户只需关心需要与设备交互的那一部分CMIP请求,为其定制PRE-/POST函数即可。
第二个模块实现MO与实际被管资源的通信。它的实现依赖于分布式系统生成器DSG所提供“网关处理单元”(gateway)、远程过程调用(RPC)与消息传递机制及MSL语言编译器。通信双方的接口定义由用户在简化的ROSE应用中定义,在DSG中也叫环境,该环境定义了双方的所有操作和相关参数。DSG的CTX编译器编译CTX格式的接口定义并生成接口表。DSG的MSL语言编译器用以编译分布式对象类的定义并生成事件调度表。采用DSG的网关作为MO与实际被管资源间的通信桥梁,网关与MO之间通过定义接口定义文件及各自的MSL文件即可实现通信,网关与被管设备之间采用设备所支持的通信协议来进行通信,例如采用TCP/IP协议及Socket机制实现通信。
第三个模块对被管理资源进行实际处理。这一模块根据第二个模块中定义的网关与被管设备间的通信机制来实现,与工具没有多大联系。
四、TMN开发的关键技术
电信管理网技术蕴含了当今电信、计算机、网络通信和软件开发的最新技术,如OSI开放系统互连技术、OSI系统管理技术、计算机网络技术及分布式处理、面向对象的软件工程方法以及高速数据通信技术等。电信管理网应用系统的开发具有巨大的挑战性。
工具的引入很大程度上减轻了TMN的开发难度。留给开发人员的最艰巨工作就是接口(interface)的信息建模。尤其是Q3接日的信息建模问题。
Q3接口是TMN接口的“旗舰”,Q3接口包括通信模型和信息模型两个部分,通信模型(0SI系统管理)的规范制定的十分完善,并且工具在这方面所作的工作较多,因此,当我们设计和开发各种不同管理业务的TMN系统时,主要是采用一定的方法学,遵循一定的指导原则,针对不同电信领域的信息建模问题。
为什么说建模是TMN开发中的关键技术呢?从管理的角度而言,在那些先有国际标准(或事实上的标准),后有设备的情况下,是有可能存在一致性的信息模型的,例如目前SDH和七号信令网的TMN系统存在这样的信息模型标准。但即使这样,在这些TMN系统的实施过程,有可能由于管理需求的不同而对这些模型进行进一步的细化。在那些先有设备而后才有国际标准(或事实上的标准)的设备,而且有的电信设备就无标准而言,由于不同厂家的设备千差万别,这种一致性的信息模型的制定是非常困难的。
例如,近年来标准化组织国际电信联盟(ITU-T)、欧洲电信标准组织(ETSI)、网络管理论坛(NMF)和ATM论坛等相继颁布了一些Q3信息模型。但至今没有一个完整的稳定的交换机网元层的Q3信息模型。交换机的Q3信息模型提供了交换机网元的一个抽象的、一般的视图,它应当包含交换机的管理的各个方面。但这是不可能的。因为随着电信技术的不断发展,交换机技术也在不断的发展,交换机的类型不断增加,电信业务不断的引入。我们很难设计一个能够兼容未来交换机的信息模型。如今的交换机已不再是仅仅提供电话的窄带业务,而且也提供象ISDN这样的宽带业务。交换机趋向宽带窄带一体化发展,因此交换机的Q3信息模型是很复杂的,交换机Q3信息建模任务是很艰巨的。
五、TMN管理者和的开发
下面结合我们的开发工作,探讨一下TMN管理者和的开发。
1.管理者的开发
基于OSI管理框架的管理者的实施通常被认为是很困难的事,通常,管理者可以划分为三个部分。第一部分是位于人机之间的图形用户接口GUI(GraphicalUserInterfaces),接收操作人员的命令和输入并按照一种统一的格式传送到第二部分——管理功能。管理功能提供管理功能服务,例如故障管理,性能管理、配置管理、记费管理,安全管理及其它特定的管理功能。接收到来GUI的操作命令,管理功能必须调用第三部分——CMSIAPI来发送CMIP请求到。CMISAPI为管理者提供公共管理信息服务支持。
大多数的网管应用是基于UNIX平台的,如Solaris,AIXandHP-UX。若GUI是用X-Window来开发的,那么GUI和管理功能之间的接口就不存在了,从实际编程的的角度看,GUI和管理功能都在同一个进程中。
上面的管理者实施方案尽管有许多优点,但也存在着不足。首先是费用昂贵。所有的管理工作站都必须是X终端,服务器必须是小型机或大型机。这种方案比采用PC机作客户端加上UNIX服务器的方案要昂贵得多。其次,扩展性不是很好,不同的管理系统的范围是不同的,用户的要求也是不一样的,不是所有的用户都希望在X终端上来行使管理职责。因此,PC机和调终端都应该向用户提供。最后由于X-Window的开发工具比在PC机上的开发工具要少得多。因此最终在我们的开发中,选择了PC机作为管理工作站,SUNUltral作为服务器。
