时间:2023-03-23 15:11:57
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇lte技术论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
关键词:绿色通信,lte,Femtocell,WiGig
随着人们对无线业务的需求越来越高,无线通信技术的发展也变得更加日新月异。未来无线通信正朝着低碳、健康、高效的绿色通信方向演进。在这种背景下,我们介绍了目前三类较为重要的绿色无线新技术,即LTE、Femtocell和WiGig,并从技术层面逐一分析了其相关的特点。
LTE技术
LTE (Long Term Evolution)是3GPP长期演进技术,代表着未来移动通信技术的发展方向,通常被看作未来的准4G技术。在3GPP技术规范中,LTE系统的主要性能目标包括[1-2]:在20MHz频谱带宽能够提供下行100Mbps、上行50Mbps的峰值速率,改善小区边缘用户的性能,小区容量的提高以及系统延迟的降低,用户平面内部单向传输时延低于5ms,控制平面从睡眠状态到激活状态迁移时间低于50ms,小区从驻留状态到激活状态的迁移时间小于100ms,可满足100Km半径的小区覆盖,并为350Km/h高速移动用户提供大于100kbps的接入服务。在频谱利用率上,支持成对或非成对频谱,可自适应配置1.25 MHz到20MHz的多种带宽。硕士论文,Femtocell。
从传输技术上看,LTE系统在空中接口方面采用了正交频分多址(OFDMA)技术,这一技术可将宽带信号转换成多路在平坦信道中传输的窄带信号,有效适应未来的多媒体业务。为了降低实际系统的复杂程度,LTE在下行链路采用多载波的OFDMA技术,而在上行链路则采用单载波的频分多址(SC-FDMA)接入技术[3]。
此外,多输入多输出(MIMO)技术和自适应技术也被LTE系统广泛采用,以提高数据率和系统性能。LTE系统在下行链路通常采用多址MIMO技术,以扩大小区覆盖,增大小区容量。与此同时,LTE系统还支持波束赋形技术,使得信号可进行空间复用,进一步提高传输效率。
在网络架构上,LTE系统采用了扁平化的网络架构,摒弃了3G网络中的无线控制器RNC节点,这样不仅简化了整个网络的结构,而且降低了传输的延迟,使得用户可在尽可能短的时间内入核心网,极大地提高了传输速率。硕士论文,Femtocell。
目前LTE正朝着增强型的方向不断演进,出现了LTE-Advanced技术,在网络架构,传输效率方面提出了更高的要求。
Femtocell技术
为了实现室内的无缝覆盖,业界推出了Femtocell的技术概念。Femtocell也称为毫微微蜂窝基站或家庭基站,具有即插即用、功耗低、有限覆盖、灵活方便等优点,并且可与宏蜂窝基站兼容,改善边缘用户信号质量,是未来有效解决室内热点覆盖的有效技术之一。Femtocell在实际应用中所面临的主要问题主要有以下几方面[4-6]:
首先是Femtocell与宏蜂窝之间的干扰问题。由于Femtocell与宏蜂窝在覆盖的区域上存在一定程度上的重叠,使得相互间同频干扰受到广泛的关注。硕士论文,Femtocell。就技术而言,可通过规划宏蜂窝基站的位置,对Femtocell的功率进行控制,以及将同频信号的传输时隙相互错开等策略有效解决Femtocell的干扰问题。
其次当用户在Femtocell与宏蜂窝基站间进行切换时,如何保证无缝切换,最大限度的降低切换延迟也是一个亟待解决的问题。Femtocell设备因制式的差异以及分布的不确定性,使得其在宏蜂窝基站邻小区列表中难以配置,进而造成用户在Femtocell和宏蜂窝基站间越区切换较困难,具体表现为切换时延和目标基站搜索时间的增大、业务质量QoS指标的下降等。硕士论文,Femtocell。
WiGig技术
为了推动在全球范围内采用和使用60GHz无线技术,近来国际上成立了吉比特联盟(WiGig, Wireless Gigabit)。WiGig联盟主要任务是负责制定并统一的60GHz无线规范,开发和提供Multi-Gigabit传输速率的无线产品。很多国际知名的ICT制造商纷纷加入WiGig联盟,如思科、三星等公司。WiGig的三个重要技术目标包括:
①融合(Convergence):快捷的文件传输,降低无线延迟,高质量流媒体业务。
②普适(Universal):引领众多厂商共同创造满足无线设备应用的60Ghz传输规范。
③速度(Speed):下一代的娱乐,计算以及通信设备传输速率高于当前的WLAN 技术10倍以上。
WiGig技术要求支持高达7Gbps的数据传输速率,该目标速率高于802.11n的最高传输速率十倍之多,并且WiGig技术向后兼容IEEE802.11标准,在一定程度上可视作为802.11系列标准(如Wi-Fi)介质访问控制层的补充和延伸[7]。WiGig技术为了实现低功耗高品质的绿色通信要求,对物理层的技术参数更加苛刻,以确保实现吉比特的传输速率。在WiGig的网络层,增加了协议适应层技术以支持各类多媒体业务的系统接口,如投影仪、HDTV等外围设备。硕士论文,Femtocell。与此同时,为了扩大服务的领域,WiGig技术可采用波束赋形技术,并可在中短距离上提供较高品质的业务。WiGig通过与Wi-Fi的互补以及多吉比特传输速率的实现,将娱乐、计算和通信设备无缝的连结在一起,成为未来无线局域网的重要发展方向。硕士论文,Femtocell。
结束语
在未来的无线通信新技术中,LTE、Femtocell以及WiGig代表了最新的发展方向。从设计理念、技术规范以及市场需求都体现了绿色通信的内涵。随着通信技术的不断推陈出新,上述系统将会在人们的生活中扮演着更加重要的角色。
参考文献
[1]3GPP TR25.814, Physical layer aspects forevolved UTRA, 2006.
[2]沈嘉.3GPP长期演进(LTE)技术原理与系统设计, 人民邮电出版社, 2008.
[3]沈嘉.OFDM系统的小区间干扰抑制技术研究, 电信科学, 2006(7): 10-13.
[4]V. Chandrasekhar, J. Andrews and A. Gatherer.Femtocell Networks: A Survey, IEEE Communications Magazine, 2008, 46(9): 59-67.
[5]徐霞艳.3GPP 3G家庭基站标准化进展. 电信科学, 2009(4): 1-5.
[6]Douglas N.Knisely, Takahito Yoshizawa,Frank Fevichia. Standardization of Femtocells in 3GPP. IEEE CommunicationsMagazine, 2009(9): 68-75.
