时间:2023-03-22 17:37:23
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇电气及自动化论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
1.1定义
电气自动化技术是集计算机技术、现代通信技术和现代网络技术为一体的技术总称。其在热电企业中的应用,有利于热电企业的自动化管理、远程控制技术、协议和规范的实现。电气自动化技术是当前电力企业发展的必然趋势。
1.2特点和作用
1.2.1实时仿真
在电力系统中的应用,保障了其电力系统的正常、可靠、稳定的运行。在店里系统的运作过程中,保证了暂时状态和稳定状态,并对其运行的数据资料进行有效的收集,为工作人员对电力系统的仿真运营和故障模拟提供了数据支持。
1.2.2智能优化
电气自动化技术的应用,实现并提高了电力系统的运行智能化,辅助工作人员进行故障分析,确定故障所在位置,从而保障了电力系统的正常、稳定的运行,促进了电力系统的进一步发展,同时也确保了人们的生产、生活。
1.3发展趋势
随着社会经济和科学技术的不断发展,电气自动化技术的应用也愈发广泛,其未来的发展趋势也是我们该持续关注的。随着计算机技术和多媒体信息技术的发展,电子智能化与设备信息共享化的使用范围广泛,其在电气自动化技术中的使用也将越来越普遍。因此,我国的电气自动化技术将会朝着计算机技术和多媒体信息技术的发展方向发展。电力系统的保护、控制、测量等方面的问题,是确保电气化技术在系统的应用中合理、科学的前提。因此,保护、控制、测量一体化发展,是电气自动化技术未来发展的又一新趋势。随着我国各大电力产业的发展,电力系统中的数据集更为庞大,数据处理速度要求也越来越高。因此,以太网技术的应用,满足我国热电企业和各大电力系统的发展需求,是电气自动技术的又一发展趋势。
2电气自动化在热电企业中的应用
2.1电气自动化技术对热电企业的作用
2.1.1提升热电企业的发电效率
电网的规模随着经济和城市发展进一步扩大化,以满足城市发展和人民的生活需求。传统的发电技术以及发电设备,已经不能满足当前的发电要求。相较之下,电气自动化技术的应用,有效地提升了热电企业的发电效率,满足当前社会需要。
2.1.2降低热电企业的发电成本
热电企业主要采用煤炭、石油等能源进行火力发电,在发电过程中会有煤炭、石油燃烧不充分的现象,导致资源利用不充分,造成资源浪费。电气自动化技术的应用,能让煤炭、石油等在发电过程中充分燃烧,进而提高了资源的利用率,降低了热电企业的发电成本。
2.1.3优化热电企业的资源配置
电气自动化技术可将热电企业中发电的煤炭、石油等材料和资源进行合理分配,并对发电设备在发电时出现的故障能够及时地处理,及时、有效的维护和处理,有利于发电设备的质量和性能的保障,以及热电企业的正常运行。
2.2热电企业一体化过程中的应用
在热电企业的运行过程中,电气自动化技术的应用可实现其发电设备、锅炉以及机组等的一体化运行,将其进行结构上的深层次调整,使得热电企业在监督、控制、管理等方面在方式上得以调整。电气自动化技术的应用,使得热电企业中的机械、锅炉、机组实现系统上的统一控制,并对其重要的设备、运行参数以及信息的记录、汇总等分析、决策。在电气自动化技术的控制功能和调整功能的基础下,有利于热电企业分布式控制系统的建立,从而简化监控系统,降低热电企业的监督、管理、控制成本,帮助热电企业获得更多的经济效益。与此同时,热电企业的一体化设备、监督、管理的建立,有利于企业信息的采集,从而形成统一管理的运营体制,提高工作效率,保障运营状态。
2.3热电企业系统建设中的应用
电气自动化技术在热电企业的电气自动化系统的建设中,可对其系统的运营和故障进行检测、诊断,预先发现系统存在的隐患,并对其进行处理和保护控制,从而保证系统的正常运行。
2.4热电企业电气通信中的应用