在实际工作中我们将管理者划分为两个部分——管理应用(managementapplication)和管理者网关(managergateway)。如图8所示。
管理应用向用户提供图形用户接口GUI并接受用户的命令和输入,按照定义好的消息格式送往管理者网关,由其封装成CMIP请求,调用CMISAPI发往。同时,管理者网关还要接收来自的响应消息和事件报告并按照一定的消息格式送往管理应用模块。
但是这种方案也有缺点。由于管理应用和管理者网关的分离,前者位于PC机上,后者位于Ultral工作站上。它们之间的相互作用须通过网络通信来完成。它们之间的接口不再是一个参考点(ReferencePoint),而是一个物理上的接口,在电信管理网TMN中称为F接口。迄今为止ITU-T一直没能制定出有关F接口的标准,这一部分工作留给了TMN的开发者。鉴于此,我们制定了管理应用和管理者网关之间通信的协议。
在开发中,我们选择了PC机作为管理工作站,SUNUltral作为我们的管理者网关。所有的管理应用都在PC机上。开发人员可以根据各自的喜好来选择不同开发工具,如Java,VC++,VB,PB等。管理者网关执行部分的管理功能并调用CMISAPI来发送CMIP请求,接收来自的响应消息和事件报告并送往相应的管理应用。
管理者网关的数据结构是通过编译信息模型(GDMO文件和ASN.1文件)获得的。它基于DSG环境的。管理者网关必须完成下列转换:
数据类型转换:GUI中的数据类型与ASN.1描述的数据类型之间的相互转换;
消息格式转换:GUI和管理者网关之间的消息格式与CMIP格式之间的相互转换;
协议转换:TCP/IP协议与OSI协议之间的相互转换。
这意味着管理者网关接收来自管理应用的消息。将其转换为ASN.1的数据格式,并构造出CMIS的参数,调用CMISAPI发送CMIP请求。反过来,管理者收到来自的消息,解读CMIS参数,构造消息格式,然后送往GUI。GUI和管理者网关之间的消息格式是由我们自己定义的。由于管理应用的复杂性,消息格式的制定参考了CMIS的参数定义和ASN.1的数据类型。
管理者网关是采用多线程(multi-thread)编程来实现的。
2.的开发
的结构如图9所示。
为了使部分的设计和实现模块化、系统化和简单化,将agent分成两大模块——通用模块和MO模块——进行设计和实现。如图所示,通用agent向下只与MO部分直接通信,而不能与被管资源MR直接进行通信及操作,即通用agent将manager发来的CMIP请求解析后投递给相应的M0,并从MO接收相应的应答信息及其它的事件报告消息。
的作用是代表管理者管理MO。利用工具的支持,采用面向对象的技术,分为八个步骤进行agent的设计和实现,这八个步骤是:
第一步:对信息模型既GDMO文件和ASN.1文件的理解,信息模型是TMN系统开发的基础和关键。特别是对信息模型中对象类和其中各种属性清晰的认识和理解,对于实际的TMN系统来说,其信息模型可能很复杂,其中对象类在数量上可能很多。也就是说,在设计和实现agent之前,必须作到对MO心中有数。
第二步:被管对象MO的定制。这一部分是agent设计和实现中的关键部分,工具对这方面的支持也不是很多,特别是涉及到MO与MR之间的通信,更为复杂,故将MO专门作为一个模块进行设计和实现MO和MR之间的通信以及数据和消息格式的转换问题,利用网关原理设计一个网关来解决。
第三步:创建内置的M0。所谓内置MO就是指在系统运行时,已经存在的物理实体的抽象。为了保证能对这些物理实体进行管理,必须将这些被管对象的各种固有的属性值和操作预先加以定义。
第四步:创建外部服务访问点SAP。如前所述,TMN系统中各个基于分布式处理的worker之间通过SAP进行通信,所以要为agent与管理者manager之间、agent与网关之间创建SAP。
第五步:SAP同内置MO的捆绑注册。由于在TMN系统中,agent的所有操作是针对MO的,即所有的CMIP请求经解析后必须送到相应的M0,而基于DSG平台的worker之间的通信是通过SAP来实现的。因而,在系统处理过程中,当进行信息的传输时,必须知道相应MO的SAP,所以,在agent的设计过程中,必须为内置MO注册某一个SAP。
第六步:agent配置。对agent中有些参数必须加以配置和说明。如队列长度、流量控制门限值、agent处理单元组中worker的最大/最小数目。报告的处理方式、同步通信方式中超时门限等。
第七步:agent用户函数的编写,如agentworker初始化函数、子函数等的编写。
第八步:将所有函数编译,连接生成可运行的agent。