[7]WiGig Specifications, v1.0. wirelessgigabitalliance.org/specifications/
【关键词】软交换技术下一代网络 LTE 网络技术 交换技术 开放协议
中图分类号:F224文献标识码: A
一.引言
传统的PSTN网络是建立在TDM之上的,网络提供给客户的各项功能都需要交换机的支持,业务处理和管理控制都是通过交换机来实现。如果需要增加新业务,既要修订标准又要改造交换机,导致新增业务需要较长时间。为实现新业务需求,需要在网络中建立公共业务平台,将业务提供和呼叫连接分开,由智能网(IN)完成业务提供,而由交换机完成呼叫连接。采用此种模式很大程度上提高了业务处理能力,同时也缩短了业务提供时间。业务分离,承载出现多样化,为确保承载连接和呼叫控制进一步分离,就需要导入软交换技术,通过软交换技术在媒体层、传送层、业务层和控制层的作用,将业务和控制分类,实现最终目的。
二. 软交换技术概述。
1.软交换的概念。
软交换又称为呼叫AGENT、呼叫服务器或媒体网关控制。其最基本的特点和最重要的贡献就是把呼叫控制功能从媒体网关中分离出来,通过服务器或网元上的软件实现基本呼叫控制功能,包括呼叫选路、管理控制、连接控制(建立会话、拆除会话)、信令互通(如从7号信令到IP信令)等。这种分离为控制、交换和软件可编程功能建立分离的平面,使业务提供者可以自由地将传输业务与控制协议结合起来,实现业务转移。这一分离同时意味着呼叫控制和媒体网关之间的开放和标准化,为网络走向开放和可编程创造了条件和基础。
2.软交换技术的发展。
软交换的概念最早起源于美国。当时在企业网络环境下,用户采用基于以太网的电话,通过一套基于PC服务器的呼叫控制软件(CallManager、CallServer),实现PBX功能(IPPBX)。对于这样一套设备,系统不需单独铺设网络,而只通过与局域网共享就可实现管理与维护的统一,综合成本远低于传统的PBX。由于企业网环境对设备的可靠性、计费和管理要求不高,主要用于满足通信需求,设备门槛低,许多设备商都可提供此类解决方案,因此IP PBX应用获得了巨大成功。受到IP PBX成功的启发,为了提高网络综合运营效益,网络的发展更加趋于合理、开放,更好的服务于用户。业界提出了这样一种思想:将传统的交换设备部件化,分为呼叫控制与媒体处理,二者之间采用标准协议(MGCP、H248)且主要使用纯软件进行处理,于是,SoftSwitch(软交换)技术应运而生。
三.下一代网络LTE概述。
1.LTE概念。
LTE是3GPP在2005年启动的新一代无线系统研究项目。LTE采用了基于OFDM技术的空中接口设计,目标是构建出高速率、低时延、分组优化的无线接入系统,提供更高的数据速率和频谱利用率。整个系统由核心网络(EPC)、无线网络(E-UTRAN)和用户设备(UE)3部分组成,(见下图一)。其中EPC负责核心网部分;E-UTRAN(LTE)负责接入网部分,由eNodeB节点组成;UE指用户终端设备。系统支持FDD和TDD两种双工方式,并对传统UMTS网络架构进行了优化,其中LTE仅包含eNodeB,不再有RNC;EPC也做了较大的简化。这使得整个系统呈现扁平化特性。系统的扁平化设计使得接口也得到简化。其中eNodeB与EPC通过S1接口连接;eNodeB之间通过X2接口连接;eNodeB与UE 通过Uu接口连接。
(图一,LTE系统网络架构图)
2. LTE技术的发展。
LTE项目是近两年来3GPP框架内为了应对WiMAX等通信技术的挑战于2005年年底紧急启动的规模庞大的新技术研发项目。作为3G向后的演进,LTE得到了各大通信企业、高校和通信研究机构的广泛关注与参与。它采用OFDM和MIMO作为无线网络演进的唯一标准,大大改进并增强了3G的空中接入技术。数据传输能力方面,在20MHz频谱带宽下能够提供下行100Mbit/s与上行50Mbit/s的峰值速率,同时,改善了小区边缘用户的性能,提高小区容量和降低系统延迟。与3G甚至HSPA相比,LTE在高数据速率、分组传送、延迟降低、广域覆盖和向下兼容等方面都更具技术优势。
四.软交换技术在下一代网络LTE中的应用。
下一代网络NGN是业务驱动的网络,通过业务与呼叫控制分离以及呼叫控制与承载业务分离实现相对独立的业务体系,使业务真正独立于网络,灵活有效地实现业务的提供。用户可以自行配置和定义自己的业务特征,不必关心承载业务的网络形式以及终端类型,使业务和应用的提供有较大的灵活性,从而满足用户不断发展、更新业务的需求。也使得网络具有可持续发展的能力和竞争力。同时,下一代网络是基于统一协议的分组式网络。现有的通信网络,无论是电信网、计算机网还是有线电视网,都不可能单独作为信息基础设施,但近几年IP的发展使人们开始认识到:各种网络都将最终汇合到统一的IP网络,即三网融合。各种以IP为基础的业务能在不同的网上实现互通,IP协议成为各个通信网都能够接受的通信协议,从技术上为NGN奠定了坚实的基础。
软交换是下一代网络的控制功能实体,为下一代网络提供具有实时性要求的业务呼叫控制和连接控制功能,是下一代网络呼叫与控制的核心。软交换技术,是NGN体系结构中的关键技术,其核心思想是硬件软件化,通过软件来实现原来交换机的控制、接续和业务处理等功能,各实体间通过标准化协议进行连接和通信,便于在NGN中更快地实现各类复杂的协议,更方便地提供业务。软交换设备是多种逻辑功能实体的集合,提供综合业务的呼叫控制、连接以及部分业务功能,是NGN中语音/数据/视频业务呼叫、控制、业务提供的核心设备。
基于SRVCC 网络技术,LTE 核心网络的MME 与现网软交换MSC Server 之间要建立基于IP 的信令接口Sv 接口。该接口在用户从LTE 无线网络向GSM/WCDMA 漫游时由用户终端触发PS 到CS的语音业务切换。 终端用户在原LTE 网络下的承载可能除了有基于GBR(Guaranteed Bit Rate)的语音承载外,还可能同时有非GBR 的数据承载, 在网络和终端具备条件的情形下也要进行相应的处理。在目标网络GSM 或WCDMA 支持和终端手机支持的情况下,SRVCC 的切换同时可能伴随PS 到PS的切换。 PS 到PS 的切换要涉及到网络的S3/S4 接口或Gn 接口; 同时进行PS 到PS 的切换可使得在LTE 网络如Web 浏览的数据业务在目标网络中保持连续。
基于3GPP 网络技术规范和GSMA 运营商企业联盟IR.92 技术规范,IMS MMTel 是2G/3G 移动网络进一步演进并在LTE 时代提供多媒体语音业务的关键网络技术;IMSMMTel 是保证运营商在下一代网络业务运营中处于主导地位的关键。运营商在现网的网络建设中应积极推进和部署IMS 的网络建设。运营商在现网的网络建设中,在网络IP 化建设的基础上,基于移动网络的设备演进能力,积极的推进网络软交换系统与IMS 系统的设备功能融合,例如进行MGCF 与MSCServer 的功能融合,IM-MGw 与软交换MGw 融合, 推进SIP-I 技术的网络部署;从而简化IMS 与现网组网的复杂度,加快IMS 的网络应用步伐。 在LTE 网络部署的同时,在IMS MMTel 成熟的区域部署SRVCC 的网络应用解决LTE 覆盖不连续问题。 分析和准备CSFB 的网络技术应用。在现网的网络建设中,在现有的软交换系统中部署SGs 网络互通接口,以确保用户语音业务的应用。
五. 软交换技术的过度策略。