由于当前热电企业要向远程控制和交互控制发展,从而需要建立适应其发展的通信系统,对热工工艺的连锁问题进行处理,电气后台系统实际应用水平的提高,加强初级阶段的运行监视功能,对其系统的控制逻辑和水平、自动化以及管理水平进行实质性的提高,以实现电气全通信模式。
2.5热电企业通用网络平台建设中的应用
热电企业选择适合整个自动化系统的网络通用产品,实现企业管理层对发电现场控制设备的网络实时监控,并确保设备的控制、管理系统和监督系统之间的信息传输,以实现企业的集成化。由此可见,通用网络的建设对热电企业的电气自动化系统的运用有着至关重要的作用。
3结束语
1.1电气工程
电气工程,作为一门颇为引人关注的技术学科在现代生活中发挥的作用越来越大了,尤其是和我们的日常生活的密切程度越来越深了,并且其对于计算机网络技术的进一步发展和普及也做出了最为突出的贡献,在不知不觉中逐步地改变着人们的生活方式和工作模式,在极大的方便了人们的日常生活的同时为我们的工作也带来了很大的便利,值得我们进一步的研究和探讨。
1.2电气自动化技术
电气自动化,其实也就是我们常说的电气工程及其自动化,从名称我们就可以看出其和电气工程之间存在着密不可分的关系。电气自动化技术的开发和使用在很大程度上提高了人们的生活水平和生活质量,并且其对于电气工程的推动作用最为明显,可以说电气自动化技术的开发使用给电气工程的发展带来了新的活力,使其发生了天翻地覆的变化。
2.电气工程中电气自动化技术的应用方向
2.1电气自动化技术在远程监控中的使用
远程监控系统的应用范围是比较广泛的,在电气工程中的很多地方都可能会用到远程监控系统,而电气自动化技术在电气系统中的一个主要的应用方向就是在远程监控中的使用。在远程监控系统中合理的运用电气自动化技术能够在很大程度上节省人力、物力和财力,在节约成本的同时还能够提高远程监控的效果,使得监控变得更加灵活,更加有效,尤其是在一些对于通讯信号要求较高的远程监控系统中更是能够发挥突出的效果。
2.2电气自动化技术在集中式监控中的使用
相对于原有的监控设施的散乱性和独立性,当前监控设施主要体现出了集中性,这种集中式的监控对于电气工程来说是极为合适的,这种方式能够有效改变原有的监控模式对于电缆数量和处理器数量的高要求,在很大程度上节约了投资成本,虽然原有的监控模式能够很好地对于整个的电气工程进行监控,及时发现问题并且予以解决或者报警,但是相对于其高额的资金投入也是很不划算的,一直是困扰着电气工程负责人员的重要问题,而现在集中式监控模式的使用就很好的解决了这一问题,其不仅仅投资小,在监控效果上甚至比原有的监控模式更好,这主要就是得益于电气自动化技术的合理使用。在集中式监控中合理的使用电气自动化技术能够更为简便的发现电气工程中出现的问题并且能够自动化的给予解决的办法,这些都是以往的传统监控模式所不能达到的,也是现代化的电气自动化技术在电气工程中的一个重要应用方向之一。
2.3电气自动化技术在现场总线监控技术中的应用
现场总线监控技术可以说是当前电气工程中应用最为频繁的一种技术,其应用的效果也颇为受人欢迎,应用这种技术的优势还是比较明显的,比如,这种技术的使用能够有效减少隔离设备的使用,还能够有效的控制端子柜的应用,最终能够起到节约成本,提高效率的目的。这种现场总线监控技术在各地电气工程中都有应用,尤其是融入了电气自动化技术之后其效果更为突出,也更为明显,更为受人欢迎,使得电气自动化的应用范围进一步扩展。
3.电气工程对电气自动化技术的融合使用措施
3.1电气自动化技术在电网调度中的应用
电网调度是电气工程的主要工作之一,在电网调度中融合使用电气自动化技术能够起到较好的效果。电气自动化在电网调度中的应用离不开自动化设备的参与,因此,融合了电气自动化技术的电网调度设备都是采用的一些自动化系统装置的显示器、打印机、计算机网络设备等,这种自动化设备的应用能够更好地进行全网电力的调配,更加科学合理的进行电网调度,通过自动化的分析和计算,针对整个的电网中电力的需求状况进行合理的调度,确保整个电网的正常运行,避免电力调度事故的出现。