MO模块是agent设计中的一个重要而又复杂的部分。这是由于,一方面工具对该部分的支持不是很多:另一方面,用户的大部分处理函数位于这一部分;最主要的还在于它与被管资源要跨平台,在不同的环境下进行通信。MO模块的设计思想是在MO和MR之间设计一个网关(gateway),来实现两者之间的消息、数据、协议等转换。
MO部分的主要功能是解析,执行来自管理者的CMIP请求,维持各MO的属性值同被管资源的一致性,生成CMIP请求结果,并上报通用agent模块,同时与MR通信,接收和处理来自MR的事件报告信息,并转发给通用agent。
MO部分有大量的用户定制工作。工具只能完成其中一半的工作,而另一半工作都需要用户自己去定制。用户定制分为两大类;
第一类是PRE-/POST-函数。PRE-/POST-函数的主要功能是在agent正式处理CMIP请求之前/之后与被管资源打交道,传送数据到MR或从MR获取数据并做一些简单的处理。通过对这些PRE-/POST-函数的执行,可以确保能够真实地反映出被管资源的运行状态。PRE-/POST-函数分为两个层次:MO级别和属性级别。MO级别层次较高,所有对该对象类的CMIP操作都会调用MO级别的PRE-/POST-函数。属性级别层次低,只有对该属性的CMIP操作才会调用这些函数。DSET工具只提供了PRE-/POST-函数的人口参数和返回值,具体的代码需要完全由用户自己编写。由于agent与被管资源有两种不同的通信方式,不同的方式会导致不同的编程结构和运行效率,如果是同步方式,编程较为简单,但会阻塞被管资源,适合于由大量数据返回的情况。异步方式不会阻塞被管资源,但编程需要作特殊处理,根据不同的返回值做不同的处理,适合于数据不多的情况,在选择通信方式时还要根据MO的实现方式来确定。比如,MO若采用Doer来实现,则只能用同步方式。
第二类是动作、事件报告和通知的处理,动作的处理相对比较容易,只需考虑其通信方式采用同步还是异步方式。对事件报告和通知的处理比较复杂。首先,需要对事件进行分类,对不同类别的事件采用不同的处理方法,由哪一个事件前向鉴别器EFD(EventForwardingDiscriminator)来处理等等。比如,告警事件的处理就可以单独成为一类。其次,对每一类事件需要确定相应的EFD的条件是什么,哪些需要上报管理应用,哪些不需要。是否需要记入日志,这些日志记录的维护策略等等。
除了这两类定制外,MO也存在着优化问题。比如MO用worker还是Doer来实现,通信方式采用同步还是异步,面向连接还是无连接等等,都会影响整个的性能。
如果MO要永久存储,我们采用文件方式。因为目前DSET的工具只支持Versant、ODI这两种面向对象数据库管理系统OODBMS,对于0racle,Sybase等数据库的接口还需要用户自己实现。MO定制的工作量完全由信息模型的规模和复杂程度决定,一个信息模型的对象类越多,对象之间的关系越复杂(比如一个对象类中的属性改变会影响别的类),会导致定制工作的工作量和复杂程度大大增加。
者agent在执行管理者发来的CMIP请求时必须保持与被管资源MR进行通信,将manager传送来的消息和数据转发给MR,并要从MR获取必要的数据来完成其操作,同时,它还要接收来自MR的事件报告,并将这些事件上报给manager。
由上述可知,与被管资源MR之间的通信接口实际上是指MO与MR之间的通信接口。大部分MO是对实际被管资源的模拟,这些MO要与被管资源通信。若让这些MO直接与被管资源通信,则存在以下几个方面的弊端:
·由于MO模块本身不具备错误信息检测功能(当然也可在此设计该项功能,但增加了MO模块的复杂性),如果将上向发来的所有信息(包括某些不恰当的信息)全部转发给MR,不仅无此必要,而且增加了数据通信量;同理MR上发的信息也无必要全部发送给MO。
·当被管资源向MO发消息时,由于MIT对于被管资源来说是不可知的,被管资源不能确定其相应MO在MIT中所处的具置,从而也就无法将其信息直接送到相应的MO,因而只能采用广播方式发送信息。这样一来,每当有消息进入MO模块时,每个MO都要先接收它,然后对此消息加以判断,看是否是发给自己的。这样一方面使编程复杂化,使软件系统繁杂化,不易控制,调试困难;另一方面也使通信开销增大。
·MO直接与被管资源通信,使得系统在安全性方面得不到保障,在性能方面也有所下降,为此,采用计算机网络中中网关(gateway)的思想,在MO与被管资源建立一个网关,即用一个gatewayworker作为MO与被管资源通信的媒介。网关在的进程处理中起到联系被管资源与MO之间的“桥梁”作用。
六、总结与展望
Q3接口信息建模是TMN开发中的关键技术。目前,各标准化组织针对不同的管理业务制定和了许多信息模型。这些模型大部分是针对网元层和网络层,业务层和事务层的模型几乎没有,还有相当的标准化工作正在继续研究。业务层和事务层的模型是将来研究的重点。