软交换又称为呼叫AGENT、呼叫服务器或媒体网关控制。其最基本的特点和最重要的贡献就是把呼叫控制功能从媒体网关中分离出来,通过服务器或网元上的软件实现基本呼叫控制功能,包括呼叫选路、管理控制、连接控制(建立会话、拆除会话)、信令互通(如从7号信令到IP信令)等。这种分离为控制、交换和软件可编程功能建立分离的平面,使业务提供者可以自由地将传输业务与控制协议结合起来,实现业务转移。这一分离同时意味着呼叫控制和媒体网关之间的开放和标准化,为网络走向开放和可编程创造了条件和基础。下一代网络(NGN)是一个建立在IP技术基础上的新型公共电信网络,它将话音、数据、视频等多种业务集于一体。建设下一代网络是电信竞争的需要。随着通信技术的飞速发展和电信市场的逐步开放,电信业的一个最重要的发展趋势就是业务运营和网络运营的分离,由网络运营商提供可靠、高效的基础承载平台,由业务提供商提供各种应用,他们与设备制造商三足鼎立,共同推动了电信业的繁荣和进步。软交换技术是下一代网络的核心技术,软交换思想吸取了IP、ATM、IN和TDM等众家之长,形成分层、全开放的体系架构,作为下一代网络的发展方向,软交换不但实现了网络的融合,更重要的是实现了业务的融合。
从网络角度看,通过软交换机结合媒体网关和信令网关,跨接和互连电路交换网与分组化网,尽管两个网仍基本独立,但业务层已实现基本融合,可统一提供管理和加快扩展部署业务。当数据业务逐渐成为网络的主流业务时,可以考虑将电路交换网上的电话业务逐渐转移到分组化网上来,最终形成一个统一的融合网。这种网络演进思路的基点在于网络和业务的融合,不在于节点的融合,它允许不同的网按照各自最佳的方向独立演进,不受限于节点结构,是最适合于像中国电信这样的传统运营商的网络演进策略。据国外统计数字估计,在8年内一个不投资在软交换的运营商的利润将比投资在软交换上的运营商少50%。当然,软交换技术还在发展和完善过程之中,会有这样或那样的问题,但作为网络技术的发展方向已经获得业界的认同。软交换的切入点将随网络运营商的侧重点不同而有所差异。通常是从长途局和汇接局开始,再进入端局和接入,然后扩展到多媒体应用和3G网络。当然,不同的运营策略将有不同的切入点优先次序,但最终都是提供一个完整的端到端的解决方案,完成从电路交换网向分组化网的过渡。软交换不仅适合于新兴的电信运营商,也同样适合于传统的老牌电信运营商,都可以完成从电路交换网向分组化网的过渡。
六.结束语
软交换技术缩短了业务提供的时间,有利于高效服务。在下一代网络LTE中,利用软交换技术的特点,便于打造高质量服务,利用复杂的技术,解决通信难题,有利于移动通信的进一步发展。
参考文献:
[1] 周巍Zhou Wei 软交换技术应用价值分析[期刊论文] 《邮电设计技术》 -2007年10期
[2]熊蔚 高胜保 软交换技术应用与管理探讨 [期刊论文] 《电信技术》 -2007年3期
[3]岑建雄 软交换技术应用浅谈 [期刊论文] 《科海故事博览·科教创新》 -2009年5期
【关键词】 TD-LTE 多天线技术 2/8天线 性能对比
引言
多天线技术(MIMO)是LTE系统的关键技术之一,通过与OFDM及技术结合应用,能够对空、时、频多维信号进行很好的联合处理和调度,使系统的灵活性和传输效率大幅度提升。TD-LTE系统集成了TDD的固有特点和优势,能够很好的满足非对称移动互联网业务应用的需求。随着LTE上涌进程的不断推进,全球各大电信运营商已经大面积部署LTE网络,大部分FDD运营商采取了将LTE和3G系统共同部署的策略,基站主要采用2天线,而TDD运营商为了将TDD技术的优势充分发挥出来,其基站主要采用4天线和8天线技术,因此,需要充分了解不同天线技术各自的特点,从而为TD-LTE的实际部署和后续发展提供依据。
一、多天线技术
多天线技术是一种统称,根据实现方式的不同可以分为天线分集、波束赋形以及空分复用三种[1]。从LTE的发展过程来看,最基本的LTE MIMO形式采用了两端口的2×2形式。因此,多天线技术在TD-LTE系统中的发展及应用对于TDLTE的发展发挥着非常重要的作用。最优的MIMO算法对于不同的天线属配置来说存在一定的差异。
在TD-LTE系统中,常用传输方式主要包括TM2、TM3、TM4、TM7以及TM8,其中2天线主要采用的传输模式包括TM2、TM3和TM4;8天线除了支持2天线支持的传输模式之外,还支持TM7和TM8,其中TM8模式为R9支持技术[2]。表1给出了2天线和8天线的上下行对天线模式的支持能力。从表1来看,在上行上都是采用MIMO的分集模式,下行由于采用了模式间的自适应技术,当信道条件较好时会采用双流技术,而当信道条件较差时,则采用了单流技术。
二、2/8天线性能对比
2.1 2/8天线下行信道性能对比
表2给出了2/8天线SU-MIMO的系统性能对比数据,基于3GPP Casel-3D场景进行仿真,2天线采用TM4模式,8天线采用TM8模式,均支持单双流自适应。
从表2中的数据来看,8天线相对于2天线来说,平均频谱效率的增益达到了19%,边缘频谱效率的增益达到了22%。8天线的性能增益主要是由于其本身的空间自由度更高,能够形成更窄、指向性更强的波束,使有用信号提高,干扰也大幅降低。同时2天线通过终端反馈码本的方式存在码本量化损失,而8天线通过信道互易性得到的信道进行矩阵分解,可以得到更加准确的预编码向量。
由于8天线相对于2天线来说具有更大的空间自由度,因此8天线能够对MU-MIMO进行更好的支持。表3给出了8天线的SU-MIMO和MU-MIMO的性能对比,其中SUMIMO采用了单双流自适应技术,MU-MIMO则采用了2用户配对的单流技术。从表中的数据能够看出,MU-MIMO相对于SU-MIMO的平均频谱效率和边缘频谱效率均有15%左右的提升。8天线MU-MIMO模式下,用户配对准则以及用户之间的干扰消除的预编码算法会在较大程度上影响传输性能。
2.2 2/8天线上行信道性能对比
从上行链路的性能来看,8天线相对于2天线具有更大的接收分集增益。同时,8天线的空间自由度优势方便基站通过更具优势的接收算法来提升处理增益。表5给出了2/8天线系统上行仿真性能对比,仿真基于理想的信道估计。
接收端通过采用8天线和基于MMSE的干扰消除接收算法,8天线在平均频谱效率以及边缘频谱效率均有50%以上的增益效果,尤其是边缘频谱效率的增益接近80%左右。因为8天线具有很好的干扰消除性能,因此8天线的基站上行引入MU-MIMO技术能够进一步提升系统性能增益。
三、8天线在产品实现中的挑战
从前文的分析来看,基于8天线和2天线在物理实现、器件性能方面基本保持一致[3]。但是在实际产品实现方面,两者之间存在一定的差异,比如天线增益,这些对会对网络的实际上下行性能产生不同程度的影响。TD-LTE基于信道互易的8天线技术方案存在一定的问题。基于用户反馈码本的多天线方案,需要对上行容量进行充分的考虑,因此,一般会选择较粗的时频颗粒度进行反馈。但是在TDD系统中,基站能够通过上下行信道互易性获取上下行信道信息。因此,在预编码计算的过程中不会受到码本量化带来的影响。当硬件处理能力较高时,甚至能够实现所有物理资源块的波束赋型矩阵的计算,这能够使得波束赋型与信道条件之间的匹配程度进一步提高,从而促进波束赋型技术性能的进一步提升。
四、结语
TD-LTE继承了TDD的优势和特点,具有较高的灵活性和性能。通过论文的分析可以看出,8天线相对于2天线在平均频谱效率和边缘频谱效率具有更好的性能,同时8天线的MU-MIMO比SU-MIMO在平均频谱效率和边缘频谱效率具有更好的性能。因此,8天线能够更好的发挥空间和复用和干扰抑制方面的优势,能够进一步提升TD-LTE系统的性能。
参 考 文 献
[1]毕奇.LTE多天线技术发展趋势[J].电信科学,2014(10):1-7.