3.2电气自动化技术在发电厂分散测控系统中的应用
发电厂是电气工程的一个重要组成部分,在发电厂中合理的运用电气自动化技术能够有效提高发电厂的生产效率,有效减少发电厂发生事故的概率,尤其是在发电厂分散测控系统中融合使用电气自动化技术的话能够直接监控到每一个的执行单元,进而对于整个的电气工程流程进行监控,并且所获得的各种数据和效果图都是高质量的,在确保发电厂正常运行的同时提高了整个运行的安全性和稳定性。
3.3电气自动化技术在变电站中的应用
变电站是电力系统中电力运输过程中不可获取的一部分,在变电站中应用电气自动化技术能够完全取代电力人员的作用,采取全自动化的装置来进行电力的转换,在确保安全的同时提高了电力转换的效率,并且其多层次的监控模式还能够为变电站的高效运行提供有力保障。
4.结语
1)电气自动化技术与工程管理
在使用电气自动化技术后,改变了以往电气仪器(像仪表显示器)的基本功能,而是在此基础上拓宽其功能,完善其在电气工程中的角色定位。例如在仪表管理过程中,在运用电气自动化技术后,由最基本的功能:显示温度、压力、流量等过度到自动化管理模式上,这种管理方式实现了电气工程现场众多变送器流量、信息、数据之间的转换,提高了信息收集水平,有利于工程决策制定,改变了以往电气工程低效、不精确的缺点,而且减少了后期维护工程量,使得成本得到大幅度降低。除此之外,在管理过程中,应对电气工程整个施工信息、技术使用反馈信息等,这实现了对电气工程从开始施工、技术运用、调试、后期维护、信息反馈等一整套指标的微机化管理,从而减少了其中弄虚作假、徇私枉法现象的发生。
2)电网调度管理
电网调度的时效性与安全性对一个国家整个电力系统的运行具有关键性作用,传统的电网调度过程过于分散,不同部门之间相互分离,无法实现信息共享,使得电力分配与使用问题繁多。在其管理过程中,灵活运用电气自动化技术从而建立了电网调度自动化技术系统,从打印设备的配置、工作站的组建、中心服务系统的运用以及合理将大屏幕显示器的作用实现最大化发挥,在该调度自动化系统中,实现了变电站、发电厂与次级调度中心三者的联系,使其成为一个整体,这方便了电气自动化技术对电气系统以及其运行过程的时时监督,对所收集的信息进行合理科学性评估,做好电力负荷的有效预测,同时,电气自动化技术还应定期做好电网调度整个过程的信息采集、数据分析,并对其整个流程进行合理监控,从而保证电网运行的安全性与经济性,使其发展目标与市场经济相融合,并不断借鉴吸收,实现新型化发展。
2结语
在社会发展的多个领域,都能够发现智能化技术的应用。智能化技术具有综合性的特点,包含着多种学科内容,例如控制学。从字面的理解来看,智能化技术的实际应用是借助一定技术手段的实施,完成人工智能的机器操作目标,并且解决一些人力不能完成的问题。在较长时间的实践应用中,智能化技术逐渐走向成熟,在各个社会领域发挥的作用更加明显。在电气工程领域,利用智能化技术实现较好的自动化控制,经过了较长时间实践,应用了多方面的电气工程内容,才得出了较强的实用性结论。因为智能化技术的应用术语属于高端的计算机技术,所以,自动化控制工作中引入智能化技术,必须有一定的计算机理论基础,否则将影响智能化技术的作用发挥。在智能化技术的不断实践应用中,极大提高了自动化控制系统的运行速度,较好改善了电气自动化控制工作,降低了工作成本,减轻了工作压力,实现了人力资源配置的合理优化。
二、智能化技术的应用优势
(一)免去了控制模型的建立
在电气工程的传统工作中,自动化系统控制的实现必须有控制模型的建立。但是,在实际的操作中,被控制对象往往需要十分复杂的动态方程,这就影响了精确效果的获得。由此,在设计对象模型的环节中,经常会遇到无法科学预测、无法准确估量的一系列困难。然而,智能化系统的出现,使这些困难得到了较好解决,极大促进了工作效率的提升,同时对于一些不可控制的因素,也实现了较好的控制,大大提升了自动化控制器的准确性。
(二)实现了便捷的电气系统控制