=0.03217+0.05258fcu(R=0.991,S=0.006,N=12,P<0.001)
从抗剪参数的变化过程可以看出,粘聚力随着掺入比的增加而提高,随抗压强度的增加而增加,当fcu=1.45~5.12Mpa时,其粘聚力c=0.4~1.11,内摩擦角变化幅度为17o~400。与原状淤泥质粘土相比,粘聚力和内摩擦角都有不同程度的提高,说明水泥土的抗剪强度远大于原状土。这是因为水泥混入土体后的硬凝作用产生的水泥水化硬凝物质增加了加固土的糙度,从而加大了剪切面的摩擦系数,提高了抗剪强度。根本原因在于抗压破坏与抗剪破坏的方式不同,抗压、抗拉依靠的是土颗粒间的联结力和结构支撑力起主导作用,而抗剪时土颗粒间粘聚力和土颗粒间的摩擦力起主导作用。另外,拉、压破坏面不是一个规则平面。如果土体中土颗粒不是完全被水泥石颗粒包围,破坏可以沿颗粒间的软弱面发生,当剪切破坏则是沿一相对平整的面,剪切对土体的破坏面不能绕过水泥土颗粒,这些颗粒起着抗剪切作用,从而提高了水泥石的抗剪强度。
根据试验的数据进行的回归结果来看,水泥土的粘聚力c与其无侧限抗压强度fcu大致呈线性关系,回归方程式如下:
c=0.18849+0.17043fcu(R=0.93761,S=0.07862,N=12,P<0.001)
拟合结果如下图所示:
图2—10粘聚力—抗压强度曲线图
第五节BP神经网络模型对水泥土抗压强度影响因素的分析
室内配比试验目的是希望通过对试验资料的分析,了解各种影响因素与抗压强度之间的内在规律性,来指导粉喷桩的设计及施工。以往的做法是对样本值进行多元线性回归建立经验公式,然而,这一过程存在诸多问题。掺入比、含水量等因素与抗压强度的关系无疑是非线性的,用线性模型来拟合非线性关系,效果是不能令人满意的,这一点可以通过模型的适合性检验和残差分析得到反映;就线性模型本身而言,其应用范围的狭小和局限性,是显而易见的。鉴于水泥土自身结构的复杂性和对其加固机理的研究尚待进一步深入,用传统的数学工具模拟上述非线性过程,建模相当困难。由于影响粉喷桩的因素如掺入比、含水量、饱和度、加固土密度、龄期等较多,且诸因素相互作用,交叉影响,使的室内配比试验成果表象复杂,数据离乱,无明显的关系存在,给成果分析带来困难。再又因为试验成本的缘故,很难达到满足常规分析计算需要的样本量,亦不能保证试验样本有较好的分布规律,往往使量化结果与定性分析产生矛盾。如何明确系统的非线性关系,通常有两种办法来解决:第一种是采取“分段线性”的处理方法,如采取多元线性回归等手段;另一种方法是利用混沌论、奇异吸引子、吸引凹陷和分形等数学工具来分析非线性系统。然而这些数学工具大多只能给出严格边界条件下类似解的存在性这样的证明而不能给出明确可行的求解方法,对回归模型而言,它主要适用于大容量样本情况下,对因变量来说,自变量的离散程度在一定范围内,进行回归分析才能得到较好的结果。有没有一种方法,使得我们离开深奥的数学工具也能了解复杂的非线性系统?神经网络理论提供了另外一种解决此类问题的可能性。
一.神经网络及BP模型简介
一般而言,神经网络是一个并行和分布式的信息处理网络结构,它由许多个神经元组成,每个神经元有一个输出,它可以连接到很多其它神经元,每个神经元输入有多个连接通路,每个连接通路对应于一个连接权系数,一个简单的人工神经元结构如图2—11所示,该神经元是一个多输入、单输出的非线性系统,其输入输出关系可描述为
式中,为节点的输出;是从
其他节点传来的输入信号;为节点
j到节点i的连接权值,反映了输入
的影响大小;为阀值,表示当前节点对输入产生的影响总和进行判断,若大于,系统认为此次影响作用明显,并将其反映在输出,否则,此次影响作用将不被考虑;为传递函数,可为线性函数,或型函数(如=,=),或具有任意阶导数的非线性函数,它描述了多输入值对输出的综合影响。
神经网络是一个非线性动力系统,特点在于信息的分布式存储(配比试验的规律性信息表示为权值和阀值的大小)和并行协同处理,它具有集体运算的能力和自适应的学习能力,很强的容错性和鲁棒性,善于联想,综合和推广。
神经网络模型有各种各样,代表性的模型有感知器、多层映射BP网络、RBF网络、双向联想记忆网络、Hopfield模型等。利用这些网络模型可实现函数逼近、数据聚类、模型分类、优化计算等功能。