关键词:TD-LTE;组网选择;基站选址;全频段天线
1 前言
当今,随着通信技术的飞速发展,移动通信的更新换代的速度越来越快。现有的2G,3G技术已经不能满足人们对于高速的数据业务的需要。而LTE(Long Term Evolution)是3GPP的长期演进,是3G与4G技术之间的一个过渡,是3.9G的全球标准。LTE采用OFDM和MIMO作为其无线网络演进的唯一标准,在20MHz的频带内能够实现下行100Mbit/s与上行50Mbit/s的峰值速率。同时,由于LTE采用MIMO和OFDM技术,可以有效的克服无线通信中的多径衰落的问题。
经过近几年的研究,LTE技术已经趋于成熟。国内外都在加紧部署商用的LTE网络。根据GSA的统计,今年年底将有87个国家部署248个LTE网络。在LTE终端方面,目前已经有97个设备商提供821款商品,全球用户已经达到1.07亿。
2 国内发展现状及问题
今年将是中国4G的开局之年。据悉,中国移动已于日前正式启动2013年度TD-LTE无线网勘察设计服务集采工作。根据中国移动之前的规划,今年将会在344个城市部署超过20万个TD-LTE基站。广东移动的TD-LTE基站数已经达到7000多个,在建TD-LTE基站近1000个,主要分布在深圳、广州等大城市,2013年规划增加TD-LTE基站2.4万个。
有组织对TD-LTE中国市场的发展进行两种预测,称中国TD-LTE用户发展取决于运营商格局,在一家TD-LTE运营商情况下,2016年中国TD-LTE用户(仅中国移动)将会超过1.1亿;而在乐观预期下,由于其他运营商(指中国联通和中国电信)在3G阶段已经有了巨大的投入,中国移动的TD-LTE市场策略将会促进其他运营商发展TD-LTE。
同时,众所周知,LTE可以提供高速的数据传输。不需要网线,一部几个G的高清电影,几分钟就能下载完成;公司可以利用视频开会,不仅高清,而且可以在移动中进行;乘车时可以随时打开网络社区,与好友进行视频聊天、传送有趣的文件;在地铁车厢里不仅能快速上传下载大容量资料,还能用互联网电视流畅观看高清大片。然而,在LTE的巨大光环之下,LTE网络的部署却遭遇到很多问题。
2.1 组网方案的选取问题
首先需要解决的一个问题就是组网方案的选择。据悉,在运营商内部和设备商中对于建网方案都没有形成一个统一的意见,分歧主要在于是新建网络还是升级原有的网络。
目前可供中移动建网的频段至少有F频段和D频段,其中,D频段是国际电信联盟确定的全球主流TD-LTE频段,中国工信部也已经明确该频段的共计190MHz频率(2500-2690MHz)用于TD-LTE。F频段则是此前中国移动TD-SCDMA的主频段。这样一来,中国移动的4G建网就有F频段、D频段,以及F/D混合组网等多种方案,而F频段又有基于原TD-SCDMA基站升级和共址新建两种方案。从技术指标、运营商长远利益等因素出发,新建方案更加理想。因为,首先F频段所处位置复杂,既有小灵通,又有TD-SCDMA,设备射频性能的先天不足,会让网络受到干扰,影响网络性能,只有通过大规模替换原有3G设备的RRU才能解决问题;其次,TD-LTE使用时分双工的方式,上下行时隙配比决定了两种方案的时间资源分配,F频段升级方案会造成下行容量下降约25%;第三,TD-LTE技术与现有2G、3G网络存在较大差异,对网络优化提出了不同的要求,升级方案会加大运营商后期的网络优化难度。然而,升级方案不仅可以实现快速部署,而且有助于运营商节省投资近50%。如果一个城市现有的3G网络符合LTE网络结构要求,采用F频段升级是最合理的方案。
2.2 选址问题
另一个重要的问题是LTE网络建设的选址问题。近年来,人们越来越意识到基站会对于人体造成辐射。当在小区楼顶安装基站时,附件的居民会不可避免的遭到电磁辐射的影响。LTE网络选取的频段更高,覆盖面积越小,所以基站的数量相对于GSM基站来说会更多。过多的基站不仅影响美观,增加选址的难度,增加建设的费用。据悉,上海的TD-LTE建设六期宏基站规划的2400个基站中,无法完成购足的近500个,占比约20%,其中有近一半源于业主阻挠,有30%为居民区及学校,均由于对电磁辐射等的担忧,对建设TD-LTE基站表示极度反感与不配合,难以协调。国际经验证明,信号的广泛覆盖是TD-LTE取得先机的重要保障。目前,TD-LTE在我国还处于扩大规模试验阶段,产业链还有待完善,很多问题都阻碍着TD-LTE进一步扩大规模试验覆盖范围乃至商用化的步伐。
一个基站的拆迁,不只是影响覆盖范围内的信号,更有可能改变整个网络的布局,可谓“迁”一发而动全身。对于我国来说,TD-LTE网络建设越快,覆盖越好,越早进入大规模商用阶段,就越能吸引全球产业链加入,从而实现全球漫游能力、规模化、低成本化,带动全社会进入4G时代。为此,需要国家在政策制定、频率规划等方面给予TD-LTE更多的指导,需要地方政府在基站选址和性能测试等方面给予更多的支持,需要产业链上下游在芯片研发、终端制造、应用开发等方面与运营商共同努力。
3 解决方案
3.1 F+D混合组网的确定
通过建设和试用经验总结,已经明确未来的网络形态采用F+D混合组网,F频段的建设以升级为主,网络结构不合理站点采用新建方式,D频段全部新建。从成本上比较,利用F频段新建的设备投入成本比F频段升级高出近50%,而利用D频段建设的话,同一片区域相同的覆盖范围,单纯用F频段建设,与单纯用D频段建设相比,D频段要多建设约26%的基站量。由于中国移动整体规划2013年4G一期网络建设以快速实现覆盖为目标,频段侧重以F频段升级为主,对原F频段站址站高等网络结构不合理的站点则采用新建方式,D频段则在合适的区域进行辅助建设。那么一个城市的网络就会形成这样的结构:第一层网络是F频段的覆盖,里面有一个小圈是D频段的,D频段所覆盖的区域肯定是F+D频段的同覆盖,F频段用来解决广覆盖以及部分区域的深度覆盖,D频段用来解决热点区域以及主城区的容量吸纳。因为F频段只有一个载频,D频段可以做到两到三个载频,这样的话,F频段做第一层网络,D频段做容量的吸纳,会是一个比较科学合理的网络结构。
F频段的TD-LTE网络建设是以升级为主,还是以新建为主呢?如果一个城市现有的3G网络符合LTE网络结构要求,采用F频段升级是最合理的方案;如果部分3G站点结构不够合理,比如说站址、站高、站间距的不合理设计,采用F频段升级建设方案的话,LTE网络就难以达到优质网络的这个目标,而这部分站点需要进行新建。
3.2 减小基站数量和选择问题
而对于选址困难的问题,一方面需要增大宣传力度,向群众耐心说明。电磁辐射强度是与距离的平方成反比,也就是发射基站越高,对人体的影响就越小。通信基站产生的辐射值不如一台电磁炉甚至电视机对人体的影响大。由于TD基站采用智能天线,发射功率只需要8W左右,大大降低了对周围环境的影响,实际辐射更小。