智能化控制器的实际应用实现了更加便捷的电气系统控制,随时都可以完成对系统控制程度的有效调整,极大提升了系统的整体工作性能,是对自动化控制顺利实现的进一步保障。从这一项优势中就可以看到,和传统的自动化控制器相比较,在任何条件下,智能化控制器都具有更加完善的调解控制功能,在电气工程的自动化实践应用中占据优势。
(三)实现了一致性的智能化控制
在自动化控制中的数据处理环节,智能化控制器可以实现一致性的智能化控制,很好解决了不同数据的处理困难。而且,在自动化控制的标准执行上,即使遇到陌生的数据,也依旧可以获得具有较高准确度的估计。但是,如果发现智能化控制器在实际的应用中没有发挥出理想的效果,一定要全面排查工程的各个细节,细致地进行分析,不能盲目的否定智能化控制技术。
三、智能化技术的实践应用
(一)系统病因诊断
在电气工程诊断工作中,采用传统的人工手段具有较强的复杂性,虽然对工作人员要求十分严格,但是也无法获得较为准确的诊断病因。在电气工程工作中,实现自动化控制的过程中经常会遇到一些如设备、数据等方面的问题,这是不可能避免的,采用传统的人工诊断办法不能确保病因处理的及时性,而且处理效果也不佳。但是,智能化技术的广泛应用,使得自动化控制工作的诊断效率得到大幅度提升。而且,定时检测诊断应用,有效避免了一些不必要的问题。
(二)系统设计优化
在电气工程发展中,传统的工程设计需要工作人员进行多次重复的实验操作和改良,而且,在这一工作过程中,对工作人员的工作素质也有着较高的要求,既需要工作人员掌握一定的专业设计知识,还需要工作人员能够很好的将知识理论应用于实践工作中。但是,在实际的设计工作中,工作人员往往不能做到全面的考虑,经常会漏掉一些具体的问题。所以,一旦发现复杂问题,很多情况下都不能做到及时解决。而智能化技术的出现,较好解决了这一问题。设计工作可以借助于计算机网络完成,也可以借助于相关的软件完成,既保证了设计中数据的准确性,也实现了设计样式的丰富化,更能够做到对复杂问题的及时处理,较好保证了自动化控制的稳定性。
(三)系统的自动化控制
在电气工程中,智能化技术可以应用于多个控制环节,能够很好的实现整体性的自动化控制。智能化技术的主要控制工作是借助于三种手段实现的,一是模糊控制,二是专家系统控制,三是神经网络控制。运用这三种控制手段,极大提升了自动化控制效率,使远距离的自动化控制成为可能,增强了对电气系统的运行反馈。特别是神经网络控制,能够实现算法的反向学习,在信号处理方面得到了较大应用。
四、结语
1.1先进控制
1.1.1先进控制的特点在化工的生产当中,往往生产过程较为复杂多样,这样就很难的建立起数学模型。一旦没有完善的数学模型,就会导致预测和推断的失误。与传统的控制技术相比,先进的控制技术能够更加的抓准将要预测和推断的难点。
1.1.2先进控制的应用
先进控制的应用在当今的自动化技术当中得到过广泛的应用,与传统的技术水平相比,现如今的技术手段不仅仅应用到了信息化技术手段,还应用到了很多数学模型之类的知识。因为只有建立了完善的数学模型,才能够对采集到的变量进行精确的统计和计算。再加上信息化的先进技术,这些是保障先进控制应用的有效技术手段之一。
1.2现场总线
1.2.1现场总线的特点
现场总线具有将所有的线路连接起来的功能,现场总线将所有的自动化系统和只能现场设备进行了连接,使得这些智能化设备能够听从统一的号令,这种管理方式既能够节省大量的人力和物力,还能够在很大程度上使得系统的管理变得更具有自动化和智能化。线路总线基于计算机网络自动化技术,使得系统的单回路调节器、现场变送器、现场执行器、可编程序控制器等设备能够与总线进行连接,进而对化工生产当中的一些设备进行更好的控制和调整。
1.2.2现场总线控制系统
现场总线系统能够在化工生产和电气自动化的生产当中保证成本的最低化和投资以及安装费用的最低化,这些费用对于任何一个商家来说都是应当精打细算的,只有注重每一个细节,才能够使得企业不断的变得强大起来。现场总线的控制还能够减少工人的工作量,在保证质量的情况下增加了工作的效率。