BP网络是一单向传播的多层前向神经网络,结构如图2—12所示,其主要功能是函数逼近。网络通常有一个或n个隐层,同层节点间无任何连接和耦合,故每层节点的输出只影响下一层节点的输出。隐层中神经元均采用SIGMOID型变换函数,这种函数变换可实现从输入到输出的任意非线性映射;输出层的神经元采用纯线性变换函数,这可以避免使网络输出限制在一个较小范围内,达到可以输出任意值的目的。信息在模型中的传递和加工是逐层进行的,随着层数的深入,信息中所蕴涵的规律逐渐被了解、存储、综合,最后经输出结果统一表现出来。对本次配比试验而言,层的具体含义可理解如下:第一层的神经元接受各种影响因素的输入,对同一配比方案,第一层的神经元同时进行运算,利用传递函数计算结果的过程就是神经元存储信息的过程;第二层神经元接受上层神经元各自独立、并行计算处理的结果后,对获得的信息判断、整理、综合后输出,从而形成反映整个系统规律的映射。
图2—12
Hecht-Nielsen的论文中指出:1.给定任一连续函数f:[0,1]nRm,f可以精确地用一个至多三层的前向神经网络实现。它表述了映射网络的存在性,保证任一连续函数可由一个至多三层BP网络来实现。2.给定任意ε>0,对于任意的L2型连续函数f:[0,1]nRm,存在一个至多三层神经网络,它可在任意ε平方误差精度内逼近f。这就告诉我们,对任意连续函数一定可以构造出这样的BP网络模型。
二.BP模型应用分析
BP网络模型应用于配比试验分析,就是通过对简单的非线性函数进行数次复合,近似任一复杂函数,从而确定掺入比等影响因素和强度之间的函数关系。而且,实现这一功能的过程仅仅是利用试验样本值对模型进行训练和学习的过程(即通过推理和逼近的方法对网络的权值和阀值调整),其间并不要求对此结构和过程有较深认识,使分析的复杂性得到极大的简化,易于理解并提高了实用性。在配比试验中应用BP神经网络模型,具有以下几点优点:
并行处理性。网络各神经元可以同时进行类似的处理过程,整个网络的信息处理是大规模并行的。虽然每个神经元的功能简单,但大量简单的处理神经元进行集体的、并行的活动能减少神经网络完成识别任务所需步数,从而提高网络模式识别能力。与传统数学(如回归分析)串行处理相比,并行计算的效率更高。
规律的分布性描述和样本的容错性。抗压强度和各影响因素之间因果关系的信息,在网络的存储是按内容分布于许多神经元之间的权中,每个权存储多种信息的部分内容,从单个权中看不出存储信息的内容。这种映射关系的产生,部分来自于非线性是神经网络中固有性质这一事实,部分是因为许多独立单元的激励,决定系统的总体响应。这类似于全息图的信息存储性质,局部带有遗失或错误信息的数据使得网络重新调用自己存储的模式,同时有误信息被填充或修改。网络模式的完善和容错功能,在配比试验中的实际意义在于,对试验结果中离群点的处理上,比传统方法采取摒弃的手段有所改进,它容忍这些点的存在并吸取其合理内容,通过泛化(Generalization)功能对于不是样本集合的输入也能给出合适的输出。
可塑性、自适应性和自组织性。神经元之间连接的多样性和可塑性,使得网络可以通过学习与训练进行自组织,以适应不同处理信息的要求。这种学习功能在配比试验中的实现,主要是根据不同配比方案产生不同强度的样本模式,逐渐调整权值和阀值,使网络输出和希望输出之差的函数(如差的平方和)最小,权值和阀值的调整过程就是系统规律性信息的存储过程,样本量的增加可以加强信息的存储,从而更好的反映系统的非线性映射关系。
BP神经网络模型自身结构的特性也说明了其应用于室内配比试验的合理性。在这种网络中,输入是正向传播,逐层处理,每一层神经元的状态只影响下一层神经元的输出,其突出特点是无反馈性,即输入值不影响系统初始状态。对室内配比试验而言,试验过程本身是不可逆的,抗压强度由掺入比等因素决定,但同样的强度也可能是不同配比方案的结果,仅仅由抗压强度不能反演出影响参数,这一特征决定了用反馈型神经网络建模是不合适的。
BP神经网络的传递函数对隐层采用S型函数描述单个神经元对刺激的响应,一方面,它将神经元的输入范围(-∞,+∞)映射到某一确定区间,如(-1,+1),使各影响因素对目标变量抗压强度的变异性处于同一水平;另一方面,S型函数的曲线变化趋势与单因素对抗压强度的影响趋势雷同,经过对配比试验中各影响因素与水泥土的抗压强度关系分析可知,波速,掺入比,龄期等诸因素与抗压强度的相关关系大致呈指数曲线走向,以波速—抗压强度曲线为例,具体影响规律见图2—13,S型函数的曲线变化见图2—14。
图2—13抗压强度—波速曲线图图2—14S型函数曲线图
这说明S函数可以比较合理的模拟试验过程,从而更好的反映系统的映射关系。输出层节点的传递函数采用线性函数,它可将上一层神经元的输出经权值和阀值调整并累加后输出,其过程的物理意义被理解为对前一层神经元受掺入比等影响因素的激励后作出的响应的合理性进行判断,并通过将响应的合理部分迭加来模拟各种影响因素对抗压强度的综合贡献。