另一方面,在部署网络时,应当尽量少建基站。因为,在我们的生活环境中,到处都布满了各种各样的天线。包括我们通话用的GSM网络、3G TD-SCDMA网络、用于数据业务的无线局域网WLAN以及即将商用的LTE网络。这些通信网络需要不同的天线,因为他们的工作频段不同,不能采用一种天线来实现所有网络的覆盖。如果采用单一的天线,同时覆盖GSM、TD-SCDMA、WLAN、TD-LTE这些网络所需要的频段,就可以大量的减少基站的数量。这样既可以大幅度的节省建设成本,还可以减少布网中选址的难度。同时,也可以美化我们的生活环境。根据当前的研究现状来说,实现LTE的1.71-2.69 GHz的频段范围的天线设计已经不再是一个难题,很多设备供应商都已近生产出多种LTE天线。但是,能同时将800~900MHz GSM频段和LTE频段同时实现的天线还很少。个别厂商采用在一个大的天线罩中同时安装两组不同的天线来达到全频段的覆盖。但是,这样使得天线的尺寸大大的增加,馈电变得复杂。如果采用单个天线阵子可以同时实现全频段的覆盖将是一个很大的进步。不仅可以减小天线的尺寸,还可以大大降低生产成本,据悉这方面的研究已经有了一定的成果,相信不久的将来会出现这种结构简单,覆盖全频段的天线。届时,将大大减小中国移动LTE网络建设的投入。
4 总结
LTE通信已经是当今通信的主流方向,中国也已经进入了LTE无线通讯投资和布网的关键时期,中国移动作为国内电信运营商的龙头,更需要把握好方向和发展进度。在组网方面的选择和无线通讯设备的选择上需要更加睿智,着眼于未来,把握好方向,以较低的成本实现更高的效益。
[参考文献]
[1]苏航.TD_LTE网络规划设计研究.北京邮电大学硕士论文.2012年6月.
[2]方晖.TD_LTE系统中的MIMO空分复用技术研究.南京邮电大学硕士论文.2013年4月.
【关键词】TD-SCDMA;TD-LTE;3G
1.概述
1.1 TD-LTE技术概述
TD-LTE即TD-SCDMA Long Term Evolution,是指TD-SCDMA的长期演进。TD-LTE采用了众多先进的无线技术,诸如OFDM、MIMO/BF、HARQ、AMC等。可以提供上行超过100Mbps和上行超过50Mbps的用户峰值速率;由于去除了RNC网元,网络结构简化且更加扁平;结合了其它和一些先进技术,使得无线接入网时延降至10ms;频谱利用率也提高了很多,使得TD-LTE在性能与成本上都具有很大的优势。下面介绍一下其关键的几个技术特点:
1.1.1 OFDM(正交频分复用技术)
实际上OFMD是多载波调制的一种。其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰 ICI。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。在向B3G/4G演进的过程中,OFDM是关键的技术之一,可以结合分集,时空编码,干扰和信道间干扰抑制以及智能天线技术,最大限度的提高了系统性能。
1.1.2 MIMO(多输入多输出)
所有的无线技术都面临信号衰落、多径、不断增加的干扰和受限制的频谱的挑战。MIMO(多输入多输出)技术在不需要占用额外的无线电频率的条件下,利用多径来提供更高的数据吞吐量,并同时增加覆盖范围和可靠性。它解决了当今任何无线电技术都面临的两个最困难的问题,即速度与覆盖范围。由于OFDM的子载波衰落情况相对平坦,十分适合与MIMO 技术相结合,提高系统性能。MIMO 系统在发射端和接收端均采用多天线(或阵判天线) 和多通道。多天线接收机利用空时编码处理能够分开并解码数据子流,从而实现最佳的处理。若各发射接收天线间的通道响应独立,则多入多出系统可以创造多个并行空间信道。通过这些并行空间信道独立地传输信息,数据速率必然可以提高。
1.2 论文的主要研究内容
本文首先叙述了TD-SCDMA在我国的发展现状和当前的建设情况及TD_LTE技术然后重点分析了TD-SCDMA关键技术及向TD-LTE演进,最后介绍并分析了TD-SCDMA与TD-LTE共平台方案。
2.TD-SCDMA与TD-LTE共平台方案
2.1 TD-SCDMA向TD-LTE演进概述
从TD-SCDMA 向TD-LTE的演进,首先是在TD-SCDMA 的基础上采用单载波HADPA技术,速率达到2.8Mbps;其后实现多载波HSDPA,其速率能达到7.2Mbps;持续发展到HSPA+阶段,速率将超过10Mbps,并继续逐步提高它的上行接入能力。最终在2010年之后,从HSPA+演进到LTE,实现20MHz带宽下行峰值速率100Mbps,上行峰值速率50Mbps。综上所述,由于技术发展的快速,需要充分考虑TD与LTE的共存和演进方式。在TD向LTE演进的过程中,需要采用TD与LTE共平台的方案,以实现更高端的技术应用并最大化降低网络投资成本。
2.2 TD与TD-LTE共平台方案简析
2.2.1系统共平台概述
TD与LTE共平台的研究和实现,比较复杂的部分在于基站设备。通常来说,对于系统无线设备BBU和RNC来说,TD与LTE共平台方案分为共机框方案;共硬件平台的共模方案;以及基站系统未来实现的基于软件无线电技术的多模基站,即硬件平台复用,通过软件下载支持TD或LTE方式。图1为TD与LTE共平台的方式分类示意。对于RRU和天线系统而言,可采用TD与LTE共RRU以及共天馈的方案。目前双极化天线已成为TD-SCDMA天线应用的主流方向,双极化天线可以较好支持向MIMO天线平滑演进,为LTE部署奠定基础;采用双极化天线后,其宽度、重量都减少一半,性能与常规八阵元智能天线相当。采用TD-SCDMA及TD-LTE均可工作的宽频段天线,即可支持TD-SCDMA与TD-LTE共天馈,无需变更天面施工,即可满足未来TD-LTE网络对站址天面的需求。需要特别注意的是,在具体实施过程中,需要认真考虑并分析TD与LTE共RRU及共天馈的方案,分别在同频段和异频段情况下的施工难易度、后期维护问题以及干扰隔离等问题,以选用最合理的共用方案。
2.2.2系统共平台方案简介