2化工生产中电气自动化技术的发展趋势
化工生产中电气自动化技术的发展趋势已经越来越趋向于国际化,因为我国目前的电气化发展已经采用了很多先进的科学技术和技巧,现代化的科学技术与先进的技术是完全分不开的,其中以电子信息技术为最主要的技术手段。现如今在这个二十一世纪当中,更多的事业都趋向于信息化和国际化。自从研发出了电气自动化技术在化工厂当中的应用,对于提高信息系统的处理能力就有着很高的要求,然而信息系统的运行和应用又完全离不开网络技术。通过电气自动化的运行和应用可以加快我国现有工业的发展,从节约资源入手,尽最大的可能去降低生产的成本和费用,保证少成本就可以获得更多的经济效益。能够合理并且高效的应用现代化信息技术是缩短我国与其他国家之间差距的一个保障之一,只有促进全国的经济发展才能够让更多的百姓拥有现代化的生活。
3结语
随着人工智能的发展,智能化技术被应用到电气工程及其自动化中,主要用于控制器以及机器的智能化。智能化技术的应用可以通过故障诊断、智能控制、优化设计、PLD技术这几方面来描述。
1.1故障诊断
电气工程设备的工作时间长,难免会发生故障,由于电气设施故障的非线性、复杂性及不确定性,一旦发生故障,往往需要大量的时间排查故障,效率低、准确率低。而智能化技术能够有效解决这一问题。在故障发生前,一般仪器会出现一些人们很难发现的预兆,通过实时监测仪器状态,在出现异常时及时报警并提示故障位置,在故障真正发生前避免故障,能够在极大程度上减少维修时间。电气工程中常常通过分析变压器中渗漏油分解出来的气体进行故障诊断,确定故障发生的范围,并通过各种手段逐步缩小范围,从而确定故障位置并提示派遣人员及时检修。同时,智能化装置可以记录故障问题,为以后的故障诊断提供参考,使故障诊断更加安全可靠。
1.2智能控制
智能控制能够在很大程度上实现电气工程及其自动化的控制过程自动化,实现无人化管理和远程管理,提高管理的高效性。尤其对于一些高危险、高难度的工作,如高压控制,智能控制是必不可少的。相对于传统的控制器,智能控制器的灵活性更好,更易调节。传统的控制器在设置时需要精确考虑控制对象的动态方程,而实际涉及到的控制环境往往很复杂,存在很多不确定因素。但是智能控制不存在这方面问题,因为其在设计时并不涉及控制对象的模型。并且智能化控制器可以根据对响应数据(如鲁棒性变化、响应时间、下降时间)的分析随时调整系统,调整后智能控制器的性能会大大提高,调整的过程并不需要专业人士在场,这样就减少了大量的人力。以风力发电厂智能化升压站系统为例。智能化升压站系统通过对过程层和间隔层设备升级,将一些模拟量和开关量数字化,有效运用光纤设备,实现间隔层和过程层的通信。站控层由系统主机、工作站、VQC等设备组成,是全站监控、管理、调度中心。系统通过智能化控制,自动完成信息的采集、测量、控制、保护等功能,相比于传统的升压站系统在效率、有效性等方面有很大的提高。
1.3优化设计
电气设备的设计工作相当繁琐,需要综合运用成套设备、电路、电机与电气、电磁场、变压器等学科的知识,并结合过去的设计经验。传统的设计方式根据经验和实验,手工完成设计,方案的达标率非常低,修改难度大,成本高,产品的开发周期也很长。应用智能化技术能够有效提高设计产品的质量,缩短开发周期。智能化技术在这方面的应用主要有专家系统和遗传算法。其中,专家系统依据该领域的专家提供的知识经验,建立数据库,在决策前模拟专家决策过程,做出合理决策,该技术比较前沿,目前尚处于研发阶段,尚未得到大量应用。遗传算法是一种借鉴进化论的随机化搜索方法,被广泛运用于信号处理、组合优化、自适应控制等领域,在电气设计产品的优化上性能优越。
1.4PLC技术
PLC(可编程逻辑控制器)具有高可靠性和抗干扰能力,广泛应用于自动控制领域。在一些大型的电力企业的辅助系统中,PLC已经代替了一般的继电控制器。PLC技术使用内存,用程序方式存储控制逻辑,并用半导体电路实现。PLC技术的应用实现了供电系统的自动切换,用软继电器取代了实物器件,使供电系统更加安全可靠。并且,它能使用复杂的工作环境,具有良好的发挥性能,稳定性强。