BP神经网络的训练和学习过程,就是通过逐步调整模型的权值和阀值来存储系统内在规律性信息的过程,从而达到正确反映抗压强度和影响因素之间映射的目的。其学习过程的基本思路是:把网络学习时输出层出现的与试验结果不符的误差,归结为连接层中各节点间连接权及阀值(有时将阀值作为特殊的连接权并入连接权)的“过错”,把误差逐层向输入层逆向传播“分摊”给各连接节点,从而可算出各连接节点的参考误差,并据此对各连接权进行相应的调整,使网络适应要求的映射。
三.工程实例
结合宁高公路二期工程粉喷桩软基处理,本次试验用土取自宁高公路(洪蓝至双牌石段)工地现场,并在室内使土样完全扰动,利用现有的土工试验仪器,土样试块为70mm×70mm×70mm的立方体,空气养护,搅拌方式为干搅,按照土工试验规程进行试验,本次配比方案掺入比为8%、12%、15%,含水量为30%、40%,龄期为30天、90天。为了验证BP模型拟合数据时样本需求量少,分析能力强的特点,本文选择了包含所有因素变化情况的最少组数(3×2×2)的试验结果进行分析,各组加固土的物理力学性能见表2—9:
表2—9.室内配比试验成果表组数
掺入比(%)
龄期(月)
含水量
孔隙度
饱和度
波速(km/s)
干密度(kg/m3)
抗压强度(Mpa)
1
15
1
0.211
0.575
0.893
1.783
1.66
3.47
2
15
3
0.153
0.535
0.62
1.813
1.63
5.12
3
12
1
0.222
0.588
0.945
1.645
1.69
2.36
4
12
3
0.192
0.555
0.816
1.626
1.66
3.58
续表2—95
8
1
0.234
0.62
0.926
1.414
1.61
1.49
6
8
3
0.204
0.594
0.797
1.278
1.66
2.42
7
15
1
0.289
0.796
0.861
1.611
1.43
1.97
8
15
3
0.264
0.775
0.771
1.620
1.42
4.58
9
12
1
0.298
0.78
0.931
1.566
1.44
1.74
10
12
3
0.248
0.726
0.78
1.565
1.47
3.30
11
8
1
0.325
0.866
0.91
1.478
1.38
1.51
12
8
3
0.289
0.801
0.842
1.365
1.40
2.48
根据试验结果建立BP网络模型,仿真各种因素对抗压强度的影响过程,网络模型结构见图2—12。利用高性能的可视化软件MATLAB中神经网络工具箱进行分析计算。由于采用并行计算的方法,模型本身可以通过增加节点数、隐层数或训练步数等方法将系统误差控制在指定范围内,而不需要再进行额外的试验,因此,在本次室内配比试验的组数比常规试验组数大大减少的情况下,采用两层BP网络模型来完成函数逼近任务。由于试验过程中对抗压强度而言,影响因素的个数有7个,因此初次确定隐层的神经元个数选7个,根据结果知最大训练步数不够或隐层中神经元个数太少。因此将神经元数目增加的14个,最大训练步数为100000次,此次训练到92885步时,仿真精度达到要求。
计算结果如表2—10:
表2—10.抗压强度计算结果与试验结果对比试验结果
1.49
1.51
1.63
1.97
2.36
2.42
2.48
3.3
3.47
3.58
3.58
5.12
多元回归
1.659
1.203
1.672
2.481
2.381
2.486
2.368
3.516
3.032
3.335
3.726
5.048
相对误差回归
0.113
0.203
0.026
0.259
0.009
0.027
0.044
0.065
0.126
0.068
0.040
0.014
BP模型
1.512
1.485
1.623
2.001
2.357
2.407
2.456
3.410
3.452
3.545
4.522
5.129
相对误差BP
0.015
0.016
0.004
0.015
0.001
0.005
0.009
0.033
0.005
0.010
0.263
0.001
由表2—10可以看出,回归模型的计算结果与样本值的偏差较大,最大时达到了20%以上。而且,对同样的样本群而言,回归模型一旦确定,其系统误差(计算值与试验结果之差)的大小也随之被确定,改善系统误差的有效办法只能是增加样本数量,这将直接带来试验成本或工程投入的加大。对BP神经网络而言,其输出不仅能较好的代表试验结果,与此同时,模型本身可以通过增加节点数、隐层数或训练步数等方法将系统误差控制在指定范围内,而不需要再进行额外的试验,这一点对工程实际而言具有十分重要的经济价值。根据本次试验的网络误差平方和随训练步数的变化趋势可知,BP神经网络系统误差平方和随步数的增加而逐渐趋于一极小值,只要模型结构合理,隐层中神经元个数足够多,保证必要的训练步数,系统误差可以控制在任一指定的误差指标范围内。