系统共平台方案的共机框方式是实现TD与LTE共平台方案的最基本方案,其主要特点是:两个系统独立运行;共用电源和背板;所有硬件板卡不复用。因此共机框方案只是一种TD向LTE演进的最简方案,并不是完全意义上的共平台方案。最大化保有现有TD-SCDMA网络投资的方式,是共硬件平台的共模方案。该方案可分为单模方式和双模方式两种,单模方式是系统中TD与LTE两个系统独立运行,硬件板卡可复用;支持TD系统在不更换任何硬件的前提下,直接软件升级为LTE系统。双模方式是系统中TD与LTE两种制式协作运行,两系统共用同一套硬件板卡,软件同时运行TD-SCDMA和TD-LTE的工作模式。可见共模方案是目前最为合理的共平台方案,但在实际网络运行中,TD与LTE两种制式协作运行的双模方式需要占用大量的系统资源并成倍增加系统设计复杂度,在实际应用中不推荐采用TD与LTE共平台的双模方案,因此下文将主要对BBU设备TD与LTE共平台的单模方案进行介绍及分析。
2.3 TD与TD-LTE的BBU共平台单模方案分析
从上文分析可知,TD与LTE共平台的最佳实现方案是共硬件平台的共模方案(单模方式和双模方式)。这种共平台方案可以完全实现BBU设备TD和LTE两种制式的共传输、共背板、共BBU架构以及共用主控及时钟单元;TD-SCDMA BBU通过软件升级即可支持平滑演进至TD-LTE。
2.3.1基带处理单元的TD与LTE共平台分析
对于基带处理单元而言,在支持LTE情况下对于处理器的能力有更高要求;其处理能力会根据处理时延的要求和LTE支持的天线及带宽数有不同要求。图3给出了在不同时延要求情况下,TD与LTE各种天线及带宽要求下的处理器能力要求,可以看到TD系统现有处理能力,基本可以实现5ms时延要求下的LTE各种带宽下的处理能力需求。
2.3.2接口单元的TD与LTE共平台分析
TD与LTE共用接口单元,需要重点考虑接口单元的流量;接口单元除提供与上级网络设备的接口外,还提供对RRU单元的接口。对于上级网络设备的接口Iub、X2/S1带宽来说,TD系统的Iub接口流量主要在于BBU的多个载波业务数据和控制数据总流量;对于LTE系统X2/S1接口,在空口速率下行100Mbps,上行50Mbps情况下,3个20M带宽小区总吞吐量在450Mbps之内,同时还要处理eNB之间的交互数据以及网络管理数据。综合计算分析可知,千兆物理端口完全能够满足TD与LTE共平台接口带宽需求。对BBU与RRU之间的Ir接口带宽来说,LTE采用2天线时,不管是10M带宽还是20M带宽,都可以在1条2.5G的链路中完成;当采用8天线时,必须采用两条链路。如果是10M带宽,则采用2条2.5G链路,如果是20M带宽,则采用两条3.072G高速链路。对BBU设备而言,TD系统接口单元不需要修改任何硬件就可以实现所有带宽的数据传输。 [科]
【关键词】 LTE 监理 管理方式
一、引言
为了提供更高的业务速率、更高的频谱利用效率、更低的建设运营成本,3GPP推出了移动网络的长期演进项目――LTE,也就是我们常说的第四代移动网络。目前LTE工程建设已经在大部分城市全面铺开,并陆续投入商用。在LTE通信工程建设过程中,面临着和以往3G、2G工程建设不一样的问题,如何又好又快的建设LTE工程将成为通信建设单位以及合作单位今后关注的重点。
本文将针对LTE通信工程开展前后的各项实施工作,结合监理管理中的质量、进度、投资以及安全方面的管控方式进行探讨。
二、LTE项目建设特点
LTE项目和以往的3G、2G工程有着截然不同的建设特点,其建设特点具体如下:
1、规模大、工期短,在选址、设计、供货和施工力量方面要求较高。
2、新建站选址难度大。目前4G网络主要覆盖城市及繁华街道,在前期中心城市网络规划已完成、居民对无线辐射有误解的现状下,目前选址难度日趋增大。
3、天面空间资源有限。前期设计规划主要是满足2G(GSM900和GSM1800)及3G信号覆盖,并未考虑4G建设所需资源,在LTE建设中天面空间资源十分有限,特别是LTE的天线安装空间十分有限。
4、传输资源、电源资源一般都需要扩容。
5、作为新技术,LTE网络工程质量要求较高。
6、LTE网络工程施工风险较大。为了更快的实现LTE网络覆盖,LTE网络工程前期项目以共址站为主,原有机房2G、3G设备已投入运行,在此基础上施工风险较高。
7、各参建单位缺乏LTE网络建设的管理经验。
三、LTE项目管理方式
在庞大的LTE建设工程中,管理方式的好坏将决定LTE建设的成功与否。本人结合实际工作,从前期管理、实施过程、后期管理三方面进行阐述。
3.1 前期管理
项目建设的成败并非在项目结束时才体现,很大程度上取决于项目开始时的准备工作,因此抓好前期准备工作成了LTE建设的重中之重。具体需要做好以下几点:
1、搭建组织架构。在项目开始前必须结合工程特点和实际情况搭建合理的组织架构,以便更好地相互配合开展工作,建议采取以下方式:
(1)实行直线组织架构,根据选址、勘察、设计、配套建设、主设备安装、站点开通等方面实行环节管理,各环节指定相应人员负责,通过明确的职责分工从而提高管理效率。
(2)以无线专业为核心,传输、配套、电源专业建设充分为无线专业服务,打破各专业之间壁垒,提高资源整体性与协调性。
(3)组建一体化管理团队,成立合署办公作战室,及时解决工程中存在的问题,整体推动项目进度。
2、编制建设流程。作为监理单位,应该结合具体运营商、具体地市、具体项目,编制切合实际的建设流程,为后续工作的开展奠定基础。
3、明确人员分工。在组织架构明确后,对架构中每个人员的职责分工给予充分的定义,只有各级人员明确职责,分工合理,才能避免无效或者重复的工作,才能防止遗漏或者相互推诿的工作。
4、统一报表格式。由于在LTE建设过程中,涉及许多参建单位,为了更直观更好地了解进度情况,提前统一报表格式将大大减少各单位在信息交换时所耗费的时间。
5、建立交流机制。由于LTE属于新技术,在建设过程中难免会出现问题,故应提前建立交流机制。
3.2 过程管理
1、进度控制。在LTE建设过程中应采取目标管理和动态管理的方法,按照制定计划、实施计划、严格对标、分析进度、纠偏计划等方法实施进度控制。在制定计划环节中,应根据项目进度目标,多方协商共同确定切实可行进度计划。在实施计划环节中,要以确认的计划为导向,各参建单位合理配置资源,确保进度按计划实施。在严格对标环节中,要根据制定的计划进行对标,未按计划完成的任务,明确问题责任单位及责任人记入考核。在分析进度环节中,要定期对项目进展情况逐个环节进行分析,若进度滞后,找出引起滞后的原因,提出解决措施。在纠偏计划环节中,对于偏离计划的站点,制定解决方案,明确解决时限、责任人,及时纠偏,赶回滞后的进度。
2、质量控制。质量控制贯穿于项目建设的全过程,不同阶段有不同的内容与要求。在事前控制环节中,要审核施工队伍资质以及设计技术方案;要编制施工验收规范,同时组织施工人员培训,考试合格后方能上岗;另外还要严审施工组织方案。在事中控制环节中,要做好现场技术交底;对设备、材料、施工工器具进场前进行检查;对也要进行检查;在关键工序、隐蔽工程中作为监理单位要旁站监理;对不合格的重大问题要发出整改通知单,限时整改再核查;另外定期召开质量分析会,通报质量情况。在事后控制环节中,要求施工单位自检后报验;监理组织预验收;对于施工质量评定不合格的必须整改;对整改力度不够的可根据考核要求执行奖惩。