2.智能化技术在电气工程及其自动化中的应用前景
2.1优势分析
智能化技术在电气工程及其自动化中相比于传统的控制系统有巨大优势。传统的自动控制系统需要建立控制模型,运用数学方法分析,建立动态方程,但由于系统的复杂性,在实际应用中往往会出现无法预料的问题,很难达到预期的效果。智能化系统可以从根本避免不可控因素,提高工作的效率。智能化技术可以实时监控系统,通过监测响应时间、下降时间等对系统进行实时调节,使系统性能大大提高。因此,智能化系统比传统的控制器更能适应实际工作环境。另外,智能化技术拥有很强的一致性。在输入不同的数据时具有同样可靠的估计能力,有广泛的适用性。
2.2性能方向
速度、精度及效率是电气工程及其自动化的关键指标。在电力系统中采用智能高速处理器芯片,同时采用交流数字伺服系统,能够改善电力系统的动态特性和静态特性,提高系统的速度、精度和效率。柔性化柔性化主要包括群控系统和数控系统这两个方面。对于群控系系统,必须按照生产流程的具体要求设计系统,使系统能够发挥最大的作用,完成信息流和物料流的动态调控。对于数控系统,其强大的可裁剪性和覆盖面可以满足客户的具体要求。
2.3功能方向
在功能方向上,主要包括设计用户图形界面、可视化计算、多媒体技术方面的发展。目前的操作系统一般都采用图形界面,具有良好的人机交互性。在智能化系统中采用图形化界面,通过窗口和菜单实现编程、图像显示、图像模拟、仿真等功能,能够降低操作者的门槛,方便非专业人士操作。通过可视化技术,信息的表达不再是呆板的文字和数据。将数据转化成图表,能方便操作者分析数据,也可以高效地处理和解释数据。同时,采用无图纸设计、虚拟样机技术等技术,将可视化和虚拟环境相结合,能够更加有效地提高产品质量、缩短产品开发周期。多媒体技术一般是将声音、文字、图像、视频等融合在一起传输,如果将多媒体技术应用于智能化系统,可以更加综合化、智能化地处理信息,能带来很大的经济效益。
2.4体系结构
通过集成化、模块化、网络化实现智能化技术在体系结构方面的发展和完善。可以使用高集成度的处理器、大规模集成电路FPGA、CPLD等提高软硬件运行速度。器件的高度集成化能够提高电路密度,减小器件体积,更加方便安装和使用。将智能化技术模块化,各模块之间通过接口通信,这样有助于技术的标准化和集成,也可以运用模块的增减将智能化产品分级别销售。将智能化系统联网使得人们能够对系统进行远程监控,随时掌握系统状况,使电气工程的控制不受地域限制。也可以实现在一台设备上控制其他设备,进行编程等操作。对于较小的电力系统,远程控制能够节约电缆的增加数,材料以及安装费用,并且可靠性高、灵活性强;但是在通讯量大的系统中远程控制会比较困难。
3.结语
与传统的自动化技术相比,智能控制无模型运转,提高了电气系统的管控效率。同时,智能技术的精度更高,减少了设计中的不可预测问题。因而设计对象模型阶段中便会存在不能估量或是预测的问题。人工智能技术实现了系统的实时调节,利用鲁棒性变化和响应时间提高其工作能力,实现自动化过程。智能技术已经成为现代企业管控的必然趋势,与传统的管控装置相比具有先进性,满足电气自动化工程建设的需求。针对不常见的数据,传统的自动化控制技术无法完成评估工作,但智能技术的出现解决了这一问题,实现了对系统录入信息的有效很快速处理。针对不同的对象,智能技术可显示不同的管控效果,使管控的效果具有针对性。但在目前的智能技术发展程度下,多种控制对象问题无法解决。因此,应从技术方面对智能技术进一步剖析和研究,促进该技术的完善,才能对我国工业以及相关行业的发展起到积极作用。
二、人工智能技术应用
基于电气自动化的复杂性,其操作过程应精细且注重细节。一旦操作失误,将导致系统故障甚至造成安全事故。因此,人工智能技术应用的核心技术在于程序化问题,将复杂化的程序通过智能手段转化为简便化。通过系统日常资料的分析,对设备故障采取积极的应对措施。在具体应用过程中,人工智能技术主要表现为以下几个方面。