图2—15以方框表示权值矩阵和阀值矢量中元素,其面积正比于元素幅值。阀值和权值之间用垂线划开,形象表示权值和阀值对神经元输出的影响强弱。对权值和阀值而言,亮色代表正值,暗色反之。
图2—15.权值W1和阀值B1方框图
图中第一列表示本次二层的BP网络模型中隐层的阀值大小,第二列到第八列分别表示与掺入比、龄期、含水量、孔隙度、饱和度、波速和干密度有关的权值大小。图2—15中行的含义可以理解为,对同一次配比试验结果,14个神经元相互独立的进行分析,每个神经元都不同程度反应了此次配比试验中影响因素与水泥土抗压强度的关系,换句话说,模型获得的影响因素和强度相关性信息相当于进行了14次配比试验所得到的结果,神经元并行计算的特点,用在室内配比试验结果分析中,可以达到明显减小样本量的效果。
权值和阀值方框图存储的是此次室内配比试验中各影响因素和抗压强度之间因果规律信息。根据权值分布特点可得到如下认识:在各种影响因素中,波速的显著性水平明显高于其他因素,因为波速对应的权值幅值(图2—15第七列框图)明显高于其他影响因素的权值幅值,其倍数分别为十几倍到几十倍不等,这说明波速和抗压强度之间的联系非常紧密,对工程应用而言,通过测定波速的大小了解水泥土抗压强度是可行的,根据图2—13描述的函数关系,测得水泥土的声速就可以推知其抗压强度,这就为利用应力波(声波)的传播特性来测定粉喷桩质量提供了理论依据。
与其他因素相比,水泥掺入比与含水量对抗压强度的贡献较强,它们的权值幅值也相对较大,其权值幅度明显超过除波速外的其它所有影响因素。就水泥土加固机理来说,加固土的水解水化反应,硬凝反应和碳酸化作用,都离不开水泥和水的参与,因此在确定水泥土配比方案时,掺入比和含水量的作用是应当重点考虑的。除去以上两种因素外,干密度对抗压强度的影响也占有相当大的比重,其作用仅次于波速、掺入比和含水量。
关于干密度对抗压强度的影响,多元线性回归模型和BP神经网络模型的结论有所不同。笔者认为,回归方法由于自身结果的算法特点,决定了对干密度这种数值比较离散,数据相对偏少的情况的处理,回归分析的效果不能令人满意;BP神经网络可以通过并行计算的特点克服干密度样本值少的问题,而且利用BP模型对规律的分布式描述和对样本的容错性,可以对离散程度大的干密度输入,,通过模型的函数插值功能和泛化功能,给出合理的反应干密度对抗压强度的影响的输出。本文认为,对干密度的描述,BP神经网络所做的结论应该是正确的。根据这一点,说明通过增加加固土的干密度来提高其强度的措施也是十分有效的。
[关键词]水电工程;机电设备;技术标准
中图分类号:TV 文献标识码:A 文章编号:1009-914X(2017)06-0389-01
水资源的开发和利用离不开水利工程的建设和运用,而在水利工程中机电工程是水利工程产生直接经济效益和社会效益的重要元素,在水利工程的综合利用过程中起到非常关键的作用。机电工程作为水利建设中直接发挥工程效益的关键部分,随着水利工程建设规模的大幅提升机电的设计、至少规模也大幅提高。单从数量和规模而言,我国的机电设备以处于世界领先水平,但是机电设备的质量控制体系与发达国家相比还有相当一段距离,在整体功能的安全评价中,更是机电专业所面临的新课题。结合我国机电行业的实际情况,找出机电安全检测存在的各种问题,才能更好地保障机电在水利工程中发挥重要的作用。
一、机电设备安装工程的特点
机电设备安装工程的专业水平高、技术复杂、工期不易控制。生产设备现代化水平的提高,特别是电子计算机和现代化设备的广泛采用,设备安装的工艺和调试技术较复杂,安装施工的专业分工也越来越细,整个设备安装专业逐渐向技术密集型发展,因此也给安装工程带来困难,这就要求在制定施工进度计划时对每个活动的时间预测要进行周密考虑,既要留有一定余地,又要满足工程投入需要。机电设备结构复杂,设计修改可能较多,影响施工进度。机电设备安装由于供货厂商多,接口多,到机组投产发电时还存在设计修改,且在施工过程中反复修改,对施工造成许多困难,影响施工进度。
二、我国机电技术标准体系存在的主要问题
在加快水利工程建设进度的同时,如何保证水利工程的安全运用,如何建立在长效机制对水利工程的安全进行有效控制和合理的评价,都是值得关注和必须思考的主要问题,而机电作为水利工程中直接发挥工程效益的关键部分,随着水利工程建设规模的大幅提升,机电,的设计、制造规模也大幅提高。
2.1 涉及的行业、部门多,缺乏整体协调配合的机制。