3、投资控制。在LTE项目建设投资过程中要做好方案的预算审核,合理控制造价;对用料情况也要进行核实,从而减少物料的浪费;对物资统一管理,建立收支台账;在结算审核环节中,要以现场实际工程量为依据,严格按照规范对施工单位提交的结算进行审核。
4、安全管理。安全管理应贯穿施工全过程,其中尤以施工单位的安全管理为重点。作为施工单位,应建立安全生产管理制度,配备专职安全员,而且要求专职安全员持证上岗,对于特种作业人员也要持证上岗,施工单位应整体落实安全生产费的使用,编制安全施工方案和应急预案,落实逐级交底的制度。
5、信息管理。在大型工程信息管理中,首先要统一好各类报表的格式,其次要规定统计上报时限,第三是明确汇报的对象,作为信息的来源也要可靠,最后则是定时对信息进行分类、整理和存储。
3.3 后期管理
1、验收结算。针对LTE项目工程量较大特点,可以进行分批验收,以减少后期统一大规模验收的负担。在结算阶段,提前制定项目结算计量的标准,明确各种类别的工程量计量方法、计价标准、提交审核时限等。另外要实行分级管理、逐层把关。
2、后期评估。在项目结束后,可以从整体上对参建单位进行评估,将本年度评估结果与下年招标相关联,采取后期评估方式有利于提高参建单位的积极性,保持持续投入,不断提升服务效果。
3、资料整理。在工程结束后,各参建单位需提交相应工程资料,作为后续查阅的依据。
4、经验总结。作为新技术项目,在工程实施过程中难免会走弯路,难免会出现问题,在工程结束后对工程进行总体总结十分有必要。
四、结语
本文结合LTE工程建设的特点,从监理角度对LTE项目建设管理方式展开了分析探讨,无论是前期准备工作,还是实施过程管理或者是后期管理,任何一个环节都会对整体的工程建设产生影响,因此做好每一环节的管理,将决定LTE工程建设的成败。本论文对于LTE工程的监理管理的探讨,只是对LTE工程建设管理探讨的一部分,更多的实践问题还有待于广大行业人员的共同努力,方能够继续提高对新技术、大项目的管控,从而进一步推动我国通信事业的整体发展。
关键词:趋势;LTE;优势;技术
中图分类号:F62 文献标识码:A 文章编号:
接入宽带化、移动化业务量的不断拓展得益于宽带无线接入技术的诞生。随着科技的高速发展,也带来了信息化的繁荣,人们对通信网络的速率需求日趋高涨。无线频谱在空中接口和网络结构的问题上,存在着传输延时大、利用率不高等缺陷。通过一些列的发展,为了加强在宽带无线接入市场中的竞争,制定了LTE计划,3G频段的使用可采用4G或者B3G技术来实现。LTE采用了诸多用于4G/B3G技术,与3G技术相比, 4G技术运用于3G频段。因此,LTE更加接近4G,并具有技术上的优越性,这就为4G的拓展奠定了有力基础。具体而言,长期演进计划LTE是由3GPP组织制定的UMTS技术标准的长期演进。系统支持与其它3GPP系统进行互操作,降低了维护成本与建网成本,有效减小系统延时,是无线网络架构更具扁平性,显著提升了系统的覆盖和容量,并使得频谱的分配更具灵活性,它还支持多种带宽分配,明显增强了数据传输速率以及频谱效率,LTE系统添加了多天线MIMO和OFDM等传输技术。技术的引入被认为是满足频谱效率与用户平均吞吐量的最优技术。用来传输上行数据的频谱资源取决于子载波映射。
LTE主要技术
1.1技术
模型可同时考虑更多天线配置,其上行为1×2个天线,下行2×2个电线。为增大容量,将虚拟应用与上行中,另外,还可以应用于开环发射分集、秩自适应、预编码、空分多址、空间服用等技术。为了能显著提升系统的传输率,是其主要手段,可有效提高系统性能。在接收端和发射端,采用了多通道和多天线。利用时空编码处理,可以将解码数据自流有效分开。多入多出系统能够创建N个并行空间信道,处于发射接收天线之间,通道可进行独立响应。这样就能够有效提高护具速率,信息也可以通过并行空间信道进行独立传输。为了能够有效提升频谱利用率以及高通信容量,MIMO将接受、发射、与多径无线信道有机结合并进行了优化。发射端或者接收端如果采用天线阵列或多天线的智能天线系统,天线数的对数的增减也决定着其容量。
1.2技术
LTE的主要特点体现在技术上,技术任务,在多个正交的子载波上,高速数据被分散传输,因此,使符号之间的干扰影响减小,大大加长符号持续的时间,降低符号在子载波中的速率。在设定参数时,影响到整体系统性能,要想彻底消除符号间干扰,,只需将保护间隔加入OFDM符号前,信道的时延扩展小于保护间隔即可。循环前缀对符号间干扰进行消除。系统的覆盖能力和抗多径能力取决于循环前缀的长度。长前缀可应用于对多小区广播业务和LTE大范围小区覆盖业务的支持,但是,长前缀会降低数据传输能力,相应增加系统开销,尽管如此,长前缀依然可支持大范围覆盖,并可消除多径干扰。LTE系统中,采用了短、长2套循环前缀的措施,以便满足半径覆盖要求在100KM的小区。因此,循环前缀方案措施的选择可依照具体场景进行。
1.3技术
技术相对于OFDM/OFDMA而言,有着较低的PAPR,该技术的实现较OFDM/OFDMA简单,属于单载波多用户接入技术。该技术的应用使小区边缘的网络性能得以提高,发射机的效率高,人们选择SC-FDMA技术为上行信号接入的关键因素在于该技术有效降低了终端的成本和体积,并减小了发射终端的峰均功率比。SC-FDMA技术包括离散式和集中式两种子载波映射方式。离散式下子载波的数量非恒定的,根据IFDMA循环因数,采用了IFDMA方式,在频域可对每个用户进行分配;而集中式下传辅带宽非恒定,可在频域中集中传输用户。另外,SC-FDMA技术的优势还体现在采用循环前缀对抗可变的传输时间间隔和多径衰落、固定子载波序列、灵活分配频谱带宽等等。
LTE技术目标
支持简单邻频共存,并支持非成对和成对频谱;支持高速移动终端,在整个系统范围内,支持终端的移动性;支持100公里小区范围覆盖,在不超过30公里的面积覆盖问题上,LTE项目性能要求允许一定程度内的性能缺失;终端和系统具备了核心网,可再对系统性能提升后的兼容平衡进行考虑后,尽可能向后兼容;降低维护和建网的成本;支持广播多播业务,并且支持3GPP和非3GPP系统互操作;提高小区边缘比特率,前提在确保3G小区覆盖范围未产生变化的条件下。
LTE技术优势
3.1 LTE改变了通信业务格局
LTE发展迅速,越来越多的通信企业与LTE技术合作,因为LTE可促进整个通信产业稳定、健康发展,调节通信产业格局的不平和。