(一)智能化设计分析
人工智能技术关系到电力工程以及电路的设计。在传统的设计模式下,工作人员的工作量大,需要大量的试验验证,并且对不合理部分进行改进。因此常出现考虑不周全的问题,处理问题的效率较低,对于难度较大的问题,传统的处理方案无法解决。这使得智能化设计成为必然。现阶段,电力企业逐步实现了智能化设计,全面考察了问题的难度,提高了处理问题的能力和效率。但同时,智能设计对于操作人员提出了更高的要求,要求其掌握专业知识和智能系统操作技巧,并且操作人员还应具有与时俱进的精神,对智能系统进行适当的改良设计。利用人工智能设计,可有效提高数据分析的准确性,将复杂问题简单化。
(二)PLC技术应用
随着电力企业规模的扩大,电力生产对于技术具有更高的要求,基于此的PLC技术成为企业生产和建设的重要目标。PLC技术是一种常见的人工智能技术,目前主要应用于工业、电力企业,具有良好的效果。其是在继电控制装置基础上发展起来的智能技术,该系统的主要作用在于优化了系统工艺流程,从而根据企业需求对运营现状进行调整,确保其运营的协调性。PLC技术以自动控制系统为主,手动控制技术为辅。对于提高电力系统生产实践具有重要作用。在电力生产中,PLC人工智能化技术的使用还实现了自动化目标切换,继电器逐渐代替了实物元件,不但提高而来管控效率,还确保了系统的运行安全。
(三)智能诊断和CAD技术应用
智能诊断系统的出现是电气运行复杂化的结果。该诊断系统要求操作人员具有较多的实践经验,改善了传统模式的手工设计方案,充分体现了信息时代的优势。科技的发展也使得CAD技术逐渐实现了智能化,缩短了产品设计实践。智能化技术优化了CAD技术,对产品设计质量的提高具有积极作用。目前,在电力系统中,遗传算法是人工智能技术的重要表现之一,通过科学的计算方法,提高了数据统计和计算的精确度。基于遗传算法的重要作用,应得到企业的重视。在电力系统运行过程中,如何区分故障和征兆是一个难题,智能化技术通过专家系统和神经网络系统可快速有效的分析出系统故障和安全隐患,并提供一定的解决办法,确保了电力系统的运行问题。
(四)神经网络技术应用
神经网络系统是智能技术的重要体现之一,其作用在于分析和处理系统故障。可对系统故障进行准确定位,并且减少了定位时间。同时,还可完成对非初始速度及负载转矩的有效管控。神经系统设计具有多样性,具有反向学习功能。利用神经网络系统的两个子系统,可实现对机电参数转子速度和电子流的评判和管控。目前,智能神经网络系统主要应用于分析模式和信号处理上。由于其包含非线性函数估算装置,因此对于电气自动化控制具有积极作用。其主要优势在于无需对控制对象建立数学模型,因此工作效率高,噪音小。
三、总结
电气自动化技术的发展主要依赖于计算机技术的不断成熟,科学技术的发展促进了计算机行业的发展并且逐步趋向成熟,计算机技术使得电脑模拟人类进行简单的分析和思考成为可能性,计算机模拟技术的发展推动了电气工程自动化的产生。在自动化技术出现以前,人们通常采用的是简单的人工生产技术,效率低下出错率高是其主要存在的问题,电气自动化技术的产生和发展是科学技术进步的必然趋势。自动化技术的出现,使得电气行业乃至整个生产行业的效率大大提高,但是出错率却大大减少,其显而易见的优势逐渐得到了人们的认可和青睐。人工智能化是在自动化的基础上逐渐出现和发展起来的,与普通意义上的自动化相比,智能化有以下三个优势:感知能力、行为能力和思维能力。电气工程自动化中引进智能化技术,能够更好的实现其信息处理功能以及实现对问题的独立管理和决策,对推动其发展具有重要的意义。
2智能化技术优势