由于机电的综合性很强,机电设备都是由很多零部件组成,零部件的设计、加工、试验、检测等都由不同的行业,不同部门的不同专业来完成。大多数水利工程的规划、设计、建设和管理都是由水利和电力行业来完成,机电技术的主要标准也来源于水利和电力行业标准,但机电工程中大量的产品质量控制和安全鉴定涉及到冶金、机械、消防、电子等多行业、多部门。如何协调各行业、各部门在制定使用功能一致的机电设备标准上,还缺乏强有力的协调机制,造成同一种功能的产品因为使用单位的不同,而采用不同的设计标准制造的情况,既不利于产品的规范化、系列化,也会是设计、制造、运行成本增加,造成不必要的资源浪费。
2.2 标准通用性和实用性不强,主要体现在以下几个方面
首先是机电涉及的行业、部门众多。一般情况下,各行业只认同采用本行业制定标准,即便是使用功能完全相同的设备,方案选择时,也会因行业的差异而有所不同。其次就是多数标准是根据某些机电设备的特性量身定制的,缺乏普遍性和适应性。第三就是标准的配套性不够。由于涉及的行业和部门很多,也极易导致标准制定的技术要求存在诸多差异。近年来机电技术发展迅猛,许多行业借助于机电设备设计、制造的机遇,扩大了和国际有着先进技术的厂家进行技术合作,大大提高了设计,制造水平,许多设计制造标准也在逐渐向国际标准看齐,甚至直接引用了国际标准。但由于市场资源配套性的限制,许多配套标准还不够完善,从而阻碍了新技术的引进和发展。
2.3 设备更新的缓慢。
水利工程的特殊性和管理原因造成的使用、维护不当,受修理能力和条件限制,致使设备隐患消除不及时与不彻底等原因,使得部分设备无法达到预期的使用周期而损坏,在一段时间后被淘汰。再加之设备国有资产管理的特殊性,设备的处置受到一定,管理制度和限制的约束,施工企业实际的设备用量和设备水平比例失调。
2.4 设备基础尺寸、标高、位置出现偏差。
设备基础尺寸、标高、位置出现偏差,大多数是由于工程施工图纸所标注的设备尺寸与设备实际安装时的尺寸偏差。例如,土建施工图纸与机电安装图纸中的基础标高存在误差,机电安装图纸上标明了基础板的高度和垫板、可调垫铁的厚度,而土建施工图没有标注垫板和可调垫铁的厚度,在进行机组承重梁配筋布置时也没有考虑到相关因素,结果导致机组安装就位时不能按设计进行,通常只有放弃使用可调节垫铁来保证机组的安装。
三、如何进行技术改造
3.1 优化设计
按照先进性、合理性、经济性和特殊性原则,对中小型水利电站进行技术改造。根据各个水电站的具体情况,因地制宜进行优化设计。先进性既要择优选用一个性能先进、技术成熟的好转轮和配套性能先进、运行可靠的水轮发电机及其辅助设备;合理性就是要紧密结合,和妥善处理水电站的不可变更或不宜变更的制约条件;经济性就是要在有限的投资情况下,增加年发电量,提高水电站的经济效率;特殊性就是特殊的问题用特殊的办法进行处。
3.2 提高发电水头
利用新技术因地制宜,在原有挡水建筑物顶部安装橡胶坝、自窥坝及水力自动翻板闸门等,以提高河道非行洪时段的发电水头,同时也增加了发电水量,从而达到提高机组出力,增加发电量的目的。
3.3 引进国际标准,促进国家标准的国际化
机电设备的发展是国际电力、机械、冶金等行业技术进步的缩影,在水资源大力开发的同时,机电行业的许多重大设备都采用进口设备,同时还进行了技术引进,使机电设计水平提升了一个台阶。特别是在标准引用过程中,许多材料标准,制造标准,验收标准以及试验标准均是按国际先进水平来实施的,为我们引进国际化标准提供了良好的契机。也正是在这种背景下,机电专业的许多标准在制定中已经参照了国际标准的相关参数,但这种应用的步伐还不够大,应该进一步大力引进先进技术标准,逐步有序地推动国家标准的国际化进程。
3.4 完善安全监测与鉴定评价体系中的标准内容
搞好机电工程的安全监测与评价,要靠技术标准做支撑。除了完善机电工程各系统部件设备标准外,用于机电工程总体全局的角度出发,综合考虑机电工程安全监测与评价标准的制定。机电工程各系统部件的标准只对某个系统部件而言,不具备系统性和全局性,只有综合各系统部件的具体标准要求的同时,又要考虑机电工程整体功能完善的标准,才是系统性的标准。另外,应进一步加强对机电专业标准强制性条文的修订、补充一句完善。强制性条文所涉及的内容都是关乎工程安全、人身安全、公共利益的重大问题的条文,应根据水利工程中机电专业的特点逐一完善。
结束语
水利C电工程是水利工程产生社会效益和经济效益的重要保障。我国自建国以来,在水力资源的开发和利用上出现逐步上升的趋势,特别是以发电为首要任务的水力发电站,和以灌溉为首要任务的泵站,其经济效益都是机电设备安全稳定运行的直接体现,而水利机电工程涉及到多个方面的专业知识,因此,必须重视计量标准规范的统一。