3.2 LTE技术拥有成本和技术优势
通过更加灵活的频谱配置方案,LTE技术的应用可减少网络节点,对系统结构进行简化,还可提升单个基站效率和网络效率,从而使运营商的利润空间得到有效提高。
3.3提升移动通信业务质量
LTE对用于更具吸引力,因为其能够使用户体验更多新业务,LTE具有更好的移动性、更低的延迟率、更高的传输速率等优势。
结束语
LTE将会与WIMAX进行激励的竞争,因为WIMAX技术在通信市场中也具有技术的向后兼容性。LTE采用了诸多用于4G/B3G技术,与3G技术相比, 4G技术运用于3G频段。因此,LTE更加接近4G,并具有技术上的优越性,这就为4G的拓展奠定了有力基础。对LTE进行研究,可相对减低运营成本,改善系统覆盖和容量,提高用户数据速率,减少网络时延的产生。长期严禁LTE是3G的演进,它承载了3G与4G的过渡。LTE采用了单层结构,其架构主要由接入网关和演进型NODEB构成,与之间的连接方式采用直接互联,从而改进了UTRAN结构。在4G应用前,也可以说LTE是3G通信技术的最终版本。下行传输方案采用了OFOM,循环前缀所需持续时间分别对应长缀和短缀。系统为达到数据传输延迟的要求,采用自动重传请求周期和很短的交织长度。技术的引入被认为是满足频谱效率与用户平均吞吐量的最优技术。用来传输上行数据的频谱资源取决于子载波映射。上行单用户MIMO天线的配置为:基站配备两个接受天线,而UE也有两个发射天线。在LTE中引用了技术,接收机能够联合检测两个UE信号。LTE与CDMA不同,CDMA不能通过扩频的方式来对小区间干扰进行消除。而却具备消除小区间干扰技术。干扰协调、干扰消除、干扰随机化是消除小区间干扰的有效途径,减小下行小区间的干扰的通用方法也可看成是解决波束成形天线方案。所采用的单层结构实现了低成本、低复杂度、低时延的要求,该结构减小了延迟,有利于对网络进行简化。
参考文献
[1]徐文虎,蒋政波,田玲,刘进,洪伟.LTE同频小区检测及在扫频测试仪中的应用[J].仪器仪表学报,2012(1).
[2]罗巍,郭爱煌,谭维锴. LTE-A中的SLNR联合校准多用户多流波束赋形方案[J].系统工程与电子技术,2012(11).
[3]方颉翔,蒋睿,石清泉.LTE网间切换安全机制的形式化分析[J].东南大学学报自然科学版,2011(1).
【关键词】 4G 网络多场景 深度覆盖 微站
LTE相较于传统的TD-LTE本身具有很大的优势,在终端、覆盖能力和频段上都有一定的优势。因此,LTE是未来通信的发展方向,各大运营商为了获得先机,都加大了4G的研究和投资的力度。随着我国三大电信运营商获得了LTE PDD牌照,我国的4G建设迎来了一个新的发展机遇,同时也存在新的挑战,包括室内覆盖的加强、新建设思路的形成、关键站址的获取。各大运营商需要积极解决这样问题,以在竞争中取得先机。本文将以4G网络的室内的场景深度覆盖为例,对网络的深度覆盖建设策略进行讨论。
一、深度覆盖建设方案类型
在4G网络的建设深度覆盖的方式的选择需要考虑很多因素,包括服务性指标的要求、系统维护的便利性、系统的扩展性等一些因素,根据以上因素综合考虑到用户体验、网络信号的强度、施工的成本、网络维护扩展的方式等来进行4G网络多场景的覆盖。
1、已有2/3G DAS室分系统场所。已有2/3G DAS室分系统场所主要包括宾馆、写字楼等区域这些区域可以直接将LTE信源合路馈入DAS系统,这种方式投资比较小,但是这种方式的小区容量比较低。如果要满足LTE MIMO对双通道的需求可以采用双通道DAS的方式,但是成本较高。
2、有业务热点需求的场所。有业务热点需求的场所主要包括会展中心、阶梯教室、体育馆等公共场合,这类场合可以部署Small Cell小基站,实现业务热点的需求,这种方式施工十分方便,且能够实现大面积覆盖目标区域。
3、需要容量连续覆盖的场所。需要容量连续覆盖的场所主要是高端写字楼和政府大楼等一些对网络需求较高的地区。这些地区主要采用基带和射频单元分离的微功率的方案来进行,这种方案是目前最新的4G网络多场景深度覆盖解决方案,具有极大的开发潜力。
二、Small Cell室内覆盖方案
目前Small Cell室内覆盖方案主要应用于高端写字楼和大型商务中心等一些需要容量连续覆盖的地区。Small Cell可以作为一个独立的基站,本身的功率和体积都远低于其他的基站,由于其本身的特点,可以将Small Cell基站放在室内的任何地方,Small Cell内部设有内置天线可以实现很大范围内的信号覆盖,如果信号覆盖的区域较广,可以增设外部天线,实现扩大信号覆盖面积的作用。
从Small Cell引入的目的来看可以分为吸热引入和补盲引入两种引入方式。在室内存在着较强的宏微信号干扰的情况下需要通过吸热引入实现Small Cell的室内覆盖,对Small Cell室内覆盖的关键技术要求比较高。主要采用宏微干扰协同技术和时钟同步技术来实现吸热引入,避免室内受到宏微信号的干扰影响到网络的正常使用。补盲引入是在目标区域内的宏微信号较弱,对网络使用影响较小的情况下使用的,对于技术的要求不高,无需要进行特殊的处理。
三、pRRU室内连续覆盖创新方案
目前有很多地区由于事先没有部署DAS系统,而且这些地区需要4G网络的连续覆盖,这些地区对4G网络的深度覆盖提出了极高的要求。针对这些地区主要采用pRRU方案覆盖的方式进行。pRRU方案的核心是有载波聚合、小区干扰协同技术。LTE载波聚合同时完成多制式的室内覆盖,通过BBU完成上百个pRRU的连接和分离,可以完成很大范围内用户的使用要求。在4G网络的使用过程中如果pRRU的小区之间出现干扰的情况,可采用Comp cS协同调度技术,来对小区之间的网络信号进行合理的调度,最大限度的避免信号之间的干扰,实现小区容量的最大化。由于这种方式可以灵活的运用合并和分裂的配置来满足不同小区的需求,具有极大的发展前景,是未来4G网络实现室内覆盖采用的主要方案,具有极大的研究价值。
总结:随着网络4G时代的到来,人们越来越重视4G网络的使用,如何实现4G网络的多场景深度覆盖实现网络质量和用户的优质体验是各大运营商需要解决的主要问题。本文主要4G移动通信室内信号覆盖的类型和几种具有极大发展潜力的方案进行深入的研究,为运营商对4G网络深度覆盖方案的选择提供借鉴,以促进我国4G网络建设的顺利开展。
参 考 文 献
[1]杜金宇,张晟,石浩.典型场景的4G覆盖解决方案[J].电信工程技术与标准化,2015,v.28;No.21609:16-19.
[2]周波,张敏,陈永强.4G深度覆盖中街道站解决方案研究[J].湖南邮电职业技术学院学报,2015,v.1403:1-3.