在智能化的发展过程中,其相对于自动化的优势逐渐凸显出来。智能化技术应用到电气自动化中,能够更好的推动自动化技术向着更高效、更快速、更精确的方向发展。首先,智能技术的应用,使得电气自动化技术能够实现在运行过程中的动静结合控制,使得生产能够更加具有高效性,不断提高电气自动化技术的发展。其次,智能化技术的运用还能够迎合每位用户的需求,针对不同用户的不同需求进行设置,使得电气自动化本身能够更好的满足更多数人的需要。实现这种需求主要是依靠智能化的柔性系统控制作用,在生产过程中能够控制生产参数,实现模块化的时机理念。此外,在更为复杂的技术运用时,智能化技术能够使得实际应用中多程序和复杂化加工的实现成为可能。
3智能化技术的应用
3.1电气产品优化设计
为保证电气产品的市场竞争力,产品需要不断的更新和发展,才能不断满足人们日益增长的需求。对于电气产品的优化更新是一项繁琐复杂的过程,其设计需要投入大量的人力和物力,耗费的财力也是相当巨大的,对于优化的内容主要包含以下几个方面:第一,在理论知识方面需要优化更新。理论知识是指导产品优化设计的基础,是一切工作的前提。第二,产品的优化还需要足够的经验知识。丰富的经验知识是进行产品优化设计的保障。在传统的电气产品的设计过程中,要想进行产品的优化,必须进行大量的实验,并且还需要凭借经验进行综合验证,如果没有足够的财力物力支持,或者相应的经验没有达到相关的要求,就很难实现电气产品的优化设计。即使各方面都能达到相应的要求,所设计出的方案也并不能完全达到要求。但是随着智能化技术在电气自动化领域中的应用,对于电气产品的优化设计也有了全新的技术支持,不是凭借从前的经验进行,人工智能化使得计算机自动化技术就能完成相应的设计。计算机智能化的投入,使得电气产品的优化设计逐渐简单化,不仅大大降低了成本的投入,大大缩短了研发的时间,而且还使产品更能适应市场发展的需求,为电气自动化技术的发展提供了保障。
3.2人工智能控制技术
在电气自动化技术的不断发展过程中,人工智能控制技术的应用和发展已成为其优化的必经之路,人工智能技术也将逐步成为未来发展过程中的新兴力量。对于人工智能的控制,目前阶段较为常用和有效的三种控制方式主要指的是模糊控制、神经网络控制和专家系统控制。人工智能控制的运用,能够使得生产经营过程中出现的问题得到及时的解决,其在线经营模式加快了问题的处理速度,能够提高生产效率。在生产经营过程中,人工智能控制技术能够对每个设备的运行情况进行实时监控,并将收集到的信息进行及时的采集处理,在第一时间发现故障并采取相应的措施进行解决。
3.3故障的诊断电气设备
由于其特殊的性质,同普通设备相比更具有复杂性和非线性的特点,因此其诊断和维修更为复杂。采用传统的方式进行故障的诊断,不仅诊断效率较为低下,还造成人力物力的浪费,因此,采用智能技术进行电气故障的诊断显得十分有必要。人工智能技术在电气诊断方面的应用,不仅能够使得诊断的效率大大提高,还会使得诊断的差错率降低,推动力电气自动化技术的发展。在对电动机进行诊断的过程中,智能技术的应用,能够使得神经网络和模糊逻辑进行结合,诊断更具有高效性和准确性。
4智能化应用的发展趋势
4.1主站体系的规模
不断扩大对于主站而言,在其发展过程中,所能够接收到的信息范围不断扩大,覆盖面积更加广泛,因此,在发展过程中逐渐向着规模不断扩大的方向发展。主站在其开放性、安全性以及稳定性等方面,对于软件都有突出的要求。因此,在主站智能化的建设过程中,不仅要保证其规模的扩大,在规模扩大的过程中还要保证其安全性和稳定性。
4.2应用的复杂程度不断的提高
主站规模的不断扩大,使得对电力调度的实用性的要求也将逐步增加。电力自动化智能技术的不断提升,还要体现在企业的管理和运营上。应用的复杂程度不断提高,就要求在数据的源头也要相应跟上应用程序的要求,源头努力做好多样化和复杂化的处理,还要在应用的程序中体现出独具特色的运行和管理模式。
4.3增强电力调度
自动化主站体系的交互电力自动化主站体系的交互已经从开始的单一化的模式逐步向着多元化的模式发展起来,信息的流向也不再是从前的单一流向,也逐渐向着多向流动的趋势发展。主体系统的发展不断带动着各个子系统壮大,子系统的不断发展推动力各系统间耦合性提升,信息交互也由原来的单一模式逐步向多元化的方向发展,不断实现信息的交互和共享。
5结